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Abstract

Simulating trajectories of multi-particle systems on complex energy landscapes
is a central task in molecular dynamics (MD) and drug discovery, but remains chal-
lenging at scale due to computationally expensive and long simulations. Previous
approaches leverage techniques such as flow or Schrödinger bridge matching to
implicitly learn joint trajectories through data snapshots. However, many systems,
including biomolecular systems and heterogeneous cell populations, undergo
dynamic interactions that evolve over their trajectory and cannot be captured
through static snapshots. To close this gap, we introduce Entangled Schrödinger
Bridge Matching (EntangledSBM), a framework that learns the first- and
second-order stochastic dynamics of interacting, multi-particle systems where the
direction and magnitude of each particle’s path depend dynamically on the paths
of the other particles. We define the Entangled Schrödinger Bridge (EntangledSB)
problem as solving a coupled system of bias forces that entangle particle velocities.
We show that our framework accurately simulates heterogeneous cell populations
under perturbations and rare transitions in high-dimensional biomolecular systems.

1 Introduction

Schrödinger bridge matching (SBM) has enabled significant progress in problems ranging from
molecular dynamics (MD) simulation [Holdijk et al., 2023] to cell state modeling [Tong et al., 2024]
by effectively learning dynamic trajectories between initial and target distributions. Diverse SBM
frameworks have been developed for learning trajectories with minimized state-cost [Liu et al., 2023]
to branching trajectories that map from a single initial distribution [Tang et al., 2025a]. Most of
these frameworks assume that the particle acts independently or undergoes interactions that can
be implicitly captured through training on static snapshots of the system. Existing approaches for
modeling interacting particle systems rely on the mean-field assumption, where all particles are
exchangeable and interact only through averaged effects [Liu et al., 2022, Zhang et al., 2025a]. While
this assumption may hold for homogeneous particle dynamics, it fails to describe the heterogeneous
dynamics observed in more complex domains, such as conformationally dynamic proteins [Vincoff
et al., 2025, Chen et al., 2023], heterogeneous cell populations [Smela et al., 2023a], or interacting
token sequences [Geshkovski et al., 2023]. In these settings, the motion of each particle depends not
only on its own position but also on the evolving configuration of surrounding particles.

To accurately model such dependencies, the joint evolution of an n-particle system must be described
by a coupled probability distribution that transports the initial distribution π0(X0) to the target distri-
bution πB(XT ) in the phase space of both positions and velocities Xt = (Rt,V t) ∈ X . However,
modeling these interactions requires learning to simulate second-order dynamics, where interactions
between velocity fields evolve over time, which remains largely unexplored. To address this gap,
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we introduce Entangled Schrödinger Bridge Matching (EntangledSBM), a novel framework that
learns interacting second-order dynamics of n-particle systems, capturing dependencies on both the
static position and dynamic velocities of the system at each time step.

Contributions Our contributions can be summarized as follows: (1) We formulate the Entangled
Schrödinger Bridge (EntangledSB) problem, which considers the optimal path between distributions
following second-order Langevin dynamics with an entangled bias force (Sec 3). (2) We introduce
EntangledSBM, a novel parameterization of the bias force that can be conditioned, at inference-
time, on a target distribution or terminal state, enabling generalizable sampling of diverse target
distributions (Sec 4). (3) We evaluate EntangledSBM on mapping cell cluster dynamics under drug
perturbations (Sec 5.1) and transition path sampling of high-dimensional molecular systems (Sec
5.2).

Related Works We provide a comprehensive discussion on related works in App A.

2 Preliminaries

Langevin Dynamics A time-evolving n-particle molecular system can be represented as Xt =
(Rt,V t), where Rt = {rit ∈ Rd}ni=1 denotes the set of coordinates V t = {vi

t ∈ Rd}ni=1 denotes
the set of velocities of each particle i. The evolution of the positions and velocities of the system given
a potential energy function U : X → R can be modelled with Langevin dynamics, which effectively
captures the motion of particles under conservative forces between particles and stochastic collisions
with the surrounding environment [Bussi and Parrinello, 2007, Yang et al., 2006] using a pair of
stochastic differential equations (SDEs) defined as

dri
t = vi

tdt, dvi
t =

−∇ri
t
U(Rt)

mi
dt− γvi

tdt+

√
2γkBτ

mi
dW i

t (1)

where mi is the mass of each particle, γ is the friction coefficient, kB is the Boltzmann constant, τ is
the temperature, and dW t is standard Brownian motion. In molecular dynamics (MD) simulations of
biomolecules, the particles undergo underdamped Langevin dynamics with small γ, where inertia is
not negligible.

Many biological systems, including cell clusters for cell-state trajectory simulation, can be modeled
with overdamped Langevin dynamics, where inertia is negligible but the system still undergoes
external forces that define its motion. This can be represented with the first-order SDE given by

dri
t =

−∇ri
t
U(Rt)

γ
dt+

√
2kBτ

γ
dW i

t (2)

Schrödinger Bridge Matching Tasks such as simulating cell state trajectories and transition path
sampling aim to simulate the Langevin dynamics from an initial distribution to a desired target state
or distribution. Given an initial distribution πA and a target distribution πB, we define the distribution
of paths X0:T := (Xt)t∈[0,T ] satisfying the endpoint constraints R0 ∼ πA and RT ∼ πB as the
optimal bridge distribution P⋆(X0:T ) defined as

P⋆(X0:T ) =
1

Z
P0(X0:T )πB(RT ), Z = EX0:T∼P0 [πB(RT )] (3)

where P0(X0:T ) is the base path distribution generated from the SDEs (1) or (2) and Z is the
normalizing constant. Schrödinger Bridge Matching (SBM) aims to parameterize a control or bias
force bθ that tilts the path distribution Pbθ (X0:T ) minimizes the KL-divergence from the bridge path
distribution P⋆ given by

b⋆ = argmin
bθ

DKL

(
Pbθ∥P⋆

)
s.t.

dr
i
t = vi

tdt

dvi
t =

−∇
ri
t
U(Rt)+bθ(Rt)

mi
dt− γvi

tdt+
√

2γkBτ
mi

dW i
t

(4)

In the case of transition path sampling (TPS) where there is a single initial state RA and target state
RB, we define the target distribution as the relaxed indicator function πB(RT ) = 1B(RT ) centered
around RB.
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Figure 1: Entangled Schrödinger Bridge Matching. We consider the problem of simulating interacting
multi-particle systems, where each particle’s velocity depends dynamically on the velocities of the other particles
in the system, and introduce EntangledSBM, a framework that parameterizes an entangled bias force capturing
the dynamic interactions between particles.

3 Learning Interacting Multi-Particle Dynamics

The key challenge with simulating the dynamics of multi-particle systems lies in the question:
how can we simulate dynamic trajectories from static snapshot data? The emergence of flow and
Schrödinger bridge matching frameworks have effectively approached this problem by defining
a parameterized velocity field that learns feasible trajectories from data snapshots. However,
current strategies remain limited in their ability to model interacting multi-particle systems where
the velocities carry inherent dependencies that cannot be captured via static snapshots of the system.
Prior attempts to capture interactions between particles rely on the mean-field assumption, where
each particle acts as an average of its surrounding particles, which does not hold for heterogeneous
biomolecular systems.

To address this challenge, we propose a framework that introduces an additional degree of freedom
through a bias force that implicitly captures the dependencies between both the static positions and
dynamic velocities of each particle in the system to control the joint trajectories. We leverage a
Transformer architecture and treat each particle as an individual token with features that attend to
the features of all other tokens. Crucially, our approach requires no handcrafted features, making it
scalable to high-complexity systems.

In Sec 3.1, we formalize this problem as the Entangled Schrödinger Bridge (EntangledSB) problem,
which aims to determine the optimal set of trajectories to a target state while capturing the dynamic
interactions between particles. We then provide a tractable approach to solve the EntangledSB
problem with stochastic optimal control (SOC) theory in Sec 3.2. We illustrate the high-level
framework of learning entangled bias forces in Alg 1 and detail our specific implementation and
parameterization in Sec 4.

3.1 Entangled Schrödinger Bridge Problem

Here, we formalize the Entangled Schrödinger Bridge (EntangledSB) problem, which aims to
find a set of optimal bias forces for each particle in the system that depends dynamically on the
positions and velocities across the entire multi-particle system to guide the Schrödinger bridge
trajectory to a target distribution. Specifically, we consider an n-particle system Xt = (Rt,V t) with
Rt = {rit ∈ Rd}ni=1 and V t = {vi

t ∈ Rd}ni=1, where each particle evolves over the time horizon
t ∈ [0, T ] via the bias-controlled SDE given by

dri
t =

1

γ

(
−∇ri

t
U(Rt) + bi(Rt,V t)

)
dt+

√
2kBτ

γ
dW i

t (5)

The velocities follow the potential energy landscape defined over the joint coordinates of the system
U(Rt) with an entangled bias force bi(Rt,V t) that depends dynamically on the position and velocity
of all particles in the system. We can further extend this framework to second-order Langevin
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Algorithm 1 Framework for Entangled Schrödinger Bridge Matching

1: Input: Parameterized velocity network bθ(Rt,V t) : Rn×d × Rn×d → Rn×d, initial and target
joint distributions of the system π0, πT , energy function U(Rt) : Rn×d → R, objective function
in path space L(P⋆,Pbθ ) where P⋆ = argminPbθ L(P⋆,Pbθ )

2: while not converged do
3: Sample initial positions R0 ∼ π0
4: for t = 0 to T do
5: Evaluate unconditional velocities V t(Rt)
6: Compute entangled bias force bθ(Rt,V t)
7: Simulate step over a discrete time step ∆t to get updated coordinates Rt

8: end for
9: Compute reward on terminal states r(XT )

10: Evaluate path objective L(P⋆,Pbθ ) on simulated paths
11: Update θ using the gradient ∇θL(P⋆,Pbθ )
12: end while

dynamics via the pair of SDEs

dri
t = vi

tdt, dvi
t =

−∇ri
t
U(Rt) + bi(Rt,V t)

mi
dt− γvi

tdt+

√
2γkBτ

mi
dW i

t (6)

Formally, we seek the optimal b⋆(Rt,V t) := {bi(Rt,V t)}ni=1 that solves the EntangledSB problem
defined below.

Definition 3.1 (Entangled Schrödinger Bridge Problem). Given an initial distribution πA, a
target distribution πB, the EntangledSB problem aims to determine the set of optimal bias forces
b⋆ := {bi(Rt,V t)}ni=1 for each particle i in the system that solves the optimization problem

b⋆(Rt,V t) = argmin
bθ

DKL

(
Pbθ∥P⋆

)
s.t.

{
P⋆ = 1

Z
P0πB(XT )

P⋆
0 = πA(X0)

(7)

where P0 is the base path measure with joint dynamics that follow the SDEs in (6).

3.2 Solving EntangledSB with Stochastic Optimal Control

To solve the EntangledSB problem, we leverage stochastic optimal control (SOC) theory where we
aim to find the set of optimal control drifts b⋆(Rt,V t) given a target distribution πB.

Proposition 3.1 (Solving EntangledSB with Stochastic Optimal Control). We can solve the
EntangledSB problem with the stochastic optimal control (SOC) objective given by

b⋆ = argmin
bθ

EX0:T∼Pbθ

[∫ T

0

1

2
∥bθ(Rt,V t)∥2dt− r(XT )

]
s.t. (6) (8)

where r(XT ) := log πB(RT ) is the terminal reward that measures the log-probability under
the target distribution.

The proof is provided in App C.1. We highlight that the SOC problem is optimized over unconstrained
trajectories that need not map to explicit samples from πB but are iteratively refined to generate
trajectories with a terminal distribution that matches πB. In Sec 4.2, we introduce an importance-
weighted cross-entropy objective that efficiently solves the SOC problem with theoretical guarantees.

4 Entangled Schrödinger Bridge Matching

In this section, we introduce Entangled Schrödinger Bridge Matching (EntangledSBM), a novel
framework for learning to simulate trajectories of n-particle systems that with a bias force that

4



dynamically depends on the positions and velocities of the other particles in the system and
can generalize to unseen target distributions without further training. Our unique parameterization
ensures a non-increasing distance toward the target distribution without sacrificing expressivity with
hard constraints (Sec 4.1). We introduce a weighted cross-entropy objective that enables efficient
off-policy learning with a replay buffer of simulated trajectories (Sec 4.2).

4.1 Parameterizing the Entangled Bias Force

Bias Force Parameterization To ensure that the bias force does not increase the distance from the
target distribution πB, we ensure that the projection of the predicted bias force onto the direction of
the gradient of the target distribution is positive for all particles i in the system

⟨biθ(Rt,V t),∇ri
t
log πB⟩ ≥ 0 (9)

Let si = ∇ri
t
log πB ∈ Rd denote the direction towards the target state. To ensure that the bias force

is within the cone surrounding si, we use the following parameterization

biθ(Rt,V t) = αi
θ(Rt,V t)ŝi︸ ︷︷ ︸

parallel component

+
(
I − ŝiŝ

⊤
i

)
hi
θ(Rt,V t)︸ ︷︷ ︸

orthogonal component

, ŝi =
si
∥si∥

(10)

where αi
θ(Rt,V t) := softplus(αi

θ(Rt,V t)) ≥ 0 is a scaling factor for the unit vector ŝi and
hi
θ(Rt,V t) ∈ Rd is the per-atom correction vector that is projected onto the plane orthogonal to ŝi,

both parameterized with neural networks θ. Since the orthogonal component does not affect the dot
product with ŝi, the non-negativity constraint ⟨biθ(Rt,V t),∇ri

t
log πB⟩ ≥ 0 in (9) is guaranteed by

the first term. Intuitively, the orthogonal component enables the bias force to have greater flexibility in
moving sideways (e.g., to avoid infeasible regions or add rotational/collective effects) while ensuring
that the distance from some target state remains non-increasing.

Proposition 4.1 (Non-Increasing Distance from Target Distribution). For small enough ∆t, the
distance from some target state RB ∈ πB state after an update with the bias force biθ(Rt,V t)
defined in (10) is non-increasing, such that

∃RB ∈ πB s.t. ∥Rt+∆t −RB∥ ≤ ∥Rt −RB∥ (11)

where Rt+∆t = Rt + (biθ(Rt,V t)/mi)∆t.

The proof is provided in App C.2. In contrast to previous works that constrain the bias force to
point strictly in the direction of a fixed target position, our approach allows greater flexibility in the
direction of the orthogonal component.

Model Architecture To integrate dependencies on the positions and velocities across n particles, we
leverage a Transformer-based architecture where each particle has input features Cat(rit,v

i
t) ∈ R2d

and the full system features are Cat(Rt,V t) ∈ Rn×2d. We further input the direction RB −Rt

and distance ∥RB −Rt∥ from the target distribution, which enables generalization to unseen target
distributions at inference by learning the dependence of the bias force on the target direction. The
Transformer encoder enables efficient and expressive propagation of feature information across all
pairs of particles in the system to generate context-aware embeddings for bias force parameterization.
For MD systems, we ensure invariance of the coordinate frame using the Kabsch algorithm [Kabsch,
1976], which aligns the position Rt with the target position RB before input into the model. Further
details are provided in App D and E.

4.2 Off-Policy Learning with Weighted Cross-Entropy

Log-Variance Objective To train the bias force to match the optimal b⋆, we can adapt the log-
variance (LV) divergence [Seong et al., 2025, Nüsken and Richter, 2021] defined as

LLV(P⋆,Pbθ ) = VarPv
[
log

dP⋆

dPbθ

]
= EPv

[(
log

dP⋆

dPbθ
− EPv

[
log

dP⋆

dPbθ

])2
]

(12)
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where v is an arbitrary control that enables off-policy learning from trajectories that need not be
generated by the current bias force bθ. While the optimal solution to the LV objective is exactly the
optimal bias force b⋆, the non-convex nature of the LV objective with respect to the path measure Pbθ

inhibits convergence. We provide more details in App B.

Cross-Entropy Objective To achieve a more theoretically-favorable optimization problem, we
propose a cross-entropy objective that is convex with respect to the biased path measure Pbθ given by

LCE(P⋆,Pbθ ) = EP⋆
[
− log Pbθ

]
:= DKL(P⋆∥Pbθ ) = EP⋆

[
log

dP⋆

dPbθ

]
= EPv

[
dP⋆

dPv
log

dP⋆

dPbθ

]
(13)

where P⋆ is the target bridge measure and Pv is the path measure generated with an arbitrary control
v. To avoid taking the expectation with respect to the unknown path measure P⋆, we define an
importance weight w⋆(X0:T ) := dP⋆

dPv (X0:T ) independent of bθ that enables optimization using
trajectories generated from an arbitrary control v. We note that similar CE objectives have been
adopted in earlier work for different applications [Kappen and Ruiz, 2016, Zhu et al., 2025, Tang
et al., 2025b], which we discuss in App A.

Proposition 4.2 (Convexity and Uniqueness of Cross-Entropy Objective). The cross-entropy
objective LCE is convex in Pbθ and there exists a unique minimizer b⋆ that is the solution to the
EntangledSOC problem in Proposition 3.1.

The proof is given in App C.3. To amortize the cost of simulation and reinforce high-reward
trajectories, we define the arbitrary control as the biased path measure from the previous iteration
v := b̄ = stopgrad(bθ), which allows us to reuse the trajectories over multiple training steps by
maintaining a replay bufferR that contains the trajectories X0:T and their importance weights.

Proposition 4.3 (Equivalence of Variational and Path Integral Objectives). The cross-entropy
objective can be expressed in path-integral form as

LCE(θ) = EPv [w⋆(X0:T )Fbθ,v(X0:T )] (14){
w⋆(X0:T ) =

dP⋆
dPv (X0:T ) =

er(XT )

Z
dP0
dPv (X0:T )

Fbθ,v(X0:T ) =
1
2

∫ T

0
∥bθ(Rt,V t)∥2 −

∫ T

0
(b⊤θ v)(Rt,V t)dt−

∫ T

0
bθ(Rt,V t)

⊤dW t

(15)

where we define the reference measure v = b̄ := stopgrad(bθ) is the off-policy control drift
from the previous iteration.

The proof is given in App C.4. Since the normalizing constant Z is intractable in practice, we compute
the importance weight as w⋆(X0:T ) := softmaxB(r(XT )+ log p0(X0:T )− log pb̄(X0:T )), which
is a batch estimate of dP⋆

dPb̄ . When a batch contains only a single trajectory (i.e., when the system is
large), we additionally store the value of log r(XT ) sample from the importance weighted distribution
over the replay buffer as X0:T ∼ Cat(softmaxR(w⋆(X0:T ))).

Discrete Time Objective Since we want to aim to train on off-policy trajectories from previous
iterations to dynamically update the learned bias force given the velocities of the remaining particles,
we require storing the simulated trajectories in a discretized form X0:K := (Xk)k∈{0,...,K} with
step size ∆t. To compute the term Fbθ,b̄ in the CE loss, we discretize it as

F̂bθ,b̄
(X0:K) =

1

2

K−1∑
k=0

∥bθ(Xk)∥2∆t−
K−1∑
k=0

(bθ · b̄)(Xk)∆t−
K−1∑
k=0

bθ(Xk) ·∆W k (16)

where ∆W k = Σ−1[Rk+1−Rk−(f(Xk)+Σb̄(Rk,V k))∆t]. Now, we can establish a simplified
version of the cross-entropy objective in Prop 4.3.
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Figure 2: Simulated cell cluster dynamics with EntangledSBM under Clonidine perturbation with 150
PCs. Nearest neighbour cell clusters with n = 16 cells are simulated over 100 time steps to perturbed cells seen
during training (Top) and an unseen perturbed population (Bottom). The gradient indicates the evolution of
timesteps from the initial time t = 0 (navy) to the final time t = T (purple or turquoise). (A) Trajectories under
base dynamics with no bias force. (B) Trajectories simulated with base and bias forces with (B) no velocity
conditioning, (C) log-variance (LV) objective, and (D) cross-entropy (CE) objective.

Proposition 4.4 (Discretized Cross-Entropy). Given the discretized F̂bθ,b̄(X0:K) in (16), we
can derive a simplified loss function as

L̂CE(θ) = EX0:K∼Pb̄

[
dP⋆

dPb̄
(X0:K)︸ ︷︷ ︸

w⋆(X0:K)

log

(
p0(X0:K) exp(r(XK))

pbθ (X0:K)

)]
(17)

where w⋆(X0:K) is the importance weight of the discrete time trajectory X0:K .

The proof is provided in App C.5. This allows us to train by sampling trajectories, tracking their
log-probabilities under the biased and base path measure, computing the terminal reward r(XK),
storing the values in the replay bufferR, and reusing the trajectories over Nepochs training iterations.

5 Experiments

We evaluate EntangledSBM on several trajectory simulation tasks involving n-particle systems with
interacting dynamics, including simulating cell cluster dynamics under drug perturbation (Sec 5.1)
and transition path sampling (TPS) for molecular dynamics (MD) simulation of proteins (Sec 5.2).

5.1 Simulating Interacting Cell Dynamics Under Perturbation

Populations of cells undergo dynamic signaling interactions that cause shifts in cell state. Under a
drug perturbation, these interactions determine the perturbed state of the cell population, which is of
significant importance in drug discovery and screening. In this experiment, we use EntangledSBM
to parameterize an entangled bias force that learns dynamic interactions between cells, guiding the
trajectories of a batch of cells to the perturbed state. We demonstrate that EntangledSBM can not only
accurately reconstruct the perturbed cell states within the training distribution following trajectories
on the data manifold, but can also generate paths to unseen target distributions that diverge from the
training distribution, demonstrating its potential to scale to diverse perturbations and cell types
with sparse data.

Setup and Baselines To model cell state trajectories with high resolution, we evaluate two per-
turbations (Clonidine and Trametinib at 5µL) from the Tahoe-100M dataset [Zhang et al., 2025b],
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each containing data for a total of 60K genes. We select the top 2000 highly variable genes (HVGs)
and perform principal component analysis (PCA), to maximally capture the variance in the data via
the top principal components (38% in the top-50 PCs). To evaluate the ability of EntangledSBM to
simulate trajectories to unseen target cell clusters that diverge in its distribution from the training
target distribution, we further cluster the perturbed cell data to construct multiple disjoint perturbed
cell populations. For Clonidine, we generated two clusters, and for Trametinib, we generated three
clusters (Figure 5). For each experiment, we trained on a single cluster, and the remaining clusters
were left for evaluation.

We trained the bias force given batches of cell clusters with n = 16 cells, where the initial cluster
is sampled from the unperturbed cell data πA, and the target cluster is sampled from one of the
perturbed cell populations πB. Each batch of cells Xt = (Rt,V t) has positions Rt ∈ Rn×d and
velocities V t ∈ Rn×d, where d is the dimension of the principal components (PCs) that we simulate.
We define the energy landscape such that regions of high data density have low energy and the base
dynamics P0 follow the gradient toward high data density as detailed in App D.1. We evaluate the
reconstruction accuracy of the perturbed distribution at t = T using the maximum mean discrepancy
(RBF-MMD) for all d PCs and Wasserstein distances (W1 andW2) of the top two PCs between
ground truth and reconstructed clusters after 100 simulation steps with details in D.2. To demonstrate
the significance of entangled velocity conditioning on performance, we trained our model with only
the positions as input bθ(Rt). We additionally compare our cross-entropy objective LCE from Sec
4.2 with the log-variance divergence LLV in App F. Additional experiment details are provided in
App D.

Clonidine Perturbation Results We demonstrate that EntangledSBM accurately guides the base
dynamics, which largely remain in the initial data-dense state, to the target perturbed state across
increasing PC dimensions d = {50, 100, 150} and reconstructs the target distribution (Fig. 2; Table
1). Notably, we show that our parameterization of the bias force enables generalization to unseen
perturbed populations that diverge from the training distribution by learning dependencies on
the target state (Fig. 2). Comparing the reconstruction metrics of the target perturbed cell states
with and without velocity conditioning, we confirm our hypothesis that introducing dependence
on the dynamic velocities across a cell cluster enables more accurate reconstruction of the target
distribution compared to when the bias term is trained with only positional dependence (Table 1).
Furthermore, we observe that the LV objective LLV generates nearly straight abrupt trajectories to the
target state while the CE objective LCE generates smooth paths along the data manifold (Table 6; Fig.
7), demonstrating its superiority as an unconstrained objective for learning controls for optimizing
path distributions as further discussed in App F.

Trametinib Perturbation Results We further evaluate our method to predict trajectories of cell
clusters under perturbation with Trametinib, which induces three distinct perturbed cell distributions
(Figure 5B). Despite training on only one of the perturbed distributions, we demonstrate that Entan-
gledSBM trained with LCE is capable of accurately reconstructing the remaining cell distributions
without additional training, demonstrating significantly improved performance compared to the bias
force trained without velocity conditioning (Table 1; Fig. 3). Furthermore, we observe the same
phenomena observed for Clonidine when training with the LV objective, which results in trajectories
that fail to capture the intermediate cell dynamics (Table 7; Fig. 8).

5.2 Transition Path Sampling of Protein Folding Dynamics

Simulating rare transitions that occur over long timescales and between metastable states on molecular
dynamics (MD) landscapes remains a significant challenge due to the high feature dimensionality of
biomolecules. In this experiment, we aim to simulate feasible transition paths across high-energy
barriers at an all-atom resolution, a task that is challenging for both traditional MD and ML-based
methods. We demonstrate that EntangledSBM generates feasible transition paths with higher target
accuracy against a range of baselines.

Setup and Baselines We follow the setup in Seong et al. [2025] and simulate the position and
velocity using OpenMM [Eastman et al., 2017] with an annealed temperature schedule. To evaluate
the performance of EntangledSBM, we consider the RMSD of the Kabsch-aligned coordinates
averaged across 64 paths (RMSD; Å) [Kabsch, 1976], percentage of simulated trajectories that hit the
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Figure 3: Comparison of EntangledSBM with and without velocity conditioning for cell cluster simulation
under Trametinib perturbation. 50 PCs are simulated with the learned bias force trained with the CE objective
without velocity conditioning (Top) and with velocity conditioning (Bottom) to (B) the perturbed population
used for training and (C, D) the two unseen target populations.

Table 1: Results for simulating cell cluster dynamics under Clonidine and Trametinib perturbation with
EntangledSBM. Best values for each PC dimension are bolded. We report RBF-MMD for all PCs and W1

and W2 distances of the top 2 PCs between ground truth and reconstructed clusters after 100 simulation steps
and cluster size set to n = 16. Mean and standard deviation of metrics from 5 independent simulations are
reported. We simulate PCs d = {50, 100, 150} for Clonidine and d = 50 for Trametinib to cells sampled from
the training target distribution and unseen target distributions, and compare against the learned bias force with
no velocity conditioning.

Clonidine Perturbation

Trained Target Distribution Unseen Target Distribution

Model RBF-MMD (↓) W1 (↓) W2 (↓) RBF-MMD (↓) W1 (↓) W2 (↓)

Base Dynamics (50 PCs) 0.677±0.001 5.947±0.005 6.015±0.005 0.784±0.001 8.217±0.005 8.384±0.005

EntangledSBM w/o Velocity Conditioning
50 PCs 0.440±0.000 1.741±0.003 1.857±0.004 0.478±0.000 2.907±0.006 3.022±0.006

100 PCs 0.494±0.000 2.315±0.004 2.423±0.004 0.539±0.000 4.110±0.004 4.249±0.003

150 PCs 0.510±0.000 2.497±0.006 2.620±0.006 0.560±0.000 4.573±0.006 4.716±0.007

EntangledSBM w/ CE
50 PCs 0.401±0.000 0.342±0.002 0.400±0.001 0.419±0.000 0.538±0.013 0.705±0.030

100 PCs 0.455±0.000 0.953±0.025 1.015±0.025 0.500±0.001 0.899±0.006 1.055±0.008

150 PCs 0.478±0.000 0.753±0.008 0.826±0.007 0.506±0.000 0.700±0.009 0.811±0.011

Trametinib Perturbation

Trained Target Distribution Unseen Target Distribution 1 Unseen Target Distribution 2

Method RBF-MMD (↓) W1 (↓) W2 (↓) RBF-MMD (↓) W1 (↓) W2 (↓) RBF-MMD (↓) W1 (↓) W2 (↓)

Base Dynamics 0.938±0.001 7.637±0.005 7.653±0.006 0.900±0.000 7.766±0.009 7.877±0.009 0.754±0.001 1.201±0.009 1.455±0.012

EntangledSBM w/o Velocity Conditioning 0.449±0.000 1.506±0.005 1.544±0.005 0.476±0.000 2.116±0.005 2.197±0.005 0.480±0.000 0.505±0.004 0.627±0.005

EntangledSBM w/ CE 0.428±0.000 0.392±0.005 0.434±0.006 0.409±0.000 0.453±0.008 0.561±0.009 0.451±0.000 0.394±0.003 0.469±0.004

target state (THP; %), and the highest energy transition state along the biased trajectories averaged
across the trajectories that hit the target (ETS; kJ/mol). For baselines, we compare against unbiased
MD (UMD) with temperatures of 3600K for alanine dipeptide and 1200K for the fast-folding proteins,
steered MD (SMD; Schlitter et al. [1994], Izrailev et al. [1999]) with temperatures of 10K and 20K,
path integral path sampling (PIPS; Holdijk et al. [2023]), transition path sampling with diffusion
path samplers (TPS-DPS; Seong et al. [2025]) with the highest performing scaled parameterization.
Additional experiment details are provided in App E.

Alanine Dipeptide First, we consider Alanine Dipeptide with two alanine residues and 22 atoms.
We aim to simulate trajectories to the target state πB = {R | ∥ξ(R) − ξ(RB)∥ < 0.75} defined
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Figure 4: Transition paths generated with EntangledSBM. The energy landscape is colored from dark navy
(low potential energy) to light purple (high potential energy) and plotted with the backbone dihedral angles
(ϕ, ψ) for Alanine Dipeptide and the top two TICA components for the fast-folding proteins. The starting state
R0 and target states RB are indicated with purple stars, and the final states of the simulated trajectories RT are
indicated with pink circles.

Table 2: Transition path sampling benchmarks with EntangledSBM. Best values are bolded. All metrics are
averaged over 64 paths. Unless specified in brackets, paths are generated at 300K for Alanine Dipeptide and
Chignolin and 400K for the others. Hyperparameters and evaluation metrics are detailed in App E. † denotes
values taken from Seong et al. [2025].

Protein Alanine Dipeptide Chignolin

Method RMSD (↓) THP (↑) ETS (↓) Method RMSD (↓) THP (↑) ETS (↓)

UMD † 1.19±0.32 6.25 − UMD † 7.23±0.93 1.56 388.17
SMD (10K) † 0.86±0.21 7.81 812.47±148.80 SMD (10K) † 1.26±0.31 6.25 −527.95±93.58

SMD (20K) † 0.56±0.27 54.69 78.40±12.76 SMD (20K) † 0.85±0.24 34.38 179.52±138.87

PIPS (Force) † 0.66±0.15 43.75 28.17±10.86 PIPS (Force) † 4.66±0.17 0.00 −
TPS-DPS (Scalar) † 0.25±0.20 76.00 22.79±13.57 TPS-DPS (Scalar) † 1.17±0.66 59.38 −780.18±216.93

EntangledSBM (Ours) 0.18±0.07 92.19 47.91±22.76 EntangledSBM (Ours) 0.92±0.13 64.06 2825.61±318.94

Protein Trp-cage BBA

Method RMSD (↓) THP (↑) ETS (↓) Method RMSD (↓) THP (↑) ETS (↓)

UMD † 8.27±1.13 0.00 − UMD † 10.81±1.05 0.00 -
SMD (10K) † 1.68±0.23 3.12 −312.54±20.67 SMD (10K) † 2.89±0.32 0.00 -
SMD (20K) † 1.20±0.20 42.19 −226.40±85.59 SMD (20K) † 1.66±0.30 26.56 −3104.95±97.57

PIPS (Force) † 7.47±0.19 0.00 - PIPS (Force) † 9.84±0.18 0.00 -
TPS-DPS (Scalar) † 0.76±0.12 81.25 −317.61±140.89 TPS-DPS (Scalar) † 1.21±0.09 84.38 −3801.68±139.38

EntangledSBM (Ours) 1.04±0.22 82.81 765.74±155.28 EntangledSBM (Ours) 0.84±0.08 96.88 1453.80±367.84

by the backbone dihedral angles ξ(R) = (ϕ, ψ). We show that EntangledSBM generates feasible
trajectories through both saddle points, representing the two reaction channels (Figure 4A), achieving
superior target hit potential (THP) and lower root mean squared error (RMSD) from the target state
than all baselines (Table 2).

Fast-Folding Proteins We evaluate EntangledSBM on the more challenging task of modeling the
all-atom transition paths of four fast-folding proteins, including Chignolin (10 amino acids; 138
atoms), Trp-cage (284 atoms; 20 amino acids), and BBA (504 atoms; 28 amino acids). We define a hit
as a trajectory where the final state reaches the metastable distribution πB = {R | ∥ξ(R)−ξ(RB)∥ <
0.75}, where ξ(R) are the top two time-lagged independent component analysis (TICA; Pérez-
Hernández et al. [2013]) components. As shown in Fig. 4, EntangledSBM generates diverse
transition paths across high-energy barriers that successfully reach the target state. We achieve a
superior target hit percentage than all baselines across all proteins and a lower or comparable RMSD
(Table 2). While we observe a higher average energy of transition state (ETS) compared to baselines,
this can be attributed to the larger proportion and greater diversity of successful target-hitting paths.
Given that the base dynamics P0 rarely move beyond the initial metastable state, we show that
EntangledSBM effectively learns the target bridge dynamics P⋆ despite high energy barriers.
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6 Conclusion

In this work, we present Entangled Schrödinger Bridge Matching (EntangledSBM), a principled
framework for learning the second-order dynamics of interacting multi-particle systems through
entangled bias forces and an unconstrained cross-entropy objective. EntangledSBM captures depen-
dencies between particle positions and velocities, enabling the modeling of complex dynamics across
biological scales. For perturbation modeling, EntangledSBM reconstructs perturbed cell states while
generalizing to divergent target states not seen during training, and for molecular dynamics (MD), it
generates physically plausible transition paths for fast-folding proteins at an all-atom resolution.

Limitations and Future Directions Our experiments primarily demonstrate that integrating entan-
gled velocities and a cross-entropy objective for path distribution matching enhances performance in
modeling multi-particle systems. While we demonstrate that our unique parameterization enables
performance gains across diverse systems across biological scales, it remains limited to a selected
set of perturbations and small, fast-folding proteins. We envision our method generalizing across a
broader range of drug-induced and genetic perturbations across diverse cell types and representations,
larger proteins and biomolecules, as well as other multi-particle physical systems.
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Outline of Appendix

In App A, we provide an overview and discussion of related works in off-policy learning, Schrödinger
bridge matching, and transition path sampling. App B provides the theoretical basis of stochastic
optimal control (SOC) theory used in our work and a theoretical motivation for our entangled bias
force. App C provides the theoretical formulations and proofs for EntangledSBM. We provide details
on the experimental setup and training hyperparameters for the cell perturbation experiment in App
D and the transition path sampling (TPS) experiment in App E. We further compare the log-variance
(LV) divergence and cross-entropy (CE) objectives in App F. Finally, we provide the pseudocode for
the training and inference of EntangledSBM in App G.

Notation In this work, we consider an n-particle system Xt = (Rt,V t) where Rt ∈ Rn×d

and V t ∈ Rn×d denote the positions and velocities of the full system that evolves over the time
horizon t ∈ [0, T ]. The notation X indicates a random variable and x denotes a deterministic
realization. Each particle i is defined by its position rit ∈ Rd and velocity vi

t ∈ Rd which lie in
d-dimensional Euclidean space. The base dynamics evolve according to a potential energy function
denoted U(Rt) : Rn×d → R and the biased dynamics evolve with an additional parameterized
bias force bθ(Rt,V t) : Rn×d × Rn×d → Rn×d that captures the implicit dependencies within the
system and controls the base dynamics towards a target distribution πB(RT ) from a state in the initial
distribution RA ∈ πA(R0). The corresponding path measures over trajectories X0:T := (Xt)t∈[0,T ]

are denoted P0 for the base process and Pbθ for the biased process. The optimal path measure that
solves the EntangledSB problem is denoted P⋆ ≡ Pb⋆ with bias force b⋆(Rt,V t).

A Related Works

Off-Policy Learning Importance-weighted cross-entropy (CE) objectives have previously been
used to sample the target distribution g⋆ ∝ hfu by aligning a proposal distribution fv to the intractable
target with KL(g⋆∥fv) [Kappen and Ruiz, 2016]. The main difference is that our approach aims to
match a controlled path measure Pbθ with an energy-minimizing path measure P⋆ rather than a
static target distribution. Furthermore, we adapt our path CE objective to apply for discrete-time
paths, similar to the approach taken by Seong et al. [2025], which discretizes the log-variance (LV)
divergence [Nüsken and Richter, 2021]. While the LV objective has theoretical optimality guarantees,
it is non-convex in Pbθ . Since the CE objective is convex in Pbθ , it yields an ideal optimization
landscape for θ and demonstrates improved performance as shown in Sec 5.1. We also highlight that
our optimization scheme is a form of off-policy learning, as we minimize the objective with respect to
the path distribution generated from an auxiliary control v which we set to the non-gradient-tracking
bias force v := b̄ = stopgrad(bθ). This objective is inspired by recent work that leverages off-
policy reinforcement learning in the discrete state space for discrete diffusion sampling [Zhu et al.,
2025] and fine-tuning [Tang et al., 2025b].

Transition Path Sampling To overcome the challenge of generating feasible transition paths across
high energy barriers for transition path sampling, several non-ML and ML-based approaches have
been introduced [Bolhuis et al., 2002, Dellago et al., 1998, Vanden-Eijnden et al., 2010]. Non-ML
approaches often rely on collective variables (CVs), which reduce the dimensionality of the molecular
conformation to a function of coordinates that are known to be involved in transition states [Hooft
et al., 2021]. These include steered MD [Schlitter et al., 1994, Izrailev et al., 1999], umbrella sampling
[Torrie and Valleau, 1977, Kästner, 2011], meta-dynamics [Laio and Parrinello, 2002, Ensing et al.,
2006, Branduardi et al., 2012, Bussi and Branduardi, 2015], adaptive biasing force [Comer et al.,
2015], and on-the-fly probability-enhanced sampling [Invernizzi and Parrinello, 2020]. To overcome
the lack of well-understood CVs for large biomolecular systems, ML-based methods have been
explored for determining or constructing CVs [Sultan and Pande, 2018, Rogal et al., 2019, Chen
and Ferguson, 2018, Sun et al., 2022, Sipka et al., 2023a], but modeling transition paths at all-atom
resolution is still desirable due to systems of increased complexity, and CVs are uncertain.

Several ML-based approaches for simulating transition paths have been developed [Singh and
Limmer, 2023, Yan et al., 2022, Sipka et al., 2023b, Das et al., 2021]. Notably, Path Integral
Path Sampling (PIPS; Holdijk et al. [2023]) learns a bias force with stochastic optimal control
theory, Doob’s Lagrangian Du et al. [2024] defines an optimal transition path with a Lagrangian
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objective that solves the Doob’s h-transform, Transition Path Sampling with Diffusion Path Samplers
(TPS-DPS; Seong et al. [2025]) trains a bias force with an off-policy log-variance objective, and
Action Minimization with Onsager-Machlup (OM) Functional [Raja et al., 2025] generates a discrete
interpolation between endpoints by minimizing the OM functional. Furthermore, Blessing et al.
[2025] introduces a trust-region-constrained SOC optimization algorithm, which is applied to TPS.
While these approaches demonstrate the promise of ML-based TPS, their applicability remains
limited to small-scale biomolecular systems (Alanine Dipeptide, tetrapeptides, etc.) for all-atom
simulation [Holdijk et al., 2023, Du et al., 2024] or require coarse-grained representations when
scaling up to larger fast-folding proteins [Raja et al., 2025]. We directly compare our method against
Seong et al. [2025] and Blessing et al. [2025], and achieve state-of-the-art performance on all-atom
simulations of larger, fast-folding proteins, and Blessing et al. [2025]. Furthermore, we highlight
that our framework extends beyond molecular dynamics (MD) simulations, with applications to
single-cell simulation and generalization to unseen target distributions.

Modeling Cell Dynamics Under Perturbation Predicting the dynamics of heterogeneous cell
populations under perturbations such as treatment with a drug candidate, gene editing, and knockouts,
or protein expression, has critical applications in drug discovery and predictive medicine [Shalem et al.,
2014, Kramme et al., 2021, Dixit et al., 2016, Gavriilidis et al., 2024, Zhang et al., 2025b, Kobayashi
et al., 2022, Smela et al., 2023b, Pierson Smela et al., 2025, Yeo et al., 2021]. Generative modeling
frameworks including flow matching [Zhang et al., 2025c, Rohbeck et al., 2025, Atanackovic et al.,
2024, Tong et al., 2024, Wang et al., 2025], Schrödinger Bridge Matching [Alatkar and Wang,
2025, Tong et al., 2024, Kapuśniak et al., 2024, Tang et al., 2025a], and stochastic optimal control
[Zhang et al., 2025d,a] have enabled significant advances in parameterizing velocities that evolve
dynamically over time on non-linear energy manifolds by learning on static snapshots across the
trajectory. However, these models often require explicit training on a specific target distribution and
fail to generalize to unseen target distributions at inference, especially if they diverge from those seen
in the training data, which limits their scalability to cell types and perturbations that are not seen
during training. Furthermore, many of these approaches simulate cells as populations of particles
that evolve independently from each other, which fails to capture the diverse intercellular signaling
and interactions that occur naturally and under perturbations. Although there have been some early
developments in learning these interactions from data [Zhang et al., 2025a], they operate under
the mean-field assumption, where each cell takes the average effect of all surrounding cells rather
than simulating individual pairwise interactions. This assumption does not account for the complex
interactions between cells and limits its applicability to heterogeneous cell populations.

B Extended Theoretical Preliminaries

In this section, we provide relevant theoretical background in stochastic optimal control (SOC) theory
for path measures. We use the terms bias force and optimal control interchangeably, denoted with b,
which is less common in general SOC literature where u is often used. For a more comprehensive
analysis of SOC theory, we refer the reader to Nüsken and Richter [2021].

B.1 Stochastic Optimal Control

Controlled Path Measures First, we consider the controlled path measure Pb defined by the SDE:

dXt = [f(Xt, t) +Σb(Xt, t)]dt+ΣdW t (18)

where b : [0, T ] × X → X ∈ U is known as the control1 that tilts the path measure from the
unconditional dynamics P0. Now, we will define Radon-Nikodym derivative (RND) of the path
measures corresponding to the controlled and unconditional SDEs, which is crucial for defining our
objective.

1U is the set of admissible controls continuously differentiable in (x, t) with bounded linear growth in x
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Lemma B.1 (Radon-Nikodym Derivative). Given a pair of SDEs with and without a control
drift b(Xt, t) on t ∈ [0, T ] with the same diffusion Σ defined as

P0 : dXt = f(Xt, t)dt+ΣdW t, X0 = x0 (19)

Pb : dXb
t = [f(Xt, t) +Σb(Xt, t)] dt+ΣdW t, Xb

0 = x0 (20)

Then, the Radon-Nikodym derivative satisfies

log
dPb

dP0
(X0:T ) =

∫ T

0

(b⊤Σ−1)(Xt, t)dXt −
∫ T

0

(Σ−1f · b)(Xt, t)dt−
1

2

∫ T

0

∥b(Xt, t)∥2dt

or equivalently:

log
dPb

dP0
(X0:T ) =

∫ T

0

b(Xt, t)
⊤dW t −

1

2

∫ T

0

∥b(Xt, t)∥2dt (21)

Proof. First, we use Girsanov’s theorem to get the Radon-Nikodym derivative with respect to the
zero-drift reference path measure Q defined by the SDE dXt = Σ(Xt, t)dW t, we have

log
P0

Q
(X0:T ) =

∫ T

0

(
f(Xt, t) ·Σ−2(Xt, t)

)
dXt −

1

2

∫ T

0

(
f ·Σ−2f

)
(Xt, t)dt (22)

and for the controlled path measure Pb, we have

log
Pb

Q
(X0:T ) =

∫ T

0

(f +Σb)(Xt, t) ·Σ−2(Xt, t)dXt

− 1

2

∫ T

0

(
(f +Σb) ·Σ−2(f +Σb)

)
(Xt, t)dt (23)

Then, using the identity

log
dPb

dP0
= log

dPb

dQ
dQ
dP0

= log
dPb

dQ
+ log

dQ
dP0

= log
dPb

dQ
− log

dP0

dQ
(24)

Substituting in (22) and (23) and canceling terms, we get

log
dPb

dP0
(X0:T ) =

∫ T

0

(b⊤Σ−1)(Xt, t)dXt −
∫ T

0

(Σ−1f · b)(Xt, t)dt−
1

2

∫ T

0

∥b(Xt, t)∥2dt (25)

Equivalently, since we can write dW t = Σ−1(Xt, t)(dXt + b(Xt, t)dt), we can write

log
dPb

dP0
(X0:T ) =

∫ T

0

b(Xt, t)
⊤dW t −

1

2

∫ T

0

∥b(Xt, t)∥2dt (26)

which concludes the proof. □

Remark B.1. In the underdamped Langevin model, the diffusion acts only on the velocity

coordinates, so the full diffusion matrix on Xt = (Rt,V t) is degenerate, i.e., Σ =

[
0 0
0 ΣV

]
.

We therefore apply Girsanov’s theorem on the velocity SDE only, where the diffusion ΣV is
invertible, and treat positions as deterministic integrals of velocity (i.e., Rt = R0 +

∫ t

0
V sds).

Therefore, Girsanov’s theorem is first defined on velocity paths as

log
dPb

V

dP0
V

(X0:T ) =

∫ T

0

b(Xt, t)
⊤dW t −

1

2

∫ T

0

∥b(Xt, t)∥2dt (27)

and pushed forward to the full path measure via (Rt,V t) = (R0+
∫ t

0
V sds,V t). For simplicity

in notation, we define Σ−1 ≡ Σ−1
V in the theoretical proofs.
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Stochastic Optimal Control The reward-guided stochastic optimal control (SOC) problem
aims to determine the optimal control b⋆ = minb∈U J(b;x, t) that minimizes the cost functional
J(bθ;x, t) with reward r : X → R given by

J(b;x, t) = Ept

[∫ T

t

(
f(Xs, s) +

1

2
∥b(Xs, s)∥2

)
ds− r(XT )

∣∣∣∣Xt = x

]
(28)

which measures the cost-to-go from the current state Xt = x at time t under the controlled dynamics
defined in (18) to the terminal state XT . The infimum of the cost functional is defined as

J(b⋆;x, t) = inf
b∈U

J(b;x, t) =: Vt(x) (29)

which is also referred to as the value function Vt(x). To derive the path integral representation of the
optimal control b⋆, we introduce the work functional which computes the running cost subtracted by
the terminal reward of a state path X0:T ,

W(Xt:T , t) :=

∫ T

t

f(Xs, s)ds− r(XT ) (30)

We can now define a series of statements that connect the optimal drift b⋆ and the value function Vt.

Theorem B.1. Let Vt be the value function and b⋆ be the optimal control. Then, the following
are true:

(a) The optimal control satisfies b⋆(x) = −Σ⊤∇xVt(x)

(b) The Radon-Nikodym derivative of the optimal path measure P⋆ can be defined by taking
state paths from the unconditional path measure P0 and reweighting them with the output
of the work functionalW(X0:T , 0).

dP⋆

dP0
(X0:T ) =

1

Z
e−W(X0:T ,0), Z = EX0:T∼P0

[
e−W(X0:T ,0)

]
(31)

(c) For any (x, t) ∈ X × [0, T ], the value function can be written in path integral form by
taking the expectation over the uncontrolled path measure P0 as

Vt(x, t) = − logE
[
e−W(Xt:T ,t)

∣∣Xt = x
]

(32)

(d) Combining (a) and (c), we can write the optimal control as

b⋆(x) = Σ⊤∇x logEXt:T∼P0

[
e−W(Xt:T ,t)

∣∣Xt = x
]

(33)

While Theorem B.1 provides a closed-form solution to the optimal control b⋆, it remains impractical
to compute as P0 contains an infinite number of paths from any point x. This problem motivates
parameterizing b⋆ with a neural network bθ. The natural objective for obtaining an accurate approxi-
mation of b⋆ that induces the path measure P⋆ is the KL-divergence L(P⋆,Pbθ ) := DKL(Pbθ∥P⋆) as
its minimizer is exactly P⋆.

However, taking the gradient ∇θDKL(Pbθ∥P⋆) requires differentiating through the full stochastic
trajectories X0:T ∼ Pbθ generated by the Euler-Maruyama SDE solver due to the expectation over
Pbθ , resulting in a significant computational bottleneck. To overcome this bottleneck, previous work
[Nüsken and Richter, 2021, Seong et al., 2025] leverages alternative path-measure objectives that do
not involve expectations over Pbθ while preserving optimality guarantees. We focus on two objectives:
the log-variance divergence used in Seong et al. [2025] and the cross-entropy objective, which we
formalize in the present work for solving the EntangledSB problem.

Log-Variance Objective Here, we describe the log-variance (LV) divergence which is introduced
in Nüsken and Richter [2021] and applied to transition path sampling (TPS) in TPS-DPS [Seong
et al., 2025]. Given the path measure Pbθ generated with the parameterized bias force bθ and the
target path measure P⋆, the log-variance divergence LLV is defined as

LLV(P⋆,Pbθ ) := VarPv

[
log

dP⋆

dPbθ

]
= EPv

[(
log

dP⋆

dPbθ
− EPv

[
log

dP⋆

dPbθ

])2
]

(34)
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where Pv can be defined as any arbitrary path measure generated from a control v. To allow
simulated trajectories to be used across multiple training iterations, it is common to define v as
the bias force with frozen parameters v = b̄ := stopgrad(bθ). Using Lemma B.1, we define
LLV(P⋆,Pbθ ) = EPv [(Fbθ,v − EPv [Fbθ,v])

2
], where Fbθ,v is defined as

Fbθ,v := log
dP⋆

dPbθ
= log

dP⋆

dP0

dP0

dPbθ

= r(XT ) +
1

2

∫ T

0

∥bθ(Xt)∥2dt−
∫ T

0

(b⊤θ v)(Xt)dt−
∫ T

0

b⊤θ dW t (35)

using similar justification as in App C.4. Since the expectation EPv [Fbθ,v] is computationally
intractable, Seong et al. [2025] introduces a scalar parameter w that is jointly optimized with θ
such that argminw LLV(θ, w) = EPv [Fbθ,v]. Substituting in w for EPv [Fbθ,v] and taking the
discretization over K steps, the LV objective becomes

LLV(θ, w) = EX0:K∼Pv
[
(Fbθ,v(X0:K)− w)2

]
= Ex0:K∼Pv

[(
log

p0(x0:K) exp(r(XK))

pbθ (x0:K)
− w

)2
]

where v = b̄ := stopgrad(bθ).

B.2 Justification for Entangled Bias Forces

Proposition B.1 (Monotone Optimality of Entangled Bias Forces). Let Find be the hypothesis
class of bias forces that depend only on particle positions biθ := biθ(Rt) and Fent be the
hypothesis class of entangled bias forces biθ := biθ(Rt,V t). Then, under the cross-entropy
objective,

inf
bθ∈Fent

LCE(bθ) ≤ inf
bθ∈Find

LCE(bθ) (36)

with strict improvement when the optimal control is non-factorizable.

Proof. Let P⋆ denote the optimal path measure that solves the EntangledSB problem from (3.1) and
Pbθ be the path measure induced by the bias force bθ. Let Find be the hypothesis class of bias forces
independent of the full system velocities biθ := biθ(Rt) and Fent be the hypothesis class of entangled
bias forces biθ := biθ(Rt,V t). Clearly, we have Find ⊆ Fent. It follows that

{Pbθ : bθ ∈ Find} ⊆ {Pbθ : bθ ∈ Fent} (37)

Taking the infima over the KL-divergence functional DKL(P⋆∥·) ≥ 0 over a larger set of functions
cannot increase the value.

inf
bθ∈Fent

DKL(P⋆∥Pbθ ) ≤ inf
bθ∈Find

DKL(P⋆∥Pbθ ) (38)

Furthermore, if P⋆ /∈ {Pbθ : bθ ∈ Find} which denotes the closure of the set of path measures induced
by Find and there exists b⋆ ∈ Fent where Pb⋆

= P⋆, then we have

inf
bθ∈Fent

DKL(P⋆∥Pbθ ) = 0 while inf
bθ∈Find

DKL(P⋆∥Pbθ ) > 0 (39)

yielding strict improvement. By Proposition 4.2, we have that Pb⋆ = P⋆ is the unique minimizer of
DKL(P⋆∥·). □

C Theoretical Proofs

For notational simplicity, we will drop the explicit dependence on (Rt,V t) and simply denote the
stochastic path of the system as (Xt)t∈[0,T ].
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C.1 Proof of Proposition 3.1

Lemma C.1. The bias force b⋆ that minimizes the SOC objective J(bθ;x, t) generates the
path measure Pb that minimizes the KL-divergence with the optimal tilted path measure P⋆ that
satisfies

P⋆ =
1

Z
P0er(XT ), Z = EP0

T

[
er(XT )

]
(40)

where P0 is the base path measure.

Proof. Let the dynamics of Xt = (Rt,V t) under the base path measure P0 be defined as
dXt = f(Xt)dt+ΣdW t (41)

and the dynamics under the biased path measure Pbθ be defined as
dXt = [f(Xt) +Σbθ(Xt)] dt+ΣdW t (42)

By Lemma B.1, we have that the logarithm of the Radon-Nikodym derivative of the biased measure
Pbθ with respect to the base measure P0 is given by

log
dPbθ

dP0
(X0:T ) =

∫ T

0

bθ(Xt)
⊤dW t −

1

2

∫ T

0

∥bθ(Xt)∥2dt (43)

Now, taking the expectation with respect to Pbθ , we derive the expression for the KL-divergence

DKL(Pbθ∥P0) = EPbθ

[
log

dPbθ

dP0

]
= EPbθ

[∫ T

0

bθ(Xt)
⊤dW t −

1

2

∫ T

0

∥bθ(Xt)∥2dt

]

= EPbθ

[∫ T

0

bθ(Xt)
⊤(dW b

t + bθ(Xt)dt)−
1

2

∫ T

0

∥bθ(Xt)∥2dt

]

= EPbθ

[∫ T

0

bθ(Xt)
⊤dW b

t

]
︸ ︷︷ ︸

=0

+EPbθ

[∫ T

0

∥bθ(Xt)∥2dt−
1

2

∫ T

0

∥bθ(Xt)∥2dt

]

=
1

2
EPbθ

∫ T

0

∥bθ(Xt)∥2dt (44)

Substituting this into the SOC objective in (3.1), we get

J(bθ) = EPbθ

[∫ T

0

1

2
∥bθ(Xt)∥2dt− r(XT )

]
= DKL(Pbθ∥P0)− EPbθ [r(XT )] (45)

By adding logZ on both sides, we do not change the minimizer of J(bθ) and the SOC objective
becomes the KL-divergence between the controlled path measure Pbθ and the optimal path measure
P⋆:

J(bθ) + logZ = DKL(Pbθ∥P0)− EPbθ [r(XT )] + logZ

= EPbθ

[
log

dPbθ

dP0
− r(XT ) + logZ

]
︸ ︷︷ ︸

DKL(Pbθ∥P⋆)

(46)

This shows that the minimizer b⋆ to the SOC objective also generates the path measure Pb⋆ that is
closest in KL-divergence to the optimal path measure P⋆. Therefore, the optimal control solution
satisfies

log
dP⋆

dP0
(X0:T ) = r(XT )− logZ ⇐⇒ P⋆ =

1

Z
P0er(XT ) (47)
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which concludes our proof. □

Proposition 3.1 (Solving EntangledSB with Stochastic Optimal Control). We can solve the
EntangledSB problem with the stochastic optimal control (SOC) objective given by

b⋆ = argmin
bθ

EX0:T∼Pbθ

[∫ T

0

1

2
∥bθ(Rt,V t)∥2dt− r(XT )

]
s.t. (6) (8)

where r(XT ) := log πB(RT ) is the terminal reward that measures the log-probability under
the target distribution.

We aim to recover the optimal path measure P⋆ that minimizes the KL divergence from the base
dynamics P0 while matching the terminal distribution πB defined as

P⋆(X0:T ) =
1

Z
P0πB(XT ) (48)

From Lemma C.1, we have that the bias force bθ that minimizes the SOC objective defined as

b⋆ = argmin
bθ

EX0:T∼Pbθ

[∫ T

0

1

2
∥bθ(Xt)∥2dt− r(XT )

]
(49)

also generates the path measure Pb⋆ that minimizes the KL-divergenceDKL(Pbθ∥P⋆) with the optimal
path measure P⋆ defined as

P⋆ =
1

Z
P0er(XT ) (50)

Therefore, setting r(XT ) := log πB(XT ) recovers the solution to the EntangledSB problem. □

C.2 Proof of Proposition 4.1

Proposition 4.1 (Non-Increasing Distance from Target Distribution). For small enough ∆t,
the distance from some target state RB ∈ πB state after an update with the bias force
biθ(Rt,V t) defined in (10) is non-increasing, such that

∃RB ∈ πB s.t. ∥Rt+∆t −RB∥ ≤ ∥Rt −RB∥ (11)

where Rt+∆t = Rt + (biθ(Rt,V t)/mi)∆t.

Proof. We aim to show that our parameterization of the bias force in (10) ensures that the distance
between the current position Rt and some target state RT ∼ πB in the target distribution is non-
increasing. For each atom i ∈ {1, . . . , n}, we define the bias force as

biθ := αi
θŝi +

(
I − ŝiŝ

⊤
i

)
hi
θ, αi

θ ≥ 0, ŝi =
∇ri

t
log πB

∥∇ri
t
log πB∥

(51)

After the update in the direction of the potential energy −∇ri
t
U(Rt), the Euler update to the position

with time step ∆t using the bias force is

rit+∆t = rit +
∆t

mi

(
αi
θŝi +

(
I − ŝiŝ

⊤
i

)
hi
θ

)
= rit +

∆t

mi
biθ (52)

Let riB ∈ supp(πB) be a target point chosen on the ascent ray of ŝi given by

riB ∈
{
rit + λ ŝi : λ ≥ 0

}
∩ supp(πB) (53)

We denote displacement to this target as di := riB − rit = ρi d̂i with d̂i :=
di

∥di∥ and ρi := ∥di∥ ≥ 0.

By construction of the ray, d̂i = ŝi (i.e., di is parallel with ŝi). After a single step, the squared
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distance is given by

∥riB − rit+∆t∥2 =

∥∥∥∥riB − (rit + ∆t

mi
biθ

)∥∥∥∥2
=

∥∥∥∥di −
∆t

mi
biθ

∥∥∥∥2
= ∥di∥2 −

2∆t

mi

〈
di, b

i
θ

〉
+

∆t2

m2
i

∥biθ∥2 (54)

Using the decomposition of biθ and the fact that di ∥ ŝi and (I − ŝiŝ
⊤
i )h

i
θ ⊥ ŝi, we obtain〈

di, b
i
θ

〉
= αi

θ

〈
di, ŝi

〉
+
〈
di, (I − ŝiŝ

⊤
i )h

i
θ︸ ︷︷ ︸

⊥ ŝi

〉
= αi

θ

〈
ρiŝi, ŝi

〉
= αi

θρi ≥ 0 (55)

Thus, the first-order term in (54) always decreases (or preserves) the distance, and the orthogonal
correction cannot increase it at first order because it is orthogonal to di

t. When ∆t→ 0, the second-
order term becomes negligible and the first-order term dominates. We determine the exact threshold
for ∆t that guarantees a non-increasing distance to be

2∆t

mi
αi
θρi ≥

∆t2

m2
i

∥biθ∥2 =⇒ ∆t ≤ 2miα
i
θρi

∥biθ∥2
(56)

under which the decrease due to the first-order term dominates the quadratic increase, yielding

∥rit+∆t − riB∥ ≤ ∥rit − riB∥ (57)

In the continuous-time limit as ∆t→ 0, the non-increasing guarantee follows immediately from (55):
∂

∂t
∥riB − rit∥2 =

∂

∂t
∥di∥2 = − 2

mi

〈
di
t, b

i
θ

〉
= − 2

mi
αi
θρi ≤ 0 (58)

Summing over i = 1, . . . , n (or equivalently using the concatenated coordinates), we conclude that
there exists a target configuration RB ∈ πB such that the distance to RB is non-increasing under the
bias force update, which proves the claim. □

C.3 Proof of Proposition 4.2

Proposition 4.2 (Convexity and Uniqueness of Cross-Entropy Objective). The cross-entropy
objective LCE is convex in Pbθ and there exists a unique minimizer b⋆ that is the solution to
the EntangledSOC problem in Proposition 3.1.

Proof. First, we show that the cross-entropy objective is convex in the path measure Pbθ . The
functional Pbθ 7→ DKL(P⋆∥Pbθ ) is convex with respect to its second argument, since x 7→ − log x is
convex. Since LCE(P⋆,Pbθ ) := DKL(P⋆∥Pbθ ) which is strictly convex in Pbθ , minimizing LCE yields
a unique minimizer Pb⋆ ≡ P⋆. From Proposition 3.1, we have that the unique minimizer of LCE is
exactly the solution to the EntangledSB problem. While this does not necessarily imply convexity in
the neural network parameters θ, it yields a more favorable optimization objective. □

C.4 Proof of Proposition 4.3

Proposition 4.3 (Equivalence of Variational and Path Integral Objectives). The cross-entropy
objective can be expressed in path-integral form as

LCE(θ) = EPv [w⋆(X0:T )Fbθ,v(X0:T )] (14){
w⋆(X0:T ) =

dP⋆
dPv (X0:T ) =

er(XT )

Z
dP0
dPv (X0:T )

Fbθ,v(X0:T ) =
1
2

∫ T

0
∥bθ(Rt,V t)∥2 −

∫ T

0
(b⊤θ v)(Rt,V t)dt−

∫ T

0
bθ(Rt,V t)

⊤dW t

(15)

where we define the reference measure v = b̄ := stopgrad(bθ) is the off-policy control drift
from the previous iteration.
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From the cross-entropy objective, we have

LCE(P⋆,Pbθ ) := DKL(P⋆∥Pbθ ) = EP⋆

[
log

dP⋆

dPbθ

]
= EPb̄

[
dP⋆

dPb̄
log

dP⋆

dPbθ

]
(59)

Setting w⋆ := dP⋆

dPb̄ , we can derive

w⋆(X0:T ) =
dP⋆

dPb̄
(X0:T ) =

dP⋆

dP0

dP0

dPb̄
(X0:T ) (60)

From Lemma C.1, we have

w⋆(X0:T ) =
er(XT )

Z

dP0

dPb̄
(X0:T ) (61)

which is our definition for w⋆. Now, expanding log dP⋆

dPbθ
, we have

log
dP⋆

dPbθ
= log

dP⋆

dP0
+ log

dP0

dPbθ

= log
er(XT )

Z
− log

dPbθ

dP0

= r(XT )− logZ − log
dPbθ

dP0
(62)

Applying Girsanov’s theorem from Lemma B.1, we expand the second term log dPbθ

dP0 as

log
dPbθ

dP0
(X0:T ) =

∫ T

0

(bθ(Xt)
⊤Σ−1)dXt −

∫ T

0

(Σ−1f(Xt))
⊤bθ(Xt)dt−

1

2

∫ T

0

∥bθ(Xt)∥2dt

Given that dXt evolves via the SDE
dXt = (f(Xt) +Σb̄(Xt))dt+ΣdW t (63)

Applying (b⊤θ Σ
−1) to both sides of the equation, we have

(b⊤θ Σ
−1)dXt = (b⊤θ Σ

−1)(f(Xt) +Σb̄(Xt))dt+ (b⊤θ Σ
−1)ΣdW t

= b⊤θ (Σ
−1f)(Xt)dt+ (b⊤θ Σ

−1Σb̄)(Xt)dt+ (b⊤θ Σ
−1Σ)dW t

= (Σ−1f(Xt))
⊤bθ(Xt)dt+ (b⊤θ b̄)(Xt)dt+ b⊤θ dW t (64)

Substituting this into (63), we get

log
dPbθ

dP0
(X0:T ) =

∫ T

0

(bθ(Xt)
⊤Σ−1)dXt −

∫ T

0

(Σ−1f(Xt))
⊤bθ(Xt)dt−

1

2

∫ T

0

∥bθ(Xt)∥2dt

=

∫ T

0

(
(Σ−1f(Xt))

⊤bθ(Xt)dt+ (b⊤θ b̄)(Xt)dt+ b⊤θ dW t

)
−

∫ T

0

(Σ−1f(Xt))
⊤bθ(Xt)dt−

1

2

∫ T

0

∥bθ(Xt)∥2dt

=

∫ T

0

(Σ−1f(Xt))
⊤bθ(Xt)dt+

∫ T

0

(b⊤θ b̄)(Xt)dt+

∫ T

0

b⊤θ dW t

−
∫ T

0

(Σ−1f(Xt))
⊤bθ(Xt)dt−

1

2

∫ T

0

∥bθ(Xt)∥2dt

=

∫ T

0

(b⊤θ b̄)(Xt)dt+

∫ T

0

b⊤θ dW t −
1

2

∫ T

0

∥bθ(Xt)∥2dt (65)

Putting everything together into the expression for the cross-entropy objective, we get

LCE(bθ) = EPv

[
w⋆(X0:T )

(
r(XT )− logZ − log

dPbθ

dP0
(X0:T )

)]
= EPv

[
w⋆(X0:T )

(
r(XT )− logZ −

[∫ T

0

(b⊤θ b̄)(Xt)dt+

∫ T

0

b⊤θ dW t −
1

2

∫ T

0

∥bθ(Xt)∥2dt
])]

= EPv

[
w⋆(X0:T ) (r(XT )− logZ)− w⋆(X0:T )

(∫ T

0

(b⊤θ b̄)(Xt)dt+

∫ T

0

b⊤θ dW t −
1

2

∫ T

0

∥bθ(Xt)∥2dt
)]

= EPv

[
w⋆(X0:T ) (r(XT )− logZ)︸ ︷︷ ︸

independent of θ

+w⋆(X0:T )

(
1

2

∫ T

0

∥bθ(Xt)∥2dt−
∫ T

0

(b⊤θ b̄)(Xt)dt−
∫ T

0

b⊤θ dW t

)
︸ ︷︷ ︸

:=Fbθ,b̄(X0:T )

]
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Since w⋆(X0:T ) (r(XT )− logZ) is independent of θ, we can drop it and write the cross-entropy
objective as

LCE(θ) = EPb̄

[
w⋆(X0:T )Fbθ,b̄(X0:T )

]
(66)

where we define b̄ := stopgrad(bθ). □

C.5 Proof of Proposition 4.4

Proposition 4.4 (Discretized Cross-Entropy). Given the discretized F̂bθ,b̄(X0:K) in (16), we
can derive a simplified loss function as

L̂CE(θ) = EX0:K∼Pb̄

[
dP⋆

dPb̄
(X0:K)︸ ︷︷ ︸

w⋆(X0:K)

log

(
p0(X0:K) exp(r(XK))

pbθ (X0:K)

)]
(17)

where w⋆(X0:K) is the importance weight of the discrete time trajectory X0:K .

We will show that the discretized expression for F̂bθ,b̂
(X0:K) can be written as

F̂bθ,v(X0:K) = log

(
p⋆(X0:K)

pbθ (X0:K)

)
= log

(
p0(X0:K) exp(r(XK))

pbθ (X0:K)

)
(67)

First, we expand the expression as

log

(
p0(X0:K) exp(r(XK))

pbθ (X0:K)

)
= log p0(X0:K) + r(XK)− log pbθ (X0:K)

=

K−1∑
k=0

[
log p⋆(Xk+1|Xk)− log pbθ (Xk+1|Xk)

]
+ r(XK) (68)

The distribution of the position Rk+1 under the uncontrolled dynamics is a Gaussian with mean Rk

and co-variance Σ⊤Σ∆t. The log-density becomes

log p0(Xk+1|Xk) = logN
(
Xk+1

∣∣Xk,Σ
⊤Σ∆t

)
= −1

2
(Xk+1 −Xk)

⊤(Σ⊤Σ∆t)−1(Xk+1 −Xk) (69)

Similarly, the log-density under the bias force bθ is given by

logpbθ (Xk+1|Xk) = logN
(
Xk+1

∣∣Xk +Σbθ(Xk)∆t,Σ
⊤Σ∆t

)
= −1

2
(Xk+1 −Xk −Σbθ(Xk)∆t)

⊤(Σ⊤Σ∆t)−1(Xk+1 −Xk −Σbθ(Xk)∆t) (70)

Now, we write the increment from time k to k + 1 as

Xk+1 = Xk +Σb̄(Xk)∆t+Σ∆W k

Xk+1 −Xk = Σb̄(Xk)∆t+Σ∆W k (71)

and substitute into (69) to get

log p0(Xk+1|Xk)− log pbθ (Xk+1|Xk)

= −1

2

(
Σb̄(Xk)∆t+Σ∆W k

)⊤(
Σ⊤Σ∆t

)−1(
Σb̄(Xk)∆t+Σ∆W k

)
+

1

2

(
Σb̄(Xk)∆t+Σ∆W k −Σbθ(Xk)∆t

)⊤(
Σ⊤Σ∆t

)−1(
Σb̄(Xk)∆t+Σ∆W k −Σbθ(Xk)∆t

)
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Given that
(
Σ⊤Σ∆t

)−1
= 1

∆t (Σ
⊤Σ)−1 = 1

∆t (Σ
−1Σ−⊤), and rewriting a = b̄∆t+∆W k−bθ∆t

and ā = b̄∆t+∆W k, we have

log p0(Xk+1|Xk)− log pbθ (Xk+1|Xk)

=
1

2∆t

[
−

(
Σā

)⊤(
Σ−1Σ−⊤)(Σā

)
+

(
Σa

)⊤(
Σ−1Σ−⊤)(Σa

)]
=

1

2∆t

[
− ā⊤

(
Σ⊤Σ−1Σ−⊤Σ

)
ā+ a⊤

(
Σ⊤Σ−1Σ−⊤Σ

)
a

]
=

1

2∆t

[
− ∥ā∥2 + ∥a∥2

]
=

1

2∆t

[
− ∥b̄∆t+∆W k∥2 + ∥b̄∆t+∆W k − bθ∆t∥2

]
=

1

2∆t

[
−∥b̄∆t+∆W k∥2 + ∥b̄∆t+∆W k∥2 − 2(bθ∆t)

(
b̄∆t+∆W k

)
+ ∥bθ∆t∥2

]
=

1

2∆t

[
−2(bθ · b̄)(∆t)2 − 2(bθ ·∆W k)∆t+ ∥bθ∥2(∆t)2

]
= −(bθ · b̄)∆t− (bθ ·∆W k) +

1

2
∥bθ∥2∆t (72)

Summing over all K steps and adding r(XK), we have
K−1∑
k=0

[
log pbθ (Xk+1|Xk)− log p0(Xk+1|Xk)

]
+ r(XK)

=
1

2

K−1∑
k=0

∥bθ(Xk)∥2∆t−
K−1∑
k=0

(bθ · b̄)(Xk)∆t−
K−1∑
k=0

bθ(Xk) ·∆W k + r(XK)︸ ︷︷ ︸
:=F̂bθ,b̄(X0:K)

(73)

Therefore, we can write F̂bθ,b̄(X0:K) equal to

F̂bθ,b̄(X0:K) =

K−1∑
k=0

log
p0(Xk+1|Xk)

pbθ (Xk+1|Xk)
+ r(XK) = log

(
p0(X0:K) exp(r(XK))

pbθ (X0:K)

)
(74)

where r(XK) := log πB(XK). □

D Cell Perturbation Experiment Details

D.1 Experiment Setup

Data Processing For this experiment, we extract the cell perturbation data from the Tahoe-100M
dataset consists of 50 cell lines and over 1000 different drug-dose conditions [Zhang et al., 2025b].
Specifically, we use data on a single cell line (A-549) under two drug perturbation conditions:
Clonidine at 5µM and Trametinib at 5µM . The initial distribution is defined as the DMSO-treated
control cells. Using centroid-based sampling, we obtain balanced training sets of 1033 cells per
cluster (Figure 5). We split the cells into training and validation sets with a 0.9/0.1 ratio. All final
visualizations are plotted with the first two principal components, but the cell state trajectories are
simulated for d ∈ {50, 100, 150} for Clonidine and d = 50 for Trametinib.

Table 3: Training cluster cell counts for perturbation experiments.

Clonidine Trametinib

Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 3

Original Cell Count 1675 1033 1622 686 381

Model Architecture To learn the dependencies across the n particles, we use Transformer blocks
to learn dependencies between the positions Rt ∈ Rn×d and velocities V t ∈ Rn×d in the system.
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Figure 5: Training and held-out cell clusters for the cell perturbation experiment. All cells are plotted with
the top 2 PCs. (A) Clonidine (5µL) perturbation data containing the initial DMSO-treated control cells (dark
blue), perturbed cluster for training (magenta), and held-out validation cluster (turquoise). (B) Trametinib (5µL)
perturbation data containing the initial DMSO-treated control cells (navy blue), the perturbed cluster for training
(purple), and two held-out perturbed clusters (magenta and turquoise).

The input to the model is the concatenated position and velocity vectors Cat(Rt,V t) ∈ Rn×6. The
architecture consists of an input projection layer that projects the input to dhidden = 256, a 4-layer
Transformer Encoder (gelu activation, feedforward dimension dff = 512, 8 attention heads, and
dropout 0.1), and two MLP decoder heads that predict the scaling factor αt(Rt,V t) and correction
vector hi

t(Rt,V t) per atom. To ensure positive scaling, the softplus activation is applied to the
output of the scalar MLP head. The correction vector is projected onto the orthogonal plane of the
vector pointing in the direction of the target ŝi, and the output bias force is the sum of the scaled
directional unit vector αi

θ(Rt,V t)ŝi and the projected correction vector (I − ŝiŝ
⊤
i )h

i
θ(Rt,V t).

Terminal Reward To solve the EntangledSB problem, we defined the terminal reward to be the
log-probability under the target density πB given by r(XT ) = log πB(RT ). We set the target density
as the Gaussian centered around RB with radius σ.

πB(RT ) =
1

(2πσ2)
d
2

exp

(
−∥RT −RB∥22

2σ2

)
(75)

Therefore, to train the bias force to reconstruct the input target state of a cell cluster RB ∈ Rn×d, we
define r : X → R as:

r(XT ) :=
−∥RT −RB∥22

2σ2
(76)

The specific values for σ are provided in Table 4.

Simulating Trajectories on the Data Manifold To define an energy landscape on the data manifold,
we use the RBF metric introduced in Kapuśniak et al. [2024], which is lower in magnitude when x is
within the support of the data manifold and larger in magnitude when x moves away from the support
of the dataset into sparse regions. First, we define the elements of a function hRBF

j that satisfies
hRBF
j (x) ≈ 1 on the data manifold as

hRBF
j (x) =

Nc∑
m=1

ωm,j(x) exp

(
−λm

2
∥x− x̂n∥2

)
(77)

λm =
1

2

(
κ

|Cm|
∑

x∈Cm

∥x− x̂m∥2
)−2

(78)
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where {ωm,j}Nc
m=1 for each cluster and each coordinate are learned given a dataset D to enforce

hRBF
j (x) ≈ 1 for all x ∈ D with the following loss function

LRBF({ωm,j}) =
∑
xi∈D

(1− hRBF
j (xi))

2 (79)

Then, we define the potential energy function of the base dynamics as

U(x) = −
d∑

j=1

log(Mj(x) + ε), where Mj(x) =
1

(hRBF
j (x) + ε)α

(80)

where Mj(x) is small in regions of high data density and large in regions of low data density. The
resulting force −∇xU(x) is used by the simulator as the natural-gradient step.

Hyperparameters We present the hyperparameters used for the cell perturbation modeling experi-
ment in Table 4. For each perturbation, we conducted ablations while keeping all other parameters
constant on: (1) using the log-variance divergence with the learnable control variate LLV described in
B.1 instead of the cross-entropy objective LCE and (2) removing the dependency on velocities as a
feature input to the bias force model bθ(Rt). The hyperparameters of the Transformer architecture
are given in App D.1 and are kept constant across all experiments. All models are trained with the
Adam optimizer [Kingma and Ba, 2014] with learning rate η = 0.0001. Due to the small batch sizes
used for training, we leverage the importance weights w⋆(X0:T ) for categorical sampling from the
replay bufferR as X0:T ∼ Cat(softmaxR(w⋆(X0:T ))) to mimic the effect of the reweighting in
the cross-entropy objective LCE over a larger batch size.

Table 4: Hyperparameter settings for cell perturbation experiment. The Clonidine perturbation experiment is
split into three columns for each of the three dimensions of principal components (PCs) used d ∈ {50, 100, 150}.

Parameter Clonidine Trametinib

50 PCs 100 PCs 150 PCs 50 PCs

number of rollouts Nrollouts 100 100 100 100
trains per rollout Nepochs 1000 1000 1000 1000
step size ∆t 0.01 0.01 0.01 0.01
total time steps T 100 100 100 100
number of samples M 64 64 64 64
number of particles n 16 16 16 16
batch size Nbatch 64 64 64 64
buffer size |R| 1000 1000 1000 1000
radius σ 0.1 0.1 0.1 0.1
friction γ 2.0 2.0 2.0 2.0
learning rate 0.0001 0.0001 0.0001 0.0001
RBF Nc 150 300 300 150
RBF κ 1.5 2.0 3.0 1.5

D.2 Evaluation Metrics

Maximum Mean Discrepency (RBF-MMD) We evaluate reconstruction accuracy of the target
distribution and the distribution simulated with EntangledSBM using MMD with the RBF kernel
(RBF-MMD) on all d principal components used during training. For Clonidine, we evaluate
d ∈ {50, 100, 150} and for Trametinib, we evaluate d = 50. Given the simulated endpoints of M
paths for M cell clusters {RT ∈ Rn×d}Mj=1 and the target states {RB ∈ Rn×d}Mℓ=1, the RBF-MMD
is calculated as

RBF-MMD =
1

M2

M∑
j=1

M∑
ℓ=1

kmix(R
j
T ,R

ℓ
T ) +

1

M2

M∑
j=1

M∑
ℓ=1

kmix(R
j
B,R

ℓ
B)−

2

M2

M∑
j=1

M∑
ℓ=1

kmix(R
j
T ,R

ℓ
B)

(81)

where we define the mixture of RBF kernel functions kmix(·, ·) as

kmix(R,R
′) =

1

|Σ|
∑
σ∈Σ

exp

(
−∥R−R′∥2

2σ2

)
(82)

for Σ = {0.01, 0.1, 1, 10, 100}.
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Figure 6: Energy landscapes for transition path sampling experiments. Potential energy plotted on dihedral
angles (ϕ, ψ) for Alanine Dipeptide and the top two TICA components for fast-folding proteins.

1-Wasserstein (W1) and 2-Wasserstein (W2) Distances We further compute the W1 and W2

distances for the top two PCs of the simulated endpoints of M paths for M cell clusters {RT ∈
Rn×d}Mj=1 which form the predicted distribution πT and the full distribution that the target states are
sampled from πB since theW1 andW2 distances can be calculated for a pair of distributions with
different sizes. Concretely, theW1 andW2 distances are calculated as

W1 =

(
min

π∈Π(πT ,πB)

∫
∥RT −RB∥2dπ(RT ,RB)

)
(83)

W2 =

(
min

π∈Π(πT ,πB)

∫
∥RT −RB∥22dπ(RT ,RB)

)1/2

(84)

which quantify the minimal effort required to transform the simulated endpoint distribution into
the true target distribution, demonstrating the ability of the model to capture the true perturbation
dynamics.

E Transition Path Sampling Experiment Details

E.1 Experiment Setup

Model Architecture We use the same model architecture as the cell perturbation experiment
described in Sec D, with the addition of Kabsch alignment [Kabsch, 1976]. We define the aligned
frame as the frame of the target coordinates and align the input positions and velocities of the heavy
atoms (non-hydrogen atoms) to the aligned frame. The model then predicts the optimal bias force in
the aligned frame, which we transform back to the original frame of the input positions.

Terminal Reward Following the cell perturbation experiment, given the coordinates of a single
target state RB, we define πB as the log-probability under the target Gaussian centered around the
coordinates of RB with radius σ:

r(XT ) := exp

(
−∥RT −RB∥22

2σ2

)
(85)

The specific values for σ are provided in Table 5.

Molecular Dynamics Setup We closely follow the setup in [Seong et al., 2025]. To simulate the
position and velocity via the Langevin SDEs, we use the Velocity-Verlet with Velocity Randomization
(VVVR) integrator [Sivak et al., 2014] in OpenMM [Eastman et al., 2017] that updates the state
with a velocity-Verlet step for the deterministic forces and a stochastic Ornstein-Uhlenbeck step
that randomizes velocities. We set the friction parameter to γ = 1ps−1 and the time step size to
∆t = 1fs for a total time horizon of T = 1000fs for Alanine Dipeptide and T = 5000fs for the
fast-folding proteins. Following [Seong et al., 2025], we leverage temperature annealing with a
starting temperature of τstart = 600K and a final temperature of τend = 300K for Alanine Dipeptide
and Chignolin and τend = 400K for the remaining fast-folding proteins.

To simulate the unconditional dynamics following the potential energy landscape U(Rt) visualized
in Fig. 6 and the corresponding force field F = −∇Rt

U(Rt), we use the AMBER99SB force field
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with the ILDN side-chain torsion corrections (amber99sbildn) force field [Lindorff-Larsen et al.,
2010] for Alanine Dipeptide in a vacuum and the ff14SBonlysc forcefield [Maier et al., 2015]
paired with the gbn2 solvation model [Nguyen et al., 2013] for the fast-folding proteins.

Hyperparameters We present the hyperparameters used for the TPS experiment in Table 5. The
hyperparameters of the Transformer architecture are given in App D.1 and are kept constant across all
experiments. We run the benchmark against TPS-DPS [Seong et al., 2025] with the hyperparameters
below to ensure fair comparison. All models are trained with the Adam optimizer [Kingma and Ba,
2014] with learning rate η = 1× 10−4.

Table 5: Hyperparameter settings for transition path sampling experiment. The setup follows that of Seong
et al. [2025] to ensure fair comparison.

Parameter Task

Alanine Dipeptide Chignolin Trp-cage BBA

number of rollouts Nrollouts 100 100 100 100
trains per rollout Nepochs 1000 1000 1000 1000
step size ∆t 1fs 1fs 1fs 1fs
total time steps T 1000 5000 5000 5000
number of samples M 64 64 64 64
number of particles n 22 138 284 504
batch size Nbatch 16 1 1 1
buffer size |R| 1000 100 100 100
starting temperature (Kelvin) 600 600 600 600
ending temperature (Kelvin) 300 300 400 400
radius σ 0.1 0.5 0.5 0.5
friction γ 0.001 0.001 0.001 0.001
learning rate 0.0001 0.0001 0.0001 0.0001

E.2 Evaluation Metrics

We follow the evaluations of [Seong et al., 2025, Holdijk et al., 2023] and report three metrics: Root
Mean Square Distance (RMSD), Target Hit Percentage (THP), and Energy of Transition State (ETS).

Root Mean Square Distance (RMSD) RMSD (↓) measures the distance between the heavy atoms
(non-hydrogen atoms) of the final position of the system at time RT and the target position RB.
To align the coordinate frames, we use the Kabsch algorithm [Kabsch, 1976], which determines
the optimal rotation and translation such that two pairs of heavy atoms are aligned. The mean and
standard deviation across the hits for M paths are reported.

Target Hit Percentage (THP) THP (↑) measures the percentage of the total trajectories where the
final position RT reaches the vicinity of the target state RB. Specifically, we consider a hit when the
two backbone dihedral angles (ϕ, ψ) for Alanine Dipeptide or the first two TICA components for the
fast-folding proteins (Chignolin, Trp-cage, BBA), denoted ξ(R), are within the 0.75-radius sphere
around the target defined as πB = {R | ∥ξ(R)− ξ(RB)∥ < 0.75}. For M total paths, the THP is
calculated as

THP =

∑M
i=1 1[R

i
T ∈ πB]

M
(86)

Energy of Transition State (ETS) ETS (↓) measures the maximum potential energy returned by
U : X → R along the discrete transition path R0:K in kJmol−1. It is calculated for the trajectories
that reach the vicinity of the target state RT ∈ πB and is classified as a hit by the THP metric.

ETS(R0:K) = max
k∈{1,...K}

U(Rk) (87)

The mean and standard deviation across the hits for M paths are reported.
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F Comparison to Log-Variance Divergence

In this section, we discuss the intuition behind the differences in cell state trajectories generated with
the cross-entropy (CE) objective and log-variance (LV) objective for Clonidine, as shown in Fig. 7
and Table 6, and Trametinib as shown in Fig. 8 and Table 7.

We observe that the log-variance (LV) objective fails to accurately simulate the intermediate dynamics
of cells following perturbation and generates nearly straight, abrupt trajectories connecting the
initial and terminal populations. The trajectories generated from the LV-trained bias forces ignore
the gradual, curved progression of cell states through intermediate data manifolds, in contrast to
the trajectories generated from the cross-entropy (CE)-trained bias forces (Fig. 7, 8). While the
LV-objective accurately reconstructs the target cell distribution, it fails to reconstruct the intermediate
dynamics that arise from nonlinear coupling between position and velocity fields after perturbation
(Tables 6, 7).

While the LV objective aims to make the log–likelihood ratio log dP⋆

dPbθ
(X0:T ) constant in expectation

to minimize the variance, it is easiest to only maximize the terminal reward r(XT ) rather than
intermediate path alignment with P0. In contrast, the CE objective is defined as the KL-divergence
DKL(P⋆∥Pbθ ) which expands into a path-integral action term 1

2

∫ T

0
∥bθ(Rt,V t)∥2dt using Gir-

sanov’s theorem. This explicitly regularizes the whole trajectory, rewarding gradual, smooth transport
through intermediate states.

Figure 7: Full visualization of simulated cell cluster dynamics with EntangledSBM under Clonidine
perturbation. Nearest neighbour cell clusters with n = 16 cells are simulated over 100 time steps. The
gradient indicates the evolution of timesteps from the initial time t = 0 (navy) to the final time t = T (purple or
turquoise). 50 PCs simulated to (A) trained target distribution and (B) unseen target. 100 PCs simulated to (C)
trained target distribution and (D) unseen target. 150 PCs simulated to (E) trained target distribution and (F)
unseen target.
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Figure 8: Full visualization of simulated cell cluster dynamics with EntangledSBM under Trametinib
perturbation. All trajectories generated for d = 50 PCs. Nearest neighbour cell clusters with n = 16 cells
are simulated over 100 time steps. The gradient indicates the evolution of timesteps from the initial time t = 0
(navy) to the final time t = T (purple, turquoise, or magenta). (A) Base dynamics with no bias force. Dynamics
with base and learned bias force trained with (B) no velocity conditioning, (C) log-variance (LV) objective, and
(D) cross-entropy objective to the trained target distribution and two unseen target distributions.

Table 6: Full comparisons for simulating cell cluster dynamics under Clonidine perturbation with En-
tangledSBM. We report RBF-MMD for all d PCs with the target cluster and W1 and W2 distances of top 2
PCs against the full distribution of the perturbed cells for the seen and unseen populations after 100 simulation
steps and cluster size set to n = 16. Mean and standard deviation of metrics from 5 independent simulations
are reported. Comparisons include the base dynamics, without velocity conditioning, and EntangledSBM with
the log-variance (LV) objective instead of cross-entropy (CE) for increasing principal component dimensions
d = {50, 100, 150}.

Seen Target Distribution Unseen Target Distribution

Model RBF-MMD (↓) W1 (↓) W2 (↓) RBF-MMD (↓) W1 (↓) W2 (↓)

Base Dynamics (50 PCs) 0.677±0.001 5.947±0.005 6.015±0.005 0.784±0.001 8.217±0.005 8.384±0.005

EntangledSBM w/o Velocity Conditioning
50 PCs 0.440±0.000 1.741±0.003 1.857±0.004 0.478±0.000 2.907±0.006 3.022±0.006

100 PCs 0.494±0.000 2.315±0.004 2.423±0.004 0.539±0.000 4.110±0.004 4.249±0.003

150 PCs 0.510±0.000 2.497±0.006 2.620±0.006 0.560±0.000 4.573±0.006 4.716±0.007

EntangledSBM w/ LV
50 PCs 0.294±0.000 0.205±0.001 0.285±0.001 0.290±0.000 0.230±0.001 0.382±0.001

100 PCs 0.330±0.000 0.277±0.001 0.332±0.001 0.346±0.000 0.358±0.001 0.492±0.001

150 PCs 0.323±0.000 0.128±0.001 0.278±0.000 0.327±0.000 0.193±0.001 0.425±0.001

EntangledSBM w/ CE
50 PCs 0.401±0.000 0.342±0.002 0.400±0.001 0.419±0.000 0.538±0.013 0.705±0.030

100 PCs 0.455±0.000 0.953±0.025 1.015±0.025 0.500±0.001 0.899±0.006 1.055±0.008

150 PCs 0.478±0.000 0.753±0.008 0.826±0.007 0.506±0.000 0.700±0.009 0.811±0.011
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Table 7: Full comparisons for simulating cell cluster dynamics under Trametinib perturbation with Entan-
gledSBM. We report RBF-MMD for all d = 50 PCs with the target cluster and W1 and W2 distances of top 2
PCs against the full distribution of the perturbed cells for the seen and unseen populations after 100 simulation
steps and cluster size set to n = 16. Mean and standard deviation of metrics from 5 independent simulations are
reported. Comparisons include the base dynamics, without velocity conditioning, and EntangledSBM with the
log-variance (LV) objective instead of cross-entropy (CE).

Seen Target Distribution Unseen Target Distribution 1 Unseen Target Distribution 2

Method RBF-MMD (↓) W1 (↓) W2 (↓) RBF-MMD (↓) W1 (↓) W2 (↓) RBF-MMD (↓) W1 (↓) W2 (↓)

Base Dynamics 0.938±0.001 7.637±0.005 7.653±0.006 0.900±0.000 7.766±0.009 7.877±0.009 0.754±0.001 1.201±0.009 1.455±0.012

EntangledSBM w/o Velocity Conditioning 0.449±0.000 1.506±0.005 1.544±0.005 0.476±0.000 2.116±0.005 2.197±0.005 0.480±0.000 0.505±0.004 0.627±0.005

EntangledSBM w/ LV 0.308±0.000 0.175±0.002 0.256±0.001 0.302±0.000 0.340±0.001 0.565±0.000 0.312±0.000 0.198±0.001 0.321±0.001

EntangledSBM w/ CE 0.428±0.000 0.392±0.005 0.434±0.006 0.409±0.000 0.453±0.008 0.561±0.009 0.451±0.000 0.394±0.003 0.469±0.004

G Algorithms

Here, we provide the pseudocode for training (Alg 2) and inference (Alg 3) with EntangledSBM.

Algorithm 2 EntangledSBM Training

1: Input: Parameterized networks αθ(Rt,V t) : Rn×d × Rn×d → Rn and hθ(Rt,V t) : Rn×d ×
Rn×d → Rn×d, potential energy function U(Rt) : Rn×d → R, distribution of target states πB,
buffer size |R|, batch size Nbatch, number of samples M , number of rollouts Nrollouts, training
steps per rollout Nsteps, number of timesteps T

2: ∆t← 1
T

3: R ← {} ▷ Initialize empty replay buffer
4: for rollout in 1, . . . , Nrollouts do
5: for t in 1, . . . , T do
6: Predict αi

θ(Rt,V t) ∈ R and hi
θ(Rt,V t) ∈ Rd with parameterized neural network

where αi
θ(Rt,V t) ≥ 0 is enforced with softplus activation

7: si ← ∇ri
t
log πB, ŝi ← si/∥si∥

8: Compute bias force

biθ(Rt,V t)← αi
θ(Rt,V t)ŝi +

(
I − ŝiŝ

⊤
i

)
hi
θ(Rt,V t)

9: Generate M discrete trajectories {X0:T }Mj=1 with current bias biθ following (6) with
Euler-Maruyama integration for each particle i

rit+1 = rit + vi
t(Rt)∆t+Σbiθ(Rt,V t)∆t+Σϵt

10: end for
11: B ← B ∪ {X0:T }Mj=1 ▷ update buffer with discrete trajectories
12: for step in 1, . . . , Nsteps do
13: Sample batch {X0:T }Nbatch

j=1 from bufferR
14: Compute cross-entropy objective LCE with (13)
15: Update θ with ∇θLCE
16: end for
17: end for
18: return parameterized αi

θ(Rt,V t) and hi
θ(Rt,V t)
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Algorithm 3 EntangledSBM Inference

1: Input: Trained networks αi
θ(Rt,V t) and hi

θ(Rt,V t), potential energy function U(Rt), initial
state X0 = (R0,V 0), target state XT = (RT ,V T ), time steps T , friction γ

2: ∆t← 1
T ,Rt ← R0, V t ← V 0

3: P ← {} ▷ initialize path
4: for t in 0, . . . , T do
5: Predict αi

θ(Rt,V t) and hi
θ(Rt,V t) with parameterized neural network where

αi
θ(Rt,V t) ≥ 0 is enforced with softplus activation

6: si ← ∇ri
t
log πB, ŝi ← si/∥si∥

7: Compute bias force

biθ(Rt,V t)← αi
θ(Rt,V t)ŝi +

(
I − ŝiŝ

⊤
i

)
hi
θ(Rt,V t)

8: Generate M discrete trajectories {X0:T }Mj=1 with current bias biθ following (6) with Euler-
Maruyama integration for each particle i

rit+1 = rit + vi
t(Rt)∆t+Σbiθ(Rt,V t)∆t+Σϵt

9: Append to path P ← P ∪ {Rt}
10: end for
11: return path P
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