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Abstract
Grokking, or delayed generalization, is a phe-
nomenon where generalization in a deep neural
network (DNN) emerges after achieving near zero
training error. Previous studies have reported the
occurrence of grokking in specific controlled set-
tings, such as DNNs initialized with large-norm
parameters or transformers trained on algorith-
mic datasets. Recent studies have shown that
grokking occurs for adversarial examples as well,
in the form of delayed robustness. We connect
the emergence of grokking with the geometric
arrangement of circuits in the input space, and
their size as well as proximity to the training data.
We also demonstrate that grokking manifests in
Large Language Models in next-character pre-
diction tasks. We provide evidence that the ar-
rangement of circuits in a DNN undergo a phase
transition during training, migrating away from
the training samples therefore increasing both ro-
bustness and generalization.

1. Introduction
Grokking is a surprising phenomenon related to represen-
tation learning in Deep Neural Networks (DNNs) whereby
DNNs may learn generalizing solutions to a task long after
interpolating the training dataset, i.e., reaching near zero
training error. It was first demonstrated by (Power et al.,
2022) on simple Transformer architectures performing mod-
ular addition or division. Subsequently, multiple studies
have reported instances of grokking for settings outside of
modular addition, e.g., DNNs initialized with large weight
norms for MNIST, IMDb (Liu et al., 2022), or XOR cluster
data (Xu et al., 2023), or adversarial examples (Humayun
et al., 2024).

In this paper, we show that grokking is a phenomenon sub-
ject to the geometric arrangement of circuits in the input
space of a network. We define circuits as the unique acti-
vation states, i.e., connectivity states that a deep network
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Figure 1. Geometry of unique circuits formed in the input space
of a ReLU MLP fθ : R2 → R, where a circuit is defined as a
unique connectivity state between the neurons of the MLP. (Left)
Circuits in the 2D input space correspond to ‘linear regions‘ of
the DNN, a region being a set in the input space where none of
the neurons change their activation state. Here we highlight two
neighboring regions, between which their corresponding circuits
(right) differ by the activation state of only the red neuron. The
red neuron, like all the other neurons, can be represented as a
piece-wise linear hyperplane in the input space (left). Here active
and inactive neurons are denoted in blue and orange.

can be in. We connect the notion of circuits with the linear
regions formed in the input space by Deep Neural Networks
with continuous piecewise linear non-linearities. Further-
more, we show that the intuition translates for non-piecewise
linear DNNs, such as Transformers. We introduce the no-
tion of circuit density as a measure for how many unique
circuits are formed in a local neighborhood of the input
space. Through qualitative visualizations and quantitative
results on the training dynamics of circuit density, we show
that there exists a strong connection between the geometric
arrangement of circuits and both delayed generalization and
robustness.

2. Circuits, Splines and Linear regions
A common theme in mechanistic interpretability, especially
when it comes to explaining the grokking phenomenon, is
the idea of ’circuit’ formation during training (Nanda et al.,
2023; Varma et al., 2023; Olah et al., 2020). A circuit is
loosely defined as a subgraph of a deep neural network con-
taining neurons (or linear combination of neurons) as nodes,
and weights of the network as edges. In this section, we
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Figure 2. Layerwise visualization of the input space formation of circuits on a 2D subspace passing through a training set triad, after
grokking. The circuits are visualized for an MLP with a depth of 6 and a width of 200, trained on 1,000 samples from MNIST. We see
that deeper layer neurons contribute more to the formation of large circuits compared to shallower layers. This is because deeper layer
neurons can be more localized in the input space due to the non-linearity induced by preceding layers. This way, a robust arrangement of
circuits is formed after grokking, where large generalized circuits, i.e., those covering a large number of input space points, contain the
training data points. Many of the circuits formed accumulate around and between the training set triad, thus around the decision boundary.
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Figure 3. Accuracy and circuit density of a 2 layer Transformer
trained on modular addition. We see that during grokking, the
circuit density of the network drops for training, test and random
points from the token embedding space as well.

connect the arrangement of circuits with the spline structure
of DNNs and introduce the notion of circuit density. In
Figure 1, we present the analytical spline partition formed
by a deep neural network and the example circuits formed
by individual linear regions in the spline partition.

2.1. Measuring Circuit Density for a Deep Network
Barak et al. (2022) introduced the notion of progress mea-
sures for DNN training, as scalar quantities that are causally
linked with the training state of a network. We propose a
geometric measure based on the arrangement of circuits in
the input space. The circuit density however is equivalent
to the density of unique linear operations being performed
in the input space. Therefore, circuit density is equivalent
to the local complexity (Hanin & Rolnick, 2019) of a DNN.
We will use both of these term interchangeably in the text

Suppose a domain is specified as the convex hull of a set
of vertices V = [v1, . . .vp]

T in the DNN’s input space.
We wish to compute the local complexity/rugosity/circuit
density (Humayun et al., 2023b; Hanin & Rolnick, 2019)
for neighborhood V = conv(V ). Let’s denote the DNN

layer weight as W (ℓ) ≜ [w
(ℓ)
1 , . . . ,w

(ℓ)

D(ℓ) ], b(ℓ) where ℓ

is the layer index, w(ℓ)
i is the i-th row of W (ℓ) or weight

of the i-th neuron, and D(ℓ) is the output space dimen-
sion of layer ℓ. The forward pass through this layer for
V can be considered an inner product with each row of
the weight matrix W (ℓ) followed by a continuous piece-
wise linear activation function. Without loss of general-
ity, let’s consider ReLU as the activation function in our
network. The partition at the input space of layer ℓ can
therefore be expressed as the set of all hyperplane equations
formed via the neuron weights such as ∂Ω =

⋃D(ℓ)

i=1 H
(ℓ)
i

and H
(ℓ)
i =

{
x ∈ RD(ℓ−1)

: ⟨w(ℓ)
i ,x⟩+ b

(ℓ)
i = 0

}
which

is also the set of layer ℓ non-linearities. Let, Φ = f1:ℓ−1(V)
be the embedded representation of the neighborhood V

by layer ℓ − 1 of the network. Therefore, approximat-
ing the circuit density of V induced by layer ℓ, would
be equivalent to counting the number of linear regions in
Φ ∩ ∂Ω =

⋃D(ℓ)

i=1 Φ ∩ H
(ℓ)
i . The local partition inside Φ

results from an arrangement of hyperplanes; therefore the
number of regions is of the order ND(ℓ−1)

(Toth et al., 2017),
where N = |{i : i = 1, 2..D(ℓ) and H

(ℓ)
i ∩ Φ ̸= ∅}|

is the number of hyperplanes from layer ℓ intersecting
Φ. We consider N as a proxy for circuit density for
any neighborhood Φ. To make computation tractable, let,
Φ ≈ Φ̂ = conv(f1:ℓ−1(V )). Therefore, for Φ̂, any sign
changes in layer ℓ pre-activations is due to the correspond-
ing neuron hyperplanes intersecting conv(V ). Therefore
for a single layer, the local complexity (LC) for a sample
in the input space can be approximated by the number of
neuron hyperplanes that intersect V embedded to that lay-
ers input space. If we consider input space neighborhoods
with the same volume, then circuit density measures the
un-normalized density of non-linearity in an input space lo-
cality. We highlight that this is tied to the VC-dimension of
(ReLU) DNN (Bartlett et al., 2019) where the more regions
are present the more expressive the decision boundary can
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be (Montufar et al., 2014).

Recall that DNNs operate linearly in a region-wise fashion,
i.e., for all input vectors {x : x ∈ ω}, the network performs
the same affine operation using parameters (Aω, bω) while
mapping x to the output. The affine parameters for any
given region, are a function of the active neurons in the
network as was shown by Humayun et al. (2023a) (Lemma
1). Therefore for each region, we necessarily have a circuit
or subgraph of the network performing the linear operation.
Between two neighboring regions, only one node of the
circuit changes. Therefore, our circuit density measure
is measuring the density of unique circuits formed in a
locality of the input space. While in practice a DNN might
have an exponential number of circuits (Hanin & Rolnick,
2019), the emergence of robust circuit formations show that
towards the end of training, the number of unique circuits get
drastically reduced. This is especially true for sub-circuits
corresponding to deeper layers only. In Figure 2, we show
the robust partition in a layerwise fashion. We can see that
for deeper layers, there exists large regions, i.e., embedding
regions with only one circuit operation through the layer.
This result, matches with the intuition provided by Nanda
et al. (2023) on the cleanup phase of circuit formation late
in training.

2.2. Deep Networks With Self-Attention: Discontinuous
Piecewise Affine Operators

We recall that the self-attention mapping takes the following
form

softmax
(
XQ (XK)

⊤
)
XV , (1)

which is then fed into a MLP block. The same mapping
is used for all layers, with per-layer parameters (Q,K,V ).
The input to that mapping is the T ×D input X where T ,
the sequence length, is constant across layers. The dimen-
sion D may vary, though, in practice, it is kept the same
across layers. For images, T corresponds to the number of
patches extracted from the image and D is the number of
pixels in each patch. Optionally residual connections can
be added. To start our connection between self-attention
and circuits, let’s consider a simplified setting where the
softmax has very low temperature. That is, the matrix
softmax

(
XQ (XK)

⊤
)

has rows which contain one-hot

vectors at the (per-row) argmax of XQ (XK)
⊤. In that

setting, it is clear that mapping is discontinuous piecewise
affine, where the discontinuity stems from a change in the
argmax. If the following MLP layers employer ReLU
activation–hence the MLP is itself a continuous piecewise
affine mapping–then the entire transformer mapping will be
discontinuous piecewise affine. In the more realistic case
of a higher temperature, i.e., softmax

(
XQ (XK)

⊤
)

is
dense, the output is not longer a (dis)continuous affine spline

Figure 4. Layerwise circuit formation visualized for a transformer
model trained on modular addition. From left to right, we
present the pre-activation zero level sets for three MLPs each
present in the two transformer blocks of the network. Note
that only the first and fourth image, corresponds to GeLU ac-
tivated MLPs. From top to bottom, we present the token em-
bedding space circuit formations after training the network for
{10, 12000, 30000, 108000, 498000} optimization steps. In Fig-
ure 3 we present the accuracy and circuit density training dynamics
for this network. The circuits are visualized on a 2D subspace in the
token embedding space, that contains the inputs ‘(72+65)%97=’
(pink), ‘(28+93)%97=’ (green), ‘(61+66)%97=’ (blue). We
see that after 3× 104 optimization steps, there is a phase change,
especially visible in the deepest MLP layer. With further training
we have an accumulation of the zero level-sets in between the three
data points.

due to the now smooth convex combination of the inputs.

Curvature and Linear Regions. Formulations like that
discussed above that represent DNNs as continuous piece-
wise affine splines, have previously been employed to make
theoretical studies amenable to actual DNNs, e.g. in genera-
tive modeling (Humayun et al., 2022), network pruning (You
et al., 2021), and OOD detection (Ji et al., 2022). Empirical
estimates of the density of linear regions in the spline parti-
tion have also been employed in sensitivity analysis (Novak
et al., 2018), quantifying non-linearity (Gamba et al., 2022),
quantifying expressivity (Raghu et al., 2017) or to estimate
the complexity of spline functions (Hanin & Rolnick, 2019).

3. Experiments
To visualize the circuit formation for simple DNN MLPs
like that in Figure 1 we use Splinecam (Humayun et al.,
2023b). To visualize circuit formation for a GPT scale
large language model Figure 5 and transformers with self
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Figure 5. Circuit density visualizations for an LLM with GPT-like architecture, 6 heads and 6 transformer blocks before (top) and after
(bottom) the network groks adversarial examples. We visualize a 2D subspace of the token embedding space that goes through three
points (marked in white) from the training dataset. From left to right, we present the circuits formed by the pre-activation level sets of
only one MLP per transformer block with GeLU activation. Prior to grokking, the circuit density is higher in the proximity of all the three
examples. After grokking, we see that the circuits accumulate between the three training points, with lower circuit density in the proximity
of the training points. This observation is similar to the case presented in Fig. 2 where we see low circuit density around training points,
especially for deeper layers. For the first transformer block, we see that there is accumulation of non-linearities around the training points
indicating that there is also a layerwise effect on the non-linearities in an LLM, much like the MLP case presented in Fig. 2.

Figure 6. Accuracy (left) and local complexity (right) for an LLM
with 121M parameters, 12 heads, 12 transformer blocks and a
GPT-like architecture, trained on a next character prediction task
using the Shakespeare dataset. We see that the GPT2 model groks
adversarial examples long after training and test accuracy peaks.
Adversarial examples are generated by performing non-targeted
ℓ∞ PGD (Madry et al., 2017) attacks on the token embeddings
instead of the tokens directly. We see that local complexity, i.e.,
circuit density, undergoes a phase change here as well, that leads
to grokking adversarial examples.

attention Figure 4, we use the following:

Transformers take tokens as input and use a token embedder
to embed the tokens into a token embedding space. While
the input space for transformers is discrete, the token em-
bedding space can be considered continuous, with quantized
bins where the transformer inputs are generally embedded
to. Moreover the token embedder is trained while the whole
network is being trained. Therefore, to visualize circuit
formation for transformers, we consider a 2D subspace in
the token embedding space that is anchored on the embed-
dings of three training data points. While the network is
trained the 2D subspace evolves but remains anchored on
the target data points. We consider a dense grid of points on

the 2D subspace and measure the circuit density as detailed
above for an ℓ1 neighborhood of radius r = 0.05 for the
transformer experiments Figure 4, and radius r = 1e−4 for
the large language model. The area spanned by the dense
grid is fixed throughout training, therefore, only the orienta-
tion of the grid changes as the network is trained. For both
transformers and LLMs, we see that a phase change in the
circuit formation precedes the onset of grokking.

4. Conclusions and Limitations
We present the first visualizations of circuits formed in
LLMs and transformers. We present connections between
circuit formation, the complexity of a network and grokking.
At a high level, it is clear that the classification function
being learned has its curvature concentrated at the deci-
sion boundary and approximation theory would normally
dictate a free-form spline to therefore concentrate its par-
tition regions around the decision boundary to minimize
approximation error. However, it is not clear why the circuit
cleanup phase occurs so late in the training process, and we
hope to study that in future research. e training dynamics
of stochastic gradient descent, as well as sharpness aware
minimization (Andriushchenko & Flammarion, 2022) can
also be studied using our framework. There can be possible
connections between circuit formation and neural collapse
(Papyan et al., 2020) which are not explored in this paper.
The spline viewpoint of deep neural networks and its con-
nection to circuits may provide strong geometric insights to
assist in mechanistic understanding in future works as well.
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