

SG2LOC: SEQUENTIAL VISUAL LOCALIZATION ON 3D SCENE GRAPHS

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
Anonymous authors
Paper under double-blind review

ABSTRACT

Visual localization in complex indoor environments remains a critical challenge for robotics and AR applications. Sequential localization, where pose estimates are refined over time, is important for autonomous agents. However, traditional methods often require storing extensive image databases or point clouds, leading to significant overhead. This paper introduces a novel, lightweight approach to sequential visual localization using 3D scene graphs. Our method represents the environment with a compact scene graph, where nodes represent objects (with coarse meshes) and edges encode spatial relationships. For each image in the localization phase, we extract per-patch semantic features, predicting object identities. Localization is performed within a particle filter framework. Each particle, representing a camera pose, projects the coarse object meshes from the scene graph into the image, assigning object identities to patches based on visibility. The similarity of the per-patch features, in the input image, and object features from the scene graph determines the weight of a particle. Subsequent images are incorporated sequentially, refining the pose estimate. By leveraging a compact scene graph and efficient semantic matching, our method significantly reduces storage while maintaining performance on real-world datasets. The code will be public.

1 INTRODUCTION

Visual localization is a fundamental capability in robotics and augmented reality. Accurate pose estimation (orientation and position of an agent) enables autonomous navigation, scene understanding, and user-interaction tasks. Over the years, single-image localization and Simultaneous Localization and Mapping (SLAM)-based techniques have demonstrated remarkable progress (Arandjelovic et al., 2016; DeTone et al., 2018; Berton & Masone, 2025; Mur-Artal et al., 2015; Sattler et al., 2018; Murai et al., 2025), but they often demand large storage resources for image databases or 3D point clouds equipped with visual features. As environments grow both in scale and complexity, this burden becomes impractical for memory-constrained devices or applications with low bandwidth requirements.

Sequential localization strategies mitigate these challenges by incorporating temporal cues, refining pose estimates over multiple frames rather than treating each query image independently (Barrau & Bonnabel, 2014; Leutenegger et al., 2015; Mur-Artal & Tardós, 2017; Maggio et al., 2022). Some works combine single-image pose estimation with SLAM to reduce drift and improve robustness (Lynen et al., 2020; Leutenegger et al., 2015). Nonetheless, global pose alignment typically depends on retrieving a dense 3D model or querying large-scale maps. Such approaches can be prohibitive in extended deployments, especially when frequent map updates or transfers are required.

Scene graphs present a promising alternative. Storing the environment as a graph of objects and their spatial relationships offers compactness and a semantically rich representation. Early research on scene graphs primarily targeted scene understanding, reconstruction, and retrieval (Armeni et al.,

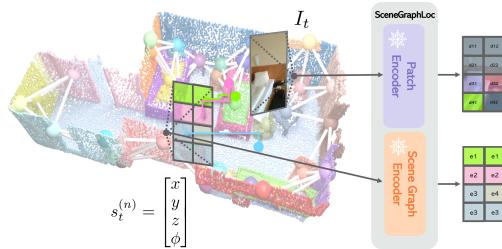


Figure 1: **Observation model** for a particle $s_t^{(n)} = (x, y, z, \phi)$, matching object descriptors predicted by (Miao et al., 2024) from the query image I_t to projected object labels from the semantically segmented coarse mesh.

054 2019; Johnson et al., 2015; Zhang et al., 2017; Lee et al., 2021; Wu et al., 2020). More recently,
 055 SceneGraphLoc (Miao et al., 2024) leveraged a scene graph to achieve cross-modal place recogni-
 056 tion, highlighting their potential to reduce memory footprints while facilitating efficient localiza-
 057 tion.

058 Building on these insights, we introduce a novel method for sequential visual localization that com-
 059 bines a lightweight 3D scene graph with a particle filter. The proposed system relies on *coarse*
 060 object meshes, rather than dense point clouds, and *semantic* descriptors, significantly reducing stor-
 061 age overhead compared to the state of the art. We formulate sequential localization for indoor
 062 environments as a particle filtering problem, where each particle observes a portion of the scene and
 063 identifies object categories (e.g., *table* or *chair*). By recognizing objects, the system can evaluate
 064 whether the configuration of a particle (its pose) aligns with the input sequence by simply verifying
 065 whether the same objects appear in both the particle view and the query image (see Fig. 1). The
 066 main contributions of this paper are:

067 • A new 3D scene-graph-based framework for sequential visual localization that jointly models
 068 semantic cues, geometric and photometric constraints.
 069 • A particle filter approach that leverages semantic object identities to refine camera poses itera-
 070 tively, without requiring large image databases or point-cloud maps.
 071 • As a technical contribution, we adapt SceneGraphLoc to work with image sequences (Sec. 4).

072 2 RELATED WORK

073 Visual localization is a long-standing problem in computer vision and robotics, with roots in early
 074 works on Structure-from-Motion (Kruppa, 1913; Moravec, 1980; Fischler & Bolles, 1981). Modern
 075 approaches can be categorized into single-image localization, SLAM-based methods, and sequen-
 076 tial localization methods. Our work falls into the last category, but leverages a novel scene graph
 077 representation, distinguishing it from prior art.

078 **Single-image localization.** Many recent methods rely on a two-stage approach: coarse localiza-
 079 tion (place recognition) followed by pose estimation. Coarse localiza-
 080 tion treats the problem as image re-
 081 trieval, comparing a query image to a database of geo-tagged ones. Methods like NetVLAD (Arand-
 082 jelovic et al., 2016), AP-GeM (Chum & Matas, 2005) and MegaLoc (Bertoni & Masone, 2025) pro-
 083 vide global image descriptors for this purpose. Fine localiza-
 084 tion typically involves establishing 2D-
 085 3D matches between image features and a 3D model (often a point cloud) of the scene, followed by
 086 pose estimation using RANSAC. Feature detectors and descriptors like SuperPoint (DeTone et al.,
 087 2018), R2D2 (Revaud et al., 2019), and D2-Net (Dusmanu et al., 2019) are commonly used. While
 088 effective, these methods require storing large image databases or 3D point clouds equipped with
 089 visual features, leading to substantial storage demands. Alternative approaches, such as scene co-
 090 ordinate (Brachmann et al., 2017; Brachmann & Rother, 2018; Sattler et al., 2011; Li et al., 2012;
 091 Sattler et al., 2016; 2017; Brachmann et al., 2023; Wang et al., 2024) and absolute pose regression
 092 (Walch et al., 2017; Brachmann & Rother, 2018; Sattler et al., 2016; Kendall et al., 2015), directly
 093 predict 3D coordinates or camera poses from the image. However, these often struggle with com-
 094 plex, large-scale environments (Sattler et al., 2018; 2016; 2017; Wang et al., 2024). Our work is
 095 fundamentally different, as it avoids storing image databases or point clouds by using a compact
 096 scene graph.

097 **Simultaneous localization and mapping** (SLAM) systems (Barrau & Bonnabel, 2014; Engel et al.,
 098 2014; Gao et al., 2018; Mur-Artal et al., 2015; Mur-Artal & Tardós, 2017; Murai et al., 2025) provide
 099 local tracking of the trajectory of a camera. Popular examples include PTAM (Klein & Murray,
 100 2007), LSD-SLAM (Engel et al., 2014), ORB-SLAM (Mur-Artal et al., 2015; Mur-Artal & Tardós,
 101 2017), and LSDO (Gao et al., 2018). While these systems excel at tracking relative motion, they
 102 are prone to drift over time and typically do not perform global localization (loop closure) without
 103 additional mechanisms. Some systems integrate inertial measurements (Lynen et al., 2020; Qin et al.,
 104 2018) for improved robustness. Our work builds upon SLAM systems, leveraging their estimated
 105 camera trajectory while providing lightweight global localization capabilities.

106 **Sequential localization.** Several approaches combine single-image localization with SLAM for im-
 107 proved robustness (Barrau & Bonnabel, 2014; Forster et al., 2014; Bloesch et al., 2015; Sattler et al.,
 108 2016; Leutenegger et al., 2015; Qin et al., 2018; Mur-Artal & Tardós, 2017), often using visual-
 109 inertial SLAM for local tracking and periodically querying a server or compressed map for global
 110 localization (Lynen et al., 2020; Bloesch et al., 2015; Leutenegger et al., 2015). Maplab (Schnei-
 111 der et al., 2015) uses a

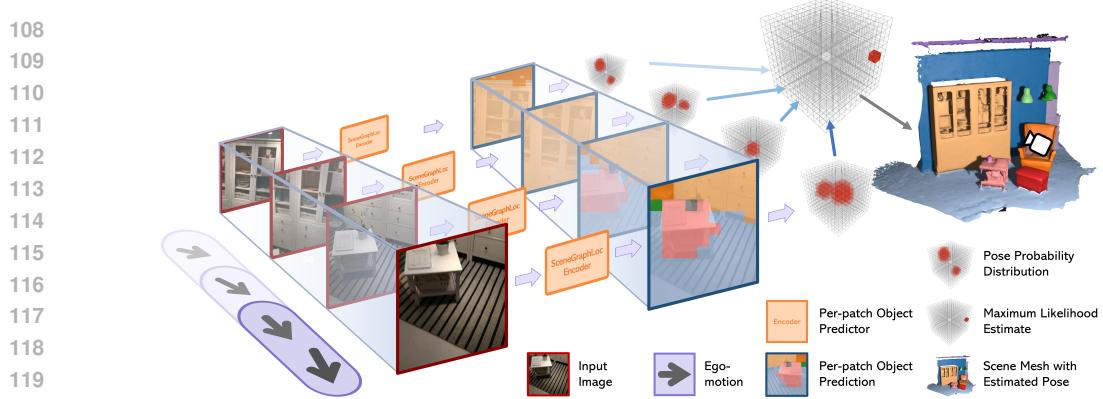


Figure 2: **Sequential localization pipeline.** Given the current image I_t and its ego-motion, the pipeline updates the particle state while leveraging previously processed images I_0, \dots, I_{t-1} . The current image is passed through the SceneGraphLoc (Miao et al., 2024) encoder to predict object labels for each image patch. These predictions inform a 4D probability distribution over the camera pose (3D position and rotation around the vertical axis), which is then integrated into the posterior distribution, refining the estimated camera pose as new images become available.

der et al., 2018) provides a framework for benchmarking, while KFNet (Zhou et al., 2020) offers a learning-based alternative. Other methods incorporate temporal information by modeling image sequences, enabling joint localization across multiple frames. More recently, MAST3R-SLAM (Murai et al., 2025) and VGGT-Slam (Maggio et al., 2025) use feed-forward 3D geometry for feature matching and mapping. In contrast, NeRF- and Gaussian Splat-based methods (Maggio et al., 2022; Adamkiewicz et al., 2022; Khatib et al., 2025; Meng et al., 2025) assume a pre-built dense reconstruction and localize by minimizing photometric error of rendered and observed views. While offering high-fidelity appearance matching, they are memory- and compute-intensive and remain sensitive to scene changes. We instead propose lightweight scene graphs with semantic and depth cues, providing compact maps and constraints in addition to photometric consistency.

3D scene graphs for localization and retrieval have emerged as a powerful representation for capturing scene understanding, extending geometric representations with semantic and relational knowledge. Early work on scene graphs focused on scene understanding and reconstruction from point clouds or RGB-D data (Armeni et al., 2019; Lee et al., 2021). More recent work has explored their use in various tasks, including image retrieval (Johnson et al., 2015; Wu et al., 2020), visual question answering (Zhang et al., 2017), and navigation (Zhou et al., 2021). The recent SceneGraphLoc (Miao et al., 2024) introduced the novel problem of cross-modal localization of a query image within a database of 3D scene graphs, demonstrating significant storage savings and faster query times compared to image-based methods. While not direct localization, it showed promise for place recognition. Our approach builds upon the strengths of sequential localization methods and the light-weight nature of scene graphs to provide a new localization direction.

3 SEQUENTIAL LOCALIZATION WITH PARTICLE FILTER

We aim to estimate a 4 degree-of-freedom camera pose $\mathbf{s}_t = (x, y, z, \phi)$, where ϕ denotes rotation around the known gravity axis, from a sequence of images $\{I_1, \dots, I_T\}$. We maintain a set of N particles $\mathbf{S}_t = \{\mathbf{s}_t^{(1)}, \dots, \mathbf{s}_t^{(N)}\}$ that evolves over time using a particle filter. The filter integrates a *coarse*, labeled 3D mesh (derived from a 3D scene graph) with the pre-trained SceneGraphLoc model (Miao et al., 2024) to compute observation likelihoods. The pipeline is visualized in Fig. 2.

Note that the gravity direction and camera intrinsics are usually accessible from robot sensors, smartphones, and head-mounted devices. If this information is not readily available, methods such as GeoCalib (Veicht et al., 2024) can be used to estimate both the intrinsics and gravity direction.

Scene representation. We model the environment as a 3D scene graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where each vertex $v_i \in \mathcal{V}$ corresponds to an object instance o_i . Each object node o_i is associated with:

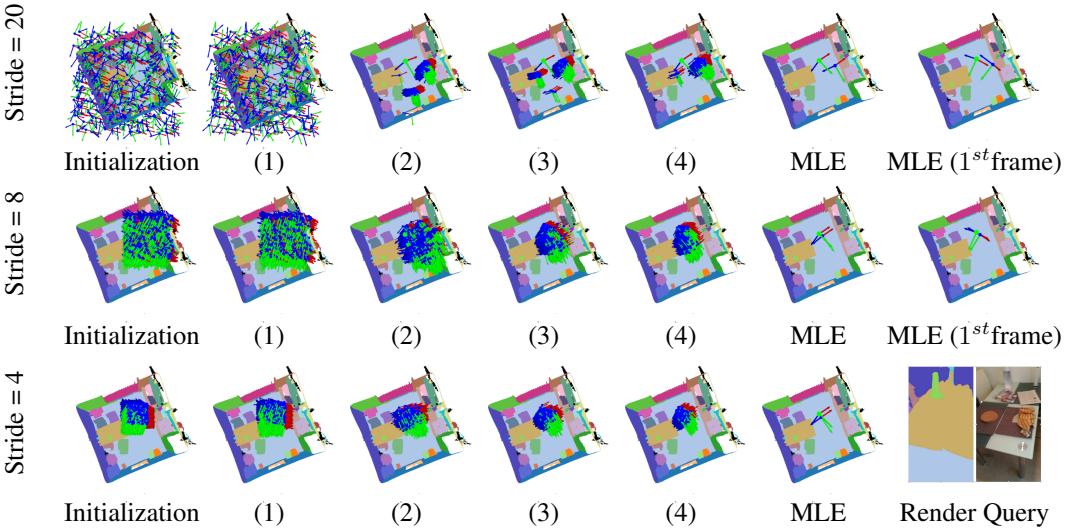


Figure 3: **Multi-round particle filter** on a 5-image sequence, first running with a stride of 20, 8, and finally 4 (the stride controls the rate of downsampling the images). The first column shows the initial random particle distribution, gradually narrowing the search space in subsequent rounds. Each next column represents particle updates after integrating the n^{th} image (indicated below each plot). Then, the Maximum Likelihood Estimate (MLE) is shown in blue, and the GT pose in green, back-propagated to the 1st frame for the next optimization round.

- A compact embedding $\mathbf{e}_i \in \mathbb{R}^d$, obtained from the SceneGraphLoc object encoder (Miao et al., 2024), which combines multi-modal inputs (e.g., RGB images, point clouds, textual annotations, relationships to other objects).
- A coarse 3D mesh \mathcal{M}_i that captures the approximate geometry of the object for raycasting. The mesh needs only be detailed enough for visibility and occlusion checks.¹

Edges in \mathcal{E} encode spatial relationships (e.g., adjacency) among objects, though our localization pipeline primarily relies on object embeddings $\{\mathbf{e}_i\}$ and coarse meshes $\{\mathcal{M}_i\}$. By storing these low-dimensional descriptors and approximate geometries instead of dense image databases or large point clouds, we greatly reduce the memory footprint while still enabling accurate pose estimation.

Particle filter. To approximate posterior $p(\mathbf{s}_t | I_{1:t})$, we maintain a set of weighted particles as $p(\mathbf{s}_t | I_{1:t}) \approx \sum_{n=1}^N w_t^{(n)} \delta(\mathbf{s}_t - \mathbf{s}_t^{(n)})$, where δ is the Dirac delta function and $w_t^{(n)}$ denotes the normalized weight of the n -th particle at time t . At each timestep, the filter performs (i) a prediction step (motion model), (ii) an update step (observation model), and (iii) optional resampling, as described below in the next section.

3.1 INITIALIZATION

Patch embeddings from SceneGraphLoc. We subdivide each incoming image I_t into a grid of $n \times m$ rectangular patches $\{p_{r,c}\}$, where $r \in [0, n)$ and $c \in [0, m)$. We follow SceneGraphLoc (Miao et al., 2024) and use a 14×14 grid, yielding 196 patches. We apply the SceneGraphLoc image encoder to obtain a set of patch embeddings $\{\hat{\mathbf{e}}_{r,c}\}$. Each $\hat{\mathbf{e}}_{r,c}$ is a semantic descriptor indicating which object (from the scene graph vocabulary) is most likely visible in the patch.

Particle distribution. We then uniformly distribute particles in a 3D bounding region Ω spanning four approximate heights $\{1.50, 1.60, 1.70, 1.80\}$ meters above the floor. Concretely, we partition Ω into grid cells of size 0.2 meters, sample three poses per cell, and randomly assign yaw angles $\phi \in [-\pi, \pi]$. All particles receive equal initial weight, determined as follows $p(\mathbf{s}_0) = \frac{1}{|\Omega|}$ if $\mathbf{s}_0 \in \Omega$ else 0. This broad initialization ensures coverage of plausible poses before the sequential estimation begins.

¹On average, the 3RScan (Wald et al., 2019) meshes have 863 vertices per object and ScanNet (Dai et al., 2017) 11681 vertices per object in the experiments.

216 3.2 PREDICTION (MOTION MODEL)
217218 To propagate each particle $\mathbf{s}_t^{(n)}$ from timestep t to $t + 1$, we apply the camera’s ego-motion $\mathbf{t}_t =$
219 $[t_{x,t}, t_{y,t}, t_{z,t}, t_{\phi,t}]$, augmented by i.i.d. Gaussian noise $\boldsymbol{\omega}_t = [\omega_{x,t}, \omega_{y,t}, \omega_{z,t}, \omega_{\phi,t}]$:

220
$$\mathbf{s}_{t+1}^{(n)} = \mathbf{s}_t^{(n)} \oplus (\mathbf{t}_t + \boldsymbol{\omega}_t). \quad (1)$$

221

222 Here, \oplus applies a 4-DoF transformation (3D trans./rot. around the gravity axis). We set $\sigma_{\text{trans}} =$
223 0.05 m and $\sigma_{\text{rot}} = 0.05$ rad as the standard deviations for translation and yaw noise, respectively.
224 This accounts for modeling uncertainty in the motion estimates while maintaining gravity alignment.
225 In practice, ego-motion is obtained by the employed SLAM system, such as (Teed & Deng, 2021).226 3.3 UPDATE (OBSERVATION MODEL)
227228 After predicting the particle set \mathbf{S}_{t+1} , we incorporate the new image I_{t+1} to refine particle weights.
229230 **Raycasting.** For each particle pose $\mathbf{s}_{t+1}^{(n)}$, we project the coarse 3D meshes $\{\mathcal{M}_i\}$ from the scene
231 graph into the image. This identifies which objects (nodes in \mathcal{G}) are visible in each of the 14×14
232 patches, assigning an object embedding \mathbf{e}_i to each patch $\hat{p}_{r,c}$ for that particle.
233234 **Patch similarity.** We then compare the patch embedding $\hat{\mathbf{e}}_{r,c}$ from the query image I_{t+1} (Sec-
235 tion 3.1) with the object embedding \mathbf{e}_i assigned by raycasting. We compute the cosine similarity
236 and retain it if the predicted object matches the one determined by raycasting. Summing these valid
237 similarities across all 144 patches and normalizing by the total patch count yields a score $s \in [0, 2]$,
238 where the cosine similarity values in $[-1, 1]$ are shifted to the positive range.
239240 **Particle weighting.** We model the likelihood using a Gaussian centered on $s = 2$ as $L(\mathbf{s}_{t+1}^{(n)}) =$
241 $\exp(-(2-s)^2/(2\sigma^2))$, where $\sigma = 0.2$. The unnormalized weight of each particle becomes $\tilde{w}_{t+1}^{(n)} =$
242 $w_t^{(n)} \cdot L(\mathbf{s}_{t+1}^{(n)})$, and we normalize by $\sum_m \tilde{w}_{t+1}^{(m)}$ to obtain $w_{t+1}^{(n)}$. Particles with higher similarity
243 scores receive greater weight, driving the distribution toward accurate poses in subsequent steps.
244245 3.4 ADDITIONAL SUPERVISION SIGNALS
246247 In addition to semantics, we use photometric and geometric cues to guide the particle filter.
248249 **Color supervision.** As we are given an RGB sequence as input, we can leverage photometric losses
250 to further improve our particle state quality measurements. Let us assume that our map representa-
251 tion is a coarse textured mesh. For each particle $\mathbf{s}_{t+1}^{(n)}$, we project the meshes $\{\mathcal{M}_i\}$ of the visible
252 objects into the image plane. Note that this step does not require additional computations as the mesh
253 has already been projected for semantic supervision. Now, instead of assigning object identities, we
254 render an RGB image $I_p^{(n)}$ for the particle. Given the next image I_{t+1} in the input sequence, we
255 calculate the photometric score $s_i^{(n)}$ of the particle by calculating the structural similarity (SSIM) as
256 $s_i^{(n)} = L_{\text{SSIM}}(I_{t+1}, I_p^{(n)})$, where L_{SSIM} returns values between 0 and 1.
257258 **Depth supervision.** When depth information is available, either from an RGB-D sensor or a depth
259 estimator applied to the image sequence, we can further incorporate this information to enhance
260 accuracy. We achieve this by adding a depth-based score.
261262 **Depth map projection.** For each particle $\mathbf{s}_{t+1}^{(n)}$, we project the coarse 3D meshes of the visible objects
263 into the image plane. Now, instead of assigning object identities, we render a depth map $D_p^{(n)}$ for the
264 particle. This depth represents the distance from the camera plane to the projected mesh surfaces,
265 according to the pose of the particle. We use the same resolution for $D_p^{(n)}$ as the input image (or
266 the downsampled version, as described in Sec. 3.5). Let D_I be the depth map corresponding to the
267 input image I_{t+1} . If I_{t+1} is an RGB-D image, D_I is directly obtained from the sensor. If only RGB
268 data is available, D_I can be estimated using a monocular or stereo depth estimation method.
269270 **Depth score calculation.** We compute the depth score $s_d^{(n)}$ for particle $\mathbf{s}_{t+1}^{(n)}$ by calculating the L1
271 difference of the projected depth map $D_p^{(n)}$ and the input D_I . The score is calculated as follows:
272 $s_d^{(n)} = 1 - \frac{1}{R \cdot C} \sum_{r=1}^R \sum_{c=1}^C |D_p^{(n)}(r, c) - D_I(r, c)|$, where R and C are the number of rows and
273 columns of the depth maps, respectively, and $D_p^{(n)}(r, c)$ and $D_I(r, c)$ are the depth values at pixel
274 (r, c) in the projected and input depth maps, respectively. The score is designed such that 1 is best
275 and lower values are worse.
276

Table 1: **Localization accuracy** on the 3RScan and ScanNet datasets. We report the average and median position error (m) and average and median rotation error ($^\circ$) for sequences of length 5, 10, 25, and 50 frames. ACE is shown faded on ScanNet since its encoder was trained on this dataset. Lower values indicate better localization performance.

Method	5 frames				10 frames				25 frames				50 frames				
	Mean	Pos. (m)	Rot. ($^\circ$)	Pos. (m)	Mean	Pos. (m)	Rot. ($^\circ$)	Pos. (m)	Mean	Pos. (m)	Rot. ($^\circ$)	Pos. (m)	Mean	Pos. (m)	Rot. ($^\circ$)		
3RScan	HLoc	2.05×10^{12}	46.68	0.18	6.32	5.10×10^{10}	36.85	0.13	4.15	1030.90	22.74	0.08	2.44	732.20	16.09	0.07	2.06
	MeshLoc	4.51×10^5	22.81	0.47	2.65	2042.24	15.72	0.44	2.29	26.15	9.46	0.42	1.74	15.29	8.99	0.40	1.70
	Loc-NeRF	1.34	38.42	1.19	21.63	1.35	40.01	1.02	22.00	1.24	31.47	0.79	14.08	1.12	23.09	0.59	7.46
	SG2Loc (Ours)	2.43	21.24	0.20	3.27	2.30	20.50	0.18	2.96	6.15	22.93	0.14	2.73	9.48	27.43	0.10	2.62
ScanNet	ACE	2.99	61.14	1.66	42.38	2.45	52.52	0.93	27.04	1.69	40.05	0.39	10.31	1.15	30.10	0.19	5.33
	ACE + GS-CPR	3.33	65.82	1.61	50.13	2.93	56.05	0.75	20.88	2.40	42.71	0.18	5.93	2.06	29.78	0.14	4.37
	HLoc	6.16×10^4	14.30	0.09	2.63	603.05	10.48	0.08	2.45	492.00	7.27	0.06	2.12	1348.28	7.12	0.07	1.94
	MeshLoc	7.62	4.14	0.31	1.90	8.54	3.57	0.30	1.90	0.30	2.28	0.29	1.84	0.29	2.06	0.28	1.77
	Loc-NeRF	1.32	33.33	1.09	17.60	1.45	29.59	1.11	15.10	1.36	20.58	0.77	9.02	1.18	12.02	0.46	8.15
	SG2Loc (Ours)	0.53	11.55	0.12	2.55	0.44	8.14	0.10	2.30	0.32	4.55	0.09	2.29	2.10	12.27	0.08	1.70
	ACE	0.23	4.43	0.08	1.99	0.18	3.85	0.08	1.93	0.13	2.77	0.07	1.70	0.10	2.78	0.06	1.81

Combined score. The final weight is then computed by combining the semantic similarity score s (from Sec. 3.3), the depth $s_d^{(n)}$ and color scores $s_i^{(n)}$ as:

$$L(\mathbf{s}_{t+1}^{(n)}) = \exp\left(-\frac{(6-(s+\lambda_1 s_d^{(n)})+\lambda_2 s_i^{(n)}))^2}{2\sigma^2}\right), \quad (2)$$

where λ_1 and λ_2 are weighting factors that balance the contribution of the depth and color scores. The values of λ_1 , λ_2 are set empirically. For our experiments, all losses are weighted equally, the weights are fixed and all parameters are kept fixed across all experiments. The unnormalized weight becomes $\tilde{w}_{t+1}^{(n)} = w_t^{(n)} \cdot L(\mathbf{s}_{t+1}^{(n)})$. We normalize these weights as before: $w_{t+1}^{(n)} = \tilde{w}_{t+1}^{(n)} / \sum_m \tilde{w}_{t+1}^{(m)}$. This combined scoring mechanism leverages semantic, geometric and appearance information, leading to more robust and accurate localization, especially in cases where the semantic information alone might be ambiguous. The depth and color scores provide additional constraints based on geometric and photometric consistency, helping to disambiguate poses that might have similar semantic projections.

3.5 COARSE-TO-FINE OPTIMIZATION

We refine the pose estimate over multiple rounds, gradually increasing raycasting resolution and narrowing the search region. We observed that this process speeds up the localization and leads to higher accuracy. In the first round, we downsample the input image with a stride of 20 pixels, enabling a coarse but efficient search over the entire scene. Particles are initialized uniformly within the full environment bounds, allowing a rapid, coarse localization. Next, we apply an 8-pixel stride, restricting the particle initialization to a 1.6^3 m region centered around the maximum likelihood estimate (MLE) pose from the previous round. This second pass refines localization by focusing on a smaller region. Finally, we downsample the image with stride 4 and use an even tighter bounding box of 0.8^3 m around the new MLE pose. This final pass incorporates high-resolution visibility checks and yields the most precise pose estimate.

Adaptive resampling. Following each update, we dynamically adjust the particle count using an adaptive scheme based on KLD-sampling (Fox, 2001). Letting ϵ and δ be bounds on the Kullback–Leibler divergence and its confidence level, respectively, we compute $n = \frac{1}{2\epsilon} \left(1 - \frac{2}{9(k-1)} + \sqrt{\frac{2}{9(k-1)}} z_{1-\delta}\right)^3$, where k is the bin number in the state histogram used for divergence estimation, and $z_{1-\delta}$ is the $(1 - \delta)$ -quantile of the normal distribution. We then apply stratified resampling to draw n new particles, ensuring that the MLE distribution remains an accurate approximation of the true posterior. An example visualization is shown in Fig. 3.

3.6 POSE REFINEMENT WITH PNP

To refine the final pose from the particle filter, we render six synthetic views from the mesh. One from the MLE pose estimated in the previous steps and five sampled within a range of $\pm 45^\circ$ yaw around the MLE. We match each view with the query image using RoMa (Edstedt et al., 2024) and establish 2D-3D correspondences through a ray-mesh intersection. Pose refinement is performed using RANSAC-based PnP from PoseLib (Larsson & contributors, 2020). For each sequence, we apply this process per frame by backpropagating the MLE pose (obtained from the last frame) to earlier images. We select the pose with the highest inlier count as the final estimate.

Table 2: **Pose recalls** on the 3RScan and ScanNet datasets. We report position, rotation and joint recalls at thresholds: Pos. R@0.25m / Rot. R@ 2° / R@0.25m, 2° for sequences of length 5, 10, 25 and 50. Recall measures the fraction of errors that fall below those thresholds. ACE is shown faded on ScanNet since its encoder was trained on this dataset. Higher values indicate better performance.

	Method	5 frames	10 frames	25 frames	50 frames
3RScan	HLoc	0.54 / 0.28 / 0.27	0.62 / 0.32 / 0.32	0.74 / 0.43 / 0.43	0.76 / 0.50 / 0.50
	MeshLoc	0.04 / 0.41 / 0.03	0.05 / 0.45 / 0.03	0.05 / 0.54 / 0.03	0.06 / 0.55 / 0.04
	Loc-NeRF	0.03 / 0.05 / 0.00	0.06 / 0.04 / 0.01	0.11 / 0.13 / 0.04	0.16 / 0.14 / 0.02
	SG2Loc (Ours)	0.53 / 0.38 / 0.32	0.55 / 0.38 / 0.33	0.59 / 0.43 / 0.39	0.65 / 0.43 / 0.43
	ACE	0.26 / 0.11 / 0.11	0.33 / 0.14 / 0.14	0.45 / 0.21 / 0.21	0.55 / 0.29 / 0.29
	ACE + GS-CPR	0.33 / 0.14 / 0.14	0.42 / 0.19 / 0.19	0.54 / 0.27 / 0.27	0.64 / 0.36 / 0.36
ScanNet	HLoc	0.81 / 0.38 / 0.38	0.86 / 0.41 / 0.41	0.91 / 0.47 / 0.47	0.98 / 0.52 / 0.52
	MeshLoc	0.25 / 0.53 / 0.13	0.25 / 0.53 / 0.13	0.29 / 0.56 / 0.15	0.29 / 0.65 / 0.13
	Loc-NeRF	0.03 / 0.08 / 0.00	0.05 / 0.08 / 0.01	0.21 / 0.14 / 0.08	0.31 / 0.14 / 0.03
	SG2Loc (Ours)	0.73 / 0.40 / 0.36	0.80 / 0.40 / 0.39	0.86 / 0.43 / 0.42	0.90 / 0.61 / 0.61
	ACE	0.91 / 0.50 / 0.50	0.94 / 0.52 / 0.51	0.94 / 0.60 / 0.59	0.97 / 0.53 / 0.53

4 SEQUENTIAL SCENE RETRIEVAL

SceneGraphLoc (Miao et al., 2024) was originally designed to select the correct scene (represented as a 3D scene graph) from a set of candidate scene graphs $\{\mathcal{G}_i\}$ given a query image as input. In this section, we adapt SceneGraphLoc to leverage not just one image but the entire input sequence when retrieving the current scene from the database.

For each image I_t in the sequence, we extract a set of image patches \mathcal{Q}_t . For each patch $q \in \mathcal{Q}_t$, we compute its embedding e_q using the pre-trained encoder. Similar to (Miao et al., 2024), we then compare e_q with the embeddings e_v of nodes $v \in \mathcal{V}_i$ in each scene graph \mathcal{G}_i in our database using a similarity metric as $\text{similarity}(q, v) = \cos(e_q, e_v)$. We assign a score to each scene graph \mathcal{G}_i based on the similarity scores of its nodes to the image patches as: $\text{score}_t(\mathcal{G}_i, I_t) = \frac{1}{|\mathcal{Q}_t|} \sum_{q \in \mathcal{Q}_t} \max_{v \in \mathcal{V}_i} \text{similarity}(q, v)$. To incorporate information from the sequence, we aggregate the scores from all images as $\text{score}(\mathcal{G}_i) = \sum_{t=1}^T \text{score}_t(\mathcal{G}_i, I_t)$. The scene graph with the highest final score is selected as the correct match for the sequence. This process allows us to better find the correct scene in a database of maps.

5 EXPERIMENTS

Datasets. The 3RScan dataset (Wald et al., 2019) contains 1,335 annotated indoor scenes across 432 spaces, with 1,178 scenes (385 rooms) for training and 157 (47 rooms) for validation. Each scene is represented by a semantically annotated 3D point cloud, with multiple captures over months to reflect environmental changes. Since the test set lacks scene graph annotations, we follow (Miao et al., 2024) and reorganize the validation set into 34 scenes (17 rooms) for validation and 123 scenes (30 rooms) for testing. To ensure realistic evaluation, query sequences are localized against maps from different temporal states, yielding 9,445 images. We note that 3RScan is explicitly designed to evaluate localization under significant scene changes, including object rearrangements, removal, and occlusions. SG2Loc is evaluated on every frame of this dataset in a cross-temporal setting, where query sequences are matched against maps captured some time apart. For evaluation without GT scene graphs, we also use ScanNet (Dai et al., 2017). Following (Miao et al., 2024), we generate scene graphs with SceneGraphFusion (Wu et al., 2021) and adopt the same split of 57 scan pairs (captured at different times), sampling one image every 25 frames for 4,088 queries. This split will be released publicly.

Baselines. We compare with HLoc (Sarlin et al., 2019), MeshLoc (Panek et al., 2022), Loc-NeRF (Maggio et al., 2022), ACE (Brachmann et al., 2023) and ACE poses refined with GS-CPR (Liu et al., 2024). HLoc is a hierarchical method combining image retrieval (50 nearest neighbors per query) with pose estimation from 2D–3D correspondences, requiring a large image database. MeshLoc localizes via a 3D mesh, storing a depth map per image generated from the mesh. We use SuperPoint (DeTone et al., 2018) and SuperGlue (Sarlin et al., 2020) for local feature matching. ACE is a scene coordinate regression network trained per scene enabling accurate localization. GS-CPR refines ACE by using rendered depth from Gaussian Splats and MAST3R correspondences to refine camera poses. For sequential evaluation, we run HLoc, MeshLoc, ACE, and ACE+GS-CPR per image and select the pose with the most RANSAC inliers as the sequence result. Loc-NeRF follows a similar filtering approach as we do, using only photometric error. We replaced the original NeRF map with a Gaussian Splat for faster localization. HLoc and MeshLoc both require substantial storage, limiting scalability.

378 **Metrics.** We evaluate the performance of our method and baselines using standard metrics for
 379 visual localization: average and median position (in meters), rotation errors (in degrees) and recall.
 380 Additionally, we report the storage requirements of each method, including the size of the database
 381 and any additional structures. The rotation error is calculated as the geodesic distance between the
 382 estimated rotation matrix \hat{R} and the ground truth rotation matrix R_{gt} on the SO(3) manifold. It is
 383 calculated as follows: $\epsilon_R = \arccos((1/2)(\text{tr}(R_{gt}^T \hat{R}) - 1))$.
 384

385 **Sequential visual localization.** Table 1 reports average and median position (m) and rotation ($^{\circ}$)
 386 errors for sequences of length 5, 10, 25, and 50. SG2Loc achieves lower mean errors than HLoc,
 387 with comparable median position errors and substantially better rotation accuracy. While methods
 388 such as MeshLoc yield strong rotation estimates, their position errors remain well above those of
 389 HLoc and SG2Loc. ACE performs worse than HLoc and other baselines on 3RScan, but achieves
 390 high accuracy on ScanNet, likely due to its encoder being trained on ScanNet, unlike the other meth-
 391 ods. The GS-CPR refinement of ACE poses (ACE+GS-CPR) improves ACE, but our method still
 392 achieves higher accuracy. All methods benefit from longer sequences, which consistently improve
 393 performance. Table 2 shows that our method achieves the best combined recalls for 5/10 frames and
 394 the second-best for 25/50 on 3RScan. On ScanNet it achieves best combined recall for length 50.
 395

396 HLoc and MeshLoc rely on significantly more in-
 397 formation by leveraging large-scale databases, yet
 398 SG2Loc performs on par with them, sometimes
 399 slightly worse, and sometimes better. Crucially, our
 400 approach achieves comparable accuracy, while re-
 401quiring *one* order of magnitude less storage than
 402 HLoc and *two* less than MeshLoc on 3RScan, and
 403 *one* order less than both on ScanNet. Storage in MB
 404 is shown in Table 3. This significant reduction in
 405 storage makes SG2Loc well-suited for on-device lo-
 406 calization, where efficient map storage and low-bandwidth transmission are critical constraints. Our
 407 method uses roughly 2500 particles on 3RScan and 3200 particles on ScanNet for the results re-
 408 ported in Table 1 and Table 2. Raycasting for all particles is run fully in parallel on GPU, which
 409 keeps runtime manageable even with larger particle sets.
 410

411 The mapping and per-frame processing times (in seconds) are reported in Table 4. For the proposed
 412 method, the mapping time includes constructing a kd-tree for raytracing with particles and com-
 413 puting object embeddings for the scene graph. For HLoc, it includes extracting image embeddings
 414 and 2D-3D correspondences for the database, while for MeshLoc, it involves computing both image
 415 embeddings and depth maps. Loc-NeRF and ACE require training a separate map representation
 416 for each scene. The localization for SG2Loc consists of state transitions, particle updates (embed-
 417 dings are computed per query image and raycasting is performed from all particles), and resampling
 418 steps, before post-processing with PnP. The localization time represents the average time required
 419 to estimate the camera pose for a single frame. The proposed method requires substantially less
 420 computation during mapping than the baselines. At inference, it runs at an average of 2.9 seconds
 421 per frame, followed by pose optimization, which is suitable for sequential localization.
 422

423 **Keyframing.** In practice, localization need not
 424 be performed on every frame, as high frame rates
 425 introduce redundancy. To simulate a realistic sce-
 426 nario, we integrate frames at a rate matched to our
 427 runtime (Table 6), where the agent moves in real
 428 time and incoming frames must be processed se-
 429 quentially. Our method significantly outperforms
 430 HLoc on the same inputs, demonstrating its prac-
 431 ticality for robot localization.

432 **Sequential scene retrieval.** In this section, we
 433 evaluate the extension proposed in Section 4,
 434 which enables SceneGraphLoc (Miao et al.,
 435 2024) to operate in a sequential setting. We compare this extension to the original method, which
 436 performs localization using only the first image of the sequence. Additionally, we benchmark against
 437 state-of-the-art image retrieval methods, AnyLoc (Keetha et al., 2023) and CVNet (Lee et al., 2022).
 438

Table 3: **Average storage** per scene in MB.

Method	3RScan	ScanNet
HLoc	294.4	283.3
MeshLoc	1433.6	589.7
Loc-NeRF	143.9	66.6
SG2Loc (Ours)	<u>9.8</u>	<u>28.2</u>
ACE	<u>4.2</u>	<u>4.2</u>

Table 4: **Average runtime on 3RScan** per
 scene (offline, seconds) for frame integration
 and final optimization by PnP (runs once). The
 localization time is averaged over sequences and
 accounts for the *per-frame* integration.

Method	Mapping	Localization	Final Opt.
HLoc	3520.0	0.01	–
MeshLoc	2208.0	<u>0.07</u>	–
Loc-NeRF	1490.0	7.50	–
SG2Loc (Ours)	<u>1.6</u>	2.90	5.5
ACE	<u>134.2</u>	0.08	–

Table 5: **Cross-modal sequential scene retrieval** on the 3RScan dataset (Wald et al., 2019), where the goal is to identify the correct scene from a set of 10 or 50 candidates. We evaluate SceneGraphLoc (Miao et al., 2024) operating on single frames and our proposed extension, which enables (Miao et al., 2024) to process sequences. We also show results of standard techniques (copied from (Miao et al., 2024)) CVNet (Lee et al., 2022) and AnyLoc (Keetha et al., 2023). Tests are conducted on sequences of length 5, 10, 25, and 50. We report scene retrieval recall in the temporal setting (R^t) at ranks 1, 3, and 5, indicating whether the correct scene appears among the top- k predictions. Additionally, we present inference time (in milliseconds) and storage requirements for map representation, demonstrating the efficiency of our approach.

# of frames	10 scenes				50 scenes				Storage MB
	$R^t@1$	$R^t@3$	$R^t@5$	Time (ms)	$R^t@1$	$R^t@3$	$R^t@5$	Time (ms)	
1 ((Miao et al., 2024))	0.82	0.94	0.98	0.3	0.69	0.79	0.84	1.5	5.4
5	0.84	0.95	0.98	1.5	0.72	0.84	0.88	7.5	5.4
10	0.86	0.95	0.98	3.0	0.75	0.85	0.89	15.0	5.4
25	0.88	0.96	0.98	7.5	0.78	0.87	0.91	37.5	5.4
50	0.89	0.96	0.98	15.0	0.81	0.89	0.92	75.0	5.4
CVNet (Lee et al., 2022)	0.79	0.91	0.95	60.0	0.67	0.77	0.82	311.1	239.1
AnyLoc (Keetha et al., 2023)	0.88	0.95	0.98	1826.4	0.81	0.87	0.90	1451.1	5720.3

Table 6: **Keyframing on 3RScan.** We report avg. and median pos. (m) and rot. error ($^\circ$), and recall at (25cm, 2°) for 100-frame sequences.

	HLoc	Ours w/ keyframing
Mean pos. (m) ↓	0.94	2.36
Mean rot. ($^\circ$) ↓	33.99	20.08
Med. pos. (m) ↓	0.27	0.18
Med. rot. ($^\circ$) ↓	3.67	2.75
Pos. R@0.25m ↑	0.48	0.54
Rot. R@ 2° ↑	0.35	0.43
R@25cm, 2° ↑	0.35	0.40

Table 7: **Ablation study on 3RScan.** We report recall at (10cm, 5°) and (25cm, 10°) for 5-frame sequences. Higher recall is better.

Method	R@10cm, 5°	R@25cm, 10°
Max. raycast resolution (3.5)	0.07	0.33
Uniform sampling (3.1)	0.10	0.30
w/o adaptive resampling (3.5)	0.11	0.30
SG2Loc w/ semantic (3.4)	0.11	0.35
SG2Loc w/ semantic+depth (3.4)	0.20	0.54
SG2Loc w/ semantic+depth+RGB (3.4)	0.35	0.61
SG2Loc (Ours) (3.6)	0.50	0.65

We follow the evaluation protocol used in (Miao et al., 2024), where, given a query image (or sequence), we retrieve the top- k scenes from a candidate set of either 10 or 50 scenes. This evaluation is conducted ensuring that the query image was captured at a time step different from the reference map. We report recall at ranks 1, 3, and 5, measuring how often each method retrieves the correct scene among its top- k predictions ($k \in \{1, 3, 5\}$). Additionally, we provide localization time in milliseconds and storage requirements for retrieval. For our method, storage corresponds to the scene graph embeddings, whereas for CVNet and AnyLoc, it reflects the database of image embeddings.

The results are presented in Table 5. As expected, using longer sequences for localization substantially and consistently improves retrieval recall in both the 10-scene and 50-scene settings while introducing only a minimal increase in runtime. With sequences of 25 and 50 frames, the proposed method matches the performance of storage- and computation-intensive image retrieval baselines. These findings demonstrate that the sequential extension of SceneGraphLoc is effective and serves as a valuable complement to the localization approach proposed in this paper.

Ablation Studies are conducted on the first 4 scenes of the 3RScan (Wald et al., 2019) dataset, comprising 335 sequences of 5 images. The results are presented in Table 7. The first 3 ablations evaluate components of our method relative to *SG2Loc w/ semantic*. The *Max. resolution* (stride = 1) setting removes downsampling in the final pass of multi-round optimization, using the highest resolution for raycasting. As shown in Table 7, this configuration achieves similar accuracy to *SG2Loc w/ semantic*, while achieving much lower computational cost. The *Uniform sampling* setting initializes particles on a uniform 3D grid with a resolution of 0.2m, assigning 3 random poses per grid cell. This approach results in significantly lower accuracy compared to *SG2Loc w/ semantic* with the proposed init. strategy. The *w/o adaptive resampling* configuration replaces the adaptive resampling with a fixed particle count. While this achieves similar med. errors, it significantly reduces recall, showing that dynamic particle count increases accuracy. The ablations *SG2Loc w/ semantic, w/ semantic+depth, w/ semantic+depth+RGB*, explore the impact of supervision signals without PnP. Each additional signal improves performance. The best variant (*SG2Loc w/ semantic+depth+RGB*) initializes the PnP refinement, and our full SG2Loc method (last row), yields the best overall results.

Limitations. Although the proposed method achieves substantial storage savings and competitive localization accuracy compared to the state-of-the-art HLoc and MeshLoc, it incurs higher computational cost during per-frame integration. We believe that this overhead can be significantly reduced

486 through further code optimizations. Moreover, the keyframing experiment highlights that SG2Loc
 487 can already be used in time-sensitive applications by processing only keyframes.
 488

489 **6 CONCLUSION**

490 We present a lightweight approach to sequential visual localization using 3D scene graphs and a par-
 491 ticle filter, avoiding the need for large image databases or dense point clouds. By leveraging semantic
 492 object descriptors and coarse meshes, our method efficiently refines pose estimates over time while
 493 significantly reducing storage requirements. Experiments show that SG2Loc achieves competitive
 494 accuracy with far lower storage overhead than existing methods. The proposed coarse-to-fine opti-
 495 mization balances efficiency and precision, making the approach practical for resource-constrained
 496 applications. SG2Loc achieves performance similar to storage-intensive baselines, sometimes it is
 497 better in accuracy, sometimes slightly worse. Future work will focus on enhancing feature represen-
 498 tations and runtime. The code will be made public.
 499

500 **7 REPRODUCIBILITY AND USE OF LARGE LANGUAGE MODELS**

501 We will release the codebase, including data set splits, to enable reproducibility of all experiments.
 502 Large Language Models (LLMs) were used for minor language editing (grammar and phrasing).
 503

504 **REFERENCES**

505 Michal Adamkiewicz, Timothy Chen, Adam Caccavale, Rachel Gardner, Preston Culbertson, Jean-
 506 nette Bohg, and Mac Schwager. Vision-only robot navigation in a neural radiance world. *IEEE*
 507 *Robotics and Automation Letters*, 7(2):4606–4613, 2022.

511 Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic. Netvlad: Cnn ar-
 512 chitecture for weakly supervised place recognition. In *Proceedings of the IEEE conference on*
 513 *computer vision and pattern recognition*, pp. 5297–5307, 2016.

515 Iro Armeni, Soroush Sax, Amir R Zamir, and Silvio Savarese. 3d scene graph: A structure for unified
 516 semantics, 3d space, and camera. In *Proceedings of the IEEE/CVF International Conference on*
 517 *Computer Vision*, pp. 5664–5673, 2019.

518 Axel Barrau and Silvere Bonnabel. Intrinsic filtering on lie groups with applications to attitude
 519 estimation. *IEEE Transactions on Automatic Control*, 60(2):436–449, 2014.

521 Gabriele Berton and Carlo Masone. Megaloc: One retrieval to place them all. In *Proceedings of the*
 522 *Computer Vision and Pattern Recognition Conference*, pp. 2861–2867, 2025.

524 Michael Bloesch, Sammy Omari, Marco Hutter, and Roland Siegwart. Robust visual inertial odom-
 525 etry using a direct ekf-based approach. In *2015 IEEE/RSJ international conference on intelligent*
 526 *robots and systems (IROS)*, pp. 298–304. IEEE, 2015.

527 Eric Brachmann and Carsten Rother. Learning less is more-6d camera localization via 3d surface
 528 regression. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*,
 529 pp. 4654–4662, 2018.

531 Eric Brachmann, Alexander Krull, Sebastian Nowozin, Jamie Shotton, Tom Sharp, Carsten Rother,
 532 and Roberto Cipolla. Dsac-differentiable ransac for camera localization. In *Proceedings of the*
 533 *IEEE Conference on Computer Vision and Pattern Recognition*, pp. 6658–6666, 2017.

534 Eric Brachmann, Tommaso Cavallari, and Victor Adrian Prisacariu. Accelerated coordinate encod-
 535 ing: Learning to relocalize in minutes using rgb and poses. In *Proceedings of the IEEE/CVF*
 536 *Conference on Computer Vision and Pattern Recognition*, pp. 5044–5053, 2023.

538 Ondrej Chum and Jiri Matas. Matching with prosac-progressive sample consensus. In *2005 IEEE*
 539 *computer society conference on computer vision and pattern recognition (CVPR’05)*, volume 1,
 pp. 220–226. IEEE, 2005.

540 Angela Dai, Angel X Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
 541 Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In *Proceedings of the*
 542 *IEEE conference on computer vision and pattern recognition*, pp. 5828–5839, 2017.

543

544 Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superpoint: Self-supervised interest
 545 point detection and description. In *Proceedings of the IEEE conference on computer vision and*
 546 *pattern recognition workshops*, pp. 224–236, 2018.

547

548 Mihai Dusmanu, Ignacio Rocco, Tomas Pajdla, Marc Pollefeys, Josef Sivic, Akihiko Torii, and
 549 Torsten Sattler. D2-net: A trainable cnn for joint description and detection of local features.
 550 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 551 8092–8101, 2019.

552

553 Johan Edstedt, Qiyu Sun, Georg Bökman, Mårten Wadenbäck, and Michael Felsberg. Roma: Robust
 554 dense feature matching. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 555 *Pattern Recognition*, pp. 19790–19800, 2024.

556

557 Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct monocular slam.
 558 In *European conference on computer vision*, pp. 834–849. Springer, 2014.

559

560 Martin A Fischler and Robert C Bolles. Random sample consensus: a paradigm for model fitting
 561 with applications to image analysis and automated cartography. In *Communications of the ACM*,
 562 volume 24, pp. 381–395. ACM, 1981.

563

564 Christian Forster, Matia Pizzoli, and Davide Scaramuzza. Svo: Fast semi-direct monocular visual
 565 odometry. In *2014 IEEE international conference on robotics and automation (ICRA)*, pp. 15–22.
 566 IEEE, 2014.

567

568 Dieter Fox. Kld-sampling: Adaptive particle filters. *Advances in neural information processing*
 569 *systems*, 14, 2001.

570

571 Xiang Gao, Rui Wang, Nikolaus Demmel, and Daniel Cremers. Ldso: Direct sparse odometry
 572 with loop closure. In *2018 IEEE/RSJ International Conference on Intelligent Robots and Systems*
 573 (*IROS*), pp. 2198–2204. IEEE, 2018.

574

575 Justin Johnson, Ranjay Krishna, Michael Stark, Li Fei-Fei, et al. Image retrieval using scene graphs.
 576 In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 3668–
 577 3678, 2015.

578

579 Nikhil Keetha, Avneesh Mishra, Jay Karhade, Krishna Murthy Jatavallabhula, Sebastian Scherer,
 580 Madhava Krishna, and Sourav Garg. Anyloc: Towards universal visual place recognition. *IEEE*
 581 *Robotics and Automation Letters*, 9(2):1286–1293, 2023.

582

583 Alex Kendall, Matthew Grimes, and Roberto Cipolla. Posenet: A convolutional network for real-
 584 time 6-dof camera relocalization. In *Proceedings of the IEEE international conference on com-*
 585 *puter vision*, pp. 2938–2946, 2015.

586

587 Fadi Khatib, Dror Moran, Guy Trostanetsky, Yoni Kasten, Meirav Galun, and Ronen Basri. Gsvi-
 588 loc: Generalizable visual localization for gaussian splatting scene representations. *arXiv preprint*
 589 *arXiv:2508.18242*, 2025.

590

591 Georg Klein and David Murray. Parallel tracking and mapping for small ar workspaces. In *2007 6th*
 592 *IEEE and ACM international symposium on mixed and augmented reality*, pp. 225–234. IEEE,
 593 2007.

594

595 Erwin Kruppa. Zur ermittlung des objektes aus zwei perspektiven mit innerer orientierung.
 596 *Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien. Mathematisch-*
 597 *Naturwissenschaftliche Klasse*, 122(2a):1939–1948, 1913.

598

599 Viktor Larsson and contributors. PoseLib - Minimal Solvers for Camera Pose Estimation, 2020.
 600 URL <https://github.com/vlarsson/PoseLib>.

594 Seongwon Lee, Hongje Seong, Suhyeon Lee, and Euntai Kim. Correlation verification for image
 595 retrieval. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 596 pp. 5374–5384, 2022.

597

598 Wonkwang Lee, Whie Jung, Han Zhang, Ting Chen, Jing Yu Koh, Thomas Huang, Hyungsuk Yoon,
 599 Honglak Lee, and Seunghoon Hong. Revisiting hierarchical approach for persistent long-term
 600 video prediction. *arXiv preprint arXiv:2104.06697*, 2021.

601 Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul Furgale. Keyframe-
 602 based visual–inertial odometry using nonlinear optimization. *The International Journal of*
 603 *Robotics Research*, 34:314–334, 2015.

604

605 Yunpeng Li, Noah Snavely, Dan Huttenlocher, and Pascal Fua. Worldwide pose estimation using 3d
 606 point clouds. In *European conference on computer vision*, pp. 15–29. Springer, 2012.

607

608 Changkun Liu, Shuai Chen, Yash Bhagat, Siyan Hu, Ming Cheng, Zirui Wang, Victor Adrian
 609 Prisacariu, and Tristan Braud. Gs-cpr: Efficient camera pose refinement via 3d gaussian splatting.
 610 *arXiv preprint arXiv:2408.11085*, 2024.

611

612 Simon Lynen, Bernhard Zeisl, Dror Aiger, Michael Bosse, Joel Hesch, Marc Pollefeys, Roland
 613 Siegwart, and Torsten Sattler. Large-scale, real-time visual–inertial localization revisited. *The*
614 International Journal of Robotics Research, 39(9):1061–1084, 2020.

615

616 Dominic Maggio, Marcus Abate, Jingnan Shi, Courtney Mario, and Luca Carlone. Loc-nerf: Monte
 617 carlo localization using neural radiance fields. *arXiv preprint arXiv:2209.09050*, 2022.

618

619 Dominic Maggio, Hyungtae Lim, and Luca Carlone. Vggt-slam: Dense rgb slam optimized on the
 620 sl (4) manifold. *arXiv preprint arXiv:2505.12549*, 2025.

621

622 Wugang Meng, Tianfu Wu, Huan Yin, and Fumin Zhang. Nurf: Nudging the particle filter in
 623 radiance fields for robot visual localization. *IEEE Transactions on Cognitive and Developmental*
 624 *Systems*, 2025.

625

626 Yang Miao, Francis Engelmann, Olga Vysotska, Federico Tombari, Marc Pollefeys, and Dániel Béla
 627 Baráth. Scenegraphloc: Cross-modal coarse visual localization on 3d scene graphs. In *European*
628 Conference on Computer Vision, pp. 127–150. Springer, 2024.

629

630 Hans P Moravec. Obstacle avoidance and navigation in the real world by a seeing robot rover. 1980.

631

632 Raul Mur-Artal and Juan D Tardós. Orb-slam2: An open-source slam system for monocular, stereo,
 633 and rgb-d cameras. *IEEE Transactions on Robotics*, 33(5):1255–1262, 2017.

634

635 Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. Orb-slam: A versatile and
 636 accurate monocular slam system. *IEEE Transactions on robotics*, 31(5):1147–1163, 2015.

637

638 Riku Murai, Eric Dexheimer, and Andrew J Davison. Mast3r-slam: Real-time dense slam with 3d
 639 reconstruction priors. In *Proceedings of the Computer Vision and Pattern Recognition Conference*,
 640 pp. 16695–16705, 2025.

641

642 Vojtech Panek, Zuzana Kukelova, and Torsten Sattler. Meshloc: Mesh-based visual localization. In
 643 *European Conference on Computer Vision*, pp. 589–609. Springer, 2022.

644

645 Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and versatile monocular visual-
 646 inertial state estimator. In *IEEE Transactions on Robotics*, volume 34, pp. 1004–1020. IEEE,
 647 2018.

648

649 Jérôme Revaud, César De Souza, Martin Humenberger, and Philippe Weinzaepfel. R2d2: Reliable
 650 and repeatable detector and descriptor. In *Advances in Neural Information Processing Systems*,
 651 volume 32, pp. 12405–12415, 2019.

652

653 Paul-Edouard Sarlin, Cesar Cadena, Roland Siegwart, and Marcin Dymczyk. From coarse to fine:
 654 Robust hierarchical localization at large scale. In *Proceedings of the IEEE/CVF conference on*
655 computer vision and pattern recognition, pp. 12716–12725, 2019.

648 Paul-Edouard Sarlin, Daniel DeTone, Tomasz Malisiewicz, and Andrew Rabinovich. Superglue:
 649 Learning feature matching with graph neural networks. In *Proceedings of the IEEE/CVF confer-
 650 ence on computer vision and pattern recognition*, pp. 4938–4947, 2020.

651 Torsten Sattler, Bastian Leibe, and Leif Kobbelt. Fast image-based localization using direct 2d-
 652 to-3d matching. In *Proceedings of the IEEE International Conference on Computer Vision*, pp.
 653 667–674, 2011.

654 Torsten Sattler, Akihiko Torii, Josef Sivic, Marc Pollefeys, and Masatoshi Okutomi. Efficient &
 655 effective prioritized matching for large-scale image-based localization. In *IEEE transactions on
 656 pattern analysis and machine intelligence*, volume 38, pp. 1744–1756. IEEE, 2016.

657 Torsten Sattler, Michal Havlena, Konrad Schindler, and Marc Pollefeys. Large-scale location recog-
 658 nition and the geometric burstiness problem. In *Proceedings of the IEEE Conference on Computer
 659 Vision and Pattern Recognition*, pp. 4877–4886, 2017.

660 Torsten Sattler, Will Maddern, Carl Toft, Akihiko Torii, Lars Hammarstrand, Erik Stenborg, Daniel
 661 Safari, Masatoshi Okutomi, Marc Pollefeys, Josef Sivic, et al. Benchmarking 6dof outdoor visual
 662 localization in changing conditions. In *Proceedings of the IEEE conference on computer vision
 663 and pattern recognition*, pp. 8601–8610, 2018.

664 Thomas Schneider, Marcin Dymczyk, Marius Fehr, Kevin Egger, Simon Lynen, Igor Gilitschenski,
 665 and Roland Siegwart. maplab: An open framework for research in visual-inertial mapping and
 666 localization. *IEEE Robotics and Automation Letters*, 3(3):1418–1425, 2018.

667 Zachary Teed and Jia Deng. Droid-slam: Deep visual slam for monocular, stereo, and rgb-d cameras.
 668 *Advances in neural information processing systems*, 34:16558–16569, 2021.

669 Alexander Veicht, Paul-Edouard Sarlin, Philipp Lindenberger, and Marc Pollefeys. Geocalib: Learn-
 670 ing single-image calibration with geometric optimization. In *European Conference on Computer
 671 Vision*, pp. 1–20. Springer, 2024.

672 Florian Walch, Caner Hazirbas, Laura Leal-Taixé, Torsten Sattler, Frank Hutter, and Marc Pollefeys.
 673 Image-based localization using lstms for structured feature correlation. In *Proceedings of the
 674 IEEE international conference on computer vision*, pp. 6046–6055, 2017.

675 Johanna Wald, Armen Avetisyan, Nassir Navab, Federico Tombari, and Matthias Nießner. Rio: 3d
 676 object instance re-localization in changing indoor environments. In *Proceedings of the IEEE/CVF
 677 International Conference on Computer Vision*, pp. 7658–7667, 2019.

678 Fangjinhua Wang, Xudong Jiang, Silvano Galliani, Christoph Vogel, and Marc Pollefeys. Glace:
 679 Global local accelerated coordinate encoding. In *Proceedings of the IEEE/CVF Conference on
 680 Computer Vision and Pattern Recognition*, pp. 21562–21571, 2024.

681 Ke Wu, Guanbin Wang, Wenqi Zeng, Qinghao Wang, Yang Wang, Xiaodong Huang, and Zheng
 682 Ding. Multi-modal graph neural network for joint reasoning on vision and scene graph. In
 683 *Proceedings of the 28th ACM International Conference on Multimedia*, pp. 2067–2075, 2020.

684 Shun-Cheng Wu, Johanna Wald, Keisuke Tateno, Nassir Navab, and Federico Tombari. Scene-
 685 graphfusion: Incremental 3d scene graph prediction from rgb-d sequences. In *Proceedings of the
 686 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7515–7525, 2021.

687 Hanwang Zhang, Zawlin Zawadzki, Jianwei Cai, et al. Visual translation embedding network for
 688 visual relation detection. In *Proceedings of the IEEE conference on computer vision and pattern
 689 recognition*, pp. 6789–6797, 2017.

690 Kang Zhou, Chi Guo, and Huyin Zhang. Visual navigation via reinforcement learning and rela-
 691 tional reasoning. In *2021 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced &
 692 Trusted Computing, Scalable Computing & Communications, Internet of People and Smart City
 693 Innovation (SmartWorld/SCALCOM/UIC/ATC/IOP/SCI)*, pp. 131–138. IEEE, 2021.

694 Lei Zhou, Zixin Luo, Tianwei Shen, Jiahui Zhang, Mingmin Zhen, Yao Yao, Tian Fang, and Long
 695 Quan. Kfnet: Learning temporal camera relocalization using kalman filtering. In *Proceedings of
 696 the IEEE/CVF conference on computer vision and pattern recognition*, pp. 4919–4928, 2020.

702 A ADDITIONAL ABLATIONS ON SUPERVISION SIGNALS

704 To understand the individual contribution of each supervision signal, we run the particle filter using
 705 only a single score at a time (semantic, depth, or RGB). Table 8 reports the resulting localization
 706 accuracy and pose recall on 3RScan (Wald et al., 2019). *SG2Loc w/ semantic* achieves the lowest
 707 median position error and consistently good performance in all metrics. *SG2Loc w/ depth* has the
 708 lowest median rotation error. In contrast, *SG2Loc w/ RGB* performs worse in terms of position
 709 and rotation accuracy, but interestingly achieves the highest recall at the strict threshold (10cm, 5°).
 710 These results suggest that all three supervision signals contribute useful information to the final
 711 localization performance.

712 **Table 8: Ablations on supervision signals on 3RScan.** We report the average and median position
 713 error (in meters) and average and median rotation error (in degrees) for sequences of 5 frames,
 714 where lower values indicate better performance. We also measure recall at thresholds (10cm, 5°)
 715 and (25cm, 10°), where higher values indicate better performance.

Method	Mean		Median		Recall	
	Pos. (m)	Rot. (°)	Pos. (m)	Rot. (°)	R@10cm, 5°	R@25cm, 10°
SG2Loc w/ semantic	1.20	21.44	0.66	8.77	0.08	0.26
SG2Loc w/ depth	1.44	39.01	0.96	6.42	0.09	0.32
SG2Loc w/ RGB	1.79	44.78	1.51	17.37	0.14	0.20

723 B ABLATIONS ON SCANNET

725 We evaluate the contribution of different supervision signals on the ScanNet (Dai et al., 2017)
 726 dataset. Table 9 shows the mean and median localization errors, and Table 10 reports the recall at
 727 thresholds (10cm, 5°) and (25cm, 10°). Our proposed SG2Loc method performs the additional
 728 optimization initialized from the maximum likelihood estimate of *SG2Loc w/ semantic+depth+RGB*
 729 (second row in Tab. 9 and Tab. 10). It achieves the best performance across all metrics, only the
 730 rotation median is slightly better without the final optimization.

731 **Table 9: Ablations on ScanNet (mean and median).** Localization accuracy on the ScanNet dataset
 732 for different supervision inputs. We report the average and median position error (in meters) and
 733 average and median rotation error (in degrees) for sequences of length 5, 10 and 25 frames. Lower
 734 values indicate better localization performance.

Method	5 frames				10 frames				25 frames			
	Mean		Median		Mean		Median		Mean		Median	
	Pos. (m)	Rot. (°)	Pos. (m)	Rot. (°)	Pos. (m)	Rot. (°)	Pos. (m)	Rot. (°)	Pos. (m)	Rot. (°)	Pos. (m)	Rot. (°)
SG2Loc w/ semantic	1.08	21.21	0.73	7.40	1.00	18.55	0.57	6.28	0.86	15.69	0.43	5.95
SG2Loc w/ semantic+depth+RGB	0.56	11.92	0.15	2.45	0.54	10.23	0.14	2.08	0.46	10.42	0.13	1.99
SG2Loc (Ours)	0.53	11.55	0.12	2.55	0.44	8.14	0.10	2.30	0.29	4.55	0.09	2.29

741 **Table 10: Ablations on ScanNet (pose recall).** We report recall at thresholds (10cm, 5°) and
 742 (25cm, 10°) for localization sequences of length 5, 10 and 25 frames. Recall measures the fraction
 743 of errors that fall below those thresholds. Higher values indicate better performance.

Method	5 frames		10 frames		25 frames	
	R@10cm, 5°	R@25cm, 10°	R@10cm, 5°	R@25cm, 10°	R@10cm, 5°	R@25cm, 10°
SG2Loc w/ semantic	0.12	0.33	0.12	0.34	0.14	0.40
SG2Loc w/ semantic+depth+RGB	0.26	0.69	0.28	0.73	0.32	0.75
SG2Loc (Ours)	0.41	0.72	0.49	0.79	0.58	0.80

752 C QUALITATIVE RESULTS

754 Figure 4 shows a failure case of the particle filter on a 5-frame sequence from the 3RScan
 755 dataset (Wald et al., 2019). Although the particle distribution narrows over time, the final estimate
 still results in a coarse localization with a position error of 1.06 meters and a rotation error of 6.6

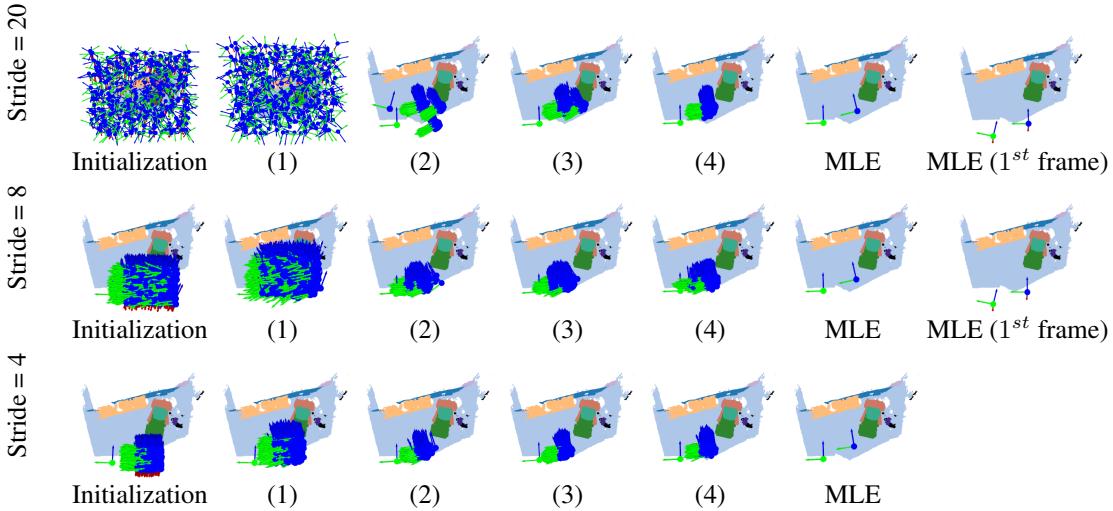


Figure 4: **A failure case** of our coarse-to-fine particle filter on a 5-image sequence, first running with a stride of 20, 8, and finally 4 (the stride controls the rate of downsampling the images). The first column shows the initial random particle distribution, gradually narrowing the search space in subsequent rounds. Each next column represents particle updates after integrating the n^{th} image (indicated below each plot). Then, the Maximum Likelihood Estimate (MLE) is shown in blue, and the GT pose in green, back-propagated to the 1st frame for the next optimization round. The position error for this example is 1.06 meter and rotation error 6.60°. This failure is potentially caused by the uninformative input views (all looking very similar) visualized in Fig. 5.

degrees. This example highlights a limitation of our method. The input views in the query sequence are visually very similar (Figure 5), with little change in perspective. In such cases, the information in the image sequence is not discriminative enough to resolve pose ambiguities. As a result, the method struggles to converge to a precise pose and only returns a coarse estimate. Still, the failure is less severe than for state-of-the-art methods like HLoc (Sarlin et al., 2019), which produces an average position error above 10^{12} meters on 3RScan dataset (Wald et al., 2019).

Figure 5: **Query images and MLE view.** The five query images (a)–(e) used in Figure 4 for the coarse-to-fine particle filter on the 3RScan dataset (Wald et al., 2019). After the fifth image (e), we retrieve the Maximum Likelihood Estimate (MLE) pose. Image (f) shows the segmented 3D mesh projected into a virtual camera located at the MLE pose. Colors denote object instances.

D LARGE-SCALE ENVIRONMENTS

We conducted an additional experiment simulating a larger-scale environment. Since the available datasets do not provide large-scale, object-annotated environments (all scenes are apartment-sized), we merged every 3 ScanNet scenes into a single environment, initializing particles across the en-

tire space and allowing the filter to automatically determine the correct scene. We report both the retrieval accuracy ($R^t@1$, i.e., fraction of cases where the correct room was identified) and the final pose accuracy. The results for 50-frame sequences, shown below, demonstrate that our method can successfully localize in this scenario. It achieves slightly lower retrieval performance compared to the proposed sequential SceneGraphLoc and the original SceneGraphLoc, while still producing accurate poses. The lower recall could potentially be improved by increasing the number of initial particles. Given its efficiency, running the sequential SceneGraphLoc variant for the coarse localization stage remains preferable. As per standard practice in localization Sarlin et al. (2019), SG2Loc can provide an accurate pose after the coarse location has been identified by the proposed sequential SceneGraphLoc.

Table 11: Localization results **large-scale environment** on ScanNet.

Method	$R^t@1$	Mean Pos. (m) \downarrow	Mean Rot. ($^{\circ}$) \downarrow	Med. Pos. (m) \downarrow	Med. Rot. ($^{\circ}$) \downarrow	R@10cm, 5° \uparrow	R@25cm, 10° \uparrow
SGL (Miao et al., 2024)	92.4	—	—	—	—	—	—
Seq. SGL (Ours)	95.1	—	—	—	—	—	—
SG2Loc (Ours)	85.7	0.24	7.21	0.16	2.25	0.33	0.80

E SPEED-UP EXPERIMENTS

To reduce runtime, we ran the following experiment: we ran the particle filter only once per frame with the lowest resolution (stride 20). Averaged over sequence lengths 5 and 25, this achieves 1.6 seconds per frame with a modest accuracy drop. Mean and median errors and recalls are reported in Table 12 and Table 13. Compared to our coarse-to-fine method, accuracy decreases slightly but remains comparable to baselines (e.g., HLoc).

Table 12: **Localization accuracy for coarse SG2Loc** on the 3RScan dataset. We report the avg. and median position error (m) and avg. and median rotation error ($^{\circ}$) for sequences of length 5 and 25 frames for the coarse variant of SG2Loc. This variant is only running a single particle filter pass with the lowest resolution (stride 20) to improve runtime.

Method	5 frames				25 frames			
	Mean Pos. (m)	Mean Rot. ($^{\circ}$)	Median Pos. (m)	Median Rot. ($^{\circ}$)	Mean Pos. (m)	Mean Rot. ($^{\circ}$)	Median Pos. (m)	Median Rot. ($^{\circ}$)
HLoc	2.05×10^{12}	46.68	0.18	6.32	1030.90	22.74	0.08	2.44
SG2Loc (Ours)	2.43	21.24	0.20	3.27	6.15	22.93	0.14	2.73
SG2Loc (Coarse) (Ours)	2.25	24.37	0.31	5.05	8.08	27.10	0.14	3.44

Table 13: **Pose recalls for coarse SG2Loc** on the 3RScan dataset. We report recall at thresholds (25cm, 2°) for localization sequences of length 5 and 25 frames: Position R@0.25m / Rotation R@ 2° / R@0.25m, 2° . Recall measures the fraction of errors that fall below those thresholds, higher values indicate better performance.

Method	5 frames	25 frames
HLoc	0.54 / 0.28 / 0.27	0.74 / 0.43 / 0.43
SG2Loc (Ours)	0.53 / 0.38 / 0.32	0.59 / 0.43 / 0.39
SG2Loc (Coarse) (Ours)	0.46 / 0.31 / 0.27	0.58 / 0.38 / 0.36

F EXPERIMENT USING SLAM POSES

We additionally report results using DROID-SLAM Teed & Deng (2021) for the relative motion on ScanNet (sequence length 5) instead of the quasi ground truth. The performance is comparable, showing that SG2Loc is robust to moderate drift in the motion estimate:

864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887

Method	Median Pos (m)	Median Rot (°)	Recall@0.25m, 2°
HLoc	0.09	2.63	0.38
HLoc w/ SLAM poses	0.15	2.67	0.34
SG2Loc (Ours)	0.12	2.55	0.36
SG2Loc w/ SLAM poses	0.16	2.63	0.36

Table 14: Comparison of localization performance using DROID-SLAMTeed & Deng (2021) poses.

893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917