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Abstract—This paper proposes an innovative anomaly ap-
praisal framework that combines machine learning and signal
processing for the consistent detection, localization, and evalu-
ation of anomalies in human faces. The primary objective of
this framework is to create a universal and objective metric
for evaluating the degree of facial anomaly and reconstructive
surgical outcomes. This metric should be well aligned with the
human assessments. To accomplish this, the framework leverages
the StyleGAN2 facial generator to normalize human faces that
may exhibit diverse deformities. The proposed method utilizes a
pre-trained Convolutional Neural Network (CNN) to extract and
compare deep anomalous features between the original image
and its normalized counterpart, in an unweighted manner. The
resulting anomaly maps are merged into a heatmap, effectively
highlighting the abnormal facial regions. This heatmap is then
employed to generate a machine score, quantifying the degree of
anomaly in the face. In order to assess the effectiveness of the
proposed method, a comprehensive comparison of the generated
anomaly maps is conducted using metrics such as Learned
Perceptual Image Patch Similarity (LPIPS), Structural Similarity
Index (SSIM), Pixelwise Subtraction (PS), alongside the newly
introduced framework. The conducted comparative analysis
demonstrates the framework’s robust performance, showing a
high linear correlation (0.92 Pearson’s r score) and a strong
monotonic relationship (0.85 Spearman’s ρ score) between the
human and machine generated scores. These results corroborate
the framework’s efficacy and its close alignment with the human
judgment in assessing different levels of facial anomalies.

I. INTRODUCTION

A. Clinical Relevance of Facial Anomaly Detection

Background: Facial clefts and non-cleft congenital facial
anomalies occur in approximately 1 in 500 births [4], [30],
[35], while many more children experience facial deformities
due to post-traumatic or post-oncologic causes. These condi-
tions are in general associated with difficulties in breathing,
feeding, and speech, and present a significant psychosocial
burden [8], [15].

Problem Definition: To improve their condition, patients
with facial difference seek unbiased evaluations and corrective
surgical interventions. During the pre-operative assessment,
reconstructive surgeons must be able to identify and objec-
tively measure the extent of a patient’s facial anomaly relative
to what would be considered their unaffected face. Then, in
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the post-operative period surgical outcomes need to be fairly
evaluated. Currently, however, healthcare providers, patients,
and third-party payers are unable to objectively determine
the effectiveness of treatment because no universally accepted
framework for such assessment exists. A variety of facial
measurement techniques have been described over the years
(e.g., anthropometric landmark measurements, crowd-sourced
surveys, expert ratings, patient-reported outcome measures,
and eye tracking studies [5], [7], [10], [11], [16]–[18], [22],
[25], [26], [28], [31]–[33], [40]). All of these methods suffer
from any combination of subjective judgement, technology-
dependency, time inefficiency, cost, or unsuitability for real-
time clinical use.

Impact: This paper describes an AI-powered model that can
objectively and reproducibly appraise a human face in terms
of form, deformity, and the impact of surgical alteration. We
believe this has the potential to become a long sought after
universal clinical tool allowing for fair comparison between
the outcomes of facial reconstructive techniques and surgeons;
opening up new avenues for discussion between providers and
patients; and helping to justify the value of facial reconstruc-
tive surgery to healthcare payers.

B. Modern Facial Anomaly Detection Approaches

Various computational approaches have been developed for
identifying and localizing anomalies [9], [23], [29], [34],
[41]. However, these methods often face challenges such as
increased complexity, difficulties handling high-dimensional
datasets with limited samples, and reliance on strong super-
vision. In addition, generating binary ground truth for facial
anomaly detection is difficult. Nevertheless, methods have
been proposed for forecasting anomalous regions in images
using public datasets like MVTecAD [3], BTAD [27], AITEX
[39], BrainMRI [36], and HeadCT [36].

In general, anomaly detection can be construed as the pro-
cess of gauging the similarity between a normal reference and
an aberrant counterpart [37], [38]. The creation of a reliable
ground truth anomaly map for the human face, however, can
be particularly problematic because the age, gender, race, and
type of deformity captured in a facial image can evoke strong
emotional responses in the observer. Moreover, geographically
smaller anomalies can have a greater impact on appearance



than larger ones, depending on their anatomic location and
salience.

Our group has developed contemporary facial anomaly
detection approaches that find the closest representation of an
original image within the latent space of a generative model
(i.e., StyleGAN2 generator [20]). The assessment of disparity
between the original and normalized samples has been con-
ducted by determining the pixelwise subtraction error (PSE)
or via other similarity detection methods [6], [13]. Direct
and indirect approaches have been proposed to quantify the
degree of facial anomaly. Indirect methods employ regression
models to transform extracted features from the “raw” and
“normalized” versions of an image into an index characterizing
the divergence between the two images [6]. Direct approaches
connect the pixelwise residual image to a numerical value
using simple distance measures, such as the l2 norm [13], [37].
Direct approaches offer interpretability by directly linking the
machine scores with the highlighted anomalous regions in the
heatmap.

Despite a strong correlation with collected human ratings
of the images, the technique outlined in [13] yields a residual
image dependent solely on shallow pixelwise color differences
between the original facial image and its normalized version.
Consequently, for any small color intensity difference between
two blobs of pixels in the original and normalized sample,
the pixelwise subtraction signal may be too small and in-
distinguishable from other image textures. For example, the
skin tone and color of the nose as well as the cutaneous and
vermilion portions of the upper lip are often quite similar in
their color intensity values. A pixelwise subtraction method,
therefore, may not be sensitive enough to accurately localize
and measure subtle – though clinically important – cleft lip
deformities, for example. Moreover, pixelwise comparisons
consider differences only within infinitesimal regions of an
image and fail to capture relationships between different
regions (see Fig. 1). In addition, the method proposed in [13]
assumes post-processing of the heatmaps to enhance them and
reduce the noise, potentially leading to performance losses.
To address this issue, an alternative technique that does not
rely upon pixel color information and is capable of integrating
higher-level features for multiscale comparison is essential.

II. RELATED WORK

To create an anomaly detection method that is fit for
clinical applications and is independent of color information,
we explored a range of techniques. Shallow approaches such
as Structural Symmetry Index (SSIM) [42] and Peak Signal-to-
Noise Ratio (PSNR) [14], as well as deep approaches such as
the Learned Perceptual Image Patch Similarity (LPIPS) metric
[43] have been implemented as similarity measures. However,
these methods may not offer a clear separation between normal

and abnormal pixel information when comparing two related
facial images.

The fundamental principle behind deep feature compari-
son involves feeding two images into a convolutional neural
network (CNN, e.g., AlexNet) to extract deep feature maps
that collectively aid in the object detection. LPIPS applies a
learned weighted sum of the difference of these deep feature
maps to enable image comparison. However, LPIPS may not
identify all abnormal differences because the learned weights
are specialized to detect specific object differences.

Fig. 1. PSE does not highlight low-varying differences between the original
and the normalized image. The IRB approval-written informed consent-was
granted to report this case details.

A. Current Work

To overcome these limitations, a novel anomaly appraisal
framework employing deep feature comparison is proposed
herein. The proposed method initially normalizes an input
image through an optimization process conducted within the
latent space of a pre-trained StyleGAN2 facial generator.
Subsequently, a pre-trained Convolutional Neural Network
(CNN) is employed to compare the original image with its
normalized version. During the comparison process, deep
anomalous features between the two images are extracted and
merged into a comprehensive heatmap without weighting. A
machine score is then computed to quantify the degree of
similarity between the images. For this approach, there is no
need to train a linear transformation model to account for the
importance of the extracted feature maps, as opposed to the
LPIPS framework. This approach employs fewer processing
steps which in turn increase the model’s robustness to noise.

It is shown that the proposed framework detects anomalous
regions of the face more acutely and in a manner correlating
better with human judgment. To illustrate the framework’s
potential as a universal noise extractor from a wide range
of images, we investigate in depth its capability to identify
and delineate cleft lip and other types of congenital facial
deformities.

In summary, this work proposes the following key contri-
butions:

• A simple but effective image comparison architecture
to enable the detection and localization of anomalies in
human faces.



• A new anomaly appraisal framework that uses the un-
weighted deep difference maps to generate image nor-
mality scores, without any post-processing of the maps.

• A demonstration of the effectiveness of directly using the
deep feature maps to compare images, without training
a model to weigh the deep features according to their
importance.

• New insights into the effectiveness and limitations of
different similarity measures in detecting differences be-
tween two images.

III. MATERIALS AND METHODS

This study was approved by the Institutional Review Boards
(IRBs) of Sidra Medicine (1855398, 1830649) and Texas
A&M University (IRB2023−0111,MODCR00000073). Let
xorg ∈ Nn×m×c denote the original image of a human face
with a cleft lip deformity, with n, m and c representing its
height, width, and the number of color channels, respectively.
The research objective is to obtain a heatmap D ∈ Rn×m

highlighting the anomalous information contained in xorg. To
obtain the heatmap D, a complimentary normalized image
xnorm is first generated by applying off-the-shelf image latent
inversion methods on xorg [1], [2], [19], [24].

The overall framework for outlier detection, localization,
and measurement is illustrated in Fig. 2b. This framework
adapts the model previously proposed in [13] by exchanging
the shallow pixelwise subtraction method for a deep feature
map processing. The workflow begins with a CNN model pre-
trained on a dataset of human faces and follows these steps.

A. Image Preprocessing

This stage encompasses essential activities such as scaling,
translation, orientation correction, cropping, and color adjust-
ments. These activities collectively prepare the original image
(xorg) for the subsequent normalization step.

B. Image Normalization

Normalized image xnorm is attained using the Style-GAN2
Projection Algorithm. The normalized facial image is then
refined using the Model Adaptation Algorithm outlined by the
following two sub-steps.

1) Latent Space Projection: The original facial image xorg

is normalized by projecting it on the latent space of the
StyleGAN2 facial generator G [20]. This process is carried
out by first searching in the latent space of the StyleGAN2
generator the latent vector w ∈ R512 that produces the closest
face xnorm to xorg. The algorithm ensures that w leads to the
generation of xnorm and that for each noise map ni in G its
entries are uncorrelated [21]. This implies that xnorm does not
depend on the noise maps that are sampled from a uniform
distribution in the StyleGAN2 model. A summary of the code
is provided in Algorithm 1.

2) Pretrained Model Adaptation: After obtaining the initial
latent vector w, additional training is carried out to adapt
the parameters of the generator G to reconstruct additional
identity-preserving details in xorg [13]. This operation is
conducted by freezing the latent vector w and adapting G. The
adaption of network G relies on the composite loss function:

L(xorg, xnorm) = LLPIPS(xorg, xnorm)

+ Ll2(xorg, xnorm).

The model adaptation process is coded in Algorithm 2.

Algorithm 1 Face Inversion, Input: Face image xorg and
StyleGAN2 generator model G. Output: Latent vector w

and set of noise maps n = {n1, . . . ,nm}, ri = 2i, i ∈
{1, . . . ,m},m = 18, α = 105, N = 104.
Z = {Z1, ..., ZN} ← U{1, ..., N}
W = {W1, ...,WN} ← G(Z)

w ←
∑

n (Wn)

N

n = {n1, ...,nm} ← {Rr1×r1 , ...,Rrm×rm}
while not converge do
LImage = DLPIPS(xorg, G(w,n))
For j = 1, . . . ,m

For k = 1, . . . , j − 1

n(k)
j ← Downsample(nj , 0.5)

rj,k ← rj
2k

Lj,k ← ( 1
r2j,k

∑
x,y n(k)

j (x, y)n(k)
j (x− 1, y))2+

( 1
r2j,k

∑
x,y n(k)

j (x, y)n(k)
j (x, y − 1))2

End For
End For
L(xorg, G(w,n)) = LImage + α

∑
j,k Lj,k

∇w ← dL
dw

For j = 1, . . . ,m

∇nj ← dL
dnj

nj = nj −∇nj

End For
w = w −∇w

end while
return w,n1,n2, ...nm

C. Extraction of Difference Maps

To effectively identify the anomalous differences between
xorg and xnorm, deep feature maps {xk

l } are derived by
passing both images through two identical feature extractors
F1, F2 : Nn×m×c → R

n

2(L−1)
× n

2(L−1)
×k, with k representing

the number of feature maps in the final remaining layer.
All the extracted feature maps are then resized to match

the size of xorg ∈ Nn×m, and the subtraction is performed
to obtain the set of difference maps {D(k)

l } via the following
equation:

D
(k)
l = ((x

(k)
org,l − x

(k)
norm,l)⊙ (x

(k)
org,l − x

(k)
norm,l))

◦2, (1)



Algorithm 2 Pretrained model adaptation. Input: Face image
xorg, its corresponding closest latent vector z ∈ R512 and a
StyleGAN2 generator G. Output: Adapted generator G′.
G′ ← G

while not converge do
xnorm ← G′(z)

L(xorg, xnorm) = LLPIPS(xorg, xnorm)+

Ll2(xorg, xnorm)

∇g ← dL
dz

G′ = G′ −∇g
end while
return G′;xnorm

with l, k, ⊙, and ◦2 representing the layer index, filter index
within the layer, elementwise (Hadamard) multiplication and
squaring operation, respectively. For the Alexnet CNN, a total
of 1458 difference maps are generated.

D. Resizing the Difference Maps

Assume the output of each convolutional layer represents a
set of feature maps x, whose size ( n

2l
×m

2l
) keeps decreasing by

a factor of 2 while increasing the layer index l. As for LPIPS
CNN-based similarity measures, the proposed framework em-
ploys the upsampling operation on the feature maps for all the
CNN layers except the first layer to remain consistent with the
original image size, xresized ∈ Rn×m. Each feature map is
scaled with a suitable factor depending on the current feature
map resolution in the convolutional layer. The process of
upsampling allows the capturing of features at different scales
while simultaneously providing an accurate representation of
the noise in its original locations. Fig. 2a depicts a schematic
representation of the proposed architecture.

E. Overall Score Calculation

The overall difference map is defined as the average of all
the difference maps:

D =
1

LK

L∑
l=0

K∑
k=0

D
(k)
l . (2)

Given the overall difference map D, the score is calculated
via this new metric:

s(D) = −log

 1

mn

n∑
j=1

m∑
i=1

Di,j

 . (3)

In (3), we consider the logarithm of the overall difference
map to account for small and subtle facial differences that
may be observed by humans. The metric is designed to be
less sensitive to large valued differences and more sensitive
to small and subtle changes. The negative sign is to ensure a
positive measure of (Pearson) correlation.

TABLE I
INFORMATION ABOUT THE DATASETS USED TO EVALUATE THE PROPOSED

FRAMEWORK.

Dataset 1 #Samples Original resolution Source
Right cleft lips 40
Left cleft lips 17 6016 × 4016 Sidra Medicine

Bilateral cleft lips 8
Normal samples 55 1024 × 1024 StyleGAN2

Total 120

Dataset 2
Micrognathia 3

Craniofrontonasal dysplasia 2
Congenital ptosis 8

Facial nevus 3 6016 × 4016 Sidra Medicine
Craniosynostosis 7

Facial palsy 4
Facial syndromes 14

Other facial anomalies 14
Normal samples 55 1024 × 1024 StyleGAN2

Total 110

IV. EXPERIMENTS

Two datasets of faces were used to evaluate the proposed
framework. The dataset 1 contains normal and cleft faces,
while the dataset 2 consists of normal and other general
facial anomalies. The anomalous images in the datasets were
obtained from the practice of one co-author, with the approval
of the Institutional Review Board and the signed informed
consent of all patients/parents. Information about number of
samples, image resolution and provider is shown in Table I.
Both datasets were presented to a number of volunteers to
get 20+ ratings for each sample. Volunteers have rated the
appearance of the images from 1 (least normal) to 7 (most
normal) in two separate surveys. The mean of the ratings for
each image was calculated for the analysis.

To evaluate the ability of the proposed framework to localize
and measure facial anomalies, and to establish the optimal
CNN for the proposed framework, we ran a series of tests
using the 125 clinical images in dataset 1, portraying various
types of cleft lip deformity. The state-of-the-art AlexNet CNN
and its LPIPS version were tested and compared. The fully
connected layer at the end of each network was removed and
used as a feature extractor. Heatmaps were generated, includ-
ing a difference map between xorg and xnorm, and a machine
score was produced for each of the 125 facial images. The hu-
man and machine scores were compared using the Pearson cor-
relation coefficient. Afterward, the proposed framework with
the best-performing CNN was compared against the SSIM,
PSE, and LPIPS-AlexNet without post-processing. Pearson
and Spearman correlation coefficients were used to examine
how machine and human scores are linearly and monotonically
related, respectively. Also, we have included Patchcore [34], a
popular and recent anomaly detection method for comparison.
To match the generated scores with the Ground-Truth (GT)
scale, the following normalization process is carried out: (i)



Fig. 2. (a) Feature extractor architecture. (b) Overall framework of the proposed anomaly detector.

Find three human faces with the highest GT (human) ratings.
Calculate the average of their machine scores. (ii) Find the
average of the three lowest GT ratings similarly. (iii) Use the
roughly estimated range to normalize the rest of the scores.
These steps allow to measure how aligned the normalized
values are to the GT human ratings. For this purpose, the
Mean Absolute Error (MAE) and the Wasserstein distance
between the histograms of the machine/human scores were
measured. All analysis was conducted on Python 3.6 using
Pytorch, Opencv, Scipy, and Skimage libraries on Intel i7-
10751H CPU 2.6 GHz with Nvidia GeForce 2080 Super with
Max-Q design.

V. RESULTS

Fig. 3a consists of three facial images depicting unique
facial deformities (congenital melanocytic nevi in the two
top images and micrognathia in the bottom image). It can
be appreciated that the pigmented skin lesions and the hy-
poplastic lower jaw region are far more acutely highlighted
when using the proposed framework than PSE and SSIM.
Table II shows the correlations between the machine and
human scores obtained by using the AlexNet CNN base
model for heatmap generation, comparing its weighted maps
version in LPIPS implementation versus the original AlexNet
CNN. The proposed model demonstrated a clear advantage.
The maximum machine:human image rating correlation was

obtained by using the original AlexNet CNN (r = 0.92) when
the layer 4 feature maps were averaged. For all CNNs tested
configurations, the correlation between machine and human
image ratings was less tightly correlated when using the LPIPS
models (e.g., for LPIPS-AlexNet the correlation dropped to
0.913).

TABLE II
THE PEARSON CORRELATION BETWEEN HUMAN AND MACHINE SCORES

FOR 65 CLEFT LIP AND 55 NORMAL IMAGES SHOWS THE IMPACT OF

USING THE WEIGHTED ALEXNET (LPIPS) VERSUS PROPOSED

UNWEIGHTED ALEXNET MAPS. THE BEST COMBINATIONS ARE IN BOLD.

Oral/Nasal Region Only Entire Face
layer LPIPS-AlexNet AlexNet LPIPS-AlexNet AlexNet
l = 1 90.4 91.3 85.7 87.5
l = 2 82.9 87.4 75.5 82.3
l = 3 90.4 91.6 85.6 87.6
l = 4 91.3 92.0 87.3 87.8
l = 5 89.3 90.6 86.3 86.7

Table III shows the Wasserstein distance (W1) between the
normality histogram of the human ratings and each of the
histograms obtained from Patchcore, SSIM, LPIPS-AlexNet
(all layers), PSE, and AlexNet (proposed). Also, the MAE,
Spearman (ρ), and Pearson (r) correlation measures for these
methods are reported. As can be observed, there is a notable
advantage of the proposed method in all the performance
metrics against the other similarity methods.



Fig. 3. Effectiveness of using the proposed method to generate anomaly heatmaps for three anomalous faces with different types of cleft and non-cleft facial
anomalies ((a) and (b), respectively). Anomalies are more highlighted by the proposed method relative to PSE and SSIM. IRB approvals-written informed
consents-were granted to publish (a). Faces in (b) were all fabricated using the CleftGAN generator [12].

TABLE III
W1 , MAE, SPEARMAN, AND PEARSON PERFORMANCE MEASURES FOR

PATCHCORE AND THE PROPOSED FRAMEWORK WITH SSIM, PSE, LPIPS,
AND ALEXNET SIMILARITY MEASURES.

Performance Metric
Method W1 MAE Spear (ρ) Pearson (r)

Patchcore [34] 1.44 1.618 81.4 79.2
SSIM 0.287 0.921 81.4 83.2
LPIPS 0.223 0.701 85.0 91.3
PSE 0.542 0.930 83.9 89.9

AlexNet (proposed) 0.174 0.652 85.0 92.0

Fig. 4 visually demonstrates the relationship between the
AlexNet model in the proposed method and the human scores
for datasets 1 and 2. The machine scores are highly correlated
with human ratings with a Pearson correlation coefficient of
0.92 for cleft lip images and 0.87 for facial images with
general abnormalities. Several heatmaps generated by different
methods for the oral/nasal region of some fabricated cleft faces
are displayed in Fig. 3b.

The proposed anomaly detector allows for the classification
of the extracted noise according to the size of the noise blob
by taking into account the differential map corresponding to a
specific layer of the proposed method. For example, using the
difference map from the first layer helps detect the smallest
anomalies, as in Fig. 5.
A. Discussion

What types of facial anomalies can be detected by the
proposed framework? Congenital or acquired facial deformi-
ties such as cleft lip, pigmented skin lesions, scars, syndromic
craniofacial distortions, facial palsy, etc., are examples of
semantic anomalies that can be detected by the proposed
framework. Additional noise components may be present in

both the xorg as well as xnorm. However, in the process
of detecting semantic anomalies, the proposed model cancels
them out since they are present in both images (see Section
III-C). Another source of irrelevant information that may be
filtered out by the proposed model is the normal facial features
generated by the imperfect reconstruction of the face (Section
III-B). The overall framework aims at detecting different
types of structural anomalies rather than noise that will not
semantically alter the facial image if present. In the proposed
method, fewer processing stages are conducted. This helps
the method to be more robust to noise by avoiding extra
unnecessary post-processing steps that require additional tun-
ing, as opposed to [13]. Additionally, the suggested approach
avoids the need to train a weighting model for each extracted
difference map during the comparison phase (see Section
III-C). This feature is noteworthy because LPIPS, which is
the current standard method of image comparison, learns a
weighting model to optimize similarity detection performance
on its training dataset. That may not be the most effective
model for computing the similarity between anomalous human
faces and their normalized counterparts, according to our study
results. This indicates that general feature extractors outper-
form weighted feature extractors in the domain of human
facial images. The proposed framework may fail if it does not
receive high-quality preprocessed facial images. Another issue
is that anomalous crying baby faces may be normalized to
smiling rather than normal crying faces. Additionally, lighting
conditions and the clarity of the anomalous regions in the
face can impact performance. Therefore, the rating framework
relies heavily on the actual features present in xorg.



Fig. 4. Correlation between human and machine scores using the Notch Discriminator for (a) the 65 cleft faces and 55 normal faces under analysis (Dataset
1) and (b) the 55 non-cleft abnormal faces and 55 normal faces under analysis (Dataset 2).

Fig. 5. Anomalies at diverse scales are captured by considering the difference
maps associated with different convolutional layers. Early layers detect small-
scale noise, while late layers highlight the large-scale anomaly details. The
presented face was generated using the CleftGAN generator [12].

VI. CONCLUSIONS

In this study, we investigated the ability of convolutional
neural networks to detect abnormal differences between im-
ages with facial deformities and their normalized analogues.
We showed that unweighted deep feature maps extracted from
CNNs are effective in detecting anomalies in facial images.
We tested the proposed framework using various types of
CNNs and found that the general extracted feature maps
from CNNs consistently achieved higher accuracy in detecting
the actual abnormal differences, without being necessary to
specialize their use to specific anomaly detection datasets and
without requiring extra post-processing steps. Furthermore,
the scores obtained from the CNN-generated heatmaps were
consistent with human ratings of the facial images. The pro-
posed framework functions independently of color information
within images, and our computer simulations demonstrate its
superior performance relative to state-of-the-art deep CNN-
based similarity measures with learned weights such as LPIPS,
and shallow image comparison tools such as SSIM and PSNR.
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