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Abstract 
Background: Each of the two clinical decision support models, data-driven and knowledge-driven, 
has its own unique strengths and challenges, and at the same time, the development of People-
Centric Artificial Intelligent (PCAI) clinical decision support urgently needs to explore the effective 
integration strategies of the two driven models. 
Objective: Constructing a trustworthy and highly accurate hybrid decision model incorporating 
knowledge-driven and data-driven model, and applying it to the field of healthcare. 
Methods: We collected authoritative clinical practice guidelines, expert consensus and medical 
literature in the field of cardiovascular diseases as knowledge sources and retrospectively collected 
electronic medical record information of patients with ventricular tachycardia (VT) from Fu Wai 
Hospital as a dataset. The knowledge-driven model constructs a clinical pathway using a knowledge 
rule-based approach, and the data-driven model constructs a multi-classification machine learning 
model for etiological diagnosis of VT based on real-world data. The hybrid model's uses the clinical 
pathway as the basic framework, and the machine learning model is embedded as a custom operator 
into the decision node of the process. The comparison metrics of the three models are precision, 
recall and F1 score. 
Results: In this study, we selected three clinical guidelines as the knowledge source for the 
knowledge-driven models, as well as collected 1,305 patient data as the dataset. A total of five 
machine learning models were constructed and the best model was XGBoost model (precision, 
recall, and F1 were 88.4%, 88.5%, and 88.4%, respectively. The hybrid model adopts the 
knowledge-driven thinking, embedding the machine learning model into the decision-making node 
of the two layers of classification, respectively. The precision, recall and F1-scores for the 
knowledge-driven model were 80.4%, 79.1% and 79.7%; for machine learning model were 88.4%, 
88.5%, and 88.4%; for hybrid model were 90.4%, 90.2% and 90.3%. 
Conclusion: The results show that the strategy of integrating knowledge-driven and data-driven 
clinical decision-making models is feasible. Compared to the pure knowledge-driven and data-
driven models, the hybrid model demonstrated higher accuracy, and all the decision-making results 
of the model were based on evidence-based evidence, which was closer to the actual diagnostic 
thinking of clinicians. This new generation of PCAI systems for clinical decision-making needs to 
be applied to a wider range of medical fields and rigorously validated in the future. 
Keyword Ventricular Tachycardia, knowledge-driven, data-driven, machine learning, hybrid model, 
decision-making 

Introduction 
With the development of medical science and information technology, clinical decision-

making plays a key role in medical practice. Clinical decision-making refers to a series of complex 
processes, such as disease analysis, diagnostic inference, and treatment plan development, when 
clinicians are faced with a patient's condition, based on existing medical knowledge, the patient's 
specific situation, and the available medical resources1. This process not only covers medical 
theories and statistical principles, but may also incorporate multidisciplinary knowledge and 

 



 

technological methods such as Artificial Intelligence (AI), so as to construct a set of scientific and 
rigorous clinical decision-making system. Clinical Decision Support System (CDSS), as an 
important tool to assist clinical decision-making, plays a significant role in optimizing the diagnosis 
and treatment process and enhancing the accuracy of decision-making. Currently, mainstream CDSS 
are categorized into knowledge-driven and data-driven types mainly based on their operational 
mechanisms2. 

It can be seen that current models for both knowledge-driven and data-driven decision making 
fail to achieve the desired goals due to technical challenges (e.g., lack of decision accuracy),low 
quality of evidence-based evidence, and system design failures (e.g., unfriendly human-computer 
interaction design)3. These challenges lead to illogical and inappropriate decision making by 
clinicians, which increases uncertainty, decreases the quality of decisions4, and affects job 
satisfaction with decision support systems. In healthcare, knowledge-based driven systems are more 
acceptable to clinicians, while data-based driven systems are more accurate. In 2019, the 
International Organization for Standardization (ISO) advocates the adoption of a human-centered 
design approach in the development of interactive systems, such as AI-based clinical decision 
support systems. The approach aims to make systems both easy to use and practical by focusing on 
the user needs and requirements, applying knowledge and techniques from the fields of human 
factors and usability5. People-Centric Artificial Intelligent (PCAI) as an emerging concept has 
demonstrated its core value in the field of clinical decision support. PCAI is dedicated to the 
development of AI systems that augment, rather than replace, human capabilities, and to ensure that 
AI technology always assists the judgment of healthcare professionals in clinical decision support 
processes that are transparent and fairly operation, and with full respect for patient privacy6. The 
ISO standard describes key principles of human-centered design that aim to enhance the utility, ease 
of use, and utilization of relevant healthcare technologies to improve health outcomes and impact. 
Technologies should be designed with the user in mind who can, wants or needs to use the 
technology, rather than requiring the user to significantly change behaviors or attitudes to 
accommodate the technology7. 

The two types of clinical decision support models, data-driven and knowledge-driven, each 
have their own strengths and challenges, and the U.S. Department of Defense Advanced Research 
Projects Agency (DARPA) proposed a pathway for integrating the two strategies, knowledge-based 
and data-based, in 2017. This initiative aims to develop a dual knowledge- and data-driven strategy 
model by combining the rigorous logic rules of traditional knowledge engineering with the powerful 
learning capabilities of data-driven approaches to build more transparent and efficient AI systems. 
The development of digital clinical decision support needs to seek an effective fusion of the two 
driving models to build trusted, accurate, and personalized next-generation human-centered CDSS 
to meet the growing demand for intelligent clinical decision aids in the development of healthcare8, 

9. 
The application of clinical decision support in the field of arrhythmia is very promising. 

According to the World Health Organization (WHO), about 17 million people die each year due to 
cardiovascular diseases10, accounting for about one-third of all global deaths. Early symptoms of 
cardiovascular diseases are mostly arrhythmias, also known as arrhythmias11, and the diagnosis of 
arrhythmias aims to improve symptoms, quality of life (QOL), and prognosis by preventing sudden 
cardiac death due to fatal ventricular arrhythmias. Among these, ventricular tachycardia (VT) is a 
common electrocardiographic manifestation of ventricular disease and a type of arrhythmia12. The 

 



 

etiological diagnosis of VT involves multiple aspects, including patient history, signs, 
electrocardiogram (ECG), imaging, and even biopsy of the myocardium and other tissues13 and the 
variety of underlying diseases and clinical manifestations of VT, which are prone to hemodynamic 
instability, make the etiological diagnosis of VT a major challenge in clinical decision making14-16. 

Based on the above, the two clinical decision support models, data-driven and knowledge-
driven, each have their own unique advantages and challenges as well as the need for a hybrid driven 
model, and the development of human-centered clinical decision support urgently needs to explore 
the way to effectively integrate the two driven models. The goal of this paper is to construct a 
trustworthy and highly accurate hybrid decision-making model that integrates both knowledge- and 
data-driven models, and to apply it in the field of arrhythmia diagnosis and treatment. 

Method 

User Requirements Analysis 
The clinical scenario addressed in this study is the etiological diagnosis of VT in the context 

of arrhythmia diagnosis and treatment. The diagnosis of VT is extremely challenging, and CDSS 
have emerged as an ideal tool to enhance the diagnostic capabilities of cardiologists. In our previous 
work, we completed a requirements survey on the knowledge and practice in VT diagnosis of 687 
cardiologists in China17. A total of 567 valid responses were analyzed. Chinese cardiologists had 
significant deficiencies in VT knowledge and practice, and the knowledge assessment showed that 
383 cardiologists (68%) lacked knowledge in diagnostic assessment, and had an urgent need for 
digital decision-making tools, with the majority of cardiologists (60.7%) indicating a need for 
assistive tools such as CDSS. 

Knowledge-driven model 
We have proposed a digital clinical guideline representation tool in our previous work18. The 

tool mainly defines data acquisition nodes, decision nodes, action nodes, composite nodes, and 
interpretation nodes. The core steps are as follows: (1)Knowledge acquisition. Knowledge source 
inclusion criteria: Applicability to clinical scenarios, within defined knowledge domains and 
subdomains, publishing source document entities, actionable clinical recommendations, clinical 
experts' views on the relevance, potential impact, and scope of the recommendations to prioritize 
the selected recommendations. (2)Knowledge extraction. Identification of the knowledge of the 
textual format guideline and extraction of key clinical concepts are accomplished by using natural 
language processing techniques and a large language model interface. (3)Mapping process. 
Different types of knowledge are represented using different shapes of nodes defined by the digital 
clinical guideline representation tool. Based on the extracted and represented knowledge, explicit 
rules or conditions are developed for each decision node. The rules in the clinical pathway are 
written through if-then structures and they are connected through Boolean logic operators. Finally 
the different types of node graphs and logical relationships are visualized into an easy-to-understand 
clinical pathway diagram, including all key decision points and possible branches. (4) Rule Binding. 
The rules are bound to the corresponding clinical pathway to achieve a computer-executable clinical 
pathway model. 

In the clinical scenarios of this study, we included a total of three guidelines as a source of 

 



 

knowledge13, 14, 19, and where necessary, supplemented the information using other sources of data 
(e.g., systematic reviews and meta-analyses) to strengthen the recommendations in certain aspects 
not fully covered by the guidelines. This research team's panel of cardiologists has mapped a 
prototype clinical pathways based on the knowledge source and constructed a computer-executable 
model using a digital clinical guideline representation tool. 

Data-driven model 

Data collection and preprocessing 
The retrospective data that was used for training the machine learning algorithms was provided 

by the Fuwai Hospital, CAMS, China. Patients with ventricular tachycardia at the Arrhythmia 
Centre of Fuwai Hospital were consecutively admitted between January 1, 2013, and September 1, 
2023. The inclusion criteria were as followed: patients with a discharge diagnosis that included 
"ventricular tachycardia". The patients' records comprised their clinical data, including medical 
history, vital signs, current medications, electrocardiograms (ECGs), echocardiograms, and 
laboratory test results, all of which were diagnosed by professional physicians. The VT due to 
ischemia heart diseases were defined as whose diagnosis containing "myocardial infarction" or 
"myocardial ischemia". The VT due to non-ischemic structural heart diseases contained 
"myocarditis", "cardiac amyloidosis", "cardiac sarcoidosis", "non-compaction cardiomyopathy", 
"cardiomyopathy". The idiopathic VT is defined according to the discharge diagnosis as "idiopathic 
ventricular tachycardia". All the etiological diagnosis label was reviewed by the cardiologists, which 
regarding as the golden standard. 

Machine Learning Model Construction  
In order to develop a model for etiological diagnosis of VT, we applied 5 different ML models 

for supervised learning (implementation in the Python Scikit-Learn): (1) Logistic regression. (2) 
Random forest20. (3) XGBoost21. (4) Light Gradient Boosting Machine (LightGBM)22. (5) Support 
Vector Machine (SVM)23. The model was constructed using GridSearchCV to optimize the 
hyperparameters. 

Considering the metrics for VT etiological diagnosis, we will use a weighted macro-average 
approach to calculate assessment metrics to solve the triple classification problem. We will use the 
precision, recall and F1-score derived from the ten-fold cross-validation as model evaluation criteria.  

Hybrid model 
The hybrid model takes the clinical pathways as the basic framework, integrates the advantages 

of knowledge-driven and data-driven, tries to embed the machine learning model into the decision-
making nodes of the pathways, and increases the remark statements in the corresponding nodes to 
use the corresponding custom operators, and finally forms the hybrid model. Specific construction 
steps include: (1) Determine the integration strategy. Specify the strategy for integrating knowledge 
and data, and decide when and how to incorporate machine learning models in the knowledge-driven 
pathways. (2) Integrate the knowledge-driven model to ensure that the clinical guidelines, expert 
consensus and pathways have been sufficiently structured and modularized to facilitate interfacing 
with the machine learning model. Each decision node should have its inputs and outputs and trigger 
conditions clearly defined. (3) Design machine learning model decision nodes. Selecting appropriate 

 



 

decision nodes so that the machine learning model can be seamlessly embedded into the knowledge-
driven model as custom operators. (4) Embedding machine learning models. Machine learning 
models are integrated at key decision nodes and triggered to run based on predefined rules and 
conditions. The necessary condition for triggering is that the machine learning model can be 
triggered only when the rules on the decision node need to be in line with the knowledge model 
(based on evidence-based evidence) and the existing rules are not able to make an accurate decision. 
(5) Result output. At the decision point, combining the knowledge-driven rule judgement with the 
prediction result of the machine learning model, the priority of the decision is based on the 
knowledge-driven model result first, and then on the machine learning model result. (6) Validation 
and optimization. Validate the hybrid model using an independent patient dataset to evaluate its 
performance metrics such as accuracy, recall, F1 score, etc. Adjust the fusion strategy, machine 
learning parameters, or knowledge rules based on the feedback for iterative optimization. 

In this study, the hybrid model uses the arrhythmia diagnosis model as the base framework, 
and the machine learning model for etiological diagnosis of VT is embedded as a custom operator 
in the decision node of the arrhythmia diagnosis process. The machine learning model on its own 
uses a direct 3 classification (ischemia heart diseases, non-ischemic structural heart diseases, and 
idiopathic VT) for etiological diagnosis of VT. In the knowledge-driven clinical pathways, given 
the multifaceted origins of VT can be systematically classified into ischemic heart diseases, non-
ischemic structural heart diseases, and idiopathic VT13, 24-26。The first two categories fall under the 
umbrella of structural heart pathologies, in contrast, idiopathic VT characterizes those cases where 
VT arises in the absence of structural heart disease 27. There are two differential diagnosis strategies 
commonly used in clinical practice which can guide the subsequent management, i.e., ischemia and 
non-ischemia, and idiopathic versus non-idiopathic (structural), which is also in accordance with 
the actual clinician's thinking. Therefore, the hybrid model adopts the knowledge-driven thinking 
when integrating the knowledge and data-driven model, according to the classification of the disease 
into ischemia and non-ischemia, and then into idiopathic and non-idiopathic (structural) for the 
second layer of classification, embedding the machine learning model into the decision-making 
node of the two layers of classification, respectively, and ultimately classified into ischemia heart 
diseases, non-ischemic structural heart diseases, and idiopathic VT. 

Statistical analysis 
Statistical analyses were performed using Python (version 3.9), and the differences were 

considered statistically significant at P<0.05. Continuous variables such as age, BMI and other 
measures that conformed to normal distribution were expressed as means, and the t-test was used 
for comparison between groups; count data of categorical variables such as sex and comorbidities 
were expressed as frequencies (%), and the χ2 test was used for comparison between groups. To 
rigorously compare the performance of the three models and to validate the efficacy of the hybrid 
model, the dataset (n=1305) was randomly partitioned into test dataset (n=783) and validation 
dataset (n=522). Subsequently, stratified by the etiological diagnostic outcomes of VT, the precision, 
recall, and F1 scores were evaluated.  

Results 

 



 

Clinical Pathway 
Figure 1 shows the knowledge-driven clinical pathway prototype. In order to effectively assess 

the validity of this knowledge model and to compare it with other models, we evaluated the 
knowledge-driven model against the available data and the performance results are shown in Table 
2. 

 

Figure 1 Knowledge-driven clinical pathway 

Note: ECG: electrocardiography; VT: ventricular tachycardia; IHD: ischemic heart diseases; nISHD: 
non-ischemic structural heart diseases; IVT: idiopathic ventricular tachycardia; 

Machine learning model 
The performance of the VT etiological diagnostic machine learning model is shown in Table 1. 

The XGBoost model achieved better performance in terms of evaluation metrics precision, recall, 
and 𝐹𝐹1 on the three ventricular tachycardia etiological diagnostic works of interest, with 𝐹𝐹1 reaching 
89.7%, 76.9%, and 94.1% of the experimental performance. From the results of the overall 
performance comparison of the model, the XGBoost model also achieved the best performance 
(precision, recall and F1 scores of 88.4%, 88.5%, 88.4% respectively). 

Table 1 Comparison of model performance 

Model 
Ischemic heart diseases 

Non-ischemic structural 

heart diseases 
Idiopathic VT Overall 

P R F1 P R F1 P R F1 P R F1 

Logistic 

Regression 
0.735 0.800 0.766 0.562 0.360 0.439 0.764 0.824 0.824 0.709 0.722 0.710 

Random 

Forest 
0.884 0.884 0.884 0.746 0.707 0.726 0.934 0.971 0.952 0.871 0.872 0.871 

XGBoost 0.879 0.916 0.897 0.809 0.733 0.769 0.950 0.931 0.941 0.884 0.885 0.884 

 



 

LightGBM 0.879 0.912 0.895 0.815 0.707 0.757 0.933 0.951 0.942 0.881 0.883 0.881 

SVM 0.840 0.879 0.859 0.823 0.68 0.745 0.848 0.873 0.860 0.839 0.839 0.837 

Hybrid model 
The fusion of knowledge-driven and data-driven clinical pathway is shown in Figure 1. For 

better understanding, we will explain the hybrid model inference process: when facing a new patient 
with VT, the inference is carried out step by step in accordance with the knowledge-driven pathway, 
and when the pathway proceeds to the critical decision node, the system firstly makes a decision 
based on the knowledge-driven rules, and if the decision rule fails to cover the patient's information, 
then the machine learning model is triggered to make a decision. At least a knowledge-driven (or 
knowledge and data-driven) result label based on the knowledge is output at the decision node at 
that stage, and then the rule path is continued from the branch corresponding to that label until the 
final node, completing diagnosis and treatment. The output of the final hybrid model is a fusion of 
both knowledge- and data-driven model decision results and the corresponding treatment plan as 
the system's recommended treatment plan. 

 

Figure 2 Clinical pathways based on hybrid model 

Note: ECG: electrocardiography; VT: ventricular tachycardia; IHD: ischemic heart diseases; nISHD: 
non-ischemic structural heart diseases; IVT: idiopathic ventricular tachycardia; ML: machine 
learning; 

Table 2 shows the performance comparison results of the 3 models, and we choose XGBoost 
as the data-driven model's result for comparison. The results show that the hybrid model is better 
than the other two models in terms of precision, recall and F1 score. 

Table 2 Performance comparison of three models 

Model P R F1 

Knowledge-driven model 0.804 0.791 0.797 

Data-driven model (ML) 0.884 0.885 0.884 

 



 

Hybrid model 0.904 0.902 0.903 

Discussion 
In this study, we constructed a trustworthy and highly accurate knowledge- and data-driven 

hybrid decision-making model using knowledge-based clinical pathways as a basic framework, and 
then embedded machine learning models. 

In view of the respective strengths and limitations of knowledge-driven and data-driven models, 
the combination of the two is considered complementary, and synergies between rule-based systems 
and machine learning have been demonstrated28. In recent years, in the field of cardiovascular 
disease, researchers have also begun to explore combined knowledge- and data-driven decision 
support methods. A Korean team has published research in recent years on a CDSS for 
Cardiovascular Disease, which used a hybrid (expert-driven and machine-learning-driven) 
knowledge acquisition approach to build a knowledge base and demonstrated the potential of this 
hybrid model in assisting clinicians with heart failure diagnosis29. 

All clinical diagnosis and treatment processes of the hybrid model constructed in this study are 
based on a knowledge-driven model, and the machine learning model is embedded as a custom 
operator in the decision-making nodes along clinical pathways, which is used to supplement the 
knowledge-driven model that is difficult to formalize or quantify. The advantage of PCAI decision 
making with hybrid models is reflected in the fact that the fusion strategy used means that it ensures 
that all decision-making actions are based on evidence-based evidence, and guarantees a certain 
degree of decision-making accuracy. At the same time, this kind of decision-making thinking is 
closer to the real process of clinicians' rational (guideline-compliant) and perceptual (clinical 
experience) co-decision-making. In addition, the model can be applied to more practical problems 
to enhance the usability of the CDSS system. It is worth noting, however, that regardless of whether 
the model is knowledge-driven, data-driven, or hybrid-driven, the system needs to clearly 
communicate the decision-making situation to the clinician, who will make the final clinical 
decision. 

Conclusion 
In this study, knowledge-driven and data-driven clinical decision-making models were 

effectively fused to construct a trustworthy and highly accurate hybrid model, and the accuracy of 
its decision-making results were compared with those of knowledge rules and machine learning 
models. The results show that this fusion strategy is feasible and the hybrid model exhibits higher 
accuracy compared to the rule-only and machine learning-only models, and all the decision results 
of the model are based on evidence-based evidence, which is closer to the actual diagnostic thinking 
of clinicians. This new generation of PCAI systems for clinical decision-making can not only 
improve the quality and efficiency of healthcare services, but also provide clinicians with trusted 
decision support, which ultimately leads to personalized treatment services for patients, and thus 
promotes the modernization and intelligence of the healthcare industry. In the future, this integration 
strategy needs to be applied to a wider range of medical fields and rigorously validated. 
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