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Abstract

One prerequisite for secure and reliable artificial intelligence services is tracing
the copyright of backend deep neural networks. In the black-box scenario, the
copyright of deep neural networks can be traced by their fingerprints, i.e., their
outputs on a series of fingerprinting triggers. The performance of deep neural
network fingerprints is usually evaluated in robustness, leaving the accuracy of
copyright tracing among a large number of models with a limited number of
triggers intractable. This fact challenges the application of deep neural network
fingerprints as the cost of queries is becoming a bottleneck. This paper studies the
performance of deep neural network fingerprints from an information theoretical
perspective. With this new perspective, we demonstrate that copyright tracing can
be more accurate and efficient by using triggers with the largest marginal mutual
information. Extensive experiments demonstrate that our method can be seamlessly
incorporated into any existing fingerprinting scheme to facilitate the copyright
tracing of deep neural networks.

1 Introduction

H
o
w

to
o
p
tm

iz
e
?

· · · · · ·

Triggers

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · ·

· · · · · ·
· · ·

· · ·

· · ·

· · ·

○? · · ·

· · ·

· · ·

· · ·

DNN models

Registered

Suspicious
DNN model

Q
u
e
ry

Attack

O
u
tp

u
t

fingerprints

Registered

· · · · · ·

database
Fingerprint

S
to

re
C
o
m
p
a
re

Copyright
identified!

Figure 1: The framework of a fingerprint-based
DNN copyright tracing system.

Recent progress in deep neural network (DNN)
models is raising privacy and ethics concerns
since they might facilitate the propagation
of fake information with negative social im-
pacts [1]. To ensure that AI serves people prop-
erly, it is necessary to trace the copyright of
DNN models and attribute the misuse of mod-
els to specific users. The majority of existing
studies concentrate on copyright tracing in the
black-box setting where the copyright verifier
interferes with the suspicious DNN model as a
black box. Two mainstream methods are DNN
watermarking [2–8] and DNN fingerprinting [9–
16].

DNN watermarking schemes use a series of inputs as watermark triggers and tune DNN models so
that their outputs on triggers are differentiated as pre-defined. Therefore, they appeal only to copyright
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verifiers who can tune the DNN models to be protected or owners who distribute a model to multiple
clients. Watermarking schemes inevitably introduce deline in the performance of watermarked DNN
models, which is unacceptable in industrial fields.

In contrast, DNN fingerprinting schemes produce a series of fingerprinting triggers. The outputs of a
suspicious DNN model on the triggers constitute its fingerprint, with which its identity is recognized.
An illustration is given in Fig. 1.

The reliability of DNN fingerprinting schemes has usually been interpreted as their robustness, i.e.,
the fingerprint of a DNN model should remain invariable under adversarial modifications. Despite
established results on robustness, the uniqueness of DNN fingerprinting is still under-explored. This
aspect is crucial for industrial copyright tracing especially when the number of model to be traced is
large while the expense of retrieving a fingerprint grows in the number of triggers and could become
a bottleneck. It is hard to evaluate how every trigger contributes differently to copyright tracing,
and under which circumstances does each DNN model have a unique fingerprint. Consequently,
it is difficult to optimize the collection of triggers with a fixed cardinality. To address the above
challenges, this paper proposes a general method to improve the efficiency of fingerprint-based DNN
copyright tracing. The contributions are concluded as follows:

• We adopt an information theoretical perspective to measure the contribution to copyright
tracing of each fingerprinting trigger by its conditional mutual information.

• We boost the copyright tracing performance by greedily optimizing the collection of triggers
and validate this method through extensive experiments.

• We derive the first necessary condition for the number of fingerprinting triggers to ensure
copyright tracing.

2 Preliminaries

2.1 DNN Fingerprint

Table 1: Frequently used notations in this paper.

Symbol Meaning
X Input space of DNN models.
C Number of classes.
Y Output space of DNN models.
P Number of registered DNN models.
F Registered DNN models, F = {fp}Pp=1.
N Number of fingerprinting triggers.
N̂ Number of greedily selected triggers.
T Distribution of triggers.
T Fingerprinting triggers, T = {tn}Nn=1.
ϵ Verifier’s tolerance on the adversary’s attack.
Aϵ Verifier’s threat model.
F A randomly selected model from F.
A A randomly selected attack from Aϵ.
ϕn The randomly selected model’s prediction on tn.
u Uniqueness rate

Iϵ
(
tn|t1:(n−1)

)
Conditional mutual information of tn.

Notations used in this paper are listed in Table 1.
We focus on classifiers that map the input space
X to Y = {1, 2, · · · , C}. Altogether P clas-
sifiers F = {fp}Pp=1 require copyright tracing.
A fingerprinting scheme draws N independent
triggers T = {tn}Nn=1 from a distribution T .
Choices of T include random noises [9], out-
liers [3, 10], normal samples that are close to
the centers of each class [15, 16], adversarial
samples that are close to the decision bound-
aries [11, 13], etc.

The fingerprint of the p-th model is its outputs
on triggers: (fp(t1), · · · , fp(tN )). The finger-
prints of all models are computed and registered
in a database. Upon locating a suspicious model, the verifier computes its fingerprint and compares
it with records in the database. If there exists a registered model whose fingerprint is close to the
suspicious model’s, then a copyright issue is reported. Otherwise, the suspicious model is registered
as a new model. The distance between two fingerprints is measured by the number of triggers where
two models return different outputs.

2.2 Robustness & Uniqueness

The performance of a DNN fingerprinting scheme is inclusively reflected in its robustness and
uniqueness.

The robustness of a DNN fingerprinting scheme is characterized by the difference between registered
models’ fingerprints before and after adversarial modifications. Formally, the verifier assumes that the
adversary has sacrificed the victim model’s performance for a probability at most ϵ (it is impossible to
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(a) The idealistic setting.
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(b) Triggers with biased outputs.
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(c) Triggers with the largest entropy fail uniqueness.

Figure 2: An illustration of the difficulties in deciding the optimal fingerprinting triggers P = 9 and
C = 3. Each column denotes a model. Each row denotes a fingerprinting trigger. Each color denotes
a classification label. (a) The idealistic case where logC P = 2 triggers produce unique fingerprints.
(b) When the predictions on triggers are biased, two triggers are insufficient. (c) Choosing the first
three triggers with the largest independent entropy fails the uniqueness property. The correct choice
is the last three triggers.

trace the copyright of models whose functionality has been arbitrarily modified). The threat model is:

Aϵ =
{
A : ∀f ∈ F, Prx←X (f(x) ̸= fA(x)) ≤ ϵ

}
. (1)

where fA denotes a model f undertaken an attack A. In general, the adversary’s attack always
has a measurable influence on the model’s performance so A0 = ∅. The verifier should assume a
non-trivial adversary and focus on the maximal damage that the adversary might cause [17], so the
robustness of a fingerprinting trigger distribution T is quantified by:

δT (ϵ) = max
f∈F,A∈Aϵ

{
Prt←T

(
f(t) ̸= fA(t)

)}
. (2)

A fingerprinting trigger distribution with a large δT (ϵ) yields weak fingerprints, since the adversary
can obfuscate the fingerprints with little decline in functionality.

Empirically, the robustness of a fingerprinting trigger distribution is estimated with a finite collection
of adversarial modifications including fine-tuning [18, 19], neuron pruning [20], distillation [21],
etc. Although it is hard to directly foster the robustness by modifying the trigger distribution, some
distributions are reported to be more robust under certain attacks [12, 15, 16].

On the other hand, the fingerprint of each model should be unique so the false positive rate is
negligible. The low transferability of Characteristic Examples [22] primarily addresses the fin-
gerprint of individual models, whereas our study focuses on the uniqueness of fingerprints for
distinguishing between different models in large-scale deployment scenarios. This property is
reflected in the percentage of models whose fingerprints remain unique under any attack. Let
Fϵ(T) = {f ∈F :∃A∈Aϵ, ∃f ′∈F\{f} ,∀t∈T, f(t)=f ′(t)}, the uniqueness rate u can be de-
fined as:

u = 1− |Fϵ(T)|/|F|. (3)

Unfortunately, this metric u can hardly be optimized as a function in T. In existing literature, it is
generally assumed that the models’ outputs on a fingerprinting trigger are randomly distributed as
shown in Fig. 2(a), so logC P triggers are sufficient and the probability that two arbitrary models
have the same fingerprint declines exponentially in N [9]. So any fingerprinting scheme is expected
to have u → 1 when N is large.

2.3 Challenges

The assumptions behind the uniqueness of DNN fingerprinting schemes are challenged by the
following facts.

(I): The number of triggers is not arbitrarily large. The number of triggers determines the cost of
copyright tracing and could become a bottleneck in large-scale or expensive service or when querying
the API of suspicious DNN models is expensive. It is necessary to evaluate the performance of DNN
fingerprints when the number of triggers is limited.

(II): The value of each trigger has been overestimated. DNN models’ outputs on a trigger might
not be uniformly distributed, as shown in Fig. 2(b). Moreover, the triggers are not independent of
each other. Using triggers with independently the largest entropy might turn out to be misleading as
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shown in Fig. 2(c). The value of each trigger is determined by the conditional entropy it contains
w.r.t. queried triggers.

(III): The influence of adversarial modifications is unclear. When the adversary modifies the
victim model’s fingerprint, the information value of each trigger might change. The optimal number
of triggers varies with the assumptions of the adversary. So far, the relationship between uniqueness
and robustness has not been established.

As a result, the volume of information that a limited number of triggers can provide in the adversarial
environment is an intractable bottleneck of the copyright tracing system, leaving the uniqueness
property as a risk.

3 Method

3.1 Information in DNN Copyright Tracing

Algorithm 1 Computing I0
(
tn|t1:(n−1)

)
.

Input: Registered models F, triggers t1, t2, · · · , tn
Output: I0

(
tn|t1:(n−1)

)
1: M = ∅, h = 0
2: for i = 1 to P do
3: flag = False
4: for M in M do
5: if ∃f ∈ F\{fi}, ∀j = 1, · · · , n−1, f(tj) =

fi(tj) then
6: M = M ∪ {fi}; flag=True; break
7: end if
8: end for
9: if flag=False then

10: M = M∪ {fi}
11: end if
12: end for
13: for M in M do
14: for c = 1 to C do
15: uc = 0
16: for f in M do
17: if f(tn) = c then
18: uc = uc + 1
19: end if
20: end for
21: uc = uc/|M|; h = h− |M|

P
× uc log2 uc

22: end for
23: end for
24: Return h

We consider the copyright tracing of DNN mod-
els as a communication channel. From the veri-
fier’s view, the information source is the identity
of the suspicious model, which is represented
by a random variable F whose domain is F.
Without loss of generality, we assume that the
suspicious model F is equally likely to be any
registered model, so F contains log2 P bits of
information.

The adversarial modifications, represented by a
random variable A, are noises in this channel.
Without prior knowledge, the attack is randomly
chosen from Aϵ, where ϵ reflects the verifier’s
tolerance. We further assume that the attack
is independent of the triggers and the victim
model.

The output from the suspicious model F on the
n-th trigger, denoted by ϕn, is another random
variable, so is the fingerprint of the suspicious
model Φ = (ϕ1, ϕ2, · · · , ϕN ). We are inter-
ested in how much information the fingerprint
reveals about the suspicious model’s identity,
which is inclusively quantified by the mutual
information I(Φ;F). In fact, the volume of in-
formation to secure a uniqueness rate u is at least
−u log2 u− (1− u) log2(1− u) + log2 uP , so
an upper bound of u is

u=
2log2 uP

P
≤ 2−u log2 u−(1−u) log2(1−u)+log2 uP

P
≤ 2I(Φ;F)

P
.

Therefore, a necessary condition for better uniqueness is using informative triggers. We begin with
the conditional mutual information of the n-th trigger under threat model Aϵ.

Definition 1. Let the threat model be Aϵ, denote the mutual information of tn conditioned on queried
triggers t1, · · · , tn−1 by:

Iϵ
(
tn|t1:(n−1)

)
=H(ϕn|ϕ1, · · · , ϕn−1)−H(ϕn|ϕ1, · · · , ϕn−1,F). (4)

The mutual information of all triggers is decomposed as:

I(Φ;F) = H(Φ)−H(Φ|F) =

N∑
n=1

Iϵ
(
tn|t1:(n−1)

)
. (5)
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In the vanilla setting, the verifier considers ϵ = 0 and the modified model is always recognized as
irrelevant from the original version. So H(ϕn|ϕ1, · · · , ϕn−1,F) = 0 and:

I0
(
tn|t1:(n−1)

)
= H(ϕn|ϕ1, · · · , ϕn−1). (6)

The complexity in computing the r.h.s. of Eq. (6) by iterating over all possible values of
(ϕ1, · · · , ϕn−1, ϕn) is of order O(Cn). Instead, we resort to Algo. 1 where all registered mod-
els are segmented into disjoint sets according to their partial fingerprints on the first (n− 1) triggers.
Fingerprints that never appear are ignored. The complexity is reduced to O(max

{
P 2n, PC

}
) and

is acceptable since P ≪ Cn usually holds in practice, especially when n is large.

In non-trivial cases where the tolerance ϵ > 0, the verifier attributes modified models as copies of
their original version and H(ϕn|ϕ1, · · · , ϕn−1,F) no longer always equals zero. A lower bound of
the conditional mutual information of each trigger is given by the following theorem.
Theorem 1. Let the threat model be Aϵ in Eq. (1), then:

Iϵ
(
tn|t1:(n−1)

)
≥ I0

(
tn|t1:(n−1)

)
− h(ϵ). (7)

where h(ϵ) = −δT (ϵ) log2 δT (ϵ)− (1− δT (ϵ)) log2(1− δT (ϵ)) + δT (ϵ) log2(C − 1).

Conceptually, Theorem 1 is a variant of Fano’s inequality. The complete proof is given in Appendix A.

3.2 Greedy Optimization of Triggers

Being equipped with the conditional mutual information of each trigger, we proceed to optimize the
collection of triggers. Given the budget N̂≤N , the optimized collection of triggers T̂ with size N̂
is selected by Algo. 2 where the trigger with the largest conditional entropy is iteratively included.
Remarkably, T̂ is a permutation of a subset of T.

Algorithm 2 Greedily selecting N̂ informative
triggers.

Input: Budget N̂ , triggers T, registered models F
Output: A collection of triggers T̂, |T̂| = N̂ .
1: T̂ = ∅
2: for n = 1 to N̂ do
3: m = 0, r ∈ T \ T̂
4: for t ∈ T \ T̂ do
5: if I0(t|T̂) > m then
6: m = I0(t|T̂), r = t
7: end if
8: end for
9: T̂ = T̂ ∪

{
t̂n = r

}
10: end for
11: Return T̂

Theorem 1 indicates that even for ϵ > 0, the mutual
information provided by the n-th trigger is lower
bounded by I0 minus a constant. So the cumulative
mutual information provided by triggers selected ac-
cording to Algo. 2 is lower bounded under arbitrary
threat models.

Selecting a fixed number of triggers that provides
the largest mutual information is essentially a com-
binatorial optimization problem that is NP-hard. We
prove that our strategy selects triggers whose mutual
information is lower bounded compared with the
optimal triggers in theory. Let Iϵ

(
tn|t1:(n−1)

)
=

max
{
0, I0

(
tn|t1:(n−1)

)
−h(ϵ)

}
.

The mutual information provided by triggers T is
no less than g(T) =

∑N
n=1 Iϵ

(
tn|t1:(n−1)

)
, which

turns out to be a non-negative, monotonically increasing, and submodular function in T [23–25].
Because for V ⊂ U ⊂ T and t ∈ T \U:

g(U∪{t})−g(U)=max {0,H (t|U)−h(ϵ)}
≤max {0,H (t|V)−h(ϵ)}=g(V∪{t})−g(V).

The submodularity guarantees that the lower bound of mutual information given by N̂ greedily
selected triggers is no less than

(
1− 1

e

)
of that of N̂ optimal triggers in theory, i.e.,

N̂∑
n=1

Iϵ
(
t̂n|t̂1:(n−1)

)
≥

(
1− 1

e

) N̂∑
n=1

Iϵ
(
t̃n|t̃1:(n−1)

)
. (8)

where t̂n/t̃n is the n-th trigger in the greedily selected/optimal collection with size N̂ .

In summary, When the verifier can only query N̂ instead of all N triggers, we recommend retrieving
the fingerprint with T̂ instead of N̂ random triggers in T. This discussion further implies a necessary
condition on the number of triggers.
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(a) MNIST. (b) FashionMNIST. (c) CIFAR-10. (d) ImageNet.

Figure 3: The robustness of studied DNN fingerprints measured in δT (ϵ), averaged on 600 models
under the fine-pruning attack.

Theorem 2. Let the threat model be Aϵ, a necessary condition for the number of triggers is:

N ≥ min

N̂ :

N̂∑
n=1

Iϵ
(
t̂n|t̂1:(n−1)

)
≥

(
1− 1

e

)
log2 P

 . (9)

If ϵ = 0 and N fails to meet Eq. (9) then any collection of N triggers cannot trace the copyright of
all registered models. If ϵ > 0 and N fails to meet Eq. (9) then any collection of N triggers has a
risk of failing to trace the copyright of all registered models.

Proof. If N fails to satisfy Eq. (9) then the optimal N triggers might provide less information than
log2 P bits due to Eq. (8):

N∑
n=1

Iϵ
(
t̃n|t̃1:(n−1)

)
≤ 1

1− 1
e

N∑
n=1

Iϵ
(
t̂n|t̂1:(n−1)

)
< log2 P.

When ϵ = 0 we have I0 = I0, so failing to satisfy Eq. (9) implies a deterministic failure in copyright
tracing. Otherwise, we can only assert that copyright tracing has a chance to fail since the lower
bound of mutual information provided by any combination of triggers is insufficient to identify all
registered models.

3.3 Remarks

We make three remarks regarding the implications and applications of our analyses.

Remark 1: Optimizing the distribution of triggers. Theorem 2 gives two directions to reduce
the number of triggers for copyright tracing. The first is to reduce δT (ϵ), i.e., to increase the
robustness, since h(ϵ) monotonically increases in δT (ϵ) when δT (ϵ) is small. The second is to
increase I0

(
tn|t1:(n−1)

)
. Unfortunately, neither direction can be directly transformed into changes

to T . Moreover, there might be a trade-off between robustness and mutual information or uniqueness
according to our empirical studies presented in the next section.

Remark 2: Fingerprint vs. watermark. In contrast to fingerprinting triggers, watermarking triggers
have labels that are deliberately assigned. It can always be expected that I0

(
tn|t1:(n−1)

)
= log2 C

for watermarking triggers (unless n is so large that queried triggers have already provided enough
information for copyright tracing). Despite this advantage, fingerprinting schemes are applicable in
more settings so they remain a competitive option.

Remark 3: Generalization to non-classifiers. Our method can be generalized to black-box copy-
right tracing systems for non-classifiers such as multimedia content generators [26]. The bridge is
considering the basic copyright interpreter as a classifier [27, 28]. An example on a copyright tracing
system for generative language models is given in Appendix B.

6



(a) MNIST. (b) FashionMNIST. (c) CIFAR-10. (d) ImageNet.

Figure 4: The cumulative mutual information (in bit) provided by triggers in the original order (the
solid curves) and triggers selected by the greedy algorithm (the dashed curves) when ϵ = 0. The
black line marks

(
1− 1

e

)
log2 600 bits.

4 Experiments and Results

4.1 Settings

Following the settings of existing studies [29], we conducted experiments on four classification tasks:
MNIST [30], FashionMNIST [31], CIFAR-10 [32], and ImageNet [33]. The number of classes was
C = 10 (randomly drawn from ImageNet). A series of DNN models were trained as registered
models. The sources of heterogeneity were (I) Four network architectures including LeNet-5 [34],
VGG-16 [35], ResNet-18, and ResNet-34 [36]. (II) Five learning rates ranging from 0.02 to 0.1. (III)
Two learning schedules with step lengths 5 and 10. (IV) Five training epochs ranging from 10 to 60.
(V) Three random downsampling of training data. So, there were P = 600 models for each task. We
used four GeForce RTX 2080 Ti GPUs for acceleration. All experiments were implemented using the
PyTorch framework. Link to the code repo is given in the Appendix C.

We considered five representative DNN fingerprinting schemes. For each task, 50 triggers were
produced by each scheme. The robustness was measured under the fine-pruning attack [20], results
are shown in Fig. 3).

(I) Noise [9]. The pixel of each trigger was randomly generated from a normal distribution whose
mean and variance were identical to samples from the training dataset. (II) Benign [4, 37, 38]. Each
trigger was randomly drawn from the training dataset. (III) OOD [3, 10]. Triggers are randomly
drawn across training datasets. For classifiers on MNIST and FasionMNIST, each trigger was
randomly drawn from the training dataset of CIFAR-10. For classifiers on CIFAR-10 and ImageNet,
triggers were drawn from MNIST. (IV) Adv-1 [11, 13]. The first category of adversarial samples was
produced from an ordinary SGD-based adversarial attack [39]. The victim model was a randomly
chosen classifier. (V) Adv-2. The second category of adversarial samples was produced from the
same SGD-based adversarial attack, but initial images were noises.

4.2 Results of Using Informative Triggers

4.2.1 Baseline Setting: ϵ = 0

The cumulative mutual information provided by triggers when ϵ = 0 is visualized in Fig. 4. The
necessary condition for the number of triggers given by Theorem 2 was uniformly no less than 4
in all combinations of task and fingerprinting scheme, i.e., it is impossible to trace all models with
⌈log10 600⌉ = 3 triggers. Greedily selected triggers were always more informative than the original
triggers. In all cases, the first 15 triggers selected by the greedy algorithm have provided the same
amount of information as all 50 triggers, so extra querying is redundant.

4.2.2 Adversarial Setting: ϵ > 0

To delve into the influence of greedy selection on the uniqueness rate u in adversarial environments,
we computed u defined by Eq. (3). Results are listed in Table 2. When the number of triggers is
limited, using greedily selected triggers always yielded larger mutual information and secured the
uniqueness of more models. This phenomenon appeared in all cases regardless of the task, the choice
of fingerprinting scheme, the number of triggers, and the threat model with no exception. Notably,
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(a) MNIST. (b) FashionMNIST. (c) CIFAR-10. (d) ImageNet.

Figure 5: Uniqueness rate (%) provided by greedily selected informative triggers when ϵ = 2.5%
(the solid curves) and ϵ = 10.0% (the dashed curves).

Table 2: Uniqueness rate of registered models (%). For A/B in each entry, A is the uniqueness rate
provided by the original order of triggers, and B is the uniqueness rate provided by greedily selected
triggers. The dataset is MNIST, FashionMNIST, CIFAR-10, and ImageNet from top to bottom. The
better scheme in each setting is highlighted in bold.

ϵ
Noise Benign OOD Adv-1 Adv-2

N̂ = 5 N̂ = 10 N̂ = 15 N̂ = 5 N̂ = 10 N̂ = 15 N̂ = 5 N̂ = 10 N̂ = 15 N̂ = 5 N̂ = 10 N̂ = 15 N̂ = 5 N̂ = 10 N̂ = 15
0.0 1.7/5.0 3.0/9.5 3.3/12.2 0.5/1.8 0.7/3.7 2.0/3.7 63.0/78.2 93.7/96.5 96.5/96.5 69.5/81.8 89.5/91.5 90.8/93.5 23.2/58.7 62.5/92.2 64.8/95.3
5.0 1.7/5.0 3.0/9.5 3.3/3.7 0.5/1.8 0.7/3.7 2.0/3.7 0.5/0.7 3.0/7.2 7.0/15.2 0.7/0.8 8.2/17.7 16.3/19.6 3.8/12.0 6.7/25.2 7.8/33.7
10.0 1.7/5.0 0.8/2.8 0.2/3.7 0.5/1.8 0.2/1.2 0.5/1.2 0.5/0.7 3.0/8.2 1.7/4.7 0.7/0.8 1.5/2.8 3.7/4.9 3.8/12.0 6.7/25.2 4.7/20.5
0.0 14.3/71.7 64.0/96.0 90.0/96.0 0.8/8.5 2.5/30.5 3.7/38.2 54.0/84.5 96.0/96.0 96.0/96.0 72.8/81.5 87.8/92.3 90.8/94.2 71.5/80.0 88.8/95.5 83.7/91.0
5.0 1.5/12.0 7.5/52.8 7.7/15.8 0.8/8.5 2.5/30.5 3.7/38.2 10.2/21.3 29.5/43.2 54.7/54.7 28.5/30.8 57.5/63.7 68.5/71.5 22.2/26.0 43.0/54.2 59.5/71.5
10.0 1.5/12.0 1.2/17.8 2.3/5.7 0.8/8.5 0.7/5.8 0.7/10.7 0.2/0.8 4.7/9.8 26.7/26.7 0.5/1.2 25.0/30.0 55.7/60.0 0.5/0.5 16.3/20.5 38.7/47.5
0.0 22.0/59.8 76.8/93.0 91.3/93.3 17.0/62.0 56.3/93.3 89.8/93.3 47.3/56.8 77.3/80.0 78.8/85.8 65.2/74.5 82.0/85.3 84.2/87.7 17.7/61.2 53.2/93.0 83.8/93.3
5.0 22.0/59.8 76.8/93.0 79.2/91.5 17.0/62.0 56.3/93.3 69.5/84.7 47.3/56.8 77.3/80.0 74.2/76.2 65.2/74.5 77.7/78.3 80.8/81.7 17.7/61.2 53.2/93.0 53.0/92.0
10.0 22.0/59.8 36.2/79.7 48.3/80.0 17.0/62.0 22.2/71.3 42.8/60.3 47.3/56.8 69.3/69.8 72.0/72.5 18.0/29.2 67.7/69.0 74.8/75.4 17.7/61.2 18.7/77.8 28.5/80.5
0.0 40.8/76.0 91.3/97.7 97.5/98.0 66.2/83.7 97.7/98.0 97.8/98.0 29.5/86.0 91.5/97.7 97.3/98.0 74.7/78.3 84.8/87.0 87.0/90.0 64.8/84.0 97.5/98.0 98.0/98.0
5.0 40.8/76.0 91.3/97.7 97.5/98.0 66.2/83.7 97.7/98.0 97.8/98.0 29.5/86.0 91.5/97.7 97.3/98.0 74.7/78.3 84.8/87.0 87.0/90.0 64.8/84.0 97.5/98.0 98.0/98.0
0.0 40.8/76.0 74.3/89.2 96.2/97.0 66.2/83.7 97.7/98.0 91.7/96.7 29.5/86.0 69.2/94.2 95.0/96.8 74.7/78.3 78.8/79.2 82.7/83.0 64.8/84.0 89.5/93.5 96.5/97.8

although the necessary condition in Theorem 2 is not a guarantee of perfect uniqueness, satisfying
Eq. (9) implies a minimal uniqueness rate of at least 56.8%.

Table 2 also indicates that fewer models’ fingerprints could remain unique when the threat model
became stronger, i.e., when ϵ increased. One interesting finding is that some fingerprints might not
have a higher uniqueness rate when the number of triggers increased. We suspect that when the threat
model becomes very strong, the incremental mutual information for a large N̂ can be completely
nullified, as what is implied by the form of the lower bound given in Theorem 1. To examine this
phenomenon, we recorded the uniqueness rate w.r.t. N̂ under different threat models. Results shown
in Fig. 5 demonstrate that the uniqueness rate was not always increased in N̂ . The fluctuations are
due to rounding issues in computing the uniqueness rate, where only two fingerprints with at most
⌈δT (ϵ)N̂⌉ differences were recognized as the same.

4.2.3 Re-evaluation of DNN Fingerprinting Schemes

In addition to robustness, statistics in Table 2 and Fig. 5 reveal a different ranking among examined
DNN fingerprinting schemes. For example, despite the robustness, both Noise and Benign failed
in MNIST by providing the least information, so did Benign in FashionMNIST. The reason is
that triggers similar to normal samples are robust due to their entanglement with the classifier’s
functionality. However, this similarity means models trained on similar data perform alike, offering
less model-specific information, especially for simple, high-accuracy tasks. Adv-2 appeared to be the
optimal choices in CIFAR-10 when N̂ ≤ 15 regarding the uniqueness rate. This result is non-trivial
since Adv-2 was not judged as the most informative scheme before applying the greedy algorithm as
shown in Fig. 4(c). For ImageNet, Adv-1 outperformed Noise and OOD in their original setting when
N is small. However, both Noise and OOD provided perfect uniqueness after the greedy selection
process, while Adv-1 failed. We emphasize that existing robustness-oriented evaluation of DNN
fingerprinting schemes tends to overlook these relationships between robustness and uniqueness and
overfits oversimplified settings where P is very small and/or N /N̂ is very large.

The difficulty in tracing the copyright of DNN models also varies with the task. The more difficult
the task is, the easier it is to distinguish models, since models trained on complex datasets tend to be
more diversified instead of overfitting a local optimum.
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(a) MNIST. (b) FashionMNIST. (c) CIFAR-10. (d) ImageNet.

Figure 6: The culmulative mutual information (in bit) provided by greedily selected triggers with 100
models (the dotted curves), 200 models (the dashed curves), and 600 models (the solid curves)..

Table 3: Uniqueness rate within all 600 models (%). The dataset is MNIST, FashionMNIST, CIFAR-
10, and ImageNet from top to bottom. R denotes randomly drawn triggers, 100/200/600 denotes the
number of models used to greedily select triggers (i.e., the size of F in Algo. 1). Settings that satisfy
the order R ≤ 100 ≤ 200 ≤ 600 are highlighted in green.

ϵ
OOD Adv-2

N̂ = 5 N̂ = 10 N̂ = 15 N̂ = 5 N̂ = 10 N̂ = 15

R 100 200 600 R 100 200 600 R 100 200 600 R 100 200 600 R 100 200 600 R 100 200 600
0.0 63.0 71.8 73.2 78.2 93.7 96.2 96.2 96.5 96.5 96.5 96.5 96.5 23.2 50.2 59.2 58.7 62.5 83.3 91.5 92.2 64.8 92.0 93.8 95.3
5.0 0.5 0.5 1.0 0.7 3.0 8.0 8.0 8.2 7.0 10.7 14.2 15.2 3.8 8.5 11.2 12.0 6.7 7.3 20.2 25.2 7.8 24.7 28.3 33.7

10.0 0.5 0.5 1.0 0.7 3.0 8.0 8.0 8.2 1.7 4.2 5.2 4.7 3.8 8.5 11.2 12.0 6.7 7.3 20.2 25.2 4.7 13.0 16.7 20.5
0.0 54.0 76.2 79.3 84.5 96.0 96.0 96.0 96.0 96.0 96.0 96.0 96.0 71.5 77.2 74.5 80.0 88.8 91.0 94.2 95.5 83.7 94.2 94.8 91.0
5.0 10.2 16.3 20.8 21.3 29.5 34.5 37.0 43.2 54.7 54.7 54.7 54.7 22.2 24.2 24.8 26.0 43.0 49.5 52.2 54.2 59.5 59.7 60.3 71.5

10.0 0.2 0.5 1.0 0.8 4.7 5.0 8.2 9.8 26.7 26.7 26.7 26.7 0.5 0.5 0.5 0.5 16.3 18.3 18.7 20.5 38.7 39.7 40.0 47.5
0.0 47.3 55.0 55.8 56.8 77.3 77.8 79.8 80.0 78.8 83.7 85.2 85.8 17.7 47.0 55.8 61.2 53.2 82.7 91.7 93.0 83.8 93.0 93.0 93.3
5.0 47.3 55.0 55.8 56.8 77.3 77.8 79.8 80.0 74.2 75.8 76.0 76.2 17.7 47.0 55.8 61.2 53.2 82.7 91.7 92.0 53.0 84.2 86.2 92.0

10.0 47.3 55.0 55.8 56.8 69.3 69.7 69.7 69.8 72.0 72.0 72.3 72.5 17.7 47.0 55.8 61.2 18.7 44.3 69.3 77.8 28.5 51.8 55.7 80.5
0.0 29.5 65.2 82.3 86.0 91.5 94.8 95.8 97.7 97.3 97.5 97.5 98.0 64.8 79.2 83.3 84.0 97.5 97.7 97.9 98.0 98.0 98.0 98.0 98.0
5.0 29.5 65.2 82.3 86.0 91.5 94.8 95.8 97.7 97.3 97.5 97.5 98.0 64.8 79.2 83.3 84.0 97.5 97.7 97.9 98.0 98.0 98.0 98.0 98.0

10.0 29.5 65.2 82.3 86.0 69.2 73.7 85.0 94.2 95.0 96.5 96.5 96.8 64.8 79.2 83.3 84.0 89.5 93.8 94.2 93.5 96.5 97.2 97.3 97.8

4.3 Scalability to Online Copyright Tracing

An final concern is whether greedily selected triggers remain informative when more models are
registered online. Specifically, we assume that the verifier only obtains a small number of DNN
models at the beginning, with which he/she greedily selects a series of triggers. We are interested in
whether these triggers still outperform randomly drawn triggers on unseen models or not.

The greedily selected triggers according to either 100 or 200 models performed almost identically to
those selected according to all 600 models regarding the culmulative information, as shown in Fig. 6.
The failure to refer to all registered DNN models had a small impact on the uniqueness rate as shown
in Table 3. In almost all cases, the greedily selected triggers outperformed randomly selected triggers,
even if only 100 models were considered. In general, the more models verifier can observe during
greedy selection process, the larger the uniqueness rate is. This fact is justified by the dominance
of green entries in Table 3. Therefore, we recommend that the copyright verifier collects as many
models as possible to select informative triggers, or choose to update the collection of triggers when
the number of registered DNN models increases. Even if the number of observed models is small, the
greedily selected triggers are more informative than randomly drawn triggers and result in a larger
uniqueness rate.

Figure 7: The time consumption of greedy trigger selection.

4.4 Overhead

We also evaluated the overhead of our method. The time consumption is no more than 160 seconds
even when all 600 models were used to optimize 50 triggers (it has been shown that 15-30 triggers
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were sufficient for copyright tracing), as shown in Fig. 7. This overhead is acceptable and is
independent from the dataset.

5 Discussions

The fingerprint optimization algorithm proposed in this paper adopts informative triggers during the
fingerprint selection phase, aiming to achieve enhanced uniqueness. It does not involve the design
or implementation of the fingerprint scheme itself, and can be seamlessly integrated with trigger
set-based fingerprint schemes to improve their effectiveness in practical application scenarios.

Limitations. More complex task scenarios beyond text generation, such as image and video genera-
tion, have not yet been discussed, which will also be the focus of our future work.

6 Conclusions

This paper explores uniqueness, a less frequently studied yet important dimension in evaluating
DNN fingerprinting schemes for copyright tracing. After highlighting the significance and challenges
regarding this property, we adopt an information theoretical perspective to quantify the contribution
of each fingerprinting trigger. We design an algorithm to efficiently estimate the conditional mutual
information of each trigger and propose a greedy algorithm that facilitates the efficiency of copyright
tracing. Extensive experiments show that our method can be easily combined with arbitrary DNN
fingerprinting schemes to improve the performance regarding uniqueness, even in the online setting.
Our studies reveal several new insights in evaluating and comparing DNN fingerprinting schemes
and suggest more attentions on uniqueness in addition to robustness.
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• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We disclose as many details as we could, and provide the codes. We used
public datasets and toolkits.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
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dataset, or provide access to the model. In general. releasing code and data is often
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sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
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either be a way to access this model for reproducing the results or a way to reproduce
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The anonymous repo has been given in the appendix D.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
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versions (if applicable).
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Most settings showned in section 4.1, and more details can be found and
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Guidelines:

• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We recorded and visualized each experiment in Figures, including noises.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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• The factors of variability that the error bars are capturing should be clearly stated (for
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
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error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Section 4.1.
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• The answer NA means that the paper does not include experiments.
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper is with the NeurIPS Code of Ethics.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
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eration due to laws or regulations in their jurisdiction).
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Answer: [Yes]
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• The answer NA means that there is no societal impact of the work performed.
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impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
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Answer: [Yes]
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: They have been explicitly mentioned and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not involve LLMs as any important, original, or non-standard
components.
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• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Theorem 1

Proof. Consider an attack that changes each position of the fingerprint with a probability δ. This
attack is featured by a C-ary code of length N , among which (1 − δ)N positions equal zero to
represent triggers whose predictions remain invariable. The other δN positions are distributed in
{1, 2, · · · , C − 1} to represent that the corresponding predictions have been shifted to the next
1, 2, · · · , (C − 1)-th class (modulo C).

We use ϕ0
n to denote the output of the suspicious model on tn before being attacked. For the first

term in Eq. (4), :

H(ϕn|ϕ1, · · · , ϕn−1)
(a)

≥ H(ϕn|ϕ1, · · · , ϕn−1,A)

(b)
=H(ϕ0

n|ϕ1, · · · , ϕn−1,A)
(c)
= I0

(
tn|t1:(n−1)

)
.

(10)

in which (a) follows the basic properties of entropy, (b) and (c) hold since once the attack is known,
the entire case can be reduced to the vanilla setting as if no attack has been applied.

The second term in Eq. (4) equals:

H(ϕn,A1:n|ϕ1, · · · , ϕn−1,F)−H(A1:n|ϕ1, · · · , ϕn,F)

(a)
=H(ϕn,A1:n|ϕ1, · · · , ϕn−1,F)

(b)
=H(A1:n|ϕ1, · · · , ϕn−1,F)

(c)
= H(An)

(d)

≤ − δ log2 δ − (1− δ) log2(1− δ) + δ log2(C − 1),

(11)

where A1:n and An denote the attack on corresponding triggers. All (a)-(d) use the attack’s represen-
tation, (b) also relies on the chain rule of entropy. Combining Eq. (10) and Eq. (11) yields:

Iϵ
(
tn|t1:(n−1)

)
≥I0

(
tn|t1:(n−1)

)
+ δ log2 δ

+(1− δ) log2(1− δ)− δ log2(C − 1).
(12)

The r.h.s. of Eq. (12) monotonically decreases in δ (when δ ≤ 0.5). Combining this observation with
Eq. (2) yields Eq. (7).

B Applications on Copyright Tracing of Generative Language Models

We demonstrate the application of the proposed method on the copyright tracing of generative
language models.

We built a collection of P = 50 generative language models including GPT-2 [40] with 10
fine-tuned versions, GPT-Neo-125M [41] with 10 fine-tuned versions, OPT-125M [42] with 10
fine-tuned versions, OPT-350M with 10 fine-tuned versions, Pythia-70M [43], Pythia-160M,
Pythia-160M-deduped, T5-Small [44], Flan-T5-Small [45], and BLOOM-560M [46]. Each fine-
tuned version used one corpus from CMV [47], Yelp [48], TLDR [49], XSum [49], ELI5 [50],
WP [51], ROC [52], HellaSwag [53], SQuAD [54], and SciGen [55].

Candidate basic copyright tracing algorithms were T5-Sentinel [56] (C = 5), T5-Hidden (C = 5),
and LLMDet [57] (C = 9). Given a series of prompts, the suspicious model generates a series of
texts, which are fed into the basic copyright tracing algorithm. The fingerprint of the suspicious model
is the list of outputs from the copyright tracing algorithm. For example, LLMDet has captured texts
generated from {0:Human, 1:GPT-2, 2:OPT, 3:UniLM, 4:LLaMA, 5:BART, 6:T5, 7:BLOOM, 8:GPT-Neo}.
Given a list of seven prompts, T5-Small returns six sentences, which might be classified by LLMDet
into [Human,GPT-2,T5,LLaMA,Human,T5,GPT-2], so the fingerprint of T5-Small under LLMDet can
be encoded as [0,1,6,4,0,6,1], which can be interpreted as the fingerprint of a nine-class classifier.

Initially, N = 200 prompts were random drawn from the union of 10 corpura for fine-tuning. The
culmulative mutual information provided by fingerprints from three algorithms is visualuzed in Fig. 8.
It turns out that either T5-Sentinel or T5-Hidden was capable of distinguishing all 50 models with
five prompts, although they were trained on only five models (Human, GPT3.5, PaLM, LLaMA, and
GPT2-XL). Meanwhile, LLMDet has learned data generated from nine different models, but it failed
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(a) (b)

Figure 8: (a) The culmulative mutual information (in bit) and (b) the uniqueness rate provided by
prompts in the original order (the solid curves) and prompts seleted by the greedy algorithm (the
dashed curves). The black line marks

(
1− 1

e

)
log2 50 bits.

(a) Top-5. (b) Top-10.

Figure 9: The copyright tracing accuracy provided by prompts in the original order (the solid curves)
and prompts seleted by the greedy algorithm (the dashed curves).

to differentiate all models even with ten prompts. After all, all three schemes’ performance was
boosted under the greedy selection framework.

The uniqueness declined sharply in the adversarial setting where we implemented fine-tuning with
Wikimedia corpus 2 as adversarial modifications. Greedily selected triggers outperformed the baseline
random setting as well. This is reflected in the copyright tracing accuracy in Fig. 9.

We remark that for generative language models, the conditional mutual information of a prompt
depends on both the prompt’s source corpus and the classifier algorithm (there is no extra copyright
tracing classifier for DNN classifiers to be protected), our experiments suggested that the first factor
also had a small influence as shown in Fig. 10. Although T5-Sentinal and T5-Hidden performed
differently across corpura (using random prompts from a corpus), their performed almost identically
after incorporating the greedy selection scheme. Meanwhile, the culmulative mutual information of
LLMDet remained the lowest in all cases, yet our greedy selection scheme uniformly boosted its
performance.

To simplify the evaluation, the random seeds within language models were manually fixed. In
practice, the verifier is encouraged to feed a prompt to a language model for multiple times, record
the predictions returned from the basic copyright tracing algorithm, and conduct a voting. It can be
proven that when the error of this estimation for each prompt is bounded by ϵ (i.e., the probability
that the prediction for this prompt differs from the statistical mode is no larger than ϵ) then the bound
in Eq. (8) should be relaxed into:

N̂∑
n=1

Iϵ
(
t̂n|t̂1:(n−1)

)
≥

(
1− 1

e

) N̂∑
n=1

Iϵ
(
t̃n|t̃1:(n−1)

)
− ϵN̂2

(
1− 1

N̂

)
log2 C

− ϵN̂2 log2 C.

(13)

2https://dumps .wikimedia.org.
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(a) CMV. (b) Yelp. (c) TLDR. (d) XSum.

(e) ELI5. (f) WP. (g) ROC. (h) HellaSwag.

(i) SQuAD. (j) Sci-Gen.

Figure 10: The culmulative mutual information (in bit) provided by prompts in the original order (the
solid curves) and prompts seleted by the greedy algorithm (the dashed curves). The black line marks(
1− 1

e

)
log2 50 bits.

The proof is similar to the induction in Lemma 2 in [58].

In conclusion, our scheme can be generalized to other non-classifiers and boost the performance of
copyright tracing by increasing the uniqueness rate. Additionally, it can be used in the open setting
where the models to be traced have not been included into the training set of basic copyright tracing
algorithms, so it is necessary to use multiple prompts to extract their fingerprints.

C Code Repo Link

All codes for reproducibility in https://github.com/zzmsmm/Informative_Triggers.
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