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ABSTRACT

Visual localization in complex indoor environments remains a critical challenge
for robotics and AR applications. Sequential localization, where pose estimates
are refined over time, is important for autonomous agents. However, traditional
methods often require storing extensive image databases or point clouds, leading
to significant overhead. This paper introduces a novel, lightweight approach to
sequential visual localization using 3D scene graphs. Our method represents the
environment with a compact scene graph, where nodes represent objects (with
coarse meshes) and edges encode spatial relationships. For each image in the
localization phase, we extract per-patch semantic features, predicting object iden-
tities. Localization is performed within a particle filter framework. Each parti-
cle, representing a camera pose, projects the coarse object meshes from the scene
graph into the image, assigning object identities to patches based on visibility. The
similarity of the per-patch features, in the input image, and object features from
the scene graph determines the weight of a particle. Subsequent images are incor-
porated sequentially, refining the pose estimate. By leveraging a compact scene
graph and efficient semantic matching, our method significantly reduces storage
while maintaining performance on real-world datasets. The code will be public.

1 INTRODUCTION

Figure 1: Observation model for a particle
s
(n)
t = (x, y, z, ϕ), matching object descriptors

predicted by (Miao et al., 2024) from the query
image It to projected object labels from the se-
mantically segmented coarse mesh.

Visual localization is a fundamental capability in
robotics and augmented reality. Accurate pose es-
timation (orientation and position of an agent) en-
ables autonomous navigation, scene understand-
ing, and user-interaction tasks. Over the years,
single-image localization and Simultaneous Lo-
calization and Mapping (SLAM)-based tech-
niques have demonstrated remarkable progress
(Arandjelovic et al., 2016; DeTone et al., 2018;
Berton & Masone, 2025; Mur-Artal et al., 2015;
Sattler et al., 2018; Murai et al., 2025), but they
often demand large storage resources for image
databases or 3D point clouds equipped with vi-
sual features. As environments grow both in scale
and complexity, this burden becomes impractical
for memory-constrained devices or applications
with low bandwidth requirements.

Sequential localization strategies mitigate these challenges by incorporating temporal cues, refining
pose estimates over multiple frames rather than treating each query image independently (Barrau &
Bonnabel, 2014; Leutenegger et al., 2015; Mur-Artal & Tardós, 2017; Maggio et al., 2022). Some
works combine single-image pose estimation with SLAM to reduce drift and improve robustness
(Lynen et al., 2020; Leutenegger et al., 2015). Nonetheless, global pose alignment typically depends
on retrieving a dense 3D model or querying large-scale maps. Such approaches can be prohibitive
in extended deployments, especially when frequent map updates or transfers are required.

Scene graphs present a promising alternative. Storing the environment as a graph of objects and
their spatial relationships offers compactness and a semantically rich representation. Early research
on scene graphs primarily targeted scene understanding, reconstruction, and retrieval (Armeni et al.,
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2019; Johnson et al., 2015; Zhang et al., 2017; Lee et al., 2021; Wu et al., 2020). More recently,
SceneGraphLoc (Miao et al., 2024) leveraged a scene graph to achieve cross-modal place recogni-
tion, highlighting their potential to reduce memory footprints while facilitating efficient localization.

Building on these insights, we introduce a novel method for sequential visual localization that com-
bines a lightweight 3D scene graph with a particle filter. The proposed system relies on coarse
object meshes, rather than dense point clouds, and semantic descriptors, significantly reducing stor-
age overhead compared to the state of the art. We formulate sequential localization for indoor
environments as a particle filtering problem, where each particle observes a portion of the scene and
identifies object categories (e.g., table or chair). By recognizing objects, the system can evaluate
whether the configuration of a particle (its pose) aligns with the input sequence by simply verifying
whether the same objects appear in both the particle view and the query image (see Fig. 1). The
main contributions of this paper are:

• A new 3D scene-graph-based framework for sequential visual localization that jointly models
semantic cues, geometric and photometric constraints.

• A particle filter approach that leverages semantic object identities to refine camera poses itera-
tively, without requiring large image databases or point-cloud maps.

• As a technical contribution, we adapt SceneGraphLoc to work with image sequences (Sec. 4).

2 RELATED WORK

Visual localization is a long-standing problem in computer vision and robotics, with roots in early
works on Structure-from-Motion (Kruppa, 1913; Moravec, 1980; Fischler & Bolles, 1981). Modern
approaches can be categorized into single-image localization, SLAM-based methods, and sequen-
tial localization methods. Our work falls into the last category, but leverages a novel scene graph
representation, distinguishing it from prior art.

Single-image localization. Many recent methods rely on a two-stage approach: coarse localization
(place recognition) followed by pose estimation. Coarse localization treats the problem as image re-
trieval, comparing a query image to a database of geo-tagged ones. Methods like NetVLAD (Arand-
jelovic et al., 2016), AP-GeM (Chum & Matas, 2005) and MegaLoc (Berton & Masone, 2025) pro-
vide global image descriptors for this purpose. Fine localization typically involves establishing 2D-
3D matches between image features and a 3D model (often a point cloud) of the scene, followed by
pose estimation using RANSAC. Feature detectors and descriptors like SuperPoint (DeTone et al.,
2018), R2D2 (Revaud et al., 2019), and D2-Net (Dusmanu et al., 2019) are commonly used. While
effective, these methods require storing large image databases or 3D point clouds equipped with
visual features, leading to substantial storage demands. Alternative approaches, such as scene co-
ordinate (Brachmann et al., 2017; Brachmann & Rother, 2018; Sattler et al., 2011; Li et al., 2012;
Sattler et al., 2016; 2017; Brachmann et al., 2023; Wang et al., 2024) and absolute pose regression
(Walch et al., 2017; Brachmann & Rother, 2018; Sattler et al., 2016; Kendall et al., 2015), directly
predict 3D coordinates or camera poses from the image. However, these often struggle with com-
plex, large-scale environments (Sattler et al., 2018; 2016; 2017; Wang et al., 2024). Our work is
fundamentally different, as it avoids storing image databases or point clouds by using a compact
scene graph.

Simultaneous localization and mapping (SLAM) systems (Barrau & Bonnabel, 2014; Engel et al.,
2014; Gao et al., 2018; Mur-Artal et al., 2015; Mur-Artal & Tardós, 2017; Murai et al., 2025) provide
local tracking of the trajectory of a camera. Popular examples include PTAM (Klein & Murray,
2007), LSD-SLAM (Engel et al., 2014), ORB-SLAM (Mur-Artal et al., 2015; Mur-Artal & Tardós,
2017), and LDSO (Gao et al., 2018). While these systems excel at tracking relative motion, they
are prone to drift over time and typically do not perform global localization (loop closure) without
additional mechanisms. Some systems integrate inertial measurements (Lynen et al., 2020; Qin et al.,
2018) for improved robustness. Our work builds upon SLAM systems, leveraging their estimated
camera trajectory while providing lightweight global localization capabilities.

Sequential localization. Several approaches combine single-image localization with SLAM for im-
proved robustness (Barrau & Bonnabel, 2014; Forster et al., 2014; Bloesch et al., 2015; Sattler et al.,
2016; Leutenegger et al., 2015; Qin et al., 2018; Mur-Artal & Tardós, 2017), often using visual-
inertial SLAM for local tracking and periodically querying a server or compressed map for global
localization (Lynen et al., 2020; Bloesch et al., 2015; Leutenegger et al., 2015). Maplab (Schnei-
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Figure 2: Sequential localization pipeline. Given the current image It and its ego-motion, the
pipeline updates the particle state while leveraging previously processed images I0, . . . , It−1. The
current image is passed through the SceneGraphLoc (Miao et al., 2024) encoder to predict object
labels for each image patch. These predictions inform a 4D probability distribution over the camera
pose (3D position and rotation around the vertical axis), which is then integrated into the posterior
distribution, refining the estimated camera pose as new images become available.

der et al., 2018) provides a framework for benchmarking, while KFNet (Zhou et al., 2020) offers
a learning-based alternative. Other methods incorporate temporal information by modeling image
sequences, enabling joint localization across multiple frames. More recently, MASt3R-SLAM (Mu-
rai et al., 2025) and VGGT-Slam (Maggio et al., 2025) use feed-forward 3D geometry for feature
matching and mapping. In contrast, NeRF- and Gaussian Splat-based methods (Maggio et al., 2022;
Adamkiewicz et al., 2022; Khatib et al., 2025; Meng et al., 2025) assume a pre-built dense recon-
struction and localize by minimizing photometric error of rendered and observed views. While
offering high-fidelity appearance matching, they are memory- and compute-intensive and remain
sensitive to scene changes. We instead propose lightweight scene graphs with semantic and depth
cues, providing compact maps and constraints in addition to photometric consistency.

3D scene graphs for localization and retrieval have emerged as a powerful representation for
capturing scene understanding, extending geometric representations with semantic and relational
knowledge. Early work on scene graphs focused on scene understanding and reconstruction from
point clouds or RGB-D data (Armeni et al., 2019; Lee et al., 2021). More recent work has explored
their use in various tasks, including image retrieval (Johnson et al., 2015; Wu et al., 2020), visual
question answering (Zhang et al., 2017), and navigation (Zhou et al., 2021). The recent Scene-
GraphLoc (Miao et al., 2024) introduced the novel problem of cross-modal localization of a query
image within a database of 3D scene graphs, demonstrating significant storage savings and faster
query times compared to image-based methods. While not direct localization, it showed promise for
place recognition. Our approach builds upon the strengths of sequential localization methods and
the light-weight nature of scene graphs to provide a new localization direction.

3 SEQUENTIAL LOCALIZATION WITH PARTICLE FILTER

We aim to estimate a 4 degree-of-freedom camera pose st = (x, y, z, ϕ), where ϕ denotes rotation
around the known gravity axis, from a sequence of images {I1, . . . , IT }. We maintain a set of N
particles St = {s(1)t , . . . , s

(N)
t } that evolves over time using a particle filter. The filter integrates

a coarse, labeled 3D mesh (derived from a 3D scene graph) with the pre-trained SceneGraphLoc
model (Miao et al., 2024) to compute observation likelihoods. The pipeline is visualized in Fig. 2.

Note that the gravity direction and camera intrinsics are usually accessible from robot sensors, smart-
phones, and head-mounted devices. If this information is not readily available, methods such as
GeoCalib (Veicht et al., 2024) can be used to estimate both the intrinsics and gravity direction.

Scene representation. We model the environment as a 3D scene graph G = (V, E), where each
vertex vi ∈ V corresponds to an object instance oi. Each object node oi is associated with:

3
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Figure 3: Multi-round particle filter on a 5-image sequence, first running with a stride of 20, 8,
and finally 4 (the stride controls the rate of downsampling the images). The first column shows
the initial random particle distribution, gradually narrowing the search space in subsequent rounds.
Each next column represents particle updates after integrating the nth image (indicated below each
plot). Then, the Maximum Likelihood Estimate (MLE) is shown in blue, and the GT pose in green,
back-propagated to the 1st frame for the next optimization round.

• A compact embedding ei ∈ Rd, obtained from the SceneGraphLoc object encoder (Miao et al.,
2024), which combines multi-modal inputs (e.g., RGB images, point clouds, textual annotations,
relationships to other objects).

• A coarse 3D mesh Mi that captures the approximate geometry of the object for raycasting. The
mesh needs only be detailed enough for visibility and occlusion checks.1

Edges in E encode spatial relationships (e.g., adjacency) among objects, though our localization
pipeline primarily relies on object embeddings {ei} and coarse meshes {Mi}. By storing these
low-dimensional descriptors and approximate geometries instead of dense image databases or large
point clouds, we greatly reduce the memory footprint while still enabling accurate pose estimation.

Particle filter. To approximate posterior p(st | I1:t), we maintain a set of weighted particles as p(st |
I1:t) ≈

∑N
n=1 w

(n)
t δ

(
st−s

(n)
t

)
, where δ is the Dirac delta function and w

(n)
t denotes the normalized

weight of the n-th particle at time t. At each timestep, the filter performs (i) a prediction step (motion
model), (ii) an update step (observation model), and (iii) optional resampling, as described below in
the next section.

3.1 INITIALIZATION

Patch embeddings from SceneGraphLoc. We subdivide each incoming image It into a grid of n×
m rectangular patches {pr,c}, where r ∈ [0, n) and c ∈ [0,m). We follow SceneGraphLoc (Miao
et al., 2024) and use a 14 × 14 grid, yielding 196 patches. We apply the SceneGraphLoc image
encoder to obtain a set of patch embeddings {êr,c}. Each êr,c is a semantic descriptor indicating
which object (from the scene graph vocabulary) is most likely visible in the patch.

Particle distribution. We then uniformly distribute particles in a 3D bounding region Ω span-
ning four approximate heights {1.50, 1.60, 1.70, 1.80} meters above the floor. Concretely, we
partition Ω into grid cells of size 0.2 meters, sample three poses per cell, and randomly as-
sign yaw angles ϕ ∈ [−π, π]. All particles receive equal initial weight, determined as follows
p(s0) =

1
|Ω| if s0 ∈ Ω else 0. This broad initialization ensures coverage of plausible poses before

the sequential estimation begins.

1On average, the 3RScan (Wald et al., 2019) meshes have 863 vertices per object and ScanNet (Dai et al.,
2017) 11681 vertices per object in the experiments.
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3.2 PREDICTION (MOTION MODEL)

To propagate each particle s
(n)
t from timestep t to t + 1, we apply the camera’s ego-motion tt =

[ tx,t, ty,t, tz,t, tϕ,t ], augmented by i.i.d. Gaussian noise ωt = [ωx,t, ωy,t, ωz,t, ωϕ,t ]:

s
(n)
t+1 = s

(n)
t ⊕

(
tt + ωt

)
. (1)

Here, ⊕ applies a 4-DoF transformation (3D trans./rot. around the gravity axis). We set σtrans =
0.05 m and σrot = 0.05 rad as the standard deviations for translation and yaw noise, respectively.
This accounts for modeling uncertainty in the motion estimates while maintaining gravity alignment.
In practice, ego-motion is obtained by the employed SLAM system, such as (Teed & Deng, 2021).

3.3 UPDATE (OBSERVATION MODEL)
After predicting the particle set St+1, we incorporate the new image It+1 to refine particle weights.

Raycasting. For each particle pose s
(n)
t+1, we project the coarse 3D meshes {Mi} from the scene

graph into the image. This identifies which objects (nodes in G) are visible in each of the 14 × 14
patches, assigning an object embedding ei to each patch p̂r,c for that particle.

Patch similarity. We then compare the patch embedding êr,c from the query image It+1 (Sec-
tion 3.1) with the object embedding ei assigned by raycasting. We compute the cosine similarity
and retain it if the predicted object matches the one determined by raycasting. Summing these valid
similarities across all 144 patches and normalizing by the total patch count yields a score s ∈ [0, 2],
where the cosine similarity values in [−1, 1] are shifted to the positive range.

Particle weighting. We model the likelihood using a Gaussian centered on s = 2 as L
(
s
(n)
t+1

)
=

exp(−(2−s)2/(2σ2)), where σ = 0.2. The unnormalized weight of each particle becomes w̃(n)
t+1 =

w
(n)
t · L(s(n)t+1), and we normalize by

∑
m w̃

(m)
t+1 to obtain w

(n)
t+1. Particles with higher similarity

scores receive greater weight, driving the distribution toward accurate poses in subsequent steps.

3.4 ADDITIONAL SUPERVISION SIGNALS

In addition to semantics, we use photometric and geometric cues to guide the particle filter.

Color supervision. As we are given an RGB sequence as input, we can leverage photometric losses
to further improve our particle state quality measurements. Let us assume that our map representa-
tion is a coarse textured mesh. For each particle s

(n)
t+1, we project the meshes {Mi} of the visible

objects into the image plane. Note that this step does not require additional computations as the mesh
has already been projected for semantic supervision. Now, instead of assigning object identities, we
render an RGB image I

(n)
p for the particle. Given the next image It+1 in the input sequence, we

calculate the photometric score s(n)i of the particle by calculating the structural similarity (SSIM) as
s
(n)
i = LSSIM(It+1, I

(n)
p ), where LSSIM returns values between 0 and 1.

Depth supervision. When depth information is available, either from an RGB-D sensor or a depth
estimator applied to the image sequence, we can further incorporate this information to enhance
accuracy. We achieve this by adding a depth-based score.

Depth map projection. For each particle s(n)t+1, we project the coarse 3D meshes of the visible objects
into the image plane. Now, instead of assigning object identities, we render a depth map D

(n)
p for the

particle. This depth represents the distance from the camera plane to the projected mesh surfaces,
according to the pose of the particle. We use the same resolution for D(n)

p as the input image (or
the downsampled version, as described in Sec. 3.5). Let DI be the depth map corresponding to the
input image It+1. If It+1 is an RGB-D image, DI is directly obtained from the sensor. If only RGB
data is available, DI can be estimated using a monocular or stereo depth estimation method.

Depth score calculation. We compute the depth score s
(n)
d for particle s

(n)
t+1 by calculating the L1

difference of the projected depth map D
(n)
p and the input DI . The score is calculated as follows:

s
(n)
d = 1 − 1

R·C
∑R

r=1

∑C
c=1 |D

(n)
p (r, c) − DI(r, c)|, where R and C are the number of rows and

columns of the depth maps, respectively, and D
(n)
p (r, c) and DI(r, c) are the depth values at pixel

(r, c) in the projected and input depth maps, respectively. The score is designed such that 1 is best
and lower values are worse.
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Table 1: Localization accuracy on the 3RScan and ScanNet datasets. We report the average and
median position error (m) and average and median rotation error (◦) for sequences of length 5, 10,
25, and 50 frames. ACE is shown faded on ScanNet since its encoder was trained on this dataset.
Lower values indicate better localization performance.

5 frames 10 frames 25 frames 50 frames
Method Mean Median Mean Median Mean Median Mean Median

Pos. (m) Rot. (◦) Pos. (m) Rot. (◦) Pos. (m) Rot. (◦) Pos. (m) Rot. (◦) Pos. (m) Rot. (◦) Pos. (m) Rot. (◦) Pos. (m) Rot. (◦) Pos. (m) Rot. (◦)

3R
Sc

an

HLoc 2.05× 1012 46.68 0.18 6.32 5.10× 1010 36.85 0.13 4.15 1030.90 22.74 0.08 2.44 732.20 16.09 0.07 2.06
MeshLoc 4.51× 105 22.81 0.47 2.65 2042.24 15.72 0.44 2.29 26.15 9.46 0.42 1.74 15.29 8.99 0.40 1.70
Loc-NeRF 1.34 38.42 1.19 21.63 1.35 40.01 1.02 22.00 1.24 31.47 0.79 14.08 1.12 23.09 0.59 7.46
SG2Loc (Ours) 2.43 21.24 0.20 3.27 2.30 20.50 0.18 2.96 6.15 22.93 0.14 2.73 9.48 27.43 0.10 2.62
ACE 2.99 61.14 1.66 42.38 2.45 52.52 0.93 27.04 1.69 40.05 0.39 10.31 1.15 30.10 0.19 5.33
ACE + GS-CPR 3.33 65.82 1.61 50.13 2.93 56.05 0.75 20.88 2.40 42.71 0.18 5.93 2.06 29.78 0.14 4.37

Sc
an

N
et

HLoc 6.16× 104 14.30 0.09 2.63 603.05 10.48 0.08 2.45 492.00 7.27 0.06 2.12 1348.28 7.12 0.07 1.94
MeshLoc 7.62 4.14 0.31 1.90 8.54 3.57 0.30 1.90 0.30 2.28 0.29 1.84 0.29 2.06 0.28 1.77
Loc-NeRF 1.32 33.33 1.09 17.60 1.45 29.59 1.11 15.10 1.36 20.58 0.77 9.02 1.18 12.02 0.46 8.15
SG2Loc (Ours) 0.53 11.55 0.12 2.55 0.44 8.14 0.10 2.30 0.32 4.55 0.09 2.29 2.10 12.27 0.08 1.70
ACE 0.23 4.43 0.08 1.99 0.18 3.85 0.08 1.93 0.13 2.77 0.07 1.70 0.10 2.78 0.06 1.81

Combined score. The final weight is then computed by combining the semantic similarity score s

(from Sec. 3.3), the depth s
(n)
d and color scores s(n)i as:

L
(
s
(n)
t+1

)
= exp

(
− (6−(s+λ1s

(n)
d +λ2s

(n)
i ))2

2σ2

)
, (2)

where λ1 and λ2 are weighting factors that balance the contribution of the depth and color scores.
The values of λ1, λ2 are set empirically. For our experiments, all losses are weighted equally,
the weights are fixed and all parameters are kept fixed across all experiments. The unnormalized
weight becomes w̃

(n)
t+1 = w

(n)
t · L

(
s
(n)
t+1

)
. We normalize these weights as before: w

(n)
t+1 =

w̃
(n)
t+1/

∑
m w̃

(m)
t+1 . This combined scoring mechanism leverages semantic, geometric and appearance

information, leading to more robust and accurate localization, especially in cases where the semantic
information alone might be ambiguous. The depth and color scores provide additional constraints
based on geometric and photometric consistency, helping to disambiguate poses that might have
similar semantic projections.

3.5 COARSE-TO-FINE OPTIMIZATION

We refine the pose estimate over multiple rounds, gradually increasing raycasting resolution and
narrowing the search region. We observed that this process speeds up the localization and leads
to higher accuracy. In the first round, we downsample the input image with a stride of 20 pixels,
enabling a coarse but efficient search over the entire scene. Particles are initialized uniformly within
the full environment bounds, allowing a rapid, coarse localization. Next, we apply an 8-pixel stride,
restricting the particle initialization to a 1.63 m region centered around the maximum likelihood
estimate (MLE) pose from the previous round. This second pass refines localization by focusing on
a smaller region. Finally, we downsample the image with stride 4 and use an even tighter bounding
box of 0.83 m around the new MLE pose. This final pass incorporates high-resolution visibility
checks and yields the most precise pose estimate.

Adaptive resampling. Following each update, we dynamically adjust the particle count us-
ing an adaptive scheme based on KLD-sampling (Fox, 2001). Letting ϵ and δ be bounds
on the Kullback–Leibler divergence and its confidence level, respectively, we compute n =

1
2ϵ

(
1− 2

9(k−1) +
√

2
9(k−1) z1−δ

)3

, where k is the bin number in the state histogram used for di-

vergence estimation, and z1−δ is the (1 − δ)-quantile of the normal distribution. We then apply
stratified resampling to draw n new particles, ensuring that the MLE distribution remains an accu-
rate approximation of the true posterior. An example visualization is shown in Fig. 3.

3.6 POSE REFINEMENT WITH PNP

To refine the final pose from the particle filter, we render six synthetic views from the mesh. One
from the MLE pose estimated in the previous steps and five sampled within a range of ±45◦ yaw
around the MLE. We match each view with the query image using RoMa (Edstedt et al., 2024) and
establish 2D-3D correspondences through a ray-mesh intersection. Pose refinement is performed
using RANSAC-based PnP from PoseLib (Larsson & contributors, 2020). For each sequence, we
apply this process per frame by backpropagating the MLE pose (obtained from the last frame) to
earlier images. We select the pose with the highest inlier count as the final estimate.

6
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Table 2: Pose recalls on the 3RScan and ScanNet datasets. We report position, rotation and joint
recalls at thresholds: Pos. R@0.25m / Rot. R@2◦ / R@0.25m, 2◦ for sequences of length 5, 10, 25
and 50. Recall measures the fraction of errors that fall below those thresholds. ACE is shown faded
on ScanNet since its encoder was trained on this dataset. Higher values indicate better performance.

Method 5 frames 10 frames 25 frames 50 frames
3R

Sc
an

HLoc 0.54 / 0.28 / 0.27 0.62 / 0.32 / 0.32 0.74 / 0.43 / 0.43 0.76 / 0.50 / 0.50
MeshLoc 0.04 / 0.41 / 0.03 0.05 / 0.45 / 0.03 0.05 / 0.54 / 0.03 0.06 / 0.55 / 0.04
Loc-NeRF 0.03 / 0.05 / 0.00 0.06 / 0.04 / 0.01 0.11 / 0.13 / 0.04 0.16 / 0.14 / 0.02
SG2Loc (Ours) 0.53 / 0.38 / 0.32 0.55 / 0.38 / 0.33 0.59 / 0.43 / 0.39 0.65 / 0.43 / 0.43
ACE 0.26 / 0.11 / 0.11 0.33 / 0.14 / 0.14 0.45 / 0.21 / 0.21 0.55 / 0.29 / 0.29
ACE + GS-CPR 0.33 / 0.14 / 0.14 0.42 / 0.19 / 0.19 0.54 / 0.27 / 0.27 0.64 / 0.36 / 0.36

Sc
an

N
et

HLoc 0.81 / 0.38 / 0.38 0.86 / 0.41 / 0.41 0.91 / 0.47 / 0.47 0.98 / 0.52 / 0.52
MeshLoc 0.25 / 0.53 / 0.13 0.25 / 0.53 / 0.13 0.29 / 0.56 / 0.15 0.29 / 0.65 / 0.13
Loc-NeRF 0.03 / 0.08 / 0.00 0.05 / 0.08 / 0.01 0.21 / 0.14 / 0.08 0.31 / 0.14 / 0.03
SG2Loc (Ours) 0.73 / 0.40 / 0.36 0.80 / 0.40 / 0.39 0.86 / 0.43 / 0.42 0.90 / 0.61 / 0.61
ACE 0.91 / 0.50 / 0.50 0.94 / 0.52 / 0.51 0.94 / 0.60 / 0.59 0.97 / 0.53 / 0.53

4 SEQUENTIAL SCENE RETRIEVAL

SceneGraphLoc (Miao et al., 2024) was originally designed to select the correct scene (represented
as a 3D scene graph) from a set of candidate scene graphs {Gi} given a query image as input. In this
section, we adapt SceneGraphLoc to leverage not just one image but the entire input sequence when
retrieving the current scene from the database.

For each image It in the sequence, we extract a set of image patches Qt. For each patch q ∈ Qt,
we compute its embedding eq using the pre-trained encoder. Similar to (Miao et al., 2024),
we then compare eq with the embeddings ev of nodes v ∈ Vi in each scene graph Gi in our
database using a similarity metric as similarity(q, v) = cos(eq, ev). We assign a score to each
scene graph Gi based on the similarity scores of its nodes to the image patches as: scoret(Gi, It) =
1

|Qt|
∑

q∈Qt
maxv∈Vi similarity(q, v). To incorporate information from the sequence, we aggregate

the scores from all images as score(Gi) =
∑T

t=1 scoret(Gi, It). The scene graph with the highest
final score is selected as the correct match for the sequence. This process allows us to better find the
correct scene in a database of maps.

5 EXPERIMENTS

Datasets. The 3RScan dataset (Wald et al., 2019) contains 1,335 annotated indoor scenes across 432
spaces, with 1,178 scenes (385 rooms) for training and 157 (47 rooms) for validation. Each scene
is represented by a semantically annotated 3D point cloud, with multiple captures over months to
reflect environmental changes. Since the test set lacks scene graph annotations, we follow (Miao
et al., 2024) and reorganize the validation set into 34 scenes (17 rooms) for validation and 123 scenes
(30 rooms) for testing. To ensure realistic evaluation, query sequences are localized against maps
from different temporal states, yielding 9,445 images. We note that 3RScan is explicitly designed to
evaluate localization under significant scene changes, including object rearrangements, removal, and
occlusions. SG2Loc is evaluated on every frame of this dataset in a cross-temporal setting, where
query sequences are matched against maps captured some time apart. For evaluation without GT
scene graphs, we also use ScanNet (Dai et al., 2017). Following (Miao et al., 2024), we generate
scene graphs with SceneGraphFusion (Wu et al., 2021) and adopt the same split of 57 scan pairs
(captured at different times), sampling one image every 25 frames for 4,088 queries. This split will
be released publicly.

Baselines. We compare with HLoc (Sarlin et al., 2019), MeshLoc (Panek et al., 2022), Loc-NeRF
(Maggio et al., 2022), ACE (Brachmann et al., 2023) and ACE poses refined with GS-CPR (Liu et al.,
2024). HLoc is a hierarchical method combining image retrieval (50 nearest neighbors per query)
with pose estimation from 2D–3D correspondences, requiring a large image database. MeshLoc
localizes via a 3D mesh, storing a depth map per image generated from the mesh. We use Super-
Point (DeTone et al., 2018) and SuperGlue (Sarlin et al., 2020) for local feature matching. ACE
is a scene coordinate regression network trained per scene enabling accurate localization. GS-CPR
refines ACE by using rendered depth from Gaussian Splats and MASt3R correspondences to refine
camera poses. For sequential evaluation, we run HLoc, MeshLoc, ACE, and ACE+GS-CPR per
image and select the pose with the most RANSAC inliers as the sequence result. Loc-NeRF fol-
lows a similar filtering approach as we do, using only photometric error. We replaced the original
NeRF map with a Gaussian Splat for faster localization. HLoc and MeshLoc both require substantial
storage, limiting scalability.
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Metrics. We evaluate the performance of our method and baselines using standard metrics for
visual localization: average and median position (in meters), rotation errors (in degrees) and recall.
Additionally, we report the storage requirements of each method, including the size of the database
and any additional structures. The rotation error is calculated as the geodesic distance between the
estimated rotation matrix R̂ and the ground truth rotation matrix Rgt on the SO(3) manifold. It is
calculated as follows: ϵR = arccos((1/2)(tr(RT

gtR̂)− 1)).

Sequential visual localization. Table 1 reports average and median position (m) and rotation (◦)
errors for sequences of length 5, 10, 25, and 50. SG2Loc achieves lower mean errors than HLoc,
with comparable median position errors and substantially better rotation accuracy. While methods
such as MeshLoc yield strong rotation estimates, their position errors remain well above those of
HLoc and SG2Loc. ACE performs worse than HLoc and other baselines on 3RScan, but achieves
high accuracy on ScanNet, likely due to its encoder being trained on ScanNet, unlike the other meth-
ods. The GS-CPR refinement of ACE poses (ACE+GS-CPR) improves ACE, but our method still
achieves higher accuracy. All methods benefit from longer sequences, which consistently improve
performance. Table 2 shows that our method achieves the best combined recalls for 5/10 frames and
the second-best for 25/50 on 3RScan. On ScanNet it achieves best combined recall for length 50.

Table 3: Average storage per scene in MB.

Method 3RScan ScanNet

HLoc 294.4 283.3
MeshLoc 1433.6 589.7
Loc-NeRF 143.9 66.6
SG2Loc (Ours) 9.8 28.2
ACE 4.2 4.2

HLoc and MeshLoc rely on significantly more in-
formation by leveraging large-scale databases, yet
SG2Loc performs on par with them, sometimes
slightly worse, and sometimes better. Crucially, our
approach achieves comparable accuracy, while re-
quiring one order of magnitude less storage than
HLoc and two less than MeshLoc on 3RScan, and
one order less than both on ScanNet. Storage in MB
is shown in Table 3. This significant reduction in
storage makes SG2Loc well-suited for on-device lo-
calization, where efficient map storage and low-bandwidth transmission are critical constraints. Our
method uses roughly 2500 particles on 3RScan and 3200 particles on ScanNet for the results re-
ported in Table1 and Table 2. Raycasting for all particles is run fully in parallel on GPU, which
keeps runtime manageable even with larger particle sets.

The mapping and per-frame processing times (in seconds) are reported in Table 4. For the proposed
method, the mapping time includes constructing a kd-tree for raytracing with particles and com-
puting object embeddings for the scene graph. For HLoc, it includes extracting image embeddings
and 2D-3D correspondences for the database, while for MeshLoc, it involves computing both image
embeddings and depth maps. Loc-NeRF and ACE require training a separate map representation
for each scene. The localization for SG2Loc consists of state transitions, particle updates (embed-
dings are computed per query image and raycasting is performed from all particles), and resampling
steps, before post-processing with PnP. The localization time represents the average time required
to estimate the camera pose for a single frame. The proposed method requires substantially less
computation during mapping than the baselines. At inference, it runs at an average of 2.9 seconds
per frame, followed by pose optimization, which is suitable for sequential localization.

Table 4: Average runtime on 3RScan per
scene (offline, seconds) for frame integration
and final optimization by PnP (runs once). The
localization time is averaged over sequences and
accounts for the per-frame integration.

Method Mapping Localization Final Opt.

HLoc 3520.0 0.01 –
MeshLoc 2208.0 0.07 –
Loc-NeRF 1490.0 7.50 –
SG2Loc (Ours) 1.6 2.90 5.5
ACE 134.2 0.08 –

Keyframing. In practice, localization need not
be performed on every frame, as high frame rates
introduce redundancy. To simulate a realistic sce-
nario, we integrate frames at a rate matched to our
runtime (Table 6), where the agent moves in real
time and incoming frames must be processed se-
quentially. Our method significantly outperforms
HLoc on the same inputs, demonstrating its prac-
ticality for robot localization.

Sequential scene retrieval. In this section, we
evaluate the extension proposed in Section 4,
which enables SceneGraphLoc (Miao et al.,
2024) to operate in a sequential setting. We compare this extension to the original method, which
performs localization using only the first image of the sequence. Additionally, we benchmark against
state-of-the-art image retrieval methods, AnyLoc (Keetha et al., 2023) and CVNet (Lee et al., 2022).
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Table 5: Cross-modal sequential scene retrieval on the 3RScan dataset (Wald et al., 2019), where
the goal is to identify the correct scene from a set of 10 or 50 candidates. We evaluate Scene-
GraphLoc (Miao et al., 2024) operating on single frames and our proposed extension, which enables
(Miao et al., 2024) to process sequences. We also show results of standard techniques (copied from
(Miao et al., 2024)) CVNet (Lee et al., 2022) and AnyLoc (Keetha et al., 2023). Tests are conducted
on sequences of length 5, 10, 25, and 50. We report scene retrieval recall in the temporal setting
(Rt) at ranks 1, 3, and 5, indicating whether the correct scene appears among the top-k predic-
tions. Additionally, we present inference time (in milliseconds) and storage requirements for map
representation, demonstrating the efficiency of our approach.

10 scenes 50 scenes Storage
# of frames Rt@1 Rt@3 Rt@5 Time (ms) Rt@1 Rt@3 Rt@5 Time (ms) MB

1 ((Miao et al., 2024)) 0.82 0.94 0.98 0.3 0.69 0.79 0.84 1.5 5.4
5 0.84 0.95 0.98 1.5 0.72 0.84 0.88 7.5 5.4
10 0.86 0.95 0.98 3.0 0.75 0.85 0.89 15.0 5.4
25 0.88 0.96 0.98 7.5 0.78 0.87 0.91 37.5 5.4
50 0.89 0.96 0.98 15.0 0.81 0.89 0.92 75.0 5.4
CVNet (Lee et al., 2022) 0.79 0.91 0.95 60.0 0.67 0.77 0.82 311.1 239.1
AnyLoc (Keetha et al., 2023) 0.88 0.95 0.98 1826.4 0.81 0.87 0.90 1451.1 5720.3

Table 6: Keyframing on 3RScan. We report
avg. and median pos. (m) and rot. error (◦), and
recall at (25cm, 2◦) for 100-frame sequences.

HLoc Ours w/ keyframing

Mean pos. (m) ↓ 0.94 2.36
Mean rot. (◦) ↓ 33.99 20.08
Med. pos. (m) ↓ 0.27 0.18
Med. rot. (◦) ↓ 3.67 2.75
Pos. R@0.25m ↑ 0.48 0.54
Rot. R@2◦ ↑ 0.35 0.43
R@25cm, 2◦ ↑ 0.35 0.40

Table 7: Ablation study on 3RScan. We re-
port recall at (10cm, 5◦) and (25cm, 10◦) for 5-
frame sequences. Higher recall is better.

Method R@10cm, 5◦ R@25cm, 10◦

Max. raycast resolution (3.5) 0.07 0.33
Uniform sampling (3.1) 0.10 0.30
w/o adaptive resampling (3.5) 0.11 0.30
SG2Loc w/ semantic (3.4) 0.11 0.35
SG2Loc w/ semantic+depth (3.4) 0.20 0.54
SG2Loc w/ semantic+depth+RGB (3.4) 0.35 0.61
SG2Loc (Ours) (3.6) 0.50 0.65

We follow the evaluation protocol used in (Miao et al., 2024), where, given a query image (or se-
quence), we retrieve the top-k scenes from a candidate set of either 10 or 50 scenes. This evaluation
is conducted ensuring that the query image was captured at a time step different from the reference
map. We report recall at ranks 1, 3, and 5, measuring how often each method retrieves the correct
scene among its top-k predictions (k ∈ {1, 3, 5}). Additionally, we provide localization time in mil-
liseconds and storage requirements for retrieval. For our method, storage corresponds to the scene
graph embeddings, whereas for CVNet and AnyLoc, it reflects the database of image embeddings.

The results are presented in Table 5. As expected, using longer sequences for localization substan-
tially and consistently improves retrieval recall in both the 10-scene and 50-scene settings while
introducing only a minimal increase in runtime. With sequences of 25 and 50 frames, the proposed
method matches the performance of storage- and computation-intensive image retrieval baselines.
These findings demonstrate that the sequential extension of SceneGraphLoc is effective and serves
as a valuable complement to the localization approach proposed in this paper.

Ablation Studies are conducted on the first 4 scenes of the 3RScan (Wald et al., 2019) dataset,
comprising 335 sequences of 5 images. The results are presented in Table 7. The first 3 ablations
evaluate components of our method relative to SG2Loc w/ semantic. The Max. resolution (stride = 1)
setting removes downsampling in the final pass of multi-round optimization, using the highest reso-
lution for raycasting. As shown in Table 7, this configuration achieves similar accuracy to SG2Loc
w/ semantic, while achieving much lower computational cost. The Uniform sampling setting initial-
izes particles on a uniform 3D grid with a resolution of 0.2m, assigning 3 random poses per grid
cell. This approach results in significantly lower accuracy compared to SG2Loc w/ semantic with the
proposed init. strategy. The w/o adaptive resampling configuration replaces the adaptive resampling
with a fixed particle count. While this achieves similar med. errors, it significantly reduces recall,
showing that dynamic particle count increases accuracy. The ablations SG2Loc w/ semantic, w/
semantic+depth, w/ semantic+depth+RGB, explore the impact of supervision signals without PnP.
Each additional signal improves performance. The best variant (SG2Loc w/ semantic+depth+RGB)
initializes the PnP refinement, and our full SG2Loc method (last row), yields the best overall results.

Limitations. Although the proposed method achieves substantial storage savings and competitive
localization accuracy compared to the state-of-the-art HLoc and MeshLoc, it incurs higher computa-
tional cost during per-frame integration. We believe that this overhead can be significantly reduced
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through further code optimizations. Moreover, the keyframing experiment highlights that SG2Loc
can already be used in time-sensitive applications by processing only keyframes.

6 CONCLUSION

We present a lightweight approach to sequential visual localization using 3D scene graphs and a par-
ticle filter, avoiding the need for large image databases or dense point clouds. By leveraging semantic
object descriptors and coarse meshes, our method efficiently refines pose estimates over time while
significantly reducing storage requirements. Experiments show that SG2Loc achieves competitive
accuracy with far lower storage overhead than existing methods. The proposed coarse-to-fine opti-
mization balances efficiency and precision, making the approach practical for resource-constrained
applications. SG2Loc achieves performance similar to storage-intensive baselines, sometimes it is
better in accuracy, sometimes slightly worse. Future work will focus on enhancing feature represen-
tations and runtime. The code will be made public.

7 REPRODUCIBILITY AND USE OF LARGE LANGUAGE MODELS

We will release the codebase, including data set splits, to enable reproducibility of all experiments.
Large Language Models (LLMs) were used for minor language editing (grammar and phrasing).
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A ADDITIONAL ABLATIONS ON SUPERVISION SIGNALS

To understand the individual contribution of each supervision signal, we run the particle filter using
only a single score at a time (semantic, depth, or RGB). Table 8 reports the resulting localization
accuracy and pose recall on 3RScan (Wald et al., 2019). SG2Loc w/ semantic achieves the lowest
median position error and consistently good performance in all metrics. SG2Loc w/ depth has the
lowest median rotation error. In contrast, SG2Loc w/ RGB performs worse in terms of position
and rotation accuracy, but interestingly achieves the highest recall at the strict threshold (10cm, 5◦).
These results suggest that all three supervision signals contribute useful information to the final
localization performance.

Table 8: Ablations on supervision signals on 3RScan. We report the average and median position
error (in meters) and average and median rotation error (in degrees) for sequences of 5 frames,
where lower values indicate better performance. We also measure recall at thresholds (10cm, 5◦)
and (25cm, 10◦), where higher values indicate better performance.

Mean Median Recall
Method Pos. (m) Rot. (◦) Pos. (m) Rot. (◦) R@10cm, 5◦ R@25cm, 10◦

SG2Loc w/ semantic 1.20 21.44 0.66 8.77 0.08 0.26
SG2Loc w/ depth 1.44 39.01 0.96 6.42 0.09 0.32
SG2Loc w/ RGB 1.79 44.78 1.51 17.37 0.14 0.20

B ABLATIONS ON SCANNET

We evaluate the contribution of different supervision signals on the ScanNet (Dai et al., 2017)
dataset. Table 9 shows the mean and median localization errors, and Table 10 reports the recall at
thresholds (10cm, 5◦) and (25cm, 10◦). Our proposed SG2Loc method performs the additional op-
timization initialized from the maximum likelihood estimate of SG2Loc w/ semantic+depth+RGB
(second row in Tab. 9 and Tab. 10). It achieves the best performance across all metrics, only the
rotation median is slightly better without the final optimization.

Table 9: Ablations on ScanNet (mean and median). Localization accuracy on the ScanNet dataset
for different supervision inputs. We report the average and median position error (in meters) and
average and median rotation error (in degrees) for sequences of length 5, 10 and 25 frames. Lower
values indicate better localization performance.

5 frames 10 frames 25 frames
Method Mean Median Mean Median Mean Median

Pos. (m) Rot. (◦) Pos. (m) Rot. (◦) Pos. (m) Rot. (◦) Pos. (m) Rot. (◦) Pos. (m) Rot. (◦) Pos. (m) Rot. (◦)

SG2Loc w/ semantic 1.08 21.21 0.73 7.40 1.00 18.55 0.57 6.28 0.86 15.69 0.43 5.95
SG2Loc w/ semantic+depth+RGB 0.56 11.92 0.15 2.45 0.54 10.23 0.14 2.08 0.46 10.42 0.13 1.99
SG2Loc (Ours) 0.53 11.55 0.12 2.55 0.44 8.14 0.10 2.30 0.29 4.55 0.09 2.29

Table 10: Ablations on ScanNet (pose recall). We report recall at thresholds (10cm, 5◦) and
(25cm, 10◦) for localization sequences of length 5, 10 and 25 frames. Recall measures the fraction
of errors that fall below those thresholds. Higher values indicate better performance.

5 frames 10 frames 25 frames
Method R@10cm, 5◦ R@25cm, 10◦ R@10cm, 5◦ R@25cm, 10◦ R@10cm, 5◦ R@25cm, 10◦

SG2Loc w/ semantic 0.12 0.33 0.12 0.34 0.14 0.40
SG2Loc w/ semantic+depth+RGB 0.26 0.69 0.28 0.73 0.32 0.75
SG2Loc (Ours) 0.41 0.72 0.49 0.79 0.58 0.80

C QUALITATIVE RESULTS

Figure 4 shows a failure case of the particle filter on a 5-frame sequence from the 3RScan
dataset (Wald et al., 2019). Although the particle distribution narrows over time, the final estimate
still results in a coarse localization with a position error of 1.06 meters and a rotation error of 6.6
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Figure 4: A failure case of our coarse-to-fine particle filter on a 5-image sequence, first running
with a stride of 20, 8, and finally 4 (the stride controls the rate of downsampling the images). The
first column shows the initial random particle distribution, gradually narrowing the search space in
subsequent rounds. Each next column represents particle updates after integrating the nth image
(indicated below each plot). Then, the Maximum Likelihood Estimate (MLE) is shown in blue, and
the GT pose in green, back-propagated to the 1st frame for the next optimization round. The position
error for this example is 1.06 meter and rotation error 6.60◦. This failure is potentially caused by
the uninformative input views (all looking very similar) visualized in Fig. 5.

degrees. This example highlights a limitation of our method. The input views in the query sequence
are visually very similar (Figure 5), with little change in perspective. In such cases, the information
in the image sequence is not discriminative enough to resolve pose ambiguities. As a result, the
method struggles to converge to a precise pose and only returns a coarse estimate. Still, the failure
is less severe than for state-of-the-art methods like HLoc (Sarlin et al., 2019), which produces an
average position error above 1012 meters on 3RScan dataset (Wald et al., 2019).

(a) (b) (c) (d) (e) (f)

Figure 5: Query images and MLE view. The five query images (a)–(e) used in Figure 4 for the
course-to-fine particle filter on the 3RScan dataset (Wald et al., 2019). After the fifth image (e), we
retrieve the Maximum Likelihood Estimate (MLE) pose. Image (f) shows the segmented 3D mesh
projected into a virtual camera located at the MLE pose. Colors denote object instances.

D LARGE-SCALE ENVIRONMENTS

We conducted an additional experiment simulating a larger-scale environment. Since the available
datasets do not provide large-scale, object-annotated environments (all scenes are apartment-sized),
we merged every 3 ScanNet scenes into a single environment, initializing particles across the en-
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tire space and allowing the filter to automatically determine the correct scene. We report both the
retrieval accuracy (Rt@1, i.e., fraction of cases where the correct room was identified) and the fi-
nal pose accuracy. The results for 50-frame sequences, shown below, demonstrate that our method
can successfully localize in this scenario. It achieves slightly lower retrieval performance compared
to the proposed sequential SceneGraphLoc and the original SceneGraphLoc, while still producing
accurate poses. The lower recall could potentially be improved by increasing the number of initial
particles. Given its efficiency, running the sequential SceneGraphLoc variant for the coarse localiza-
tion stage remains preferable. As per standard practice in localization Sarlin et al. (2019), SG2Loc
can provide an accurate pose after the coarse location has been identified by the proposed sequential
SceneGraphLoc.

Table 11: Localization results large-scale environment on ScanNet.

Method Rt@1 Mean Pos. (m) ↓ Mean Rot. (◦) ↓ Med. Pos. (m) ↓ Med. Rot. (◦) ↓ R@10cm,5◦ ↑ R@25cm,10◦ ↑
SGL (Miao et al., 2024) 92.4 – – – – – –
Seq. SGL (Ours) 95.1 – – – – – –
SG2Loc (Ours) 85.7 0.24 7.21 0.16 2.25 0.33 0.80

E SPEED-UP EXPERIMENTS

To reduce runtime, we ran the following experiment: we ran the particle filter only once per frame
with the lowest resolution (stride 20). Averaged over sequence lengths 5 and 25, this achieves 1.6
seconds per frame with a modest accuracy drop. Mean and median errors and recalls are reported
in Table 12 and Table 13. Compared to our coarse-to-fine method, accuracy decreases slightly but
remains comparable to baselines (e.g., HLoc).

Table 12: Localization accuracy for coarse SG2Loc on the 3RScan dataset. We report the avg.
and median position error (m) and avg. and median rotation error (◦) for sequences of length 5 and
25 frames for the coarse variant of SG2Loc. This variant is only running a single particle filter pass
with the lowest resolution (stride 20) to improve runtime.

5 frames 25 frames
Method Mean Median Mean Median

Pos. (m) Rot. (◦) Pos. (m) Rot. (◦) Pos. (m) Rot. (◦) Pos. (m) Rot. (◦)

HLoc 2.05× 1012 46.68 0.18 6.32 1030.90 22.74 0.08 2.44
SG2Loc (Ours) 2.43 21.24 0.20 3.27 6.15 22.93 0.14 2.73
SG2Loc (Coarse) (Ours) 2.25 24.37 0.31 5.05 8.08 27.10 0.14 3.44

Table 13: Pose recalls for coarse SG2Loc on the 3RScan dataset. We report recall at thresholds
(25cm, 2◦) for localization sequences of length 5 and 25 frames: Position R@0.25m / Rotation
R@2◦ / R@0.25m, 2◦. Recall measures the fraction of errors that fall below those thresholds,
higher values indicate better performance.

Method 5 frames 25 frames

HLoc 0.54 / 0.28 / 0.27 0.74 / 0.43 / 0.43
SG2Loc (Ours) 0.53 / 0.38 / 0.32 0.59 / 0.43 / 0.39
SG2Loc (Coarse) (Ours) 0.46 / 0.31 / 0.27 0.58 / 0.38 / 0.36

F EXPERIMENT USING SLAM POSES

We additionally report results using DROID-SLAM Teed & Deng (2021) for the relative motion
on ScanNet (sequence length 5) instead of the quasi ground truth. The performance is comparable,
showing that SG2Loc is robust to moderate drift in the motion estimate:
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Method Median Pos (m) Median Rot (°) Recall@0.25m, 2°

HLoc 0.09 2.63 0.38
HLoc w/ SLAM poses 0.15 2.67 0.34
SG2Loc (Ours) 0.12 2.55 0.36
SG2Loc w/ SLAM poses 0.16 2.63 0.36

Table 14: Comparison of localization performance using DROID-SLAMTeed & Deng (2021) poses.
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