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Abstract

We consider the task of generating diverse and re-
alistic videos guided by natural audio samples
from a wide variety of semantic classes. For
this task, the videos are required to be aligned
both globally and temporally with the input au-
dio: globally, the input audio is semantically as-
sociated with the entire output video, and tempo-
rally, each segment of the input audio is associated
with a corresponding segment of that video. We
utilize an existing text-conditioned video genera-
tion model and a pre-trained audio encoder model.
The proposed method is based on a lightweight
adaptor network, which learns to map the audio-
based representation to the input representation
expected by the text-to-video generation model.
As such, it also enables video generation condi-
tioned on text and audio and, for the first time, on
both text and audio. We extensively validate our
method on three datasets demonstrating signifi-
cant semantic diversity of audio-video samples.
We further propose a novel evaluation metric (AV-
Align) to assess the alignment of generated videos
with input audio samples. AV-Align is based on
detecting and comparing energy peaks in both
modalities. Compared to recent state-of-the-art
approaches, our method generates videos that are
better aligned with the input sound, both for the
content and temporal axis. We also show that
videos produced by our method present higher
visual quality and are more diverse.

1. Introduction

Neural generative models have changed the way we cre-
ate and consume digital content. From generating high-
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Figure 1. Generated video frames (above) and input audio signal
(below the frames) employing our technique. The input to our
model is an audio recording from which a representation is ex-
tracted. This representation maintains crucial temporal attributes
and is then mapped into a text-based latent space representation
incorporating both local and global audio context. Subsequently,
this latent representation is fed into a pre-trained text-to-video
diffusion generative model, ensuring the synchronized generation
of video which is closely aligned with the input audio.

quality images and videos (Ho et al., 2020; Rombach et al.,
2022), speech and audio (Wang et al., 2023a; Sheffer & Adi,
2023; Copet et al., 2023; Kreuk et al., 2022; Hassid et al.,
2023), through generating long textual spans (Touvron et al.,
2023a;b; Brown et al., 2020), these models have shown
impressive results.

In the context of video generation, progress has been more
elusive, with recent work making progress in generating
short videos conditioned on text (Singer et al., 2022; Ho
et al., 2022). Although audio is tightly connected to videos
(e.g., providing important cues for motion in a scene), most
of the prior work did not consider audio in the generation
process. For instance, the action of ‘playing drums’ or the
‘motion of waves’ can be distinctively associated with a
naturally occurring sound. Moreover, audio is comprised
of structural components such as pitch and envelope that
provide important cues for the type of scene and motion
depicted.

We tackle the problem of generating diverse and realistic
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videos guided by natural audio samples. Our generated
videos capture diverse and real-life settings from various se-
mantic classes and are aligned globally and temporally with
the input audio. Globally, the input audio is semantically
associated with the entire output video, and temporally, each
segment of the input audio is associated with a correspond-
ing segment of that video. An example generation video
can be seen in Figure 1.

Prior work on audio-guided video generation was mainly
focused on either global information in the videos (i.e., cap-
turing the semantic class) or specific scenes (e.g., speech).
(Mama et al., 2021; Park et al., 2022; Kumar et al., 2020)
generate talking heads conditioned on speech, but these are
limited to videos of human faces and are conditioned on
speech and not natural audio. More closely related to our
setting, given an input video and an audio sample, Chatter-
jee & Cherian (2020) generate a continuation of the video
that is aligned with the audio. Our method, however, gen-
erates videos from audio-only. Ge et al. (2022) proposed a
method for generating aligned videos conditioned on audio.
While impressive, generated videos are highly limited in
diversity. Other works such as Chen et al. (2017); Hao et al.
(2022); Ruan et al. (2023) generate videos that are globally
aligned to the semantic class of the input audio sample (e.g.,
dancing, drums, etc.) but are unable to generate videos in
which every segment is temporally aligned to each segment
in the input audio sample.

In contrast to the above methods, our approach enables the
generation of diverse and realistic videos associated and
aligned with the input audio from a wide variety of semantic
classes. Our work utilizes a pre-trained text-conditioned
video generation engine and converts the input audio to a
sequence of pseudo tokens. Given an input audio sample,
we first encode it using an audio encoder, producing a latent
representation of the audio signal. To capture local-to-global
information, we construct the representation considering the
i-th segment and neighboring segments. In particular, we
use windows of varying sizes and average the embeddings
corresponding to audio segments in these windows. Next, to
produce the N-th video frame, we divide the audio embed-
ding into N consecutive segments. We then train an adapter
network to map these segments to a set of pseudo-tokens.
Lastly, to produce the corresponding video, we feed the
output of the audio mapping module into the pre-trained
text-to-video generation model.

Intuitively, we learn a mapping between the audio repre-
sentation obtained by the pre-trained audio encoder, to the
textual tokens’ representation used for conditioning the pre-
trained text-to-video model. By that, video conditioning can
be extended to audio tokens. To validate our approach, we
consider a number of datasets that exhibit a diverse set of
videos and input audio samples. We consider the Landscape

dataset (Lee et al., 2022), which captures landscape videos.
The AudioSet-Drums dataset (Gemmeke et al., 2017) which
captures drums videos, and the VGGSound dataset (Chen
et al., 2020) which consists of a diverse set of real-world
videos from 309 different semantic classes.

We compare our method to state-of-the-art approaches, both
in terms of objective evaluation and human study. We eval-
uate the audio-video alignment as well as video quality
and diversity. To capture temporal alignment, we devise a
new metric based on detecting energy peaks in both modali-
ties separately and measuring their alignment. Further, we
provide an ablation study where we consider alternative
approaches to condition the video model.

Our contributions: (i) A state-of-the-art audio-to-video
generation model that captures diverse and naturally occur-
ring real-life settings from a wide variety of input videos of
different semantic classes; (ii) We present a method that is
based on a lightweight adapter, which learns to map audio-
based tokens to pseudo-text tokens. As such, it also allows
video generation conditioned on text, audio, or both text
and audio. As far as we are aware, our method is the first to
enable video generation conditioned both on audio and text;
and (iii) Our method can generate natural videos aligned
with the input sound, both globally and temporally. To vali-
date this, we present a novel evaluation function to measure
audio-video alignment. Since, as far as we can ascertain, we
are the first to generate diverse and natural videos guided
by audio inputs, such an evaluation function is critical to
making progress in the field.

2. Related Work

Audio-to-image generation. Text-to-image generation
has seen great advances recently, using either autoregres-
sive methods (Ramesh et al., 2021; Gafni et al., 2022; Yu
et al., 2022) or diffusion based models (Nichol et al., 2022;
Ramesh et al., 2022; Saharia et al., 2022; Rombach et al.,
2022; Ramesh et al., 2022; Rombach et al., 2022). This
inspired a new line of work concerning audio-to-image gen-
eration. Zelaszczyk & Mandziuk (2022); Wan et al. (2019)
proposed to generate images based on audio recordings us-
ing a GANZelaszczyk & Mandziuk (2022). Zelaszczyk
& Mardziuk (2022) present results for generating MNIST
digits only and did not generalize to general audio sounds,
while Wan et al. (2019) generate images from general au-
dio. In Wav2Clip Wu et al. (2022b), the authors learn a
Contrastive Language-Image Pre-Training (CLIP) (Radford
et al., 2021) like a model for learning joint representation
for audio-image pairs. Later on, such representation can be
used to generate images using VQ-GAN (Esser et al., 2021)
under the VQ-GAN CLIP (Crowson et al., 2022) framework.
The most relevant related work to ours is AudioToken (Yariv
et al., 2023), in which the authors learn an audio token while
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Figure 2. An illustration of the proposed model architecture and method. The input audio is first passed through a pre-trained audio
encoder model (BEATS). Then, the resulting representations are fed into a trainable MLP layer, establishing a mapping between audio and
text tokens. These text-based representations are then used to condition each frame via a temporal audio-conditioned sequence. This
sequence effectively takes into account both local and global audio segments. Furthermore, an attentive token (Gauen) is included to learn
the identification of significant audio signals using a pooling attention layer. Lastly, the conditioned components are utilized to generate
frames through a pre-trained video generator. Notably, optimization is only applied to the MLP within the AudioMapper model and the

pooling attention module.

adapting a diffusion-based text-to-image model to generate
images using audio inputs.

Text-to-video generation. Early attempts to establish a
connection between text and video relied on conditioned
retrieval methods (Ali et al., 2022). Later, Wu et al. (2021)
introduces the novel integration of 2D VQVAE and sparse
attention in a text-to-video generation, facilitating the gen-
eration of highly realistic scenes. Wu et al. (2022a) ex-
tends GODIVA and presents a unified representation for
various generation tasks in a multitask learning scheme.
Later on, CogVideo (Hong et al., 2022) is built on top of a
frozen text-to-image model by adding additional temporal
attention modules. Singer et al. (2022) further improves
generation quality following a similar modeling paradigm.
Video Diffusion Models (He et al., 2022) uses a space-time
factorized U-Net with joint image and video data training.
Other approaches, such as Villegas et al. (2022) and Villegas
et al. (2022) and (Yu et al., 2023) proposed transformer-
based approaches to generate long videos or for multi-task-
learning. The most relevant prior work to ours is Wang et al.
(2023b), which proposed ModelScope. ModelScope is a
latent diffusion-based text-to-video generation model with
spatiotemporal blocks. By that, ModelScope enables con-
sistent frame generation and smooth movement transitions.

Audio-to-video generation models can be roughly divided
into two: (i) speech-to-video generation (talking heads);
and (ii) general audio-to-video. Under the speech-to-video
generation, Mama et al. (2021) proposed learning a discrete
latent representation of the video signal using VQ-VAE,
which will be later modeled via an auto-encoder conditioned
on speech spectrogram. Park et al. (2022) generates talking

face focusing a piece of phonetic information via Audio-Lip
Memory module, while (Kumar et al., 2020) proposed a
one-shot approach for fast speaker adaptation.

When considering general audio-to-video generation, Chat-
terjee & Cherian (2020) first proposed a method of gener-
ating aligned videos conditioned on both audio and video
prompts. Ge et al. (2022) introduced a transformer-based ap-
proach for generating videos conditioned on either audio or
textual features. Although providing impressive generations,
their videos are not diverse and were demonstrated on drum
generation only. Chen et al. (2017) suggest using separate
frameworks for audio-to-image and image-to-audio genera-
tion. Hao et al. (2022) also suggest modeling both audio-to-
image and image-to-audio using bidirectional transformers,
however, using a unified framework. The authors prove it
is better than two separate ones. Lastly, Ruan et al. (2023),
follows the same modeling paradigm, however, using latent
diffusion models.

3. Method

The proposed method is composed of three main compo-
nents: (i) an AudioMapper, (ii) multiple audio-conditioned
temporal sequences, and (iii) a text-to-video generation mod-
ule. As our goal in this study is to enrich video genera-
tion models using audio inputs, we leverage a pre-trained
diffusion-based text-to-video model and augment it with
audio conditioning capabilities. A visual description of the
proposed method can be seen in Figure 2.

In contrast to converting audio to image, transforming audio
to video presents two additional challenges: (i) ensuring
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the creation of coherent frames and (ii) synchronization
between the audio and video components. For example,
consider the scenario of having an audio recording of a dog
barking. In the resulting video, it is crucial not only for the
dog’s appearance to remain consistent across all frames but
also for the match between the timing of the barking sound
and the dog’s motion. In this work, we focus on item (ii)
by temporally conditioning the generation of each of the
video frames by a contextualized representation of the input
audio.

Formally, we are interested in the generation of a video,
denoted as v = (v(V), ..., v1)), where v(®) ¢ R3*HxW
is an output frame, driven by a corresponding audio con-
dition @ = (ay,...,ag), where a; € [—1,1] is an audio
sample at a given sampling rate in the time domain. We
seek to establish a conditional probabilistic model, pg(v]a),
encompassing the entire frame-set, where each frame v(*) is
conditioned on a, which denotes the audio condition.

Note that the conditioning of each frame considers the entire
audio input but is built differently for each frame. More
details can be found in the paragraph on Audio-conditioned
temporal sequence.

AudioMapper maps the audio representation obtained from
a pre-trained audio encoder to pseudo-tokens compatible
with the pre-trained text-to-video model. We denote the
output of the AudioMapper as TEMPOTOKENS.

Formally, the model gets as input embedded audio, which
originates from a pre-trained audio encoder h : [—1,1]% —
RE'*Hxd \where H is the number of layers the represen-
tation is collected from, d is the inner dimension of the
encoder, and R’ is the segment length that h operates on.
To force both audio and video latent representations to have
the same dimension, we fix R' = L by employing a pooling
layer. Specifically, we use the BEATs model (Chen et al.,
2022) as the audio encoder h. Different layers encapsu-
late a range of specificity levels. Representations derived
from BEATS’ final layers are strongly tied to class-related
attributes, whereas earlier layers encompass low-level audio
features (Gat et al., 2022; Adi et al., 2019). We embed an
audio segment into a token representation using a non-linear
neural network g : REXH*d _y REXHxd:.

i =g (h(a)@) : 1)

where a(9) € REXHXd: and d, is the embedding dimension
of the text-conditioned tokens of the video generation pro-
cess. The network g consists of four sequential linear layers
with GELU non-linearity between them. We denote a(?)
as TEMPOTOKENS. Subsequently, we generate a temporal
conditioning sequence for each video frame using TEMPO-
TOKENS. We provide a detailed description of the process
in the following paragraph.

Audio-conditioned temporal sequence. Next, to better
capture the local context around each video frame, we apply
an expanding context window technique over the obtained
TEMPOTOKENS. This approach captures the surrounding
sound signals of the ¢-th frame as follows:

i ~ . k log K
C( ) = (amax(l,ifj),min(i+j,l() |.] =2 )k:O ) )
where
. LN
apr = m Za . 3)
s=l

This context window expands exponentially with increas-
ing temporal distance from the target position, facilitat-
ing consideration of a wider local-to-global audio context
range. The exponential expansion effectively balances local
and global contexts, encompassing important distant au-
dio components that can provide valuable insights into the
audio class and close temporal changes needed for audio-
video alignment. Figure 3 visually describes the audio-
conditioned temporal sequence. Finally, we consider a con-
text window that encompasses all audio signals. We sub-
stitute average operation with a trainable attentive pooling
layer (Schwartz et al., 2019). Thus,

L
aten = Y _ p(u)a™, “
u=1

where p(u)>0 Vu is a probability distribution (i.e.,
25=1 p(u) = 1) over the audio components. The prob-
ability distribution takes the form:

p(u) x exp (b (u) + acb.(u)). 5)

The local potential is 6;(u) = v;" relu(V,a,), and the cross
potential between the audio components is:

T

) ) »
- Wia Waa”
90(“)_Z<(||Wla(u>||) (HWzd(“l))' “

i=1

The trainable parameters are (i) V;, Wy, W5, which re-
embed the data to tune the attention, (i) v; € R(Z-H de)x1
that scores the sound component (iii) oy, o that calibrates
the local and cross potentials. The attention mechanism
enables learning the significance of the audio components.

Text-to-video. Lastly, we leverage a pre-trained latent diffu-
sion text-to-video model to learn the aforementioned tem-
poral audio tokens, ¢ = {cM}£_ .

Diffusion models are a family of generative models designed
to learn the data distribution p(z). This is done by learning
the reverse Markov process of length 7'. Given a timestamp
t € [0,1], the denoising function €5 : R — R? learns to
predict a clean version of the perturbed x; from the training
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Figure 3. Illustration of the audio-conditioned temporal sequence for the case of 24 audio components. For the ¢-th frame, the window
sizes grow exponentially, considering local audio details to aid in aligning audio and video, as well as the broader global information that
enhances the differentiation of video classes. Additionally, we introduce a token that encompasses all audio components and identifies the

significant ones through an attention pooling layer (Gaien)-

distribution. The generative process can be conditioned on
a given input, i.e., modeling p(x|y) where y is a COl’ldlthIl
vector. In that case, the objective function is Loipm £
E(v,0)~ 8.t~ (0,1~ (0,1) |l = €0(f (v, 0) B3], (D)
where each video frame, (@ , 1s conditioned on a dedicated
condition vector ¢(*).

Specifically, in this work, we set €y to be a state-of-the-art
text-to-video model, ModelScope, which is comprised of
a 3D-UNet integrated with a temporal attention layer as
outlined in Wang et al. (2023b). ModelScope was trained
on ~10M text-video pairs and ~2B text-image pairs (Wang
et al., 2023b). Notice that the proposed framework is not
limited to ModelScope and can be used for any differen-
tiable text-to-video model.

Model optimization. We optimize the AudioMapper and
the attentive pooling layer only and backpropagate gradients
through €y while keeping its parameters unchanged. Op-
timization minimizes the loss Lcppm for reconstructing a
frame v(*) conditioned on ¢(*) (see Equation (7)), with an
added weight decay regularization for the encoded TEMPO-
TOKENS. Overall, we optimize the following loss function:

log L

L = Lcipm + Z (8)

where \;, is a trade-off hyper-parameter between the loss
term and the regularization.

4. Evaluation Metrics

We evaluate our method on three main axes: video quality
and diversity, audio-video alignment, and a human study.

Video quality and diversity. We report standard evaluation
metrics in the domain of video generation for assessing
quality and diversity. We utilize the following metrics: (i)
Frechet Video Distance (FVD) metric, which quantifies the
visual disparity between feature embeddings extracted from

generated and reference videos (Unterthiner et al., 2019)
and is used to assess quality and diversity; (ii) Inception
Score (IS), which is computed with a trained C3D model
(Tran et al. (2015)) on UCF-101 (Soomro et al., 2012) and
assesses video quality.

Audio-video alignment. We distinguish between two types
of audio-video alignment: (i) Semantic (or global) align-
ment, in which the semantic class (e.g., playing drums) of
the input audio is depicted by the output video (e.g., a video
of people playing drums). To this end, we consider the
CLIP Similarity (CLIPSIM) metric (Wu et al., 2021), which
gauges the alignment between generated video content and
its corresponding audio label; (ii) Temporal alignment, in
which we consider if each input audio segment is synchro-
nized with its corresponding generated video segment. To
measure this type of alignment, we introduce a novel evalu-
ation metric.

The new metric is based on detecting energy peaks in both
modalities separately and measuring their alignment. The
premise behind this metric is that fast temporal energy
changes in the audio signal often correspond to an object
movement producing this sound. For instance, consider an
audio waveform of fireworks. A successful audio-video tem-
poral alignment would ensure that the video frames portray-
ing the fireworks exhibit a noticeable change synchronously.
Conversely, when the video exhibits a significant change, a
corresponding peak should be observed in the audio wave-
form at that precise moment.

Our audio-video alignment metric operates as follows. We
first detect candidate alignment points by considering each
modality separately. We detect audio peaks using an Onset
Detection algorithm (Bock & Widmer, 2013), pinpointing
instances of heightened auditory intensity. To detect the
changes within the video, we calculate the mean of the
Optical Flow (Horn & Schunck, 1981) magnitude for each
frame and identify rapid changes over time. Then, for each
peak in one modality, we validate whether a pick was also
detected in the other modality within a three-frame temporal
window and vice-versa.
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Figure 4. Audio-Video alignment metric illustration. The first row
presents four frames from a generated video featuring a dog. The
second row depicts the mean magnitude of optical flow for each
frame, capturing video changes. The bottom row shows the ampli-
tude of the audio waveform. The vertical line in the middle and the
bottom graphs marks the onset of the waveform, while the peak of
video change is also indicated.

Finally, we normalize by the number of peaks to derive
the alignment score ranging between zero and one. Such
a metric reflects the model’s proficiency in synchronizing
audio and video. More formally, given A and V), audio
and video peaks were obtained from the onset detection
algorithms and optical flow, respectively. The alignment
score is defined as:

AV-Align = m (Z laeV]|+ ) 1ve A]) :

acA veEY

where we consider a valid peak if placed within a window
of three frames in the other modality. The above metric can
be interpreted as the Intersection-over-Union metric.

To facilitate comprehension, Figure 4 illustrates the align-
ment process visually, depicting audio peaks and corre-
sponding video changes, emphasizing the interplay between
the auditory and visual domains.

Human study. We perform Mean Opinion Scores (MOS)
experiments considering both quality and audio-video align-
ment. In this setup, human raters are presented with several
short video samples and are instructed to evaluate their qual-
ity and alignment on a scale between 1-5 with increments
of 1.0. Specifically, we ask raters to evaluate the videos
considering overall quality, global alignment to the audio
file, and local alignment between the visual and sound of the
video files. We evaluate 20 videos per method and enforce
ten raters per sample. The full questionnaire we asked the
raters can be found in the supplemental material.

€))

Model FVD () CLIPSIM (1) IS (1) AV-Align (1)
VGGSound
ModelScope Text2Vid 801 0.69 15.55 0.27
ModelScope Random 1023 0.47 6.32 0.26
Ours 923 0.57 11.04 0.35
AudioSet-Drums
TATS 303 0.69 2.10 0.28
Ours 299 0.70 2.78 0.61
Landscape
MM-Diffusion 922 0.53 2.85 0.41
Ours 784 0.57 4.49 0.54

Table 1. Automatic video generation results. We report FVD,
CLIPSIM, IS, and Alignment (‘align’) scores for both the pro-
posed method (Ours) and the baselines. For a fair comparison,
we compare our method to TATS (Ge et al., 2022) and to MM-
Diffusion (Ruan et al., 2023) using the benchmarks reported by
the authors in the original paper.

5. Experimental Setup

Implementation details. The proposed method contains
~35M trainable parameters. We optimized the model us-
ing two A6000 GPUs for 10K iterations. We use AdamW
optimizer with learning rate of 1e-05 using constant learn-
ing rate scheduler. Each batch comprises 8 videos with 24
frames per video, sampled randomly for one-second granu-
larity. To enhance training efficiency and mitigate memory
consumption, we integrated gradient checkpointing into the
training process of the 3D U-net architecture. Code and pre-
trained models will be publicly available upon acceptance.

Datasets. We utilize the VGGSound dataset (Chen et al.,
2020), derived from YouTube videos containing ~180K
clips of 10 seconds duration, annotated across 309 classes.
To enhance data quality, we filtered ~60K videos in which
audio-video alignment is weak. During this filtering proce-
dure, we utilized a pre-trained audio classifier to categorize
sound events present in each clip. Simultaneously, a pre-
trained image classifier was employed to classify the middle
frame of every video clip. We then computed the CLIP (Rad-
ford et al., 2021) score by comparing the predicted labels
from both classifiers. Then, filtering is done by removing
videos that do not pass a pre-defined threshold. Our ex-
ploration of alternative filtering criteria, focusing on frames
with maximum similarity to text labels rather than uniformly
choosing the middle frame, reveals minimal differences (ap-
proximately 0.01) in CLIPSIM (Wu et al., 2021), IS (Tran
et al., 2015), and AV-Align scores, leading us to use the
middle frame.

Additionally, to have a fair comparison with prior work, we
experimented with two additional datasets. (i) The Land-
scape dataset (Lee et al., 2022), which contains 928 nature
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Figure 5. Human study. We consider the MOS score for three
metrics: (i). Semantic alignment, where we ask users to rate
how well the video matches the input audio semantic label, (ii).
Temporal alignment, where we ask users to rate how well each
input audio segment is aligned with the generated video segments,
and (iii) Video quality, where we ask users to rate the generated
video quality. On the LHS, we consider video models trained
on AudioSet-Drum, and on the RHS, we consider video models
trained on Landscape.

videos divided into 10-second clips, covering nine distinct
scenes; (ii) The AudioSet-Drum dataset (Gemmeke et al.,
2017), contains ~7k videos of drumming. We used the
same split as proposed by Ge et al. (2022), where ~6k is
used as the training set while the rest serves as a test set.

Baselines. We compare the proposed method to previous
state-of-the-art models generating videos conditioned on au-
dio inputs. Ge et al. (2022) proposed Time Sensitive Trans-
former (TATS) model, which projects audio latent embed-
dings onto video embeddings, enabling cross-modal align-
ment. Ruan et al. (2023) recently proposed MM-Diffusion,
which employs coupled denoising auto-encoders to generate
joint audio and video content. Each of the above-mentioned
baselines, i.e., TATS and MM-Diffusion, were originally
evaluated using different benchmarks, i.e., AudioSet-Drums
and Landscape, respectively. For a fair comparison, we
evaluate the proposed method using each of the datasets
suggested in the original papers.

Moreover, we consider two naive baselines based on text-to-
video models. In the first one, we generate videos from text
description and retrieve random audio from the training set
which corresponds to the same class as the generated video,
denoted as ModelScope Text-To-Video. For the second one,
denoted as ModelScope Random, we generate videos un-
conditionally (i.e., without any specific textual conditions),
and match it with a random audio segment. For both base-
lines, we use the pre-trained publicly available zeroscope-v2
model '.

'we use the zeroscope-v2 576w as can be found in the
following link: https://huggingface.co/cerspense/
zeroscope_v2_576w

6. Results

We start by presenting results for audio-to-video genera-
tion considering both objective metrics presented above and
human study. Next, we empirically demonstrate how the
proposed method can be used to generate videos conditioned
on both text and audio modalities, thus enhancing text-to-
video generations. Lastly, we conducted an ablation study to
understand better the effect of our audio conditioning tech-
nique on generation quality and alignment. Visual results
are provided in the supplementary.

6.1. Audio-to-Video Generation

Objective evaluation. As can be seen in Tab. 1, our method
outperforms the baselines on all metrics for the AudioSet-
Drums and Landscape datasets. Specifically, our method
improves the quality of the generated videos (FVD and IS
scores) and the audio-video alignment (AV-Align and CLIP-
SIM scores). As expected, the gap between the methods is
larger when considering the alignment scores.

Notice the alignment scores changed significantly when
considering different benchmarks. Sound events can also be
produced by objects not seen in the video; this is especially
noticeable in the VGGSound benchmark, in which the AV-
Align score of the original videos is 0.51.

Next, we compare our method to the original ModelScope
model, both text-condition (ModelScope Text2Vid) and un-
conditionally (ModelScope Random). As we do not modify
the model, we consider the text-condition setup as a top-
line in terms of video quality metrics. Recall the audio
in both models is retrieved from our training set, using ei-
ther the video class for ModelScope Text2Vid or randomly
ModelScope Random. As expected, our model outperforms
ModelScope Random, considering all metrics. The Mod-
elScope Text2Vid is superior to our model in terms of video
quality. However, when considering audio-video alignment,
our method is significantly better.

Human study. We present results using a human study
considering both video quality and alignment (both seman-
tic and temporal). Results are depicted in Figure 5. As
can be seen for both the AudioSet-Drum and Landscape
datasets, users found our videos significantly more tempo-
rally aligned. Our method improves semantic alignment
on both TATS and MM-Diffusion, with a significant gap to
MM-Diffusion on the Landscape dataset. Finally, on video
quality, users found our videos significantly superior.

6.2. Joint Audio-Text to Video Generation

Combining text and audio to guide generation involves
adding text tokens for conditioning. In Tab. 2, we show
results using “A video of <class>" for text conditioning
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Fire

Water
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eo of
<TemporalAudioTokens>,
on the moon"

of <TemporalAudioTokens>
in Abstract Colors"

video of
<TemporalAudioTokens>, with
vibrant red and orange foliage"

Figure 6. Examples of added text tokens for altering the output video. We show results for fire and flowing water audio.

Cond. FVD (J) CLIPSIM (1) IS(1) AV-Align (}) Cond. FVD(]) CLIPSIM (1) IS(1) AV-Align(})
Text 801 0.69 15.55 0.27 vec. 948 0.57 10.12 0.29
Audio 923 0.57 11.04 0.35 win. (1-res.) 998 0.56 9.22 0.36
Text+Audio 859 0.58 11.66 0.36 win. (2-res.) 965 0.56 9.87 0.35
> Resulie of T win. (3res) 972 0.56 10.01 0.34
as conditioning, As model conditoning, we report result for Text, ™ () 950 056 1013 035
Audio, and Text+Audio modalities. win. (5-res.) 923 0.57 11.04 0.35

and “A video of <TemporalAudioAtokens> <class>" for
Text+Audio. Combining text and audio conditioning outper-
forms audio-only in all metrics, especially FVD. Text-only
provides the highest video quality but lacks alignment.

In Fig. 6, we present how we merge text tokens to temporal
audio tokens, which enables style manipulation. For ex-
ample, we can depict the sound of a river flowing over the
moon using the prompt “on the moon”.

6.3. Ablation Study

Recall our method, which consists of using context windows
of varying sizes to capture a local-to-global context of the
input audio. In Tab. 3, we assess the effect of using different
windows of size K € {1, 2, 3,4} denoted as win. (K-res.).
In practice, the window size is determined by log K'; we
use K for readability. Using only the local context win-
dow (K = 1) results in a good alignment. As we increase
the global context (i.e., increasing K), the video quality is
improved while the alignment scores are comparable.

We additionally consider a single audio conditioning vec-
tor (vec) by averaging all the audio components. Despite
high video quality scores, the absence of local temporal
information results in a notably worse AV-Align score.

7. Limitations

Our method, using a pre-trained text-to-video model, in-
volves adapting between text and audio tokens, posing chal-

Table 3. An ablation study exploring the different audio condition-
ing. We report FVD, CLIPSIM, IS, and Alignment scores on
VGGSound (Chen et al., 2020) considering single-vector condi-
tioning (vec.), time-dependent condition using one window size
(win. (1-res.), and different windows of size k (win. (k-res.)).

lenges in mapping between their latent representations. Due
to hardware limitations, our method generates relatively
short video segments with temporal conditioning limited to
24 frames. Additionally, discrepancies can arise between
visual and audio modalities, such as a video showing a dog
in a car while the audio only features a radio playing. This
limitation is not specific to our method but rather a general
challenge in the domain.

8. Conclusion

We introduced a state-of-the-art audio-to-video generation
model that generates diverse and realistic videos aligned
to input audio samples. Leveraging a lightweight adapter
for mapping between audio and text representations enables
conditioning video generation on both audio and text for
the first time. Our expanding context window technique
captures local and global context, and we propose the AV-
Align metric for assessing temporal alignment.

Future work aims to explore incorporating additional modal-
ities, such as depth, images, or IMU, alongside audio and
text for video generation.
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In this supplementary, we include multimedia results of videos given in the form of an attached webpage (please open
index.html attached. All files are local and anonymized). We further explain concepts presented in the main paper and
describe the ablations done. The supplementary comprises the following subsections:

1. Video Generation: Explanation of the underlying architecture for video generation

2. Design choices for the audio encoder.

A. Video Generation

We employ ModelScope as the backbone for video generation (Wang et al., 2023b). Using a latent video diffusion model, it
generates a video vP” from a text prompt p. Both the training video v9¢ and generated video vP" exist in the visual space,
while the diffusion process and denoising UNet €y operate in the latent space, facilitated by VQGAN (Esser et al., 2021)’s
encoder £ and decoder D. The latent representation of a training video v9* = [fi, ..., fr] with F frames is obtained by
encoding it with &, resulting in ZJ*. During training, ZJ" evolves into ng through the diffusion process, involving the
addition of Gaussian noise [e*‘{t, cee eth ] over T steps. In contrast, during inference, the UNet predicts noise for each step,
ultimately generating Z{" from an initial random noise Z%". The final video v*" is reconstructed using the VQGAN decoder
D.

Text Conditioning: To ensure a robust alignment, it employs a pre-trained CLIP ViT-H/14 (Radford et al., 2021) text
encoder to convert the prompt p into the text embedding ¢ € RV»*% where N, represents the maximum token length of
the prompt, and d; represents the dimension of the token embedding.

In our approach, we replace text tokens with audio-conditioned temporal tokens, enabling unique conditioning for each
frame. Specifically, we have ¢ € RF X Npxd:

Cond. FVD(}) CLIPSIM (1) IS(1) AV-Align(})
2-layers MLP 1305 0.57 3.93 0.35
4-layers MLP 1227 0.58 4.68 0.37

Table 4. Performance evaluation on a subset of the VGGSound dataset across four distinct classes: playing electric guitar, playing drum
kit, dog barking, and fireworks banging.

A.1. 3D Denoising UNet

The denoising UNet ¢y is the central component of the latent video diffusion model, responsible for denoising the latent
space from Zr to Zy by predicting step-wise noise. It incorporates textual information from the prompt p through a text
embedding c. During training, it minimizes the difference between predicted noise e?r and ground-truth noise eg * for each

step £, yielding the loss £:

gt pr
€ —€;
i i

£ =By aimnioni | HE (10)

A.1.1. SPATIO-TEMPORAL BLOCK:

The spatio-temporal block for capturing intricate spatial and temporal dependencies (Blattmann et al., 2023). To enhance
video synthesis quality, it leverages spatio-temporal convolutions and attention. The spatiotemporal block integrates spatial
convolution, temporal convolution, spatial attention, and temporal attention. Spatio-temporal convolutions involve spatial

convolutions using a 3 x 3 kernel on each frame’s % X % latent features and temporal convolutions on F' frames. The
spatio-temporal attention consists of spatial and temporal attention modules. Spatial attention operates on % latent

spatial features, while temporal attention processes the temporal dimension with size F'. Both attention mechanisms are
implemented using the Transformer architecture.
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B. Design choices for the audio encoder

In Tab. 4, we conducted an ablation study by varying the number of linear layers in our AudioMapper module. We found that
using four layers yielded superior performance compared to employing only two layers. This indicates that a deeper linear
architecture contributes to better model performance, likely due to its increased capacity for capturing complex patterns and

representations in the data.
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