
HiLD 2024: 2nd Workshop on High-dimensional Learning Dynamics

Provable Tempered Overfitting of Minimal Nets and Typical Nets

Itamar Harel ITAMARHAREL01@GMAIL.COM
Technion

William M. Hoza
The University of Chicago

Gal Vardi
Weizmann Institute of Science

Itay Evron
Technion

Nathan Srebro
Toyota Technological Institute at Chicago

Daniel Soudry
Technion

Abstract
We study the overfitting behavior of fully connected deep Neural Networks (NNs) with binary
weights fitted to perfectly classify a noisy training set. We consider interpolation using both the
smallest NN (having the minimal number of weights) and a random interpolating NN. For both
learning rules, we prove overfitting is tempered. Our analysis rests on a new bound on the size of a
threshold circuit consistent with a partial function.

1. Introduction

Neural networks (NNs) famously exhibit strong generalization capabilities, seemingly in defiance of
traditional generalization theory. Often, NNs generalize well even when trained to interpolate the
training data perfectly [94]. This motivated an extensive line of work on overfitting and generalization
in NNs trained to perfectly fit a dataset with corrupted labels (e.g., [5, 28, 48, 57]).

To better understand generalization in NNs, Mallinar et al. [57] proposed a taxonomy of benign,
tempered, and catastrophic overfitting. An algorithm that perfectly interpolates a training set with
corrupted labels, i.e., an interpolator, exhibits tempered overfitting if its generalization error is neither
benign nor catastrophic — not optimal but much better than trivial. However, the characterization of
overfitting in NNs is still incomplete, especially in deep NNs when the input dimension is neither
very high nor very low. Our paper studies the overfitting behavior of deep NNs in this regime.

We analyze tempered overfitting in “min-size” NN interpolators, i.e., whose layer widths are
selected to minimize the total number of weights. A model’s number of parameters is a natural
complexity measure in learning theory and practice. For instance, it is theoretically well understood
that L1 regularization in a sparse linear regression setting yields a sparse regressor. Practically,
finding small-sized deep models is a common objective used in pruning and neural architecture
search (e.g., [33, 54]). Recently, Manoj and Srebro [58] proved that the shortest program (Turing
machine) that perfectly interpolates noisy datasets exhibits tempered overfitting, illustrating how a
powerful model can avoid catastrophic overfitting by returning a min-size interpolator.

© I. Harel, W.M. Hoza, G. Vardi, I. Evron, N. Srebro & D. Soudry.

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

We further study tempered overfitting in random (“typical”) interpolators — NNs sampled
uniformly from the set of parameters that perfectly fit the training set. Given a narrow teacher model
and no label noise, Buzaglo et al. [13] recently proved that typical interpolators, which may be highly
overparameterized, generalize well, even without relying on explicit regularization or the implicit
bias of any gradient algorithm.

For both min-size and typical NN interpolators, we study the generalization behavior under an
underlying noisy teacher model. We focus on deep NNs with binary weights and activations (similar
NNs are used in resource-constrained environments; e.g., [42]). Our analysis reveals that these
models exhibit a tempered overfitting behavior that depends on the label noise’s statistical properties
(i.e., independent noise leads to milder bounds). Our results are illustrated in Figure 1 below.

Figure 1: Overfitting behaviors. Consider a binary clas-
sification problem with an ε⋆-probability for label flips.
Assuming balanced classes, the trivial generalization
error is 0.5 (in gray; e.g., with a constant predictor).
A Bayes-optimal hypothesis (in red) obtains a gener-
alization error of ε⋆. For large enough training sets,
our results dictate tempered overfitting — for arbitrary
noise, the error is approximately bounded by 1−2−H(ε⋆),
i.e., 1−2ε

⋆ log(ε⋆)+(1−ε⋆) log(1−ε⋆) (blue); and for inde-
pendent noise, the error is concentrated around the
tighter 2ε⋆ (1− ε⋆) (orange). A similar figure was
previously shown for shortest-program interpolators [58].

0.0 0.1 0.2 0.3 0.4 0.5
Noise level

0.0

0.1

0.2

0.3

0.4

0.5

Ge
ne

ra
liz

at
io

n
er

ro
r

(A
(S

))
Trivial performance
Bound under arbitrary noise
Concentration under indep. noise
Bayes optimal

The contributions of this paper are:

• Returning a min-size NN interpolator is a natural learning rule that follows the Occam’s-razor
principle. We show that this learning rule exhibits tempered overfitting (Section 4.1).

• We prove that overparameterized random NN interpolators typically exhibit tempered overfitting
with generalization close to a Bayes-optimal predictor (Section 4.2).

• To the best of our knowledge, ours are the first theoretical results on benign or tempered overfitting
that: (1) apply to deep NNs, and (2) do not require a very high or very low input dimension.

• The above results rely on a key technical result — datasets generated by a constant-size teacher
model with label noise can be interpolated1 using a NN of constant depth with threshold activa-
tions, binary weights, a width sub-linear in N , and roughly H(ε⋆) ·N weights, where H(ε⋆) is
the binary entropy function of the fraction of corrupted labels (Section 3).

2. Setting

Notation. Bold characters indicate vectors (lowercase) and matrices (uppercase). Regular up-
percase characters indicate random variables (or vectors). We use ⊕ to denote the XOR of two
binary values, and ⊙ to denote the Hadamard (elementwise) product between two vectors. We use
log = log2 and Ber (p) to denote the Bernoulli distribution with probability p. Finally, H (D) denotes
the entropy of a distribution D, and H (ε) ≜ H (Ber (ε)) denotes the binary entropy function.

1. As long as it has no repeated datapoints with opposite labels. See our Def. 3 of consistent datasets.

2

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

2.1. Model: Fully connected threshold NNs with binary weights

Similarly to Buzaglo et al. [13], we define the following model.

Definition 1 (Binary threshold networks) For a depth L, widths d = (d1, . . . , dL), input dimen-
sion d0, a binary threshold network is a mapping θ 7→ hθ such that hθ : {0, 1}d0 → {0, 1},
parameterized by θ =

(
W(l),b(l),γ(l)

)L
l=1

∈ ΘBTN (d), where for every layer l ∈ [L],

W(l)∈ QW
l ={0, 1}dl×dl−1 , γ(l)∈ Qγ

l ={−1, 0, 1}dl , b(l)∈ Qb
l ={−dl−1 + 1, . . . , dl−1}dl .

This mapping is defined recursively as hθ (x) = h(L) (x) where h(0) (x) = x and

∀l ∈ [L] h(l) (x) = I
{(

γ(l) ⊙
(
W(l)h(l−1) (x)

)
+ b(l)

)
> 0

}
.

The total number of weights is w(d) =
∑L

l=1 dldl−1, and the number of neurons is n (d) =
∑L

l=1 dl.
We denote the set of functions that can be implemented by binary threshold networks by HBTN

d .

2.2. Data model: A teacher network and label-flip noise

Data distribution. Let X = {0, 1}d0 and let D be some joint distribution over X × {0, 1}.

Assumption 2 (Teacher assumption) We assume a “teacher NN” h⋆ generating the labels. A
label flipping noise is then added with a noise level of ε⋆ = P(X,Y)∼D (Y ̸= h⋆(X)). The label noise
is independent when Y ⊕ h⋆ (X) is independent of the features X .

2.3. Learning problem: Classification with interpolators

We consider binary classification on a training set S={(xi, yi)}Ni=1 of N datapoints sampled from D
(iid). For a hypothesis h : X →{0, 1}, the generalization error is LD (h) ≜ P(X,Y)∼D (h(X) ̸= Y).
The training error is LS (h) ≜ 1

N

∑N
n=1 I {h(xn) ̸= yn} and h is an interpolator when LS (h) = 0.

In this paper, we are specifically interested in consistent datasets that can be perfectly fit.

Definition 3 (Consistent datasets) A dataset S = {(xi, yi)}Ni=1 is consistent if

∀i, j ∈ [N] xi = xj =⇒ yi = yj .

In Section 4, we reveal a tempered overfitting behavior for (1) min-size NN interpolators and
(2) sampled random NN interpolators, both falling under the following framework.

Framework 1 Learning interpolators

Input: A training set S.
Algorithm:

if S is consistent: return an interpolator A (S) = h ∈ H (such that LS (h) = 0)
else: return an arbitrary hypothesis A (S) = h ∈ H (e.g., h(x) = 0,∀x)

3

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

3. Interpolating a noisy training set

Our generalization results rely on a technical result that any consistent dataset from our noisy teacher
model can be memorized by a “student” small enough to induce meaningful generalization bounds.

Theorem 4 (Memorizing a consistent dataset) For any teacher h⋆ of depth L⋆ and dimensions
d⋆ and any consistent training set S generated from it, there exists an interpolating NN h (i.e.,
LS (h) = 0) of depth L = max {L⋆, 14}+ 2 and dimensions d, such that the number of weights is

w (d) ≤ w (d⋆) +N ·H (LS (h⋆)) + 2n (d⋆)N3/4polylogN +O (d0 (d0 + n (d⋆)) · logN)

and the maximal width is dmax ≤ d⋆max +N3/4 ·H (LS (h⋆)) · polylog (N) +O (d0 · log (N)).

We outline a brief proof idea in Appendix A.1 and give the complete proof in Appendix E.

4. Tempered overfitting of min-size and random interpolators

We study overfitting in two types of interpolating NNs. In both cases, we prove tempered overfitting
and show that the test performance is not much worse than the Bayes optimal error.

In our results, we use the marginal peak probability of the distribution, as defined next.2

Definition 5 (Peak marginal probability) Dmax ≜ maxx∈X P(X,Y)∼D (X = x).

4.1. Min-size interpolators

Min-size NN interpolators are networks of a certain depth with the fewest weights that interpolate a
given training set. In realizable settings, the generalization of interpolating models with a restricted
number of parameters follows from standard VC-bounds [4, 74]. However, interpolating noisy data
requires larger models (to memorize noise [85]), thus making generalization guarantees challenging.

Learning rule: Min-size NN interpolators. Given a consistent set S and a fixed depth L, a
min-size NN interpolator, or min-#weights interpolator, is a binary threshold network h (see Def. 1)
that achieves LS (h) = 0 using a minimal number of weights. Recall that w(d) =

∑L
l=1 dldl−1 and

define the minimal number of weights required to implement a given hypothesis h,

wL (h) ≜ mind∈NL w (d) s.t. h ∈ HBTN
d .

The learning rule is then defined as AL (S) ∈ argminhwL (h) s.t. LS (h) = 0.

Theorem 6 Let D be a distribution induced by a noisy teacher of depth L⋆, widths d⋆, n(d⋆)
neurons, and a noise level of ε⋆ < 1/2 (Assumption 2). Let S ∼ DN be a training set such that
N = ω

(
n (d⋆)4 polylog (n (d⋆)) + d20 log d0

)
and N = o(

√
1/Dmax). Then, for any fixed depth

L ≥ max {L⋆, 14}+ 2, the generalization error of the min-size depth-L NN interpolator satisfies:

• Under arbitrary label noise, ES [LD (AL (S))] ≤ 1− 2−H(ε⋆) + o (1).

• Under independent label noise, |ES [LD (AL (S))]− 2ε⋆ (1−ε⋆)| = o (1).

Here, o (1) indicates terms that become insignificant when the number of samples N is large.
We illustrate these behaviors in Figure 1. Moreover, we discuss these results and the proof idea
in Appendix A.2. The complete proof with detailed characterization of the o(1) terms is given in
Appendix G.1.

2. We focus on cases where N=o
(
1/

√
Dmax

)
, in which our noisy datasets are most likely consistent.

4

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

4.2. Random NN interpolators (posterior sampling)

Recent empirical [20, 84] and theoretical [13] works found that randomly sampled deep NNs
interpolating a training set often generalize surprisingly well. We analyze such random interpolators
under our noisy teacher model and reveal once again a tempered overfitting behavior.

Learning rule: Posterior sampling. For any consistent training set S, we define a posterior
distribution over hypotheses PS = Uniform

{
θ ∈ ΘBTN (d) | LS (hθ) = 0

}
, i.e., the distribution

induced by the uniform distribution over parameters of NN interpolators of S. For inconsistent S we
use an arbitrary PS . Then, the posterior sampling rule is Ad (S) ∼ PS .
Theorem 7 Let D be a distribution induced by a noisy teacher of depth L⋆, widths d⋆, n(d⋆)
neurons, and a noise level of ε⋆ < 1/2 (Assumption 2). Let S ∼ DN be a training set such that
N = ω

(
n (d⋆)4 polylog (n (d⋆)) + d20 log d0

)
and N = o(

√
1/Dmax). Then, there exist constants

c1, c2 > 0 such that for any student NN of depth L ≥ max {L⋆, 14}+ 2 and widths d ∈ NL holding
∀l = 1, . . . , L⋆−1 dl ≥ d⋆l +N3/4 · (logN)c1 + c2 · d0 · log (N) , (1)

the generalization error of posterior sampling satisfies the following.
• Under arbitrary label noise,

ES,Ad(S)

[
LD
(
Ad (S)

)]
≤ 1− 2−H(ε⋆) +O

(
n (d) · log (dmax + d0)

N

)
.

• Under independent label noise,∣∣∣ES,Ad(S)

[
LD
(
Ad (S)

)]
− 2ε⋆ (1−ε⋆)

∣∣∣ ≤ O

(√
n (d) · log (dmax + d0)

N

)
.

The proof and a detailed description of the error terms are given in Appendix G.2. Remarkably, un-
like standard bounds [4, 74], the bounds are non-trivial even for NNs which may be overparmeterized.

5. Discussion
We discuss related work in detail in Appendix A.3. Specifically, we elaborate on benign and tempered
overfitting, and discuss connections between our work and the literature on memorization, posterior
sampling, and the guess-and-check algorithm [20]. Furthermore, we position our results from
Section 3 within existing literature on circuit complexity.

In this work, we focused on binary (fully connected) threshold networks of depth L ≥ 16
(Section 2.1) with binary input features (Section 2.2), for which we were able to derive nontrivial
generalization bounds. Using simple modifications, our results can be extended to other settings
like NNs with higher weight quantization (see Remark 9), or ReLU networks (since any threshold
network with binary weights can be computed by a not-much-larger ReLU network with a constant
quantization level). Unfortunately, without more sophisticated arguments these extensions result
in looser generalization bounds. The “bottleneck” is our reliance on tight (enough) bounds on the
widths of interpolating NNs. Extending the results to other architectures (e.g., CNNs, fully connected
without neuron scaling, shallower models, etc.) and other quantization schemes (e.g., floating point
representations) will require utilizing their structure to derive tighter bounds on the complexity (e.g.,
number of weights) needed to interpolate consistent datasets.

Our paper focused on consistent training sets (Def. 3) allowing perfect interpolation. Realistically,
models do not always perfectly interpolate the training set, and it is interesting to find generalization
bounds for non-interpolating models, depending on the training error. In addition, it is interesting
to relate the generalization error to the training loss, and not just to the training accuracy. Such
extensions will require either broadening our generalization results or deriving new ones.

5

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Acknowledgements

We thank Alexander Chashkin for generously providing English-language expositions of some results
from his work [17] as well as some results from Lupanov’s work [56] (personal communication).
The research of DS was Funded by the European Union (ERC, A-B-C-Deep, 101039436). Views
and opinions expressed are however those of the author only and do not necessarily reflect those of
the European Union or the European Research Council Executive Agency (ERCEA). Neither the
European Union nor the granting authority can be held responsible for them. DS also acknowledges
the support of the Schmidt Career Advancement Chair in AI. GV is supported by a research grant
from the Center for New Scientists at the Weizmann Institute of Science. Part of this work was
done as part of the NSF-Simons funded Collaboration on the Mathematics of Deep Learning.
NS was partially supported by the NSF TRIPOD Institute on Data Economics Algorithms and
Learning (IDEAL) and an NSF-IIS award.

References

[1] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm for
the maximal independent set problem. J. Algorithms, 7(4):567–583, 1986. ISSN 0196-6774.
doi: 10.1016/0196-6774(86)90019-2.

[2] Noga Alon, Oded Goldreich, Johan Hå stad, and René Peralta. Simple constructions of almost
k-wise independent random variables. Random Structures Algorithms, 3(3):289–304, 1992.
ISSN 1042-9832. doi: 10.1002/rsa.3240030308.

[3] Peter L Bartlett and Philip M Long. Failures of model-dependent generalization bounds for
least-norm interpolation. The Journal of Machine Learning Research, 22(1):9297–9311, 2021.

[4] Peter L Bartlett, Nick Harvey, Christopher Liaw, and Abbas Mehrabian. Nearly-tight vc-
dimension and pseudodimension bounds for piecewise linear neural networks. Journal of
Machine Learning Research, 20(63):1–17, 2019.

[5] Peter L. Bartlett, Philip M. Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in
linear regression. Proceedings of the National Academy of Sciences, 117(48):30063–30070,
2020.

[6] Daniel Barzilai and Ohad Shamir. Generalization in kernel regression under realistic assump-
tions. In Forty-first International Conference on Machine Learning, 2024.

[7] Eric B Baum. On the capabilities of multilayer perceptrons. Journal of complexity, 4(3):
193–215, 1988.

[8] Daniel Beaglehole, Mikhail Belkin, and Parthe Pandit. On the inconsistency of kernel ridgeless
regression in fixed dimensions. SIAM Journal on Mathematics of Data Science, 5(4):854–872,
2023. doi: 10.1137/22M1499819.

[9] Paul W. Beame, Stephen A. Cook, and H. James Hoover. Log depth circuits for division
and related problems. SIAM J. Comput., 15(4):994–1003, 1986. ISSN 0097-5397. doi:
10.1137/0215070.

6

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

[10] Mikhail Belkin, Daniel J Hsu, and Partha Mitra. Overfitting or perfect fitting? Risk bounds
for classification and regression rules that interpolate. In Advances in Neural Information
Processing Systems (NeurIPS), 2018.

[11] Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent for weak features. SIAM
Journal on Mathematics of Data Science, 2(4):1167–1180, 2020.

[12] Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, and Dan Mikulincer. Network size and size of the
weights in memorization with two-layers neural networks. In Neural Information Processing
Systems, 2020.

[13] Gon Buzaglo, Itamar Harel, Mor Shpigel Nacson, Alon Brutzkus, Nathan Srebro, and Daniel
Soudry. How uniform random weights induce non-uniform bias: Typical interpolating neural
networks generalize with narrow teachers. In International Conference on Machine Learning
(ICML), 2024.

[14] Yuan Cao, Quanquan Gu, and Mikhail Belkin. Risk bounds for over-parameterized maximum
margin classification on sub-gaussian mixtures. In Advances in Neural Information Processing
Systems (NeurIPS), 2021.

[15] Yuan Cao, Zixiang Chen, Misha Belkin, and Quanquan Gu. Benign overfitting in two-layer
convolutional neural networks. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and
Kyunghyun Cho, editors, Advances in Neural Information Processing Systems, 2022.

[16] Ashok K. Chandra, Larry Stockmeyer, and Uzi Vishkin. Constant depth reducibility. SIAM J.
Comput., 13(2):423–439, 1984. ISSN 0097-5397. doi: 10.1137/0213028.

[17] Alexander Chashkin. On the realization of partial boolean functions. In Proceedings of the 7th
International Conference on Discrete Models in the Theory of Control Systems, pages 390–404,
2006. In Russian.

[18] Niladri S. Chatterji and Philip M. Long. Finite-sample analysis of interpolating linear classifiers
in the overparameterized regime. Journal of Machine Learning Research, 22(129):1–30, 2021.

[19] Niladri S Chatterji, Philip M Long, and Peter L Bartlett. The interplay between implicit bias
and benign overfitting in two-layer linear networks. Journal of machine learning research, 23
(263):1–48, 2022.

[20] Ping-yeh Chiang, Renkun Ni, David Yu Miller, Arpit Bansal, Jonas Geiping, Micah Goldblum,
and Tom Goldstein. Loss landscapes are all you need: Neural network generalization can
be explained without the implicit bias of gradient descent. In The Eleventh International
Conference on Learning Representations, 2023.

[21] Geoffrey Chinot and Matthieu Lerasle. On the robustness of the minimum ℓ2 interpolator. arXiv
preprint arXiv:2003.05838, 2020.

[22] Benny Chor and Oded Goldreich. On the power of two-point based sampling. J. Complexity, 5
(1):96–106, 1989. ISSN 0885-064X. doi: 10.1016/0885-064X(89)90015-0.

7

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

[23] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on
information theory, 13(1):21–27, 1967.

[24] Martin Dietzfelbinger. Universal hashing and k-wise independent random variables via integer
arithmetic without primes. In STACS 96 (Grenoble, 1996), volume 1046 of Lecture Notes in
Comput. Sci., pages 569–580. Springer, Berlin, 1996.

[25] Konstantin Donhauser, Nicolo Ruggeri, Stefan Stojanovic, and Fanny Yang. Fast rates for noisy
interpolation require rethinking the effect of inductive bias. In International Conference on
Machine Learning (ICML), 2022.

[26] Wayne Eberly. Very fast parallel polynomial arithmetic. SIAM J. Comput., 18(5):955–976,
1989. ISSN 0097-5397. doi: 10.1137/0218066.

[27] Guy Even, Oded Goldreich, Michael Luby, Noam Nisan, and Boban Veličković. Efficient
approximation of product distributions. Random Structures & Algorithms, 13(1):1–16, 1998.

[28] Spencer Frei, Niladri S. Chatterji, and Peter L. Bartlett. Benign overfitting without linearity:
Neural network classifiers trained by gradient descent for noisy linear data. In Conference on
Learning Theory (COLT), 2022.

[29] Spencer Frei, Gal Vardi, Peter Bartlett, and Nathan Srebro. Benign overfitting in linear classifiers
and leaky relu networks from kkt conditions for margin maximization. In Proceedings of Thirty
Sixth Conference on Learning Theory, volume 195 of Proceedings of Machine Learning
Research, pages 3173–3228. PMLR, 12–15 Jul 2023.

[30] Erin George, Michael Murray, William Swartworth, and Deanna Needell. Training shallow relu
networks on noisy data using hinge loss: when do we overfit and is it benign? Advances in
Neural Information Processing Systems, 36, 2024.

[31] Nikhil Ghosh and Mikhail Belkin. A universal trade-off between the model size, test loss,
and training loss of linear predictors. SIAM Journal on Mathematics of Data Science, 5(4):
977–1004, 2023.

[32] András Hajnal, Wolfgang Maass, Pavel Pudlák, Márió Szegedy, and György Turán. Threshold
circuits of bounded depth. J. Comput. System Sci., 46(2):129–154, 1993. ISSN 0022-0000. doi:
10.1016/0022-0000(93)90001-D.

[33] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. Advances in neural information processing systems, 28, 2015.

[34] Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-
dimensional ridgeless least squares interpolation. Annals of statistics, 50(2):949, 2022.

[35] Pooya Hatami and William Hoza. Paradigms for unconditional pseudorandom generators.
Foundations and Trends® in Theoretical Computer Science, 16(1-2):1–210, 2024. ISSN
1551-305X. doi: 10.1561/0400000109.

[36] Alexander Healy and Emanuele Viola. Constant-depth circuits for arithmetic in finite fields
of characteristic two. In STACS 2006, volume 3884 of Lecture Notes in Comput. Sci., pages
672–683. Springer, Berlin, 2006. doi: 10.1007/11672142_55.

8

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

[37] Thomas Hofmeister, Walter Hohberg, and Susanne Köhling. Some notes on threshold circuits,
and multiplication in depth 4. Inform. Process. Lett., 39(4):219–225, 1991. ISSN 0020-0190.
doi: 10.1016/0020-0190(91)90183-I.

[38] William M. Hoza and David Zuckerman. Simple optimal hitting sets for small-success RL.
SIAM J. Comput., 49(4):811–820, 2020. ISSN 0097-5397. doi: 10.1137/19M1268707.

[39] Guang-Bin Huang. Learning capability and storage capacity of two-hidden-layer feedforward
networks. IEEE transactions on neural networks, 14(2):274–281, 2003.

[40] Guang-Bin Huang and Haroon A Babri. Upper bounds on the number of hidden neurons in
feedforward networks with arbitrary bounded nonlinear activation functions. IEEE transactions
on neural networks, 9(1):224–229, 1998.

[41] Shih-Chi Huang, Yih-Fang Huang, et al. Bounds on the number of hidden neurons in multilayer
perceptrons. IEEE transactions on neural networks, 2(1):47–55, 1991.

[42] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Bina-
rized neural networks. Advances in neural information processing systems, 29, 2016.

[43] Nirmit Joshi, Gal Vardi, and Nathan Srebro. Noisy interpolation learning with shallow univariate
reLU networks. In The Twelfth International Conference on Learning Representations, 2024.

[44] Peizhong Ju, Xiaojun Lin, and Jia Liu. Overfitting can be harmless for basis pursuit, but only
to a degree. Advances in Neural Information Processing Systems, 33:7956–7967, 2020.

[45] Stasys Jukna. Boolean function complexity, volume 27 of Algorithms and Combinatorics.
Springer, Heidelberg, 2012. ISBN 978-3-642-24507-7. doi: 10.1007/978-3-642-24508-4.
Advances and frontiers.

[46] Kedar Karhadkar, Erin George, Michael Murray, Guido Montúfar, and Deanna Needell.
Benign overfitting in leaky relu networks with moderate input dimension. arXiv preprint
arXiv:2403.06903, 2024.

[47] Frederic Koehler, Lijia Zhou, Danica J. Sutherland, and Nathan Srebro. Uniform convergence
of interpolators: Gaussian width, norm bounds and benign overfitting. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, 2021.

[48] Guy Kornowski, Gilad Yehudai, and Ohad Shamir. From tempered to benign overfitting in relu
neural networks. Advances in Neural Information Processing Systems, 36, 2024.

[49] Yiwen Kou, Zixiang Chen, Yuanzhou Chen, and Quanquan Gu. Benign overfitting for two-layer
relu networks. arXiv preprint arXiv:2303.04145, 2023.

[50] Jianfa Lai, Manyun Xu, Rui Chen, and Qian Lin. Generalization ability of wide neural networks
on R. arXiv preprint arXiv:2302.05933, 2023.

[51] Tengyuan Liang and Alexander Rakhlin. Just interpolate: Kernel “ridgeless" regression can
generalize. Annals of Statistics, 48(3):1329–1347, 2020.

9

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

[52] Tengyuan Liang and Benjamin Recht. Interpolating classifiers make few mistakes. Journal of
Machine Learning Research, 24(20):1–27, 2023.

[53] Tengyuan Liang, Alexander Rakhlin, and Xiyu Zhai. On the multiple descent of minimum-
norm interpolants and restricted lower isometry of kernels. In Conference on Learning Theory
(COLT), 2020.

[54] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang.
Learning efficient convolutional networks through network slimming. In Proceedings of the
IEEE international conference on computer vision, pages 2736–2744, 2017.

[55] Oleg B. Lupanov. A method of circuit synthesis. Izvesitya VUZ, Radiofizika, 1, 1958. In
Russian.

[56] Oleg B. Lupanov. On a certain approach to the synthesis of control systems – the principle of
local coding. Problemy Kibernetiki, 14:31–110, 1965. In Russian.

[57] Neil Rohit Mallinar, James B Simon, Amirhesam Abedsoltan, Parthe Pandit, Misha Belkin,
and Preetum Nakkiran. Benign, tempered, or catastrophic: Toward a refined taxonomy of
overfitting. In Advances in Neural Information Processing Systems, 2022.

[58] Naren Sarayu Manoj and Nathan Srebro. Interpolation learning with minimum description
length. arXiv preprint arXiv:2302.07263, 2023.

[59] Yishay Mansour, Noam Nisan, and Prasoon Tiwari. The computational complexity of universal
hashing. Theoret. Comput. Sci., 107(1):121–133, 1993. ISSN 0304-3975. doi: 10.1016/
0304-3975(93)90257-T.

[60] Andrew D McRae, Santhosh Karnik, Mark Davenport, and Vidya K Muthukumar. Harmless in-
terpolation in regression and classification with structured features. In International Conference
on Artificial Intelligence and Statistics, pages 5853–5875. PMLR, 2022.

[61] Song Mei and Andrea Montanari. The generalization error of random features regression:
Precise asymptotics and the double descent curve. Communications on Pure and Applied
Mathematics, 2019.

[62] Xuran Meng, Difan Zou, and Yuan Cao. Benign overfitting in two-layer relu convolutional
neural networks for xor data. arXiv preprint arXiv:2310.01975, 2023.

[63] Chris Mingard, Guillermo Valle-Pérez, Joar Skalse, and Ard A Louis. Is sgd a bayesian
sampler? well, almost. The Journal of Machine Learning Research, 22(1):3579–3642, 2021.

[64] Andrea Montanari, Feng Ruan, Youngtak Sohn, and Jun Yan. The generalization error of
max-margin linear classifiers: High-dimensional asymptotics in the overparametrized regime.
Preprint, arXiv:1911.01544, 2020.

[65] Vidya Muthukumar, Kailas Vodrahalli, Vignesh Subramanian, and Anant Sahai. Harmless
interpolation of noisy data in regression. IEEE Journal on Selected Areas in Information Theory,
2020.

10

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

[66] Vidya Muthukumar, Adhyyan Narang, Vignesh Subramanian, Mikhail Belkin, Daniel Hsu, and
Anant Sahai. Classification vs regression in overparameterized regimes: Does the loss function
matter? Journal of Machine Learning Research, 22(222):1–69, 2021.

[67] Jeffrey Negrea, Gintare Karolina Dziugaite, and Daniel Roy. In defense of uniform conver-
gence: Generalization via derandomization with an application to interpolating predictors. In
International Conference on Machine Learning, pages 7263–7272, 2020.

[68] Sejun Park, Jaeho Lee, Chulhee Yun, and Jinwoo Shin. Provable memorization via deep neural
networks using sub-linear parameters. In Conference on Learning Theory, pages 3627–3661.
PMLR, 2021.

[69] Nicholas Pippenger. The complexity of computations by networks. IBM J. Res. Develop., 31
(2):235–243, 1987. ISSN 0018-8646. doi: 10.1147/rd.312.0235.

[70] Shashank Rajput, Kartik Sreenivasan, Dimitris Papailiopoulos, and amin karbasi. An exponen-
tial improvement on the memorization capacity of deep threshold networks. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, 2021.

[71] Alexander Rakhlin and Xiyu Zhai. Consistency of interpolation with laplace kernels is a
high-dimensional phenomenon. In Conference on Learning Theory, pages 2595–2623. PMLR,
2019.

[72] John H. Reif and Stephen R. Tate. On threshold circuits and polynomial computation. SIAM J.
Comput., 21(5):896–908, 1992. ISSN 0097-5397. doi: 10.1137/0221053.

[73] Michael A Sartori and Panos J Antsaklis. A simple method to derive bounds on the size and to
train multilayer neural networks. IEEE transactions on neural networks, 2(4):467–471, 1991.

[74] Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to
algorithms. Cambridge university press, 2014.

[75] Ohad Shamir. The implicit bias of benign overfitting. In Conference on Learning Theory, pages
448–478. PMLR, 2022.

[76] Claude E. Shannon. The synthesis of two-terminal switching circuits. Bell System Tech. J., 28:
59–98, 1949. ISSN 0005-8580. doi: 10.1002/j.1538-7305.1949.tb03624.x.

[77] Kai-Yeung Siu and Jehoshua Bruck. On the power of threshold circuits with small weights.
SIAM J. Discrete Math., 4(3):423–435, 1991. ISSN 0895-4801. doi: 10.1137/0404038.

[78] Kai-Yeung Siu and Vwani P. Roychowdhury. On optimal depth threshold circuits for multipli-
cation and related problems. SIAM J. Discrete Math., 7(2):284–292, 1994. ISSN 0895-4801.
doi: 10.1137/S0895480192228619.

[79] Kai-Yeung Siu, Jehoshua Bruck, Thomas Kailath, and Thomas Hofmeister. Depth efficient
neural networks for division and related problems. IEEE Trans. Inform. Theory, 39(3):946–956,
1993. ISSN 0018-9448. doi: 10.1109/18.256501.

11

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

[80] Daniel Soudry and Elad Hoffer. Exponentially vanishing sub-optimal local minima in multilayer
neural networks. arXiv preprint arXiv:1702.05777, 2017.

[81] Ryan Theisen, Jason Klusowski, and Michael Mahoney. Good classifiers are abundant in the
interpolating regime. In International Conference on Artificial Intelligence and Statistics, pages
3376–3384. PMLR, 2021.

[82] Christos Thrampoulidis, Samet Oymak, and Mahdi Soltanolkotabi. Theoretical insights into
multiclass classification: A high-dimensional asymptotic view. Advances in Neural Information
Processing Systems, 33:8907–8920, 2020.

[83] Alexander Tsigler and Peter L. Bartlett. Benign overfitting in ridge regression. Journal of
Machine Learning Research, 24(123):1–76, 2023.

[84] Guillermo Valle-Perez, Chico Q. Camargo, and Ard A. Louis. Deep learning generalizes
because the parameter-function map is biased towards simple functions. In International
Conference on Learning Representations, 2019.

[85] Gal Vardi, Gilad Yehudai, and Ohad Shamir. On the optimal memorization power of ReLU
neural networks. In International Conference on Learning Representations, 2022.

[86] Roman Vershynin. Memory capacity of neural networks with threshold and relu activations.
arXiv preprint arXiv:2001.06938, 2020.

[87] Guillaume Wang, Konstantin Donhauser, and Fanny Yang. Tight bounds for minimum l1-norm
interpolation of noisy data. In International Conference on Artificial Intelligence and Statistics
(AISTATS), 2022.

[88] Ke Wang and Christos Thrampoulidis. Binary classification of gaussian mixtures: Abundance
of support vectors, benign overfitting, and regularization. SIAM Journal on Mathematics of
Data Science, 4(1):260–284, 2022.

[89] Ke Wang, Vidya Muthukumar, and Christos Thrampoulidis. Benign overfitting in multiclass
classification: All roads lead to interpolation. In Advances in Neural Information Processing
Systems (NeurIPS), 2021.

[90] Denny Wu and Ji Xu. On the optimal weighted ℓ2 regularization in overparameterized linear
regression. Advances in Neural Information Processing Systems, 33:10112–10123, 2020.

[91] Xingyu Xu and Yuantao Gu. Benign overfitting of non-smooth neural networks beyond lazy
training. In International Conference on Artificial Intelligence and Statistics, pages 11094–
11117. PMLR, 2023.

[92] Zhiwei Xu, Yutong Wang, Spencer Frei, Gal Vardi, and Wei Hu. Benign overfitting and
grokking in reLU networks for XOR cluster data. In The Twelfth International Conference on
Learning Representations, 2024.

[93] Chulhee Yun, Suvrit Sra, and Ali Jadbabaie. Small relu networks are powerful memorizers: a
tight analysis of memorization capacity. In Advances in Neural Information Processing Systems,
pages 15558–15569, 2019.

12

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

[94] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understand-
ing deep learning (still) requires rethinking generalization. Communications of the ACM, 64(3):
107–115, 2021.

[95] Lijia Zhou, Frederic Koehler, Pragya Sur, Danica J. Sutherland, and Nathan Srebro. A non-
asymptotic moreau envelope theory for high-dimensional generalized linear models. In Ad-
vances in Neural Information Processing Systems, 2022.

[96] Lijia Zhou, James B Simon, Gal Vardi, and Nathan Srebro. An agnostic view on the cost of
overfitting in (kernel) ridge regression. In The Twelfth International Conference on Learning
Representations, 2024.

13

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Appendix A. Supplementary material

The first section of the appendix consists of supplementary results and discussions. The rest contain
the complete proofs of our results.

A.1. Supplementary material for Section 3

Proof idea for Theorem 4. We begin by noticing that under a teacher model h⋆ (Assumption 2),
the labels of a consistent dataset S (Def. 3) can be decomposed as

∀i ∈ [N] yi = h⋆ (xi)⊕ f (xi) ,

where f : {0, 1}d0 → {0, 1} indicates a label flip in the ith example (and can be defined arbitrarily
for x /∈ S). Motivated by this observation, we seek an upper bound for the dimensions of a noise-
memorizing network h̃S implementing f . To derive such a bound, we employ established techniques
from the pseudorandomness literature to construct an efficient hitting set generator (HSG)3 for
the class of all conjunctions of literals. The HSG definition implies that there exists a seed on
which the generator outputs a truth table that agrees with f on S. The network h̃S computes any
requested bit of that truth table (see the proof of Theorem 46 for more details). We then show
how a “student” network with these dimensions can implement the XOR between h⋆ and the noise
memorizing f for all points in S. In Figure 2, we illustrate the teacher network from Assumption 2,
the noise-memorizing network h̃S , and a wider student network that interpolates the training set S
by using the XOR construction (formalized in Lemma 50).

Remark 8 (Dependence on d0) In Appendix F we show that the O
(
d20 · logN

)
term is nearly

tight, yet it can be relaxed when using some closely related NN architectures. For example,
with a single additional layer of width Ω

(√
d0 · logN

)
with ternary weights in the first layer,

i.e., QW
1 ={−1, 0, 1} instead of {0, 1}, the O

(
d20 · logN

)
term of Theorem 4 can be improved to

O
(
d
3/2
0 · logN + d0 · log3N

)
.

𝑑0 𝑑1
⋆ 𝑑2

⋆ 𝑑3
⋆

(a) A teacher model h⋆.

𝑑0 ሚ𝑑1 ሚ𝑑2 ሚ𝑑3

(b) A NN h̃S memorizing
the label flips.

𝑑0 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5

XOR

(c) A wider student NN can interpolate
the training set S, e.g., using a XOR
construction.

Figure 2: Interpolating a dataset. To memorize the training set, we use a subset of the parameters
to match those of the teacher and another subset to memorize the noise (label flips). Then, we “merge”
these subsets to interpolate the noisy training set. In our figure, (1) blue edges represent weights
identical to the teacher’s; (2) yellow edges memorize the noise; (3) red edges are set to 0; and two
additional layers implement the XOR between outputs, thus memorizing the training set.

3. A variant of the pseudorandom generator (PRG) concept.

14

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

A.2. Supplementary material for Section 4

The overfitting behaviors described in this section are illustrated in Figure 1.

Equivalent definition of posterior sampling. For consistent S, PS can be equivalently defined
as rejection sampling from the uniform distribution over ΘBTN (d). That is, if we let P (h) =
Pθ∼Uniform(ΘBTN(d)) (hθ = h) then PS (h) = P (h | LS (h) = 0) = I {LS (h) = 0} · P (h)/pS

where pS ≜ P (LS (h) = 0) is the interpolation probability.

Proof idea for Theorems 6 and 7. We extend the information-theoretical generalization bounds
from [58] to this paper’s setting in which label collisions in the datasets have a non-zero probability.
In particular, we bound the interpolator’s complexity from below by the mutual information between
the model and the training set. Since the model is interpolating, we can further bound the mutual
information by a quantity dependent on the population error. From the other direction, we bound
the model’s complexity from above by (1) its size in the min-size setting of Section 4.1, and (2) by
the negative log interpolation probability for the posterior sampling of Section 4.2. Together with
Corollary 4 we obtain the bounds above on the expected generalization error.

In Figure 2 we illustrated the construction of a memorizing network used to bound the complexity
of the min-size interpolator. In the following Figure 3 we illustrate how the interpolation probability
pS can be bounded so as to induce a meaningful generalization bound.

Figure 3: Interpolating a dataset with an overparam-
eterized student. We build on the construction from
Figure 2 that memorizes a dataset using a subset of the
parameters (blue, yellow, and red edges). Then, redun-
dant neurons (grey) can be effectively ignored by setting
their neuron scaling parameters (γ) to 0, leaving the re-
dundant weights (grey edges) unconstrained. Thus, the
interpolation probability pS can be bounded by a quantity
exponentially decaying in the number of neurons n (d)
rather than in the number of weights w (d) = ω (N).

𝑑0 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5

Following Remark 8, the assumption N = ω
(
d20 log d0

)
can be relaxed in some related architec-

tures. For example, with a single additional layer of width O
(√

d0 · logN
)

and ternary weights in

the first layer QW
1 = {−1, 0, 1}, the requirement can be relaxed to N = ω

(
d
3/2
0 log d0

)
.

Remark 9 (Higher weight quantization) The results bounds in the arbitrary noise setting can
easily be extended to NNs with higher quantization levels. For example, letting QW

l such that∣∣QW
l

∣∣ = Q and {0, 1} ⊆ QW
l , under the appropriate assumptions we get that

E(S,A(S)) [LD (A (S))] ⪅ 1−Q−H(ε⋆) ,

which is a meaningful bound for noise levels ε⋆ ≤ ε (Q) for some ε (Q) < 1/2.4 Tighter results would
require utilizing the additional quantization levels to achieve smaller dimensions of the interpolating
network, and are left to future work.

4. Specifically ε (Q) such that 1−Q−H(ε(Q)) ≤ 1
2

.

15

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

A.3. Related work

Benign and tempered overfitting. The benign overfitting phenomenon has been extensively
studied in recent years. Previous works analyzed the conditions in which benign overfitting occurs
in linear regression [3, 5, 11, 19, 21, 31, 34, 44, 47, 65, 67, 75, 83, 87, 90, 95], kernel regression
[6, 8, 10, 50, 51, 53, 57, 60, 61, 71, 96], and linear classification [14, 18, 25, 52, 64, 66, 75, 82, 88, 89].
Moreover, several works proved benign overfitting in classification using nonlinear NNs [15, 28–
30, 46, 48, 49, 62, 91, 92]. We note that all the aforementioned benign overfitting results require
high-dimensional settings, namely, the input dimension is larger than the number of training samples.

Mallinar et al. [57] suggested the taxonomy of benign, tempered, and catastrophic overfitting,
which we use in this work. They demonstrated empirically that nonlinear NNs in classification
tasks exhibit tempered overfitting. Tempered overfitting in kernel ridge regression was theoretically
studied in Barzilai and Shamir [6], Mallinar et al. [57], Zhou et al. [96]. In univariate ReLU NNs
(namely, for input dimension 1), tempered overfitting was obtained for both classification [48] and
regression [43]. Manoj and Srebro [58] proved tempered overfitting for a learning rule returning
short programs in some programming language. Finally, tempered overfitting is well understood for
the 1-nearest-neighbor learning rule, where the asymptotic risk is roughly twice the Bayes risk [23].

Circuit complexity. Theorem 46 (our NN for memorizing label flips) is in a similar spirit as several
prior theorems in the area of circuit complexity. For example, Lupanov famously proved that every
function f : {0, 1}d0 → {0, 1} can be computed by a circuit consisting of (1 + o(1)) · 2d0/d0 many
AND/OR/NOT gates, where the AND/OR gates have fan-in two [55]. Lupanov’s bound, which is
tight [76], is analogous to Theorem 46, because a NN can be considered a type of circuit.

Even more relevant is a line of work that analyzes the circuit complexity of an arbitrary partial
function f : {0, 1}d0 → {0, 1, ⋆} with a given domain size N and a given number of 1-inputs N1,
similar to the setup of Theorem 46. See Jukna’s textbook for an overview [45, Section 1.4.2]. We
highlight the work of Chashkin, who showed that every such function can be computed by a circuit

(of unbounded depth and bounded fan-in) with (1 + o(1)) ·
log (N

N1
)

log log (N
N1
)
+O(d0) gates [17].

To the best of our knowledge, prior to our work, nothing analogous to Chashkin’s theorem [17]
was known regarding constant-depth threshold networks. It is conceivable that one could adapt
Chashkin’s construction [17] to the binary threshold network setting as a method of proving Theo-
rem 46, but our proof of Theorem 46 uses a different approach. Our proof relies on shallow threshold
networks computing k-wise independent generators [36] and an error-reduction technique that was
developed in the context of space-bounded derandomization [38], among other ingredients.

Memorization. Our construction shows how noisy data can be interpolated using a small threshold
NN with binary weights. It essentially requires memorizing the noisy examples. The task of
memorization, namely, finding a smallest NN that allows for interpolation of arbitrary data points,
has been extensively studied in recent decades. Memorization of N arbitrary points in general
position in Rd with a two-layer NN can be achieved using O

(
⌈Nd ⌉

)
hidden neurons [7, 12, 80].

Memorizing arbitrary N points, even if they are not in general position, can be done using two-layer
networks with O(N) neurons [40, 41, 73, 94]. With three-layer networks, O(

√
N) neurons suffice,

but the number of parameters is still linear in N [39, 70, 86, 93]. Using deeper networks allows
for memorization with a sublinear number of parameters [68, 85]. For example, memorization
with networks of depth

√
N requires only Õ(

√
N) parameters [85]. However, we note that in the

aforementioned results, the number of quantization levels is not constant, namely, the number of bits

16

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

in the representation of each weight depends on N .5. Moreover, even in the sublinear constructions
of [68, 85], the number of bits required to represent the network is ω(N). As a result, in this work
we cannot rely on these constructions to obtain meaningful bounds.

Posterior sampling and guess and check. The generalization of random interpolating NNs has
previously been studied, both empirically and theoretically [13, 20, 63, 81, 84]. Theisen et al. [81]
studied the generalization of interpolating random linear and random features classifiers. Mingard
et al. [63], Valle-Perez et al. [84] considered the Gaussian process approximation to random NNs
which typically requires networks with infinite width. Buzaglo et al. [13] provided a method to
obtain generalization results for quantized random NNs of general architectures — possibly deep and
with finite width, under the assumption of a narrow teacher model. A variant of this approach was
used to prove our generalization results of posterior sampling, with the XOR network (Lemma 50)
used in the role of the teacher.

5. We note that in most papers, the required number of quantization levels is implicit in the constructions, and is not
discussed explicitly

17

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Appendix B. Preliminaries and Auxiliary Results

B.1. Preliminaries

Before moving to the proofs of the main results, we recall and introduce some notation that will be
used throughout the supplementary material.

Notation. We denote a (possibly random) learning algorithm by A (S). We use D to denote the
joint distribution over a finite sample space X × {0, 1} of the features and labels, ν to denote the
marginal distribution of the algorithm, and p to denote the joint distribution of a training set S ∼ DN

and the algorithm A (S). Specifically, the training set is a random element

S = {(X1, Y1) , . . . , (XN , YN)} ∼ DN

where (Xi, Yi) is reserved for the i-th example in S. That is (Xi, Yi) is always a sample in S,
whereas (X,Y) is used to denote a data point which is independent of S. We use dD (x, y), dν (h)
and dp (s, h) = dp ({(x1, y1) , . . . , (xN , yN)} , h) to denote the corresponding probability mass
functions. With some abuse of notation, we use dD (x) for the probability mass function of the
marginal of D over X

dD (x) = P(X,Y)∼D (X = x) ,

and dp ((x1, y1) , h) for the marginal of the joint probability of a single point from S and the output
of the algorithm, i.e.,

dp ((x1, y1) , h) = P(S,A(S))∼p (X1 = x1, Y1 = y1, A (S) = h) .

Similarly, we use dp (x1, h), dp (y1 | x1, h), etc., for the probability mass functions of the appropriate
marginal and conditional distributions.

Interpolating algorithm. In order to simplify the analysis, we introduce a framework of
interpolation learning related to the one introduced in Framework 1.

Let Ã (S) be a learning rule satisfying Framework 1, and let ⋆ be some arbitrary token distinct
from any hypothesis the algorithm may produce. We define a modified learning rule A (S)6 such that

• If S is inconsistent then A (S) = ⋆.

• Otherwise, if S is consistent then A (S) = Ã (S), so in particular LS (A (S)) = 0.

Notice that since the A (S) = Ã (S) when S is consistent

E [LD (A (S)) | consistent S] = E
[
LD

(
Ã (S)

)
| consistent S

]
and therefore we can find bounds for the generalization error of Ã (S) by analyzing A (S). In
addition, when it can be inferred from context we use A (S) to denote the min-size and posterior
sampling interpolators (instead of AL(S) or Ad(S), respectively).

For ease of exposition, throughout the appendix, we rephrase the assumptions made in Section 4,
namely, that N = ω

(
d20 log d0

)
and N = o

(
1/
√
Dmax

)
, as follows.

Assumption 10 (Bounded input dimension) d0 = o
(√

N/ logN
)

.

Assumption 11 (Data distribution flatness) Dmax = o
(
1/N2

)
.

6. As most of the appendix deals with the modified learning rule, we use Ã (S) for the original one and A (S) for the
modified one.

18

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

B.2. Auxiliary results

We start by citing several standard results from information theory and lemmas from Manoj and
Srebro [58] which will be useful throughout our supplementary materials.

Lemma 12 (Chain rule of mutual information) For any random variables A1, A2 and B

I ((A1, A2) ;B) = I (A2;B | A1) + I (A1;B) .

Lemma 13 Let A and B be any two random variables with associated marginal distributions pA,
pB , and joint pA,B . Let qA|B be any conditional distribution (i.e. such that for any b, qA|B (·, b) is a
normalized non-negative measure). Then:

I (A;B) ≥ EA,B∼pA,B

[
log

(
dqA|B (A|B)

dpA (A)

)]
.

Lemma 14 Let A1, A2, B be random variables where A1 and A2 are independent. Then

I ((A1, A2) ;B) ≥ I (A1;B) + I (A2;B) .

Lemma 15 (Lemma A.4 from Manoj and Srebro [58]) For C ≥ 0 and 0 ≤ α ≤ 1 it holds that

1− 2−H(α)−C ≤ 1− 2−H(α) + C .

Lemma 16 Let ε ∈
(
0, 12
)

and

ϕ (t) ≜ ϕε (t) =
εt

εt + (1− ε)t
=

1

1 +
(
1
ε − 1

)t .
Then, ϕ is monotonically decreasing as a function of t, and convex in (0,∞).

Proof Denote α ≜ 1
ε − 1 then

ϕ (t) =
1

1 + αt

ϕ′ (t) =
− ln (α)αt

(1 + αt)2
= − ln (α) · αt

1 + 2αt + α2t

ϕ′′ (t) = − ln (α) ·
ln (α)αt

(
1 + αt

)2 − αt · 2
(
1 + αt

)
· ln (α)αt

(1 + αt)4

= − ln (α)2 · αt ·
(
1 + αt

)
− 2αt

(1 + αt)3
= ln (α)2 · αt · αt − 1

(1 + αt)3
.

Notice that for any ε ∈
(
0, 12
)
, α = 1

ε − 1 > 1 so for all t > 0

αt − 1 > 0

and ϕ′′ (t) > 0 so the function is indeed convex, and − ln (α) < 0 so ϕ is decreasing.

19

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Corollary 17 For all t > 0 it holds that

ϕ (t) ≥ ϕ (1) + ϕ′ (1) (t− 1) = ε+ ln 2 (ε log (ε) + εH (ε)) (t− 1) .

Proof Substituting t = 1,

ϕ (1) =
ε

ε+ (1− ε)
= ε

ϕ′ (1) = − ln (α) · α

(1 + α)2
= − ln

(
1

ε
− 1

)
·

1
ε − 1(

1 +
(
1
ε − 1

))2 = − ln

(
1− ε

ε

)
·
1
ε − 1(
1
ε

)2
= − (ln (1− ε)− ln (ε)) ·

(
ε− ε2

)
= ε (1− ε) ln (ε)− ε (1− ε) ln (1− ε)

= ε ln (ε)− ε (ε ln (ε) + (1− ε) ln (1− ε))

= ε ln 2 (log (ε)− (ε log (ε) + (1− ε) log (1− ε)))

= ε ln 2 (log (ε) +H (ε)) = ln 2 (ε log (ε) + εH (ε)) .

The inequality then holds due to convexity.

20

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Appendix C. Data consistency

Before moving on to generalization, we address some key properties of the training set’s consistency.

Lemma 18 For any distribution over the data D, P (inconsistent S) ≤ 1
2N

2Dmax .

Proof Using the union bound,

P (inconsistent S) = P (∃i ̸= j ∈ [N] : Xi = Xj , Yi ̸= Yj)

≤ P (∃i ̸= j ∈ [N] : Xi = Xj)

≤
∑
i ̸=j

P (Xi = Xj) =

(
N

2

)
P (X1=X2) =

(
N

2

)∑
x∈X

P (X1 = x)P (X2 = x)

≤
(
N

2

)∑
x∈X

DmaxP (X = x) =

(
N

2

)
Dmax ≤ 1

2
N2Dmax .

Hence, under Assumption 11 we have P (inconsistent S) = o (1), i.e., the inconsistency proba-
bility is asymptotically small.

C.1. Independent label noise

We now focus on the case of independent label noise, i.e., Y ⊕ h⋆ (X) | {X = x} ∼ Ber (ε⋆) for
any x ∈ X . Recall the noise level

ε⋆ = P(X,Y)∼D (Y ̸= h⋆ (X)) = PS (Y1 ̸= h⋆ (X1))

and we define the “effective” noise level in a consistent training set

ε̂tr ≜ PS (Y1 ̸= h⋆ (X1) | consistent S) . (2)

We relate ε̂tr to ε⋆ in the following lemma.

Lemma 19 In the independent noise setting, it holds that

|ε̂tr − ε⋆| ≤ |ln 2 (ε⋆ log (ε⋆) + ε⋆H (ε⋆))| · (N − 1)
Dmax

P (consistentS)
,

and moreover, ε̂tr ≤ ε⋆.

Proof Conditioning on S being consistent (having no label “collisions”), all occurrences of x in S
must have the same label so

PS (Y1 ̸= h⋆ (X1) |(X1, Y1) appears k times in S, consistent S) =
ε⋆k

ε⋆k + (1− ε⋆)k

21

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Therefore,

ε̂tr = PS (Y1 ̸= h⋆ (X1) | consistent S)

=
N∑
k=1

PS (Y1 ̸= h⋆ (X1) |(X1, Y1) appears k times in S, consistent S)

· P ((X1, Y1) appears k times in S | consistent S)

=

N∑
k=1

ε⋆k

ε⋆k + (1− ε⋆)k
· P ((X1, Y1) appears k times in S | consistent S)

≤
N∑
k=1

ε⋆1

ε⋆1 + (1− ε⋆)1
· P ((X1, Y1) appears k times in S | consistent S)

= ε⋆
N∑
k=1

·P ((X1, Y1) appears k times in S | consistent S)︸ ︷︷ ︸
sums to 1

= ε⋆ .

(3)

On the other hand, define

K (S) ≜ |{i ∈ [N] | Xi = X1}| =
N∑
i=1

I {Xi = X1}

then

ES [K (S) | consistent S] = 1 +
N∑
i=2

ES [I {Xi = X1} | consistent S]

= 1 + (N − 1)PS (X2 = X1 | consistent S) .

Next,

P (X2 = X1 | consistentS) =
P
(
X2 = X1, dD (¬h⋆ (X1) | X1) <

1
2

)
P (consistentS)

≤ P (X1 = X2)

P (consistentS)
.

Since dD (x) ≤ Dmax for all x ∈ X , as in the proof of Lemma 18

ES [K (S) | consistent S] ≤ 1 + (N − 1)
P (X1 = X2)

P (consistentS)
≤ 1 + (N − 1)

Dmax

P (consistentS)
.

22

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Then, using Lemma 16 we get,

ε̂tr =
N∑
k=1

ε⋆k

ε⋆k + (1− ε⋆)k
· P (X1 appears k times in S | consistent S)

=

N∑
k=1

ϕε⋆ (k) · P (X1 appears k times in S | consistent S)

= ES

ϕε⋆ (K (S))︸ ︷︷ ︸
convex in k

| consistent S


[Jensen] ≥ ϕε⋆ (ES [K (S) | consistent S])

[decreasing] ≥ ϕε⋆

(
1 + (N − 1) · Dmax

P (consistentS)

)
.

Corollary 17 implies that

ε̂tr ≥ ϕε⋆

(
1 + (N − 1) · Dmax

P (consistentS)

)
≥ ε⋆ + ln 2 (ε⋆ log (ε⋆) + ε⋆H (ε⋆)) · (N − 1)

Dmax

P (consistentS)
.

Combining the bounds we get

|ε̂tr − ε⋆| ≤ |ln 2 (ε⋆ log (ε⋆) + ε⋆H (ε⋆))| · (N − 1)
Dmax

P (consistentS)
.

23

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Appendix D. Generalization bounds

We present two generalization bounds for the population error of an interpolating algorithm in terms
of the mutual information of it with the training set.

Remark 20 (High consistency probability) Throughout the appendix we assume that PS (consistent S) ≥
1
2 . While this assumption is not without loss of generality, it is a weaker version of Assumption 11
and implied by it (asymptotically). As Assumption 11 is assumed in all “downstream results” that
this appendix aims to support, we find it is reasonable to assume here.

D.1. Arbitrary label noise

In this subsection, we provide a generalization bound for interpolating algorithms without any
assumptions on the distribution of the noise Y ⊕ h⋆ (X) | {X = x}, other than LD (h⋆) = ε⋆.

Lemma 21 For any interpolating learning algorithm A (S),

− log
(
1− ES,A(S) [LD (A (S)) | consistentS]

)
≤ I (S;A (S))

N · PS (consistentS)
.

Proof We rely on Lemma 13. Specifically, we shall use the following suggested conditional
distribution. For h ̸= ⋆ let

dq (s|h) = 1

Zh
I {Ls (h) = 0} dDN (s)

where

Zh =
∑
s

I {Ls (h) = 0} dDN (s)

= ESI {LS (h) = 0}
= PS (LS (h) = 0)

= (1− LD (h))N .

For h = ⋆ let

dq (s|⋆) = I {inconsistent s} dDN (s)∑
s′ I {inconsistent s′} dDN (s′)

= I {inconsistent s} dDN (s)

PS (inconsistent S)
.

Clearly, if h ̸= ⋆ and dq (s|h) = 0 then either dDN (s) = 0 so dp (s, h) = 0 as well, or Ls (h) ̸= 0.
so, since h ̸= ⋆, s can be interpolated and dp (s | h) = 0. That is, the proposed conditional
distribution is absolutely continuous w.r.t. the true conditional distribution. When h = ⋆, q is the
true conditional distribution given that h = ⋆ so it is also absolutely continuous w.r.t. it. That is, the
proposed distribution is

dq (s | h) = I {inconsistent s}
PS (inconsistent S)

I {h = ⋆} dDN (s) +
I {Ls (h) = 0}
(1− LD (h))N

I {h ̸= ⋆} dDN (s) .

24

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

From Lemma 13

I (S;A (S)) ≥ ES,A(S)

[
log

(
dq (S|A (S))

dDN (S)

)]
= ES,A(S)

[
log
(

I{inconsistent S}
PS′ (inconsistent S′)I {A (S) = ⋆}+ I{LS(A(S))=0}

(1−LD(A(S)))N
I {A (S) ̸= ⋆}

)]
.

I {A (S) = ⋆} and I {A (S) ̸= ⋆} are mutually exclusive so

I (S;A (S))

≥ ES,A(S)

[
log
(

I{inconsistent S}
PS′ (inconsistent S′)

)
I {A (S) = ⋆}+ log

(
I{LS(A(S))=0}
(1−LD(A(S)))N

)
I {A (S) ̸= ⋆}

]
.

The first term is 0 when A (S) ̸= ⋆ and positive when A (S) = ⋆ (and so always non-negative). Fur-
thermore, since dp (S,A (S)) > 0 and I {A (S) ̸= ⋆} = 1 together imply that I {LS (A (S)) = 0} =
1 we have

I (S;A (S)) ≥ ES,A(S)

[
log

(
1

(1− LD (A (S)))N

)
I {A (S) ̸= ⋆}

]
= −ES,A(S) [N log (1− LD (A (S))) I {A (S) ̸= ⋆}] .

Using Jensen’s inequality,

−ES,A(S) [N log (1− LD (A (S))) I {A (S) ̸= ⋆}]
= −NES,A(S) [log (1− LD (A (S))) | I {A (S) ̸= ⋆}]PS,A(S) (A (S) ̸= ⋆)

≥ −N log
(
1− ES,A(S) [LD (A (S)) | I {A (S) ̸= ⋆}]

)
PS,A(S) (A (S) ̸= ⋆)

= −N log
(
1− ES,A(S) [LD (A (S)) | consistent S]

)
PS (consistent S)

so

I (S;A (S)) ≥−N log
(
1− ES,A(S) [LD (A (S)) | consistent S]

)
PS (consistent S) .

Rearranging the inequality

− log
(
1− ES,A(S) [LD (A (S)) | consistent S]

)
≤ I (S;A (S))

N · PS (consistent S)

25

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

D.2. Independent Noise

Lemma 22 Assuming independent noise, the generalization error of interpolating learning rules
satisfies the following.∣∣ES,A(S) [LD (A (S)) | consistentS]− 2ε⋆ (1− ε⋆)

∣∣
≤ (1− 2ε⋆)

√
C (N) +

(N − 1)Dmax

3
,

where C (N) ≜ I(S;A(S))−N ·(H(ε⋆)−P(inconsistentS))
N(1−P(inconsistentS)) .

Proof As in the proof of Lemma 4.2 in Manoj and Srebro [58], since S is sampled i.i.d., we have

I (S;A (S))
14
≥

N∑
i=1

I ((Xi, Yi) ;A (S)) = N · I ((X1, Y1) ;A (S))

12
= N · I (X1;A (S)) +N · I (Y1;A (S) | X1) . (4)

Using properties of conditional mutual information,

I (Y1;A (S) | X1) = H (Y1 | X1)−H (Y1 | A (S) , X1) . (5)

For the first term in (5), we employ the fact that for any x ∈ X , either Y1 | X1 = x ∼ Ber (ε⋆) or
Y1 | X1 = x ∼ Ber (1− ε⋆) to get

H (Y1 | X1) = E(X,Y)∼D [H (Y1 | X1 = X)] = E(X,Y)∼D [H (ε⋆)] = H (ε⋆) .

For the second term in (5), we again employ the definition of conditional entropy,

H (Y1 | A (S) , X1) = −
∑
x1∈X

∑
h∈H∪{⋆}

[
dp ((x1, 0) , h) log

(
dp ((x1, 0) , h)

dp (x1, h)

)

+ dp ((x1, 1) , h) log

(
dp ((x1, 1) , h)

dp (x1, h)

)]
.

When h ̸= ⋆, the marginal distribution of a training datapoint and a hypothesis is

dp ((x, y) , h) = dp (y | x, h) dp (x, h) = I {y = h (x)} dp (x, h) ,

and the inner expression becomes:

dp ((x1, h (x1)) , h) log

(
dp ((x1, h (x1)) , h)

dp (x1, h)

)
= dp (x1, h) log

(
dp (x1, h)

dp (x1, h)

)
︸ ︷︷ ︸

=0

= 0 .

Therefore, we have that,

H (Y1 | A (S) , X1)

= −
∑
x1∈X

[
dp ((x1, 0) , ⋆) log

(
dp ((x1, 0) , ⋆)

dp (x1, ⋆)

)
+ dp ((x1, 1) , ⋆) log

(
dp ((x1, 1) , ⋆)

dp (x1, ⋆)

)]

26

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Employing conditional probabilities (notice that dp((x1,0),⋆)
dp(x1,⋆)

= dp(0|x1,⋆)dp(x1,⋆)
dp(x1,⋆)

= dp (0 | x1, ⋆)),
we get,

H (Y1 | A (S) , X1)

= −
∑
x1∈X

dp (x1, ⋆) [dp (0 | x1, ⋆) log (dp (0 | x1, ⋆)) + dp (1 | x1, ⋆) log (dp (1 | x1, ⋆))]

=
∑
x1∈X

dp (x1, ⋆)H (dp (0 | x1, ⋆)) = dp (⋆)
∑
x1∈X

dp (x1 | ⋆)H (dp (0 | x1, ⋆))

= P (A (S) = ⋆)E(S,A(S))∼p

[
H (dp (0 | X1, ⋆))︸ ︷︷ ︸

≤1

| inconsistent S
]
≤ PS (inconsistent S) .

Overall, the right term in (4) is lower bounded by,

I (Y1;A (S) | X1) = H (Y1 | X1)−H (Y1 | A (S) , X1) ≥ H (ε⋆)− P (inconsistent S) .

For the left term, i.e., I (X1;A (S)), we use the variational bound Lemma 13 with the following
suggested conditional distribution.

• For h = ⋆, choose dq (x1 | ⋆) = dp (x1) (notice that
∑

x1∈X dq (x1 | ⋆) =
∑

x1
dp (x1) = 1.

• Otherwise, if h ̸= ⋆, denote qε = Ber (ε), and

ε̂tr = PS (Y1 ̸= h⋆ (X1) | consistent S)

ε̂gen = E(S,A(S))∼p [PX∼D (A (S) (X) ̸= h⋆ (X)) | A (S) ̸= ⋆] .

Note that ε̂tr may differ than ε⋆. We choose the following conditional distribution

dq (x1 | h) =
1

Zh
· dqε̂tr (h (x1)⊕ h⋆ (x1))

dqε̂gen (h (x1)⊕ h⋆ (x1))
dp (x1) .

In total, we choose,

dq (x1 | h) =
1

Zh
· dqε̂tr (h (x1)⊕ h⋆ (x1))

dqε̂gen (h (x1)⊕ h⋆ (x1))
· I {h ̸= ⋆} dp (x1) + I {h = ⋆} dp (x1) ,

where Zh is the corresponding partition function.

27

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Then, we use (13) and properties of logarithms and indicators to show that,

I (X1;A (S)) ≥ ES,A(S)

[
log

(
dq (X1|A (S))

dp (X1)

)]

= ES,A(S)

log
 1

ZA(S)

dqε̂tr (h(X1)⊕h⋆(X1))

dqε̂gen (h(X1)⊕h⋆(X1))
dp (X1) I {A (S) ̸= ⋆}+ dp (X1) I {A (S) = ⋆}

dp (X1)


= ES,A(S)

[
log

(
1

ZA(S)

dqε̂tr (h (X1)⊕ h⋆ (X1))

dqε̂gen (h (X1)⊕ h⋆ (X1))
I {A (S) ̸= ⋆}+ I {A (S) = ⋆}

)]
= ES,A(S)

[
log

(
1

ZA(S)

dqε̂tr (h (X1)⊕ h⋆ (X1))

dqε̂gen (h (X1)⊕ h⋆ (X1))

)
I {A (S) ̸= ⋆}

]
+

ES,A(S)

[
log (1) I {A (S) = ⋆}︸ ︷︷ ︸

=0

]
= ES,A(S)

[
log

(
1

ZA(S)

dqε̂tr (h (X1)⊕ h⋆ (X1))

dqε̂gen (h (X1)⊕ h⋆ (X1))

)
I {A (S) ̸= ⋆}

]
.

Using the law of total expectation, the above becomes,

= P (A (S) ̸= ⋆)ES,A(S)

[
log

(
1

ZA(S)
· dqε̂tr (h (X1)⊕ h⋆ (X1))

dqε̂gen (h (X1)⊕ h⋆ (X1))

) ∣∣∣∣ A (S) ̸= ⋆

]
,

where we also use Jensen’s inequality to show,

ES,A(S)

[
log

(
1

ZA(S)
· dqε̂tr (h (X1)⊕ h⋆ (X1))

dqε̂gen (h (X1)⊕ h⋆ (X1))

) ∣∣∣∣ A (S) ̸= ⋆

]
= ES,A(S)

[
log

(
dqε̂tr (h (X1)⊕ h⋆ (X1))

dqε̂gen (h (X1)⊕ h⋆ (X1))

) ∣∣∣∣ A (S) ̸=⋆

]
− ES,A(S)

[
log
(
ZA(S)

) ∣∣ A (S) ̸=⋆
]

≥ ES,A(S)

[
log

(
dqε̂tr (h (X1)⊕ h⋆ (X1))

dqε̂gen (h (X1)⊕ h⋆ (X1))

) ∣∣∣∣ A (S) ̸=⋆

]
− log

(
ES,A(S)

[
ZA(S)

∣∣ A (S) ̸=⋆
])

.

The partition function satisfies for all h ̸= ⋆,

Zh =
∑
x1∈X

dqε̂tr (h (x1)⊕ h⋆ (x1))

dqε̂gen (h (x1)⊕ h⋆ (x1))
dp (x1) = EX∼D

[
dqε̂tr (h (X)⊕ h⋆ (X))

dqε̂gen (h (X)⊕ h⋆ (X))

]
= PX∼D (h (X) = h⋆ (X)) · 1− ε̂tr

1− ε̂gen
+ PX∼D (h (X) ̸= h⋆ (X)) · ε̂tr

ε̂gen
.

Taking the expectation w.r.t. (S,A (S)) ∼ p, we get

E(S,A(S))∼p

[
ZA(S) | A (S) ̸= ⋆

]
=

1− ε̂tr

1− ε̂gen
· ES,A(S) [P (A (S) (X) = h⋆ (X)) | A (S) ̸= ⋆]︸ ︷︷ ︸

=1−ε̂gen

+

+
ε̂tr

ε̂gen
· ES,A(S) [P (A (S) (X) ̸= h⋆ (X)) | A (S) ̸= ⋆]︸ ︷︷ ︸

=ε̂gen

= 1 .

28

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Combining the above, we have that,

I (X1;A (S)) ≥ P (A (S) ̸= ⋆)ES,A(S)

[
log

(
dqε̂tr (A (S) (X1)⊕ h⋆ (X1))

dqε̂gen (A (S) (X1)⊕ h⋆ (X1))

)
| A (S) ̸= ⋆

]
.

Notice that (A (S) (X1)⊕ h⋆ (X1) | {A (S) ̸= ⋆}) = (Y1 ⊕ h⋆ (X1) | {consistent S}), so A (S) (X1)⊕
h⋆ (X1) | {A (S) ̸= ⋆} ∼ Ber (ε̂tr), and thus

I (X1;A (S)) ≥ P (A (S) ̸= ⋆)DKL

(
qε̂tr ||qε̂gen

)
=
(
1− P (inconsistent S)

)
DKL

(
qε̂tr ||qε̂gen

)
.

Putting this all together, (4) is lower bounded by,

I (S;A (S)) ≥ N
(
1− P (inconsistent S)

)
DKL

(
qε̂tr ||qε̂gen

)
+N

(
H (ε⋆)− P (inconsistent S)

)
.

Rearranging the inequality

DKL

(
qε̂tr ||qε̂gen

)
≤ I (S;A (S))−N · (H (ε⋆)− P (inconsistent S))

N (1− P (inconsistent S))
≜ C (N) .

Using Pinsker’s inequality, we have,

∣∣ε̂tr − ε̂gen
∣∣ ≤√1

2
DKL

(
qε̂tr ||qε̂gen

)
≤
√
C (N) .

We proceed to bound ES,A(S) [LD (A (S)) | consistent S] in terms of
∣∣ε̂tr − ε̂gen

∣∣. Notice that

ES,A(S) [LD (A (S)) | consistent S]

= ES,A(S)

[
P(X,Y)∼D (A (S) (X) ̸= Y) | consistent S

]
= ES,A(S)

[
P (A (S) (X) ̸= Y | Y = h⋆ (X))P (Y = h⋆ (X))︸ ︷︷ ︸

no label flip

∣∣∣ consistent S
]
+

+ ES,A(S)

[
P (A (S) (X) ̸= Y | Y ̸= h⋆ (X))P (Y ̸= h⋆ (X))︸ ︷︷ ︸

label flip

∣∣∣ consistent S
]

= ES,A(S)

[
P (A (S) (X) ̸= h⋆ (X)) (1− ε⋆) + P (A (S) (X) = h⋆ (X)) ε⋆

∣∣∣ consistent S
]

= (1− ε⋆)ES,A(S) [P (A (S) (X) ̸= h⋆ (X)) | consistent S] +

+ ε⋆ES,A(S) [P (A (S) (X) = h⋆ (X)) | consistent S]

= (1− ε⋆) ε̂gen + ε⋆
(
1− ε̂gen

)
.

Then, using the triangle inequality,∣∣ES,A(S) [LD (A (S)) | consistent S]− 2ε⋆ (1− ε⋆)
∣∣

=
∣∣(1− ε⋆) ε̂gen + ε⋆

(
1− ε̂gen

)
− 2ε⋆ (1− ε⋆)

∣∣ = ∣∣ε̂gen − ε̂genε
⋆ + ε⋆ − ε̂genε

⋆ − 2ε⋆ + 2ε⋆2
∣∣

=
∣∣ε̂gen − 2ε̂genε

⋆ − ε⋆ + 2ε⋆2
∣∣ = ∣∣ε̂gen (1− 2ε⋆)− ε⋆ (1− 2ε⋆)

∣∣ = (1− 2ε⋆)
∣∣ε̂gen − ε⋆

∣∣
≤ (1− 2ε⋆)

(∣∣ε̂gen − ε̂tr
∣∣+ |ε̂tr − ε⋆|

)
.

29

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Combining with the result from Lemma 19 and Remark 20

|ε̂tr − ε⋆| ≤ |ln 2 (ε⋆ log (ε⋆) + ε⋆H (ε⋆))| · (N − 1)
Dmax

P (consistentS)

≤ |ln 2 (ε⋆ log (ε⋆) + ε⋆H (ε⋆))| · 2 (N − 1)Dmax .

we conclude that∣∣ES,A(S) [LD (A (S)) | consistent S]− 2ε⋆ (1− ε⋆)
∣∣

≤ (1− 2ε⋆)
(√

C (N) + ln 2 |(ε⋆ log (ε⋆) + ε⋆H (ε⋆))| · 2 (N − 1)Dmax

)
.

Finally, we can use the algebraic property that (1− 2ε⋆) |ln 2 (ε⋆ log (ε⋆) + ε⋆H (ε⋆))| ≤ 1
6 ,

to get ∣∣ES,A(S) [LD (A (S)) | consistent S]− 2ε⋆ (1− ε⋆)
∣∣

≤ (1− 2ε⋆)
√

C (N) +
(N − 1)Dmax

3
.

We can now bound the expected generalization error without conditioning on the consistency of
the training set.

Lemma 23 It holds that,∣∣ES,A(S) [LD (A (S))]− 2ε⋆ (1− ε⋆)
∣∣

≤
∣∣ES,A(S) [LD (A (S)) | consistentS]− 2ε⋆ (1− ε⋆)

∣∣+ PS (inconsistentS) .

Proof Let X be an arbitrary RV in [0, 1] and Y be a binary RV. Then,

E [X] = P (Y)E [X|Y] + P (¬Y)E [X|¬Y]

E [X]− E [X|Y] = P (Y)E [X|Y]− E [X | Y] + P (¬Y)E [X|¬Y]

= E [X|Y] (P (Y)− 1) + P (¬Y)E [X|¬Y]

= −E [X|Y]P (¬Y) + P (¬Y)E [X|¬Y] = P (¬Y) (E [X|¬Y]− E [X|Y])

|E [X]− E [X|Y]| = P (¬Y) |E [X|¬Y]− E [X|Y]|︸ ︷︷ ︸
≤1

≤ P (¬Y) .

As a result∣∣ES,A(S) [LD (A (S))]− ES,A(S) [LD (A (S)) | consistent S]
∣∣ ≤ PS(inconsistent S) .

Then, the required inequality is obtained by simply using the triangle inequality on∣∣ES,A(S) [LD (A (S))]− 2ε⋆ (1− ε⋆)
∣∣ .

30

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Appendix E. Memorizing the label flips (proofs for Section 3)

In this section, we prove Theorem 46. We begin with an informal outline of the proof idea. Inspired by
Manoj and Srebro’s analysis [58], our proof of Theorem 46 is based on the concept of a pseudorandom
generator, defined below.

Definition 24 (Pseudorandom generator) Let G : {0, 1}r → {0, 1}R be a function, let V be a
class of functions V : {0, 1}R → {0, 1}, let D be a distribution over {0, 1}R, and let ϵ > 0. We say
that G is an ϵ-pseudorandom generator (ϵ-PRG) for V with respect to D if for every V ∈ V , we have∣∣Py∼D(V (y) = 1)− Pu∈{0,1}r(V (G(u)) = 1)

∣∣ ≤ ϵ,

where u is sampled uniformly at random from {0, 1}r.

To connect Definition 24 to Theorem 46, let R = 2d0 . Let V be the class of all conjunctions
of literals, such as V (y) = y1 ∧ ȳ2 ∧ y4. Let X̂ = f−1({0, 1}). There is a function Vf ∈ V such
that given the entire truth table of a NN h̃, the function Vf verifies that h̃ agrees with f on X̂ . This
function Vf is a conjunction of N1 many variables and (N −N1) many negated variables.

Let α = N1/N , and let D = Ber(α)R. Suppose G is an ϵ-PRG for V with respect to D, where
ϵ < Py∼D(Vf (y) = 1). Then Pu∈{0,1}r(Vf (G(u)) = 1) ̸= 0, i.e., there exists some u⋆ ∈ {0, 1}r

such that Vf (G(u⋆)) = 1. Therefore, if we let h̃ be a NN that computes the function

h̃(x) = G(u⋆)x, (6)

then h̃ agrees with f on X̂ . In the equation above, G(u⋆)x denotes the x-th bit of G(u⋆), thinking
of x as a number from 0 to R− 1 represented by its binary expansion.

There is a large body of well-established techniques for constructing PRGs. (See, for example,
Hatami and Hoza’s recent survey [35].) Therefore, constructing a suitable PRG might seem like a
promising approach to proving Theorem 46. However, this approach is flawed. The issue concerns
the seed length (r). According to the plan outlined above, the seed u⋆ is effectively hard-coded into
the neural network h̃, which means that, realistically, the number of weights in h̃ will be at least r.
Meanwhile, for the plan above to make sense, our PRG’s error parameter (ϵ) must satisfy

ϵ < Py∼D(Vf (y) = 1) = 2−H(α)·N ≈ 2
−(N

N1
). (7)

Comparing (7) to Theorem 46, we see that we would need a PRG with seed length

r = (1 + o(1)) · log(1/ϵ).

But this is too much to ask. There is no real reason to expect such a PRG to exist, even if we ignore
explicitness considerations. Indeed, in some cases, it is provably impossible to achieve a seed length
smaller than (2− o(1)) · log(1/ϵ) [2].

To circumvent this issue, we will work with a more flexible variant of the PRG concept called a
hitting set generator (HSG).

Definition 25 (Hitting set generator) Let G : {0, 1}r → {0, 1}R be a function, let V be a class
of functions V : {0, 1}R → {0, 1}, let D be a distribution over {0, 1}R, and let ϵ > 0. We say
that G is an ϵ-hitting set generator (ϵ-HSG) for V with respect to D if for every V ∈ V such that
Py∼D(V (y) = 1) > ϵ, there exists u⋆ ∈ {0, 1}r such that V (G(u⋆)) = 1.

31

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Definition 25 is weaker than Definition 24, but an HSG is sufficient for our purposes. Crucially,
one can show nonconstructively that for every V , D, and ϵ, there exists an HSG with seed length

1 · log(1/ϵ) + log log |V|+O(1),

whereas the nonconstructive PRG seed length is 2 · log(1/ϵ) + · · · . To prove Theorem 46, we will
construct an explicit HSG for conjunctions of literals with respect to Ber(α)R with a seed length
of (1 + o(1)) · log(1/ϵ) + polylogR. We will ensure that our HSG is “explicit enough” to enable
computing the function h̃ defined by (6) using a constant-depth NN with approximately r many
weights.

Our HSG construction uses established techniques from the pseudorandomness literature. In
brief, we use k-wise independence to construct an initial HSG with a poor dependence on ϵ, and then
we apply an error reduction technique due to Hoza and Zuckerman [38]. Details follow.

E.1. Preprocessing the input to reduce the dimension

Before applying an HSG as outlined above, the first step of the proof of Theorem 46 is actually a
preprocessing step that reduces the dimension to approximately 2 logN . This step is not completely
essential, but it helps to improve the dependence on d0 in Theorem 46. The preprocessing step is
based on a standard trick, namely, we treat the input as a vector in Fd0

2 and apply a random matrix,
where F2 denotes the field with two elements. That is:

Definition 26 (F2-linear and F2-affine functions) A function C : {0, 1}d → {0, 1}d′ is F2-linear
if it has the form

C(x) = Wx,

where W ∈ {0, 1}d′×d and the arithmetic is mod 2. More generally, we say that C is F2-affine if it
has the form

C(x) = Wx+ b,

where W ∈ {0, 1}d′×d, b ∈ {0, 1}d′ , and the arithmetic is mod 2.

The following fact is standard; we include the proof only for completeness.

Lemma 27 (Preprocessing to reduce the dimension) Let d0 ∈ N, let X̂ ⊆ {0, 1}d0 , and let
N = |X̂ |. There exists an F2-linear function C0 : {0, 1}d0 → {0, 1}2⌈logN⌉ that is injective on X̂ .

Proof Pick W ∈ {0, 1}2⌈logN⌉×d0 uniformly at random and let C0(x) = Wx. For each pair of
distinct points x,x′ ∈ X̂ , we have

P(Wx = Wx′) = P(W(x− x′) = 0) = 2−2⌈logN⌉ < 1/N2.

Therefore, by the union bound over all pairs x,x′, there is a nonzero chance that C0 is injective on
X̂ . Therefore, there is some fixing of W such that C0 is injective on X̂ .

We will choose C0 to be injective on the domain of f . That way, after applying C0 to the input,
our remaining task is to compute some other partial function f ′ : {0, 1}2⌈logN⌉ → {0, 1, ⋆}, namely,
the function f ′ such that f ′ ◦C0 = f . This function f ′ has the same domain size (N), and it takes the
value 1 on the same number of points (N1), so the net effect is that we have decreased the dimension

32

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

from d0 down to 2⌈logN⌉. This same technique appears in the circuit complexity literature, along
with more sophisticated variants. For example, see Jukna’s textbook [45, Section 1.4.2].

To apply Lemma 27 in our setting, we rely on the well-known fact that F2-linear functions, and
more generally F2-affine functions, can be computed by depth-two binary threshold networks. More
precisely, we have the following.

Lemma 28 (Binary threshold networks computing F2-linear functions) If C : {0, 1}d → {0, 1}
is the parity function or its negation, then there exists a depth-one binary threshold network
C0 : {0, 1}d → {0, 1}(d+2) and a number b ∈ R such that for every x ∈ {0, 1}d, we have

C(x) = 1TC0(x) + b,

where 1 denotes the all-ones vector. Moreover, every affine function C : {0, 1}d → {0, 1}d′ can be
computed by a depth-two binary threshold network with d′ · (d+ 2) nodes in the hidden layer.

Proof First, suppose C is the parity function. For each i ∈ [d], let ϕ≤i : {0, 1}d → {0, 1} be the
function

ϕ≤i(x) = 1 ⇐⇒
d∑

j=1

xj ≤ i,

and similarly define ϕ≥i : {0, 1}d → {0, 1} by

ϕ≥i(x) = 1 ⇐⇒
d∑

j=1

xj ≥ i.

Then

ϕ≤1(x) + ϕ≥1(x) + ϕ≤3(x) + ϕ≥3(x) + · · · =

{
⌈d/2⌉+ 1 if PARITY(x) = 1

⌈d/2⌉ if PARITY(x) = 0,

so we can take b = −⌈d/2⌉. Now, suppose C is the negation of the parity function. This reduces to
the case of the parity function because 1− PARITY(x) = PARITY(x, 1). Finally, the “moreover”
statement follows because if C is F2-affine, then every output bit of C is either the parity function or
the negated parity function applied to some subset of the inputs.

Lemma 28 can be generalized to the case of any symmetric function instead of PARITY. This
technique is well-known in the circuit complexity literature; for example, see the work of Hajnal,
Maass, Pudlák, Szegedy, and Turán [32].

E.2. Threshold networks computing k-wise independent generators

One of the ingredients of our HSG will be a family of pairwise independent hash functions. We will
use the following family, notable for its low computational complexity.

Lemma 29 (Affine pairwise independent hash functions) For every a, r ∈ N, there is a family
H of hash functions hash: {0, 1}a → {0, 1}r with the following properties.

• |H| ≤ 2O(a+r).

33

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

• H is pairwise independent. That is, for every two distinct w,w′ ∈ {0, 1}a, if we pick hash ∈ H
uniformly at random, then hash(w) and hash(w′) are independent and uniformly distributed
over {0, 1}r.

• Each function hash ∈ H is F2-affine.

Proof See the work of Mansour, Nisan, and Tiwari [59, Claim 2.2].

Remark 30 (Alternative hash families) By Lemma 28, each function hash ∈ H can be computed
by a depth-two binary threshold network with O(r2a+ ra2) wires (weights). There exist alternative
pairwise independent hash function families with lower wire complexity. In particular, one could use
hash functions based on integer arithmetic [24], which can be implemented with wire complexity
(a+ r)1+γ for any arbitrarily small constant γ > 0 [72]. This would lead to slightly better width
and wire complexity bounds in Theorem 46: each occurrence of 3/4 could be replaced with 2/3 + γ.
However, the downside of this approach is that the depth of the network would increase to a very
large constant depending on γ.

Another ingredient of our HSG will be a threshold network computing a “k-wise uniform
generator,” defined below.

Definition 31 (k-wise uniform generator) A k-wise uniform generator is a function G : {0, 1}r →
{0, 1}R such that if we sample u ∈ {0, 1}r uniformly at random, then every k of the output
coordinates of G(u) are independent and uniform. In other words, G is a 0-PRG for V with respect
to the uniform distribution, where V consists of all Boolean functions that only depend on k bits.

Prior work has shown that k-wise uniform generators can be implemented by constant-depth threshold
networks [36]. We will need to re-analyze the construction to get sufficiently fine-grained bounds. In
the remainder of this subsection, we will prove the following.

34

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Lemma 32 (Constant-depth k-wise uniform generator) Let k,R ∈ N where R is a power of
two. There exists a k-wise uniform generator G : {0, 1}r → {0, 1}R, where r = O(k · logR), such
that for every F2-affine function hash: {0, 1}a → {0, 1}r, there exists a depth-5 binary threshold
network C : {0, 1}a+logR → {0, 1}k·polylogR with widths d satisfying the following.

1. For every w ∈ {0, 1}a and every z ∈ {0, 1}logR, we have

G(hash(w))z = PARITY(C(w, z)),

thinking of z as a number in {0, 1, . . . , R− 1}.

2. The maximum width dmax is at most ak · polylogR.

3. The total number of weights w (d) is at most (a+ k) · ak · polylogR.

Remark 33 (The role of the parity functions) One can combine Lemma 32 with Lemma 28 to
obtain threshold networks computing the function (u, z) 7→ G(u)z. In Lemma 32, instead of
describing a network that computes the function (u, z) 7→ G(u)z, we describe a network C satisfying
G(hash(w))z = PARITY(C(w, z)). The only reason for this more complicated statement is that it
leads to a slightly better depth complexity in Theorem 46.

We reiterate that the proof of Lemma 32 heavily relies on prior work. For the most part, this
prior work studies a Boolean circuit model that is closely related to, but distinct from, the “binary
threshold network” model in which we are interested. We introduce the circuit model next.

Definition 34 (L̂TL circuits) An L̂TL circuit is defined just like a depth-L binary threshold network
(Definition 1), except that we allow arbitrary integer weights (W(l) ∈ Zdl×dl−1); we allow arbitrary
integer thresholds (b(l) ∈ Zdl); and we do not allow any scaling (γ(l) = 1dl). The size of the circuit
is the sum of the absolute values of the weights, i.e.,

L∑
l=1

dl∑
i=1

dl−1∑
j=1

|W(l)
ij |.

Remark 35 (Parallel wires) In the context of circuit complexity, it is perhaps more natural to
stipulate that the weights are always {±1}; there can be any number of parallel wires between two
nodes, including zero; and the size of the circuit is the total number of wires. This is completely
equivalent to Definition 34.

The proof of Lemma 32 relies on circuits performing arithmetic. A long line of research
investigated the depth complexity of (iterated) integer multiplication [9, 16, 32, 37, 69, 72, 77–79],
culminating in the following result by Siu and Roychowdhury [78].

Theorem 36 (Iterated multiplication in depth four [78]) For every n ∈ N, there exists an L̂T4

circuit of size poly(n) that computes the product of n given n-bit integers.

By a standard trick [26], Theorem 36 implies circuits of the same complexity that compute the
iterated product of polynomials over F2. We include a proof sketch for completeness.

35

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Corollary 37 (Iterated multiplication of polynomials over F2) For every n ∈ N, there exists an
L̂T4 circuit of size poly(n) that computes the product of n given polynomials in F2[x], each of which
has degree less than n and is represented by an n-bit vector of coefficients.

Proof [Proof sketch] Think of the given polynomials as polynomials over Z, say q1(x), . . . , qn(x).
If we evaluate one of these polynomials on a power of two, say qi(2

s), and then write the output in
binary, the resulting string consists of the coefficients of qi, with s− 1 zeroes inserted between every
two bits. Therefore, by using the poly(ns)-size circuit of Therem 36 (with some of its inputs fixed
to zeroes), we can compute the product q1(2s) · q2(2s) · · · qn(2s) = q(2s), where q = q1 · q2 · · · qn.
Every coefficient of q is a nonnegative integer bounded by nn, so if we choose s = ⌈n log n⌉, then
the binary expansion of q(2s) is the concatenation of all of the binary expansions of the coefficients
of q. To reduce mod 2, we simply discard all but the lowest-order bit of each of those coefficients.

36

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

At this point, we are ready to construct a circuit that computes a k-wise uniform generator. The
construction is based on the work of Healy and Viola [36].

Lemma 38 (A k-wise uniform generator in the L̂TL model) Let k,R ∈ N where R is a power
of two. There exists a k-wise uniform generator G : {0, 1}r → {0, 1}R, an F2-linear function
C0 : {0, 1}logR → {0, 1}O(logR·log k), and an L̂T4 circuit C1 : {0, 1}O(k·logR) → {0, 1}O(k·logR)

with the following properties.

• The seed length is r = O(k · logR).

• For every seed u ∈ {0, 1}r and every z ∈ {0, 1}logR, we have

G(u)z = PARITY(C1(u, C0(z))),

thinking of z as a number in {0, 1, . . . , R− 1}.

• The circuit C1 has size k · polylogR.

Proof If k ≥ R, the lemma is trivial, so assume k < R. We use the following standard example of a
k-wise independent generator [1, 22]. Let n = logR, let E(x) ∈ F2[x] be an irreducible polynomial
of degree n, and let F2n be the finite field consisting of all polynomials in F2[x] modulo E(x).
The seed of the generator is interpreted as a list of field elements: u = (p0, p1, . . . , pk−1) ∈ Fk

2n .
Each index z ∈ {0, 1, . . . , R− 1} can be interpreted as a field element z ∈ F2n . The output of the
generator is given by

G(u)z = the lowest order bit of p0 · z0 + p1 · z1 + · · ·+ pk−1 · zk−1,

where the arithmetic takes place in F2n .
To study the circuit complexity of this generator, let us first focus on a single term pi · zi. Since

we are thinking of z as a field element z ∈ F2n , we can also think of it as a polynomial z(x) ∈ F2[x]
of degree less than n. Write z(x) =

∑n−1
j=0 zj ·xj . We compute the power zi by a “repeated squaring”

approach. Write i =
∑

m∈M 2m, where M ⊆ {0, 1, . . . , ⌊log i⌋}. Then

pi(x) · z(x)i = pi(x) ·
∏

m∈M

n−1∑
j=0

zj · xj
2m

= pi(x) ·
∏

m∈M

n−1∑
j=0

zj · xj·2
i
,

since we are working in characteristic two. For each m ∈ M and each j < n, let em,j(x) =
xj·2

m
mod E(x), a polynomial of degree less than n. That way,

pi(x) · z(x)i ≡ pi(x) ·
∏

m∈M

n−1∑
j=0

zj · em,j(x) (mod E(x)). (8)

The function C0(z) computes
∑n−1

j=0 zj · em,j for every m ∈ {0, 1, . . . , ⌊log k⌋}. This function
is F2-linear, because for each m ∈ {0, 1, . . . , ⌊log k⌋} and each s < n, the s-th bit of

∑n−1
j=0 zj · em,j

is given by ⊕
j:em,j,s=1

zj ,

37

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

where em,j,s denotes the s-th coefficient of the polynomial em,j .
Next, the circuit C1 applies k copies of the iterated multiplication circuit from Corollary 37, in

parallel, to compute the polynomial on the right-hand side of (8) for each 0 ≤ i < k. Each iterated
multiplication circuit has size polylogR, so altogether, C1 has size k · polylogR.

At this point, we have computed polynomials r0, r1, . . . , rk−1 ∈ F2[x], each of degree O(n log k),
such that ri(x) ≡ pi(x) · z(x)i (mod E(x)). Next, we need to sum these terms up, reduce mod
E(x), and output the lowest-order bit. For each j ≤ O(n log k), let rij be the xj coefficient of ri.
Our circuit needs to output the lowest-order bit of

k−1∑
i=0

ri mod E(x) =

k−1∑
i=0

O(n log k)∑
j=0

rij · e0,j .

Now, we are working over characteristic two, so
∑

means bitwise XOR. In other words, the output
is given by ⊕

j:e0,j,0=1

k−1⊕
i=0

rij ,

i.e., it is the parity function applied to some subset of the output bits of C1. To complete the proof,
modify C1 by deleting the unused output gates.

We have almost completed the proof of Lemma 32. The last step is to bridge the gap between
L̂TL circuits and binary threshold networks. We do so via the following lemma.

Lemma 39 (Simulating L̂TL circuits using binary threshold networks) Let L ≥ 1 be a con-
stant. Let C0 : {0, 1}d0 → {0, 1}d1 be an F2-affine function, and let C1 : {0, 1}d1 → {0, 1}d2 be an
L̂TL circuit of size S. Then the composition C1 ◦ C0 can be computed by a depth-(L+ 1) binary
threshold network with widths d satisfying the following.

1. The maximum width dmax is at most S · (d0 + 2).

2. The total number of weights w (d) is at most O(S2d0 + Sd20).

Proof Let us define the cost of a layer in an L̂TL circuit to be the sum of the absolute values of
the weights in that layer, so the size of the circuit is the sum of the costs. Lemma 28 implies that
C1 ◦ C0 = C ′

1 ◦ C ′
0, where C ′

0 is a depth-one binary threshold network and C ′
1 is an L̂TL circuit in

which the first layer has cost at most S · (d0 + 2) and all subsequent layers have cost at most S.
To complete the proof, let us show by induction on L that in general, if C ′

0 is a depth-one binary
threshold network and C ′

1 is an L̂TL circuit in which the layers have costs S1, S2, . . . , SL, then
C ′
1 ◦ C ′

0 can be computed by a depth-(L + 1) binary threshold network in which the layers after
the input layer have widths S1, S2, . . . , SL. Let us write C ′

1 as C3 ◦ C2, where C3 is the last layer
of C ′

1. By induction, C2 ◦ C ′
0 can be computed by a depth-L binary threshold network C in which

the layers after the input layer have widths S1, S2, . . . , SL−1. Now let us modify C3 and C so that
every wire in C3 has weight either 0 or 1. If a wire in C3 has an integer weight w /∈ {0, 1}, then we
make |w| many copies of the appropriate output gate of C, negate them if w < 0, and then split the
wire into |w| many wires, each with weight +1. This process has no effect on the cost of C3. The
process could potentially increase the width of the output layer of C, but its width will not exceed SL,

38

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

the cost of C3. After this modification, we can simply think of C3 as one more layer in our binary
threshold network.

Lemma 32 follows immediately from Lemmas 38 and 39.

39

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

E.3. A hitting set generator with a non-optimal dependence on ϵ

In this subsection, we will use the k-wise independent generators that we developed in the previous
subsection to construct our first HSG:

Lemma 40 (Non-optimal HSG for conjunctions of literals) Let R be a power of two and let
α, ϵ ∈ (0, 1). Assume that 1/R ≤ α ≤ 1−1/R. Let V be the class of functions V : {0, 1}R → {0, 1}
that can be expressed as a conjunction of literals. There exists a generator G : {0, 1}r → {0, 1}R
satisfying the following.

1. For every V ∈ V , if Py∼Ber(α)R(V (y) = 1) ≥ 2ϵ, then Pu∈{0,1}r(V (G(u)) = 1) ≥ ϵ.

2. The seed length is r = O(log(1/ϵ) · log2R).

3. For every F2-affine function hash: {0, 1}a → {0, 1}r, the function C(w, z) = G(hash(w))z
can be computed by a depth-8 binary threshold network with widths d such that the maximum
width dmax at most a · log(1/ϵ) · polylogR and the total number of weights w (d) is at most
(log(1/ϵ) · a2 + log2(1/ϵ) · a) · polylogR.

Remark 41 The parameters of Lemma 40 are not yet sufficient to prove Theorem 46. Remember, we
need the number of weights to be only (1 + o(1)) · log(1/ϵ). On the other hand, Item 1 is stronger
than what the HSG definition requires. This will enable us to improve the seed length of the generator
later.

The proof of Lemma 40 is based on the work of Even, Goldreich, Luby, Nisan, and Velic̆ković [27].
In particular, we use the following lemma from their work.

Lemma 42 (Implications of k-wise independence [27]) Let X1, . . . , XR be independent {0, 1}-
valued random variables. Let X̃1, . . . , X̃R be k-wise independent {0, 1}-valued random variables
such that X̃i is distributed identically to Xi for every i. Then

|P(X1 = X2 = · · · = XR = 1)− P(X̃1 = X̃2 = · · · = X̃R = 1)| ≤ 2−Ω(k).

Proof [Proof of Lemma 40] Let Q be the smallest positive integer such that Q ≥ 4R2 and log logQ
is an integer. Let ϕ : {0, 1, . . . , Q− 1} → {0, 1} be the function

ϕ(x) = 1 ⇐⇒ x ≤ α ·Q.

We think of ϕ as a function ϕ : {0, 1}logQ → {0, 1} by representing x in binary.
Let ϕ : {0, 1}R logQ → {0, 1}R be R copies of ϕ applied to R disjoint input blocks. Let

G0 : {0, 1}r → {0, 1}R logQ be a k-wise independent generator for a suitable value k = O(log(1/ϵ) ·
logR). Our generator G is the composition ϕ ◦G0.

Now let us prove that G has the claimed properties. The seed length bound is clear. Now let
us analyze the computational complexity of G. To compute G(hash(w))z, we begin by computing
C1(w, z logQ + i) for every i ∈ {0, 1, . . . , logQ − 1}, all in parallel, where C1 is the depth-5
network from Lemma 32. Since logQ is a power of two, the binary expansions of the numbers
z logQ, z logQ + 1, z logQ + 2, . . . , z logQ + logQ − 1 simply consist of z followed by all
possible bitstrings of length log logQ. The maximum width of one of these layers is bounded by
ak · polylogR = a · log(1/ϵ) · polylogR, and the total number of weights among these layers is at

40

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

most (a+ k) · ak · polylogR = (a+ log(1/ϵ)) · a · log(1/ϵ) · polylogR. Furthermore, the number
of output bits is log(1/ϵ) · polylogR.

Next, recall that to compute a single bit of the output of G0, we need to apply the parity function
to the outputs of C1. Therefore, to compute an output bit of our generator G, we need to apply an
F2-linear function followed by ϕ. Observe that ϕ can be computed by a depth-two “AC0 circuit,” i.e.,
a circuit consisting of unbounded-fan-in AND and OR gates applied to literals, in which the total
number of gates is O(logQ) = O(logR). This can be viewed as a special case of an L̂T2 circuit of
size O(log2R). Therefore, by Lemma 39, the F2-linear function followed by ϕ can be computed
by a depth-3 binary threshold network in which every layer has width at most log(1/ϵ) · polylogR
and the total number of weights is at most log2(1/ϵ) · polylogR. This completes the analysis of the
computational complexity of G.

Next, let us prove the correctness of G, i.e., let us prove Item 1 of Lemma 40. Let V ∈ V
and assume Py∼Ber(α)R(V (y) = 1) ≥ 2ϵ. Since V is a conjunction of literals, we can write
V (y) = V1(y1) · V2(y2) · · ·VR(yR) for some functions V1, V2, . . . , VR : {0, 1} → {0, 1}.

We will analyze Pu∈{0,1}r(V (G(u)) = 1) in two stages. First, we compare V (ϕ(G0(u))) to
V (ϕ(ȳ)), where ȳ ∈ {0, 1}R logQ is uniform random. Then, in the second stage, we will compare
V (ϕ(ȳ)) to V (y), where y ∼ Ber(α)R.

For the first stage, we are in the situation of Lemma 42, because the R many (logQ)-bit blocks
of G0(u) are (k/ logQ)-wise independent. Therefore,∣∣∣Pu∈{0,1}r(V (G(u)) = 1)− Pȳ∈{0,1}R logQ(V (ϕ(ȳ)) = 1)

∣∣∣ ≤ exp

(
−Ω

(
k

logQ

))
≤ 0.5ϵ,

provided we choose a suitable value k = O(log(1/ϵ) · logR).
Now, for the second stage, observe that if we sample ȳ ∈ {0, 1}logQ uniformly at random, then

|P(ϕ(ȳ) = 1)− α| ≤ 1
Q ≤ 1

4R2 . For each i, since 1/R ≤ α ≤ 1− 1/R, we have

Pȳ∈{0,1}logQ(Vi(ϕ(ȳ)) = 1) ≥ Py∼Ber(α)(Vi(y) = 1)− 1

4R2

≥
(
1− 1

4R

)
· Py∼Ber(α)(Vi(y) = 1).

Therefore,

Pȳ∈{0,1}R logQ(V (ϕ(ȳ)) = 1) ≥
(
1− 1

4R

)R

· Py∼Ber(α)R(V (y) = 1)

≥ 1.5ϵ

by Bernoulli’s inequality. Combining the bounds from the two stages completes the proof.

E.4. Networks for computing functions that are constant on certain intervals

At this point, we have constructed an HSG for conjunctions of literals with a non-optimal dependence
on the threshold parameter ϵ (Lemma 40). To improve the dependence on ϵ, we will use a technique
introduced by Hoza and Zuckerman [38]. They introduced this “error-reduction” technique in
the context of derandomizing general space-bounded algorithms, but it is simpler in our context
(conjunctions of literals).

41

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

The basic idea is as follows. Let V be a conjunction of literals with a low acceptance probability:
Py∼Ber(α)R(V (y) = 1) = ϵ. We will split V up as a product,

V (y) = V (0)(y(0)) · V (1)(y(1)) · · ·V (T−1)(y(T−1)),

where each V (i) is a conjunction of literals with a considerably higher acceptance probability:

Py(i)∼Ber(α)Ri (V
(i)(y(i)) = 1) ≈ ϵ0 ≫ ϵ.

We choose V (0) to be the conjunction of the first few literals in V ; V (1) is the conjunction of the
next few literals; etc. To hit a single V (i), we can use our initial HSG with a relatively high threshold
parameter (ϵ0). Then, we use pairwise independent hash functions to “recycle” the seed of our initial
HSG from one V (i) to the next.

To implement this technique, one of the ingredients we need is a network that figures out which
block V (i) contains a particular given index z ∈ {0, 1, . . . , R− 1}. In this subsection, we describe
networks that handle that key ingredient. The constructions are elementary and straightforward.

First, we review standard circuits for integer comparisons.

Lemma 43 (DNFs for comparing integers) Let R be a power of two, let I ⊆ [0, R) be an interval,
and let gI : {0, 1}logR → {0, 1} be the indicator function for I ∩ {0, 1, . . . , R − 1} (identifying
numbers with their binary expansions). Then gI can be expressed as a DNF formula consisting of
O(log2R) terms.

Proof First, consider the case that I = [0, r) for some r ∈ {1, 2, . . . , R}. If r = R, then the lemma
is trivial, so assume r < R. Let S be the set of indices at which the binary expansion of r has a one.
For each i ∈ S, we introduce a term that asserts that the input z agrees with the binary expansion
of r prior to position i, and then z has a zero in position i. The disjunction of these |S| many terms
computes gI .

The case I = [ℓ, R) for some ℓ ∈ {0, 1, . . . , R − 1} is symmetric. Finally, in the general case,
we can assume that I is an intersection of an interval of the form [ℓ, R) with an interval of the form
[0, r). Therefore, gI can be expressed in the form AND2 ◦ ORlogR ◦ ANDlogR, where ANDk / ORk

denotes an AND / OR gate with fan-in k. To complete the proof, observe that every ANDa ◦ ORb

formula can be re-expressed as an ORba ◦ ANDa formula.

Lemma 44 (Computing a function that is constant on intervals) Let T and R be powers of two.
Suppose the interval [0, R) has been partitioned into T subintervals, say [0, R) = I0∪I1∪· · ·∪IT−1.
Let g : {0, 1, . . . , R− 1} → {0, 1}a be a function that is constant on each subinterval Ij . Then for
every F2-affine function C0 : {0, 1}d0 → {0, 1}logR, there is a depth-6 binary threshold network
C : {0, 1}d0 → {0, 1}a+logR with widths d satisfying the following.

1. For every x ∈ {0, 1}d0 , we have

C(x) = (g(C0(x)), C0(x)).

2. The maximum width dmax is at most O(T · log3R+ a+ d0 · logR).

42

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

3. The total number of weights w (d) is at most

aT +O(T · log4R+ d20 · logR+ d0 · log2R+ a · logR).

We emphasize that the leading term in the weights bound is aT , with a coefficient of 1. This is
crucial. It is also important that the weights bound has only a linear dependence on T , the number of
intervals.
Proof We begin by computing C0(x) and the negations of all of those bits. By Lemma 28, we can
compute these bits using a depth-two network where the hidden layer has width O(d0 · logR) and
the output layer has width O(logR).

Let z = C0(x) ∈ {0, 1}logR, and think of z as a number z ∈ {0, 1, . . . , R− 1}. Our next goal is
to compute the (log T)-bit binary expansion of the unique j∗ ∈ {0, 1, . . . , T − 1} such that z ∈ Ij∗ .
To do so, for each position i ∈ {0, 1, . . . , log T − 1}, let Si be the set of j ∈ {0, 1, . . . , T − 1}
such that j has a 1 in position i of its binary expansion. We have a disjunction, over all j ∈ Si,
of the DNF computing gIj from Lemma 43. We also compute all the negations of the bits of j∗,
and we also copy z. Altogether, this is a depth-two network where the hidden layer has width
O(T · log T · log2R) = O(T · log3R) and the output layer has width O(logR).

Our final goal is to compute g(z), which can be written in the form g′(j∗) since g is constant on
each subinterval. We use a “brute-force DNF” to compute g′. First, for every j ∈ {0, 1, . . . , T − 1},
we have an AND gate that checks whether j∗ = j. Then each output bit of g′ is a disjunction of some
of those AND gates. We also copy z. Altogether, this is a depth-two network where the hidden layer
has width T + logR and the output layer has width a+ logR.

43

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

E.5. Error reduction

In this subsection, we improve our HSG’s dependence on ϵ, as described in the previous subsection.
The following theorem should be compared to Lemma 40. As discussed previously, the proof is
based on a technique due to Hoza and Zuckerman [38].

Theorem 45 (HSG with near-optimal dependence on ϵ) Let R be a power of two and let α, ϵ ∈
(0, 1). Assume that 1/R ≤ α ≤ 1 − 1/R. Let V be the class of functions V : {0, 1}R that can be
expressed as a conjunction of literals. There exists a generator G : {0, 1}r → {0, 1}R satisfying the
following.

1. G is an ϵ-HSG for V with respect to Ber(α)R. That is, if Py∼Ber(α)R(V (y) = 1) > ϵ for every
V ∈ V , then there exists a seed σ ∈ {0, 1}r such that V (G(σ)) = 1.

2. The seed length is r = log(1/ϵ) + log3/4(1/ϵ) · polylogR.

3. For every F2-affine function C0 : {0, 1}d0 → {0, 1}logR and every fixed seed σ ∈ {0, 1}r, the
function h̃(x) = G(σ)C0(x) can be computed by a depth-14 binary threshold network with
widths d such that the maximum width dmax is at most

log3/4(1/ϵ) · polylogR+O(d0 · logR),

and the total number of weights w (d) is at most

log(1/ϵ) + log3/4(1/ϵ) · polylogR+O(d20 · logR+ d0 · log2R).

Proof First we will describe the construction of G; then we will verify its seed length and computa-
tional complexity; and finally we will verify its correctness.

Construction. Let T be the smallest power of two such that T ≥ log3/4(1/ϵ). Let

ϵ0 =
ϵ1/T

2R
,

and note that log(1/ϵ0) = Θ(log1/4(1/ϵ) + logR). Let G0 : {0, 1}r0 → {0, 1}R be the generator
of Lemma 40 with error parameter ϵ0, i.e., for every V ∈ V , if Py∼Ber(α)R(V (y) = 1) ≥ 2ϵ0, then
Pu∈{0,1}r0 (V (G0(u)) = 1) ≥ ϵ0. Let a be the smallest positive integer such that 2a > R/ϵ0. Let H
be the family of F2-affine hash functions hash: {0, 1}a → {0, 1}r0 from Lemma 29.

A seed for our generator G consists of a function hash ∈ H, inputs w0, . . . ,wT−1 ∈ {0, 1}a, and
nonnegative integers 0 = ℓ0 ≤ ℓ1 ≤ · · · ≤ ℓT = R. Given this data σ = (hash,w0, . . . ,wT−1, ℓ0, . . . , ℓT),
the output of the generator is given by

G(σ) = G0(hash(w
0))0···ℓ1−1 &G0(hash(w

1))ℓ1···ℓ2−1 & · · ·&G0(hash(w
T−1))ℓT−1···ℓT−1.

In the equation above, ya···b denotes the substring of y consisting of the bits at positions a, a+1, a+
2, . . . , b, and & denotes concatenation.

44

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Seed length and computational complexity. Since |H| ≤ 2O(a+r0), the description length of
hash is O(a + r0). The description length of w0, . . . ,wT−1 is aT , and the description length of
ℓ0, . . . , ℓT is O(T logR). By our choices of a and ϵ0, we have

a ≤ log(1/ϵ0) +O(logR) =
log(1/ϵ)

T
+O(logR).

Furthermore, by Lemma 40, we have

r0 = O(log(1/ϵ0) · log2R).

Therefore, the overall seed length of our generator is

aT +O(r0 + T logR+ a) ≤ log(1/ϵ) + log3/4(1/ϵ) · polylogR.

To analyze the computational complexity, fix an arbitrary seed

σ = (hash,w0, . . . ,wT−1, ℓ0, . . . , ℓT).

The numbers ℓ0, . . . , ℓT partition the interval [0, R) into subintervals, namely [0, R) = [ℓ0, ℓ1) ∪
[ℓ1, ℓ2) ∪ · · · ∪ [ℓT−1, ℓT). Define g : {0, 1, . . . , R− 1} → {0, 1}a by the rule

g(z) = wj where j is such that z ∈ [ℓj , ℓj+1).

Then g is constant on each subinterval [ℓj , ℓj+1), so we may apply Lemma 44 to obtain a depth-6 bi-
nary threshold network C1 : {0, 1}d0 → {0, 1}a+logR computing the function C(x) = (g(C0(x)), C0(x)).
In this network, every layer has width at most

O(T · log3R+ a+ d0 · logR) = log3/4(1/ϵ) · polylogR+O(d0 · logR),

and the total number of weights is at most

aT +O(T · log4R+ d20 · logR+ d0 · log2R+ a · logR)

≤ log(1/ϵ) + log3/4(1/ϵ) · polylogR+O(d20 · logR+ d0 · log2R).

Let z = C0(x), and let w = g(z). Our remaining goal is compute G(σ)z, which is equal to
G0(hash(w))z. To do so, we use the network guaranteed to exist by Lemma 40. This network,
which we call C2, has depth 8. Every layer in this network has width at most

a · log(1/ϵ0) · polylogR =
√
log(1/ϵ) · polylogR.

The total number of weights in this network is at most

(log(1/ϵ0) · a2 + log2(1/ϵ0) · a) · polylogR = log3/4(1/ϵ) · polylogR.

Composing C2 with C1 completes the analysis of the computational complexity of our HSG.

45

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Correctness. Finally, let us prove the correctness of our HSG. For convenience, for any n ∈ N and
any function V : {0, 1}n → {0, 1}, we write E(V) to denote the quantity Py∼Ber(α)n(V (y) = 1).

Fix any V ∈ V such that E(V) > ϵ. Since V is a conjunction of literals, we can write V in the
form

V (y) = V0(y0) · V1(y1) · · ·VR−1(yR−1)

for some functions V0, V1, . . . , VR−1 : {0, 1} → {0, 1}. For each 0 ≤ a ≤ b ≤ R− 1, define

Va···b = Va · Va+1 · · ·Vb.

We inductively define numbers 0 = ℓ0 ≤ ℓ1 ≤ · · · ≤ ℓT as follows. Assume that we have already
defined ℓ0, . . . , ℓi. Let ℓi+1 be the smallest integer in {ℓi + 1, . . . , R− 1} such that

E(Vℓi···ℓi+1−1) ≤ ϵ1/T ,

or let ℓi+1 = R if no such ℓi+1 exists. Define V (i) = Vℓi···ℓi+1−1. Observe that ℓT = R, because
otherwise we would have

ϵ < E(V) ≤
T−1∏
i=0

E(Vi) ≤ (ϵ1/T)T = ϵ,

a contradiction. Furthermore, E(Vi) > ϵ1/T /R = 2ϵ0, because each literal in V is satisfied with
probability at least min{α, 1− α} ≥ 1/R. Therefore, if we define

Si = {u ∈ {0, 1}r0 : Vi(G0(u)ℓi···ℓi+1−1) = 1}

and ρi = |Si|/2r0 , then the correctness of G0 ensures that ρi ≥ ϵ0.
Next, we will show that there exist hash,w0, . . . ,wT−1 such that for every i, we have hash(wi) ∈

Si. To prove it, pick hash ∈ H at random. For each i ∈ {0, 1, . . . , T − 1} and each w ∈ {0, 1}a,
let Xi,w be the indicator random variable for the “good” event hash(w) ∈ Si. Define Xi =∑

w∈{0,1}a Xi,w. Then for every i, by pairwise independence, we have

E(Xi) = 2a · ρi
and Var(Xi) = 2a · ρi · (1− ρi) ≤ 2a · ρi.

Therefore, by Chebyshev’s inequality,

P(Xi = 0) ≤ 1

2a · ρi
≤ 1

2a · ϵ0
<

1

R
.

Consequently, by the union bound over all i, there is a nonzero chance that X0 = X1 = · · · =
XT−1 = 0, in which case there exist w0, . . . ,wT−1 such that hash(wi) ∈ Si for every i.

At this point, we have constructed our seed σ = (hash,w0, . . . ,wT−1, ℓ0, . . . , ℓT). By the
construction of G, we have V (G(σ)) = 1.

46

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Theorem 46 readily follows from Theorem 45, as we now explain.

Theorem 46 Let f : {0, 1}d0 → {0, 1, ⋆} be any function.7 Let N = |f−1({0, 1})| and N1 =
|f−1(1)|. There exists a depth-14 binary threshold network h̃ : {0, 1}d0 → {0, 1}, with widths d̃,
satisfying the following.

1. h̃ is consistent with f , i.e., for every x ∈ {0, 1}d0 , if f(x) ∈ {0, 1}, then h̃(x) = f(x).

2. The total number of weights in h̃ is at most (1 + o(1)) · log
(
N
N1

)
+ poly(d0). More precisely,

w
(
d̃
)
= log

(
N

N1

)
+

(
log

(
N

N1

))3/4

· polylogN +O(d20 · logN) .

3. Every layer of h̃ has width at most (log
(
N
N1

)
)3/4 · poly(d0). More precisely,

d̃max =

(
log

(
N

N1

))3/4

· polylogN +O(d0 · logN) .

Proof Let R = 22⌈logN⌉. Let C0 : {0, 1}d0 → {0, 1}logR be an F2-affine function that is injective
on X ; such a function is guaranteed to exist by Lemma 27. Define V : {0, 1}R → {0, 1} by the rule

V (y) = 1 ⇐⇒ ∀x ∈ X , yC0(x) = f(x).

This function V is a conjunction of N1 variables and N −N1 negated variables.
If N1 ∈ {0, N}, then the theorem is trivial, because we can take h̃ to be a constant function.

Assume, therefore, that 0 < N1 < N . Let α = N1/N , and note that 1/R ≤ α ≤ 1 − 1/R. Let
ϵ = 1

2α
N1 · (1− α)N−N1 = 2−H(α)·N−1, and note that

Py∼Ber(α)R(V (y) = 1) = 2ϵ.

Let G : {0, 1}r → {0, 1}R be the HSG from Theorem 45. There exists a seed σ ∈ {0, 1}r such
that V (G(σ)) = 1. Our network h̃ computes the function h̃(x) = G(σ)C0(x). Since V (G(σ)) = 1,
we must have h̃(x) = f(x) for every x ∈ X .

To bound the computational complexity, observe that log(1/ϵ) = H(α) ·N + 1 ≤ log
(
N
N1

)
+

O(logN). Therefore, every layer of h̃ has width at most(
log

(
N

N1

))3/4

· polylogN +O(d0 · logN),

and the total number of weights in h̃ is at most

log

(
N

N1

)
+

(
log

(
N

N1

))3/4

· polylogN +O(d20 · logN + d0 · log2N).

Finally, we have N ≤ 2d0 , so the last term above can be simplified to O(d20 · logN).

Remark 47 In Theorem 46, the weights bound has an O(d20 · logN) term. This term is close to
optimal; see Appendix F for further details.

7. When f(x) = ⋆, the interpretation is that f is “undefined” on x, i.e., f is a “partial” function.

47

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

E.6. XOR networks

In what follows, we denote the activation function σ (x) = I {x > 0}.

Lemma 48 (XOR NN) The XOR function can be implemented with a single-hidden-layer fully
connected binary threshold network with input dimension 2 and cXOR parameters by

hXOR

(
x1
x2

)
= σ

(
1⊙

(
1 1

)
· σ
((

1
−1

)
⊙
(

1 1
1 1

)(
x1
x2

)
+

(
0
2

))
− 1

)
.

Proof We can simplify hXOR as

hXOR

(
x1
x2

)
= σ

((
1 1

)
· σ
((

1
−1

)
⊙
(

1 1
1 1

)(
x1
x2

)
+

(
0
2

))
− 1

)
= σ

((
1 1

)
· σ
((

x1 + x2
−x1 − x2 + 2

))
− 1

)
= σ (σ (x1 + x2) + σ (2− x1 − x2)− 1)

= I {I {x1 + x2 > 0}+ I {x1 + x2 < 2} > 1}

= I
{
I
{(

x1
x2

)
̸=
(

0
0

)}
+ I
{(

x1
x2

)
̸=
(

1
1

)}
> 1

}
= I

{(
x1
x2

)
̸=
(

0
0

)
and

(
x1
x2

)
̸=
(

1
1

)}
= XOR(x1, x2) .

Remark 49 Notice that the function Id : {0, 1} → {0, 1} defined as Id (0) = 0 and Id (1) = 1 can
be implemented using any depth L network with a single input dimension and cId · L parameters.

Following this remark, for simplicity we shall assume that h1 and h2 in the following Lemma are of
the same depth, as they can be elongated with O (L) additional parameters, which are negligible in
the subsequent analysis.

48

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Lemma 50 Let h1, h2 be two binary networks with depths L1 ≤ L2 and widths d(1), d(2), respec-
tively. Then, there exists a network h with depth LXOR ≜ L2 + 2 and widths

dXOR ≜
(
d
(1)
1 + d

(2)
1 , . . . , d

(1)
L1

+ d
(2)
L1

, d
(2)
L1+1 + 1, . . . , d

(2)
L2

+ 1, 2, 1
)
,

such that for all inputs x ∈ {0, 1}d0 , h (x) = h1 (x)⊕ h2 (x).

The lemma above is given immediately by the lemma we state and prove next.

Lemma 51 (XOR of Two NNs) Let h1, h2 : X → {0, 1} be quantized fully connected binary
threshold networks with depths L′ and widths d(1), d(2), respectively. Let L ≥ 2 +L′ and d ≥ dXOR.
Let ΘBTN (d;h1, h2) be the subset of ΘBTN (d) such that for all θ ∈ ΘBTN (d;h1, h2), θ has the
following form:

• For l = 1:

W1 =

 W
(1)
1

W
(2)
1

W̃1

 , b1 =

 b
(1)
1

b
(2)
1

b̃1

 , γ1 =


1
d
(1)
l

1
d
(2)
l

0
dl−d

(1)
l −d

(2)
l


with arbitrary W̃1, b̃1.

• For l = 2, . . . , L′:

Wl =


W

(1)
l 0

d
(1)
l ×d

(2)
l−1

W̃1
l

0
d
(2)
l ×d

(1)
l−1

W
(2)
l W̃2

l

W̃3
l W̃4

l W̃5
l

 ∈ {0, 1}dl×dl−1 ,

bl =

 b
(1)
l

b
(2)
l

b̃l

 ∈ {−dl−1, . . . ,−1, 0, 1, . . . , dl−1 − 1}dl ,

γl =


1
d
(1)
l

1
d
(2)
l

0
dl−d

(1)
l −d

(2)
l

 ∈ {0, 1}dl ,

with arbitrary W̃1
l ,W̃

2
l ,W̃

3
l ,W̃

4
l ,W̃

5
l , b̃l.

• For l = L′ + k, k = 1, 2:

Wl =

(
WXOR

k W̃1
l

W̃2
l W̃3

l

)
∈ {0, 1}dl×dl−1 ,

bl =

(
bXOR
k

b̃l

)
∈ {−dl−1, . . . ,−1, 0, 1, . . . , dl−1 − 1}dl , γl =

(
γXOR
k

0

)
∈ {0,±1}dl .

49

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

• And for l > L′ + 2:

Wl =

(
WId W̃1

l

W̃2
l W̃3

l

)
∈ {0, 1}dl×dl−1 ,

bl =

(
bId

b̃l

)
∈ {−dl−1, . . . ,−1, 0, 1, . . . , dl−1 − 1}dl , γl =

(
γId

0

)
∈ {0,±1}dl .

Then for all θ ∈ ΘBTN (d;h1, h2) hθ = h1 ⊕ h2.

An illustration of this construction is given in Figure 3.
Proof We prove the claim by induction. For l = 1 we have d0 = d

(1)
0 = d

(2)
0 and

h
(1)
θ (x) = γ1 ⊙ σ

(
W1h

(0)
θ (x) + b1

)
=

 1d⋆1
1
df1

0
d1−d⋆1−df1

⊙ σ


 W

(1)
1

W
(2)
1

W̃1
1

x+

 b
(1)
1

b
(2)
1

b̃1




=


σ
(
W

(1)
1 x+ b

(1)
1

)
σ
(
W

(2)
1 x+ b

(2)
1

)
0
d1−d

(1)
1 −d

(2)
1

 =

 h
(1)
1 (x)

h
(1)
2 (x)

0
d1−d⋆1−df1

 .

Assume that for some l ≤ L′ we have

h
(l−1)
θ (x) =

 h
(l−1)
1 (x)

h
(l−1)
2 (x)

0
dl−d⋆l −dfl

 .

Then,

h
(l)
θ (x) = γl ⊙ σ

(
Wlh

(l−1)
θ (x) + bl

)

=


1
d
(1)
l

1
d
(2)
l

0
dl−d

(1)
l

−d
(2)
l

⊙σ




W
(1)
l 0

d
(1)
l ×d

(2)
l−1

W̃1
l

0
d
(2)
l ×d

(1)
l−1

W
(2)
l W̃2

l

W̃3
l W̃4

l W̃5
l


 h

(l−1)
1 (x)

h
(l−1)
2 (x)

0
dl−d

(1)
l −d

(2)
l

+

 b
(1)
l

b
(2)
l

b̃l




=


σ
(
W

(1)
l h

(l−1)
1 (x) + b

(1)
l

)
σ
(
W

(2)
l h

(l−1)
2 (x) + b

(2)
l

)
0
dl−d

(1)
l −d

(2)
l

 =

 h
(l)
1 (x)

h
(l)
2 (x)

0
dl−d

(1)
l −d

(2)
l

 .

It is left to show that the claim holds for l > L′. By the previous steps, h(L
′)

θ (x) =

 h1 (x)
h2 (x)
0dL′−2

.

Under the assumptions on WL′+k,bL′+k and γL′+k, k = 1, 2 it holds that

h
(L′+2)
θ (x) =

(
h1 (x)⊕ h2 (x)

0dL′−1

)
.

50

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Under the assumptions on layers l > L′ + 2,

h
(l)
θ (x) =

(
h1 (x)⊕ h2 (x)

0dl−1

)
.

In particular, assuming that dL = 1, hθ (x) = h1 (x)⊕ h2 (x).

51

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Corollary 52 Let h1, h2 be networks with depths L1, L2 and widths d(1), d(2). Then h1 ⊕ h2 can
be implemented with a network h of depth L = max {L1, L2}+ 2 and widths d such that

w (d) ≤ w
(
d(1)
)
+ w

(
d(2)
)
+ 2d(2)max · n

(
d(1)
)
+O(1)

and

dmax ≤ d(1)max + d(2)max .

Proof Following 49 we assume shall assume that L1 = L2 = L. We know from 51 that there exists
a network h with dimensions d =

(
d(1) + d(2), 2, 1

)
such that h = h1 ⊕ h2. Therefore

w (d) =
(
d
(1)
1 + d

(2)
1

)
d0 +

L∑
l=2

(
d
(1)
l + d

(2)
l

)(
d
(1)
l−1 + d

(2)
l−1

)
+O(1)

= d
(1)
1 d0 +

L∑
l=2

d
(1)
l d

(1)
l−1 + d

(2)
1 d0 +

L∑
l=2

d
(2)
l d

(2)
l−1 +

L∑
l=2

[
d
(1)
l d

(2)
l−1 + d

(2)
l d

(1)
l−1

]
+O(1)

= w
(
d(1)
)
+ w

(
d(2)
)
+

L∑
l=2

[
d
(1)
l d

(2)
l−1 + d

(2)
l d

(1)
l−1

]
+O(1)

≤ w
(
d(1)
)
+ w

(
d(2)
)
+

L∑
l=2

[
d
(1)
l d(2)max + d(2)maxd

(1)
l−1

]
+O(1)

= w
(
d(1)
)
+ w

(
d(2)
)
+ d(2)max

L∑
l=2

[
d
(1)
l + d

(1)
l−1

]
+O(1)

≤ w
(
d(1)
)
+ w

(
d(2)
)
+ 2d(2)max · n

(
d(1)
)
+O(1) .

In addition, dmax ≤ d
(1)
max + d

(2)
max and n (d) = n

(
d(1)
)
+ n

(
d(2)
)

.

Recall Corollary 4. For any teacher h⋆ of depth L⋆ and dimensions d⋆ and any consistent training
set S generated from it, there exists an interpolating network h (i.e., LS (h) = 0) of depth L =
max {L⋆, 14}+ 2 and dimensions d, such that the number of edges is

w (d) ≤ w (d⋆) +N ·H (LS (h⋆)) + 2n (d⋆)N3/4polylogN +O (d0 (d0 + n (d⋆)) · logN)

and the dimensions are

dmax ≤ d⋆max +N3/4 ·H (LS (h⋆)) · polylog (N) +O (d0 · log (N)) .

Proof We use Corollary 52 with h1 = h⋆ and h2 = h̃S , the noise memorizing network from
Theorem 46, to get

w (d) ≤ w (d⋆) + w
(
d̃S

)
+ 2d̃S,max · n (d⋆) +O(1)

≤ w (d⋆) + log

(
N

N1

)
+

(
log

(
N

N1

))3/4

· polylogN +O(d20 · logN)

+ 2n (d⋆)

((
log

(
N

N1

))3/4

· polylogN +O(d0 · logN)

)
+O(1) .

52

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Using Stirling’s approximation

log

(
N

N1

)
= N ·H

(
N1

N

)
+O (log (N)) = N ·H (LS (h⋆)) +O (log (N)) .

Therefore

w (d) ≤ w (d⋆) +N ·H (LS (h⋆)) +O (log (N)) +N3/4 · polylogN +O
(
d20 · logN

)
+ 2n (d⋆)

(
N3/4 · polylogN +O (d0 · logN)

)
= w (d⋆) +N ·H (LS (h⋆)) + 2n (d⋆)N3/4polylogN +O (d0 (d0 + n (d⋆)) · logN) .

The bound of dmax is derived similarly.

53

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Appendix F. The label-flip-memorization network’s dependence on the dimension

In Theorem 46, the wire bound has an O(d20 · logN) term. (Recall that d0 is the input dimension and
N is the domain size.) In this section, we discuss (a) approaches for improving this term and (b) a
lower bound showing that it cannot be significantly improved.

F.1. Improving the O(d20 · logN) Term

The O(d20 · logN) term in Theorem 46 can be improved by using the following fact.

Lemma 53 (Using a sign matrix for preprocessing) Let d0 ∈ N, let X̂ ⊆ {0, 1}d0 , and let N =
|X̂ |. There exists d1 = O(

√
d0 · logN) and there exists a matrix W ∈ {±1}d1×d0 such that the

function C0 : {0, 1}d0 → {0, 1}d1 defined by C0(x) = I {Wx > 0} is injective on X̂ .

Proof Pick W ∈ {±1}d1×d0 uniformly at random. We will show that there is a nonzero chance that
C0 is injective on X̂ .

Let x,x′ be any two distinct points in X̂ . Consider a single row Wi of W. Let E be the good
event that

Wi · (x⊙ x′) ∈ {0, 1}.

Then Pr[E] ≥ Ω(1/
√
d0), because we are taking a simple one-dimensional random walk of length

at most d0. Conditioned on E, there is an Ω(1) chance that I {Wi · x > 0} ≠ I {Wi · x′ > 0},
because we are taking two independent one-dimensional random walks starting from either 0 or 1,
at least one of which has nonzero length, and asking whether they land on the same side of 1/2.
Therefore, unconditionally, Pr[I {Wi · x > 0} ̸= I {Wi · x′ > 0}] ≥ Ω(1/

√
d0). Consequently, by

independence,
Pr[C0(x) = C0(x

′)] ≤ (1− Ω(1/
√
d0))

d1 < 1/N2,

provided we choose a suitable value d1 = O(
√
d0 · logN). By the union bound over all pairs x,x′,

it follows that there is a nonzero chance that C0 is injective on X̂ .

There are two approaches to using Lemma 53 for the sake of improving the O(d20 · logN) term
in Theorem 46.

• One approach would be to start with a trivial layer that copies the input x ∈ {0, 1}d0 as well
as computing all the negations of the bits of x; then we have a layer that applies the function
C0 from Lemma 53 (using negated variables to implement −1 weights); and then we continue
with the network of Theorem 46. The net effect is that the depth has increased by two (so the
network now has depth 16 instead of 14), and in the weights bound, the O(d20 · logN) term has
been slightly improved to O(d20 + d

3/2
0 · logN + d0 · log3N).

• A second approach would be to change the model. If we permit ternary edge weights (i.e., weights
in the set {−1, 0, 1}), then the function C0 of Lemma 53 can be implemented as the very first
layer of our network, and then we can continue with the network of Theorem 46. Note that we
need ternary edge weights only in the first layer; the edge weights in all subsequent layers are
binary. The benefit of this approach is in the weights bound, the O(d20 · logN) term of Theorem 46
would be improved to O(d

3/2
0 · logN + d0 · log3N).

54

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

F.2. A d20 Lower Bound on the Number of Weights

We now show that the O(d20 · logN) term in Theorem 46 cannot be improved to something better
than d20, if we insist on using the “binary threshold network” model. The argument is elementary.

Proposition 54 (d20 wire lower bound) For every d0 ∈ N, there exists a partial Boolean function
f : {0, 1}d0 → {0, 1, ⋆}, defined on a domain X̂ of size d0 + 1, such that for every binary threshold
network h̃, if h̃ agrees with f everywhere in its domain and d is the widths of h̃, then w (d) ≥ d20.

Proof For each i ∈ {0, 1, . . . , d0}, let x(i) be the vector consisting of i zeroes followed by d0 − i
ones. Let X̂ = {x(i) : 0 ≤ i ≤ d0}, and let

f(x) =

{
PARITY(x) if x ∈ X̂
⋆ otherwise.

For the analysis, let h̃ be a fully connected binary threshold network that agrees with f on all
points in X̂ . Consider the layer immediately following the input layer. Each node g in this layer
computes either a monotone Boolean function or an anti-monotone Boolean function of the input
variables. Therefore, there is at most one value i ∈ {1, 2, . . . , d0} such that g(x(i−1)) ̸= g(x(i)). On
the other hand, for every i ∈ {1, 2, . . . , d0}, we have h̃(x(i−1)) ̸= h̃(x(i)), and hence there must be
at least one node g in this layer such that g(x(i−1)) ̸= g(x(i)). Therefore, there are at least d0 many
nodes g.

Thus, the first two layers of h̃ both have widths of at least d0, demonstrating that h̃ has at least d20
many weights.

55

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Appendix G. Generalization results (Proofs for Section 4)

Denote by HBTN
d the set of functions representable as binary threshold networks with dimensions

d (given a fixed depth L). We start by bounding the cardinality
∣∣∣HBTN

d

∣∣∣ in terms of the number of
edges w (d).

Lemma 55 Let d be the dimensions of a binary threshold network with w ≜ w (d) edges. Then
there are 2w+O(

√
w log(w)) functions representable as networks with dimensions d.

Proof We bound the number of function representable as binary threshold networks with dimensions
d having w edges by suggesting a way to encode them, and then bounding the number of bits in the
encoding. First, permute each layer so the neurons are sorted by the bias and neuron scaling terms
(bli, γli). As NNs are invariant to permutations, this does not change the function. Now, at each layer
we encode the bias term based on one of two encodings.

• If dl < dl−1, then list each of the bias terms as a number with O (log (dl−1)) bits plus 2 bits
for the scaling term for a total of O (dl (log (dl−1) + 2)) ≤ O

(√
dldl−1 log (dl−1)

)
, where the

inequality is due to dl < dl−1.

• If dl ≥ dl−1, then we encode the bias and scaling terms by listing the number of times each pair
(bli, γli) ∈ {−dl−1, . . . , dl−1 − 1}×{−1, 0, 1} appears in (bl,γl) (recall that the neurons are or-
dered according to these pairs). Each pair can appear at most dl times and so requires O (log (dl))
bits to encode for a total of O (6dl−1 log (dl)) = O (dl−1 log (dl)) ≤ O

(√
dldl−1 log (dldl−1)

)
.

By encoding each weight with a single bit, this means that for all layers, we can encode the weights,
biases and scaling terms using dldl−1 +O

(√
dldl−1 log (dldl−1)

)
bits for a total of

L∑
l=1

dldl−1 +O
(√

dldl−1 log (dldl−1)
)
= w +O

(
L∑
l=1

√
dldl−1 log (dldl−1)

)

≤ w +O

(
L∑
l=1

√
dldl−1 log

(
L∑
l=1

dldl−1

))

≤ w +O

(
L∑
l=1

√
dldl−1 log (w)

)
= w +O

(
log (w) · L

L∑
l=1

1

L

√
dldl−1

)

[Jensen] ≤ w +O

log (w) · L

√√√√ L∑
l=1

1

L
dldl−1

 = w +O

log (w) ·
√
L

√√√√ L∑
l=1

dldl−1


= w +O

(
log (w) ·

√
L
√
w
)

= w +O
(
log (w) ·

√
w
)
.

Corollary 56 Assuming that the depth L is fixed and known, a binary threshold network of depth L
with unknown number of weights w, can be encoded with w +O (

√
w log (w)) bits.

56

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Proof After specifying the architecture d, from Lemma 55 we require w + O (
√
w log (w)) bits.

Therefore it remains to bound the length of the encoding of d. We first use O (log (w)) bits to encode
the number of weights, then, since d ∈ [w]L, we only need O

(
log
(
wL
))

= O (log (w)) additional
bits for a total of w +O (

√
w log (w)) +O (log (w)) = w +O (

√
w log (w)).

57

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

G.1. Derivation of the min-size generalization bounds (Proofs for Section 4.1)

Throughout this subsection, we use A (S) to denote the min-size interpolating NN of depth L,
AL (S).

Lemma 57 Let L ≥ 16 be fixed. Then

I (S;A (S)) ≤ w (d⋆) +N ·H (ε⋆) +O (δ (N, d0, d
⋆))

where

δ (N, d0, d
⋆) = n (d⋆)·N3/4 ·polylog (N+n(d⋆)+d0)+d20 ·logN+d0n (d⋆) log (n (d⋆)+N+d0)

3/2.

Proof Using Shannon’s source coding theorem:

I (S;A (S)) ≤ H (A (S)) ≤ E |A (S)| ,

where |A (S)| denotes the number of bits in the encoding of A (S). Following Corollary 4, for a
consistent S, A (S) is a network with fixed depth and at most

w ≜ w (d⋆) +N ·H (LS (h⋆)) + 2n (d⋆)N3/4polylogN +O (d0 (d0 + n (d⋆)) · logN)

weights and therefore, using the result from Corollary 56 and
√

w (d⋆) ≤ d0 + n (d⋆)

|A (S)| ≤ w +O
(√

w log (w)
)

= w (d⋆) +N ·H (LS (h⋆))

+O
(
n (d⋆)·N3/4 ·polylog (N+n(d⋆)+d0)+d20 ·logN+d0n (d⋆) log (n (d⋆)+N+d0)

3/2
)

= w (d⋆) +N ·H (LS (h⋆)) +O (δ (N, d0, d
⋆)) .

In case S is inconsistent, A (S) = ⋆ so |A (S)| = O (1). Taking the expected value and using
Jensen’s inequality gives

E |A (S)| = E [|A (S)| · I {inconsistentS}] + E [|A (S)| · I {consistentS}]
≤ O(1) + E

[
I {consistentS}︸ ︷︷ ︸

≤1

(w (d⋆) +N ·H (LS (h⋆)) +O (δ (N, d0, d
⋆)))︸ ︷︷ ︸

≥0

]
≤ O(1) + E [w (d⋆) +N ·H (LS (h⋆)) +O (δ (N, d0, d

⋆))]

= O(1) + w (d⋆) +O (δ (N, d0, d
⋆)) +N · E [H (LS (h⋆))]

[Jensen] ≤ w (d⋆) +N ·H (E [LS (h⋆)]) +O (δ (N, d0, d
⋆))

= w (d⋆) +N ·H (ε⋆) +O (δ (N, d0, d
⋆)) .

58

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

With this result, we are ready to derive the generalization results.

Recall Theorem 6. Consider a distribution D induced by a noisy teacher model of depth L⋆ and
widths d⋆ (Assumption 2) with a noise level of ε⋆ < 1/2. Let S ∼ DN be a training set such that
N = o(

√
1/Dmax). Then, for any fixed depth L ≥ max {L⋆, 14}+ 2, the generalization error of

the min-size depth-L NN interpolator satisfies the following.

• Under arbitrary label noise,

ES [LD (A (S))] ≤ 1− 2−H(ε⋆)/PS(consistentS) + P (inconsistentS) +O (Cmin (N, d0, d
⋆)) .

• Under independent label noise,

|ES [LD (A (S))]− 2ε⋆ (1−ε⋆)|

≤ (1− 2ε⋆)
√

O(Cmin(N,d0,d
⋆))+P(inconsistent S)

P(consistent S) +
(N − 1)Dmax

3
+ P (inconsistentS) ,

where

Cmin (N, d0, d
⋆) =

w (d⋆) + δ (N, d0, d
⋆)

N

=
w (d⋆) + n (d⋆)·N3/4 ·polylog (N+n(d⋆)+d0)+d20 ·logN+d0n (d⋆) log (n (d⋆)+N+d0)

3/2

N
.

Remark 58 The bound shown in Section 4.1 is found by bounding P(inconsistent S) ≤ 1
2N

2Dmax

as in Lemma 18. Then using the Taylor approximation with small N2Dmax

1− 2
− H(ε⋆)

P(consistentS) ≤ 1− 2
− H(ε⋆)

1− 1
2N2Dmax

= 1− 2−H(ε⋆)(1+O(N2Dmax))

= 1− 2−H(ε⋆)
(
1 +O

(
N2Dmax

))
= 1− 2−H(ε⋆) +O

(
N2Dmax

)
.

Lemma 18 is used similarly to bound the error in the independent noise case.
Assuming that N = ω

(
n (d⋆)4 polylog (n (d⋆)) + d20 log d0

)
we can deduce that N = ω (w (d⋆))

as well since
w (d⋆) ≤ (n (d⋆) + d0)

2 ≤ 4 (max {n (d⋆) , d0})2 .

Together with N = o
(√

1/Dmax

)
we get the desired form of the bounds.

Proof Starting with the bound in the arbitrary noise setting, we combine 21 with 57

− log (1− ES [LD (A (S)) | consistent S]) ≤ I (S;A (S))

N · PS (consistent S)

≤ w(d⋆)+N ·H(ε⋆)+O(n(d⋆)·N3/4·polylog(N+n(d⋆)+d0)+d20·logN+d0n(d
⋆) log(n(d⋆)+N+d0)

3/2)
N ·PS(consistent S)

=
1

PS (consistent S)
· (H (ε⋆) +O (Cmin (N, d0, d

⋆))) .

59

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Rearranging the above inequality and recalling Remark 20, we have,

ES [LD (A (S)) | consistent S] ≤ 1− 2
− H(ε⋆)

PS(consistentS)
−O(Cmin(N,d0,d

⋆))
.

Then, using Lemma 15, we get,

ES [LD (A (S)) | consistent S] ≤ 1− 2
− H(ε⋆)

PS(consistentS) +O (Cmin (N, d0, d
⋆)) .

The bound is derived using the following observation. Since for a RV X in [0, 1] and a binary RV Y
we have

E[X] = E[X | Y]P(Y)︸ ︷︷ ︸
≤1

+E[X | ¬Y]︸ ︷︷ ︸
≤1

P(¬Y) ≤ E[X | Y] + P[¬Y] ,

we conclude the proof as

ES [LD (A (S))] ≤ ES [LD (A (S)) | consistent S] + P (inconsistent S) .

For the independent noise setting, we combine Lemma 22 and Lemma 57 to get

|ES [LD (A (S)) | consistent S]− 2ε⋆ (1− ε⋆)|

≤ (1− 2ε⋆)O
(√

C (N)
)
+

(N − 1)Dmax

3
,

where

C (N) =
I (S;A (S))−N · (H (ε⋆)− P (inconsistent S))

N (1− P (inconsistent S))

≤ w(d⋆)+N ·H(ε⋆)+O(δ(N,d0,d
⋆))−N ·(H(ε⋆)−P(inconsistent S))

N(1−P(inconsistent S))

=
O
(
w(d⋆)+δ(N,d0,d

⋆)
N

)
+ P (inconsistent S)

P (consistent S)

=
O (Cmin (N, d0, d

⋆)) + P (inconsistent S)
P (consistent S)

Finally, using the inequality from Lemma 23, we have,∣∣ES,A(S) [LD (A (S))]− 2ε⋆ (1− ε⋆)
∣∣

≤
∣∣ES,A(S) [LD (A (S)) | consistent S]− 2ε⋆ (1− ε⋆)

∣∣+ P(inconsistent S)

60

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

G.2. Derivation of the posterior sampling generalization bounds (Section 4.2)

Lemma 59 For the posterior sampling algorithm

I (S;A (S)) ≤ ES

[
log

(
1

pS

)∣∣∣∣consistentS]PS (consistentS) +
2

e ln 2
.

Proof Recall the definition of the marginal distribution of the algorithm’s output (a hypothesis h) is

dν (h) =
∑
s

dp (s, h) ,

where s are all possible realizations of a (training) sample of size N .
For h = ⋆, we have dν (⋆) = PS (inconsistent S).
For h ̸= ⋆, since Ls (h) = 0 implies that s is consistent, we have

dν (h) ≜
∑
s

dp (s, h) =
∑
s

I {Ls (h) = 0}
ps

dP (h) dDN (s)

=
∑

s:ps>0

I {Ls (h) = 0}
ps

dP (h) dDN (s)

= dP (h)
∑

s:ps>0

I {Ls (h) = 0}
ps

dDN (s)

= dP (h)ES∼DN

[
I {pS > 0}

pS
I {LS (h) = 0}

]
.

where, for ease of notation, we use the convention that I{ps>0}
ps

= 0 when ps = 0. Denoting

π (h) ≜ ES∼DN

[
I {pS > 0}

pS
I {LS (h) = 0}

]
,

we get
dν (h) = dP (h)π (h) .

Notice that if there exists some s ∈ supp
(
DN
)

such that Ls (h) = 0 then π (h) > 0. Using the
definition of the mutual information:

I (S;A (S)) =
∑
s

∑
h∈H∪{⋆}

dp (s, h) log

(
dp (s, h)

dν (h) dD (s)

)

=
∑

s:ps=0

dp (s, ⋆) log

(
dp (s, ⋆)

dν (⋆) dD (s)

)
+
∑

s:ps>0

∑
h∈H

dp (s, h) log

(
dp (s, h)

dν (h) dD (s)

)
=
∑

s:ps=0

dD (s) log

(
dD (s)

PS (inconsistent S) dD (s)

)
+

∑
s:ps>0

∑
h:Ls(h)=0

1

ps
dP (h) dD (s) log

(
1
ps
dP (h) dD (s)

dP (h)π (h) dD (s)

)

=
∑

s:ps=0

dD (s) log
(

1
PS(inconsistent S)

)
+
∑

s:ps>0

∑
h:Ls(h)=0

1

ps
dP (h) dD (s) log

(
1

psπ (h)

)
.

61

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Simplifying each term separately, the first sum immediately simplifies to

−PS (inconsistent S) log (PS (inconsistent S)) ≤ 1

e ln 2
,

and ∑
s:ps>0

∑
h:Ls(h)=0

1

ps
dP (h) dD (s) log

(
1

psπ (h)

)
= −

∑
s:ps>0

∑
h:Ls(h)=0

1

ps
dP (h) dD (s) log (ps)−

∑
s:ps>0

∑
h:Ls(h)=0

1

ps
dP (h) dD (s) log (π (h))

= −
∑

s:ps>0

1

ps
log (ps) dD (s)

∑
h:Ls(h)=0

dP (h)

︸ ︷︷ ︸
=ps

−
∑

s:ps>0

∑
h:π(h)>0

I {Ls (h) = 0}
ps

dP (h) dD (s) log (π (h))

= −
∑

s:ps>0

1

ps
log (ps) dD (s) ps −

∑
h:π(h)>0

log (π (h)) dP (h)
∑

s:ps>0

I {Ls (h) = 0}
ps

dD (s)︸ ︷︷ ︸
=π(h)

= −
∑

s:ps>0

log (ps) dD (s)−
∑

h:π(h)>0

π (h) log (π (h)) dP (h)

= −ES [log (pS) I {pS > 0}]− Eh∼P [I {π (h) > 0}π (h) log (π (h))]

= ES

[
log

(
1

pS

)
| pS > 0

]
PS (pS > 0) + Eh∼P [−π (h) log (π (h)) I {π (h) > 0}]︸ ︷︷ ︸

≤1/e ln 2

≤ ES

[
log

(
1

pS

)
| consistent S

]
PS (consistent S) +

1

e ln 2
.

Putting all of this together,

I (S;A (S)) ≤ ES

[
log

(
1

pS

)∣∣∣∣consistent S
]
PS (consistent S) +

2

e ln 2
.

62

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Corollary 60 The generalization of posterior sampling satisfies

− log
(
1− ES,A(S) [LD (A (S)) | consistentS]

)
≤

ES

[
log
(

1
pS

)∣∣∣consistentS]+ 3

N
.

Proof Combining Lemma 21 and Lemma 59 we get

I (S;A (S)) ≥ −N log
(
1− ES,A(S) [LD (A (S)) | consistent S]

)
PS (consistent S)

and

I (S;A (S)) ≤ ES

[
log

(
1

pS

)∣∣∣∣consistent S
]
PS (consistent S) +

2

e ln 2

so

−N log
(
1− ES,A(S) [LD (A (S)) | consistent S]

)
PS (consistent S)

≤ ES

[
log

(
1

pS

)∣∣∣∣consistent S
]
PS (consistent S) +

2

e ln 2

and finally, using 2/e ln 2 ≤ 1.5 and recalling 20 we get

− log
(
1− ES,A(S) [LD (A (S)) | consistent S]

)
≤

ES

[
log
(

1
pS

)∣∣∣consistent S
]
+ 3

N
.

63

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Let h̄ be a network with depth L, dimensions d̄, and parameters θ̄ =
{
W̄l, b̄l, γ̄l

}
∈ ΘBTN

(
d̄
)
.

Let d ≥ d̄. Similar to ΘBTN (d;h1, h2) introduced in Lemma 51, let ΘBTN
(
d; h̄
)
⊂ ΘBTN (d) be

the set of parameters θ that implement h̄ by setting a subset of the parameters to be equal to θ̄, and
zero the effect of redundant neurons by setting their bias and neuron scaling terms to be 0. This is
illustrated in Figure 4. In particular, in our notation, ΘBTN (d;h1, h2) = ΘBTN (d;h1 ⊕ h2).

𝑑0 𝑑1 𝑑2 𝑑3 𝑑4 𝑑5

Figure 4: Implementing a narrow network with a wider network. Blue edges represent parameters
set to equal the parameters of h̄, grey edges represent unconstrained parameters.

Lemma 61 Let h be a network with depth L and dimensions d̄. Let d ≥ d̄. Then

− log

(∣∣ΘBTN
(
d; h̄
)∣∣

|ΘBTN (d)|

)
≤ w

(
d̄
)
+O (n (d) · log (dmax + d0)) .

Proof We prove this by counting the number of constrained parameters in ΘBTN
(
d; h̄
)
. The number

of constrained weights is

d̄1d0 +

L∑
l=2

d̄ld̄l−1 ,

which is exactly w
(
d̄
)
. In addition, there are n (d) constrained bias terms, and n (d) constrained

scaling terms. In total, after accounting for the quantization of each parameter, this means that∣∣ΘBTN
(
d; h̄
)∣∣

|ΘBTN (d)|
≥

2w(d̄)︸ ︷︷ ︸
weights

· 3n(d)︸︷︷︸
scaling terms

·
L∏
l=1

(2dl−1)
dl

−1

so

− log

(∣∣ΘBTN
(
d; h̄
)∣∣

|ΘBTN (d)|

)

≤ w
(
d̄
)
+ n

(
d
)
· log 3 +

L∑
l=1

d̄l · log (2dl−1)

≤ w
(
d̄
)
+ n

(
d
)
· log 3 + n (d) · log (2dmax + 2d0)

= w
(
d̄
)
+O (n (d) · log (dmax + d0)) .

64

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Combining Lemma 61 with Assumption 2, and Corollary 4 gives the following lemma.

Lemma 62 Consider a distribution D induced by a noisy teacher model of depth L⋆ and widths d⋆

(Assumption 2) with a noise level of ε⋆ < 1/2. Let S ∼ DN be a training set with effective training
set label noise ε̂tr as defined in (2). Then there exist constants c1, c2 > 0 such that for any student
network of depth L ≥ max {L⋆, 14}+ 2 and widths d ∈ NL satisfying

∀l = 1, . . . , L⋆−1 dl ≥ d⋆l +N3/4 · (logN)c1 + c2 · d0 · log (N) ,

it holds for posterior sampling with a uniform prior over hypotheses that

ES

[
log

(
1

pS

)
| consistent S

]
≤ w (d⋆) +N ·H (ε̂tr) + 2n (d⋆)N3/4polylogN

+O (d0 (d0 + n (d⋆)) · log (N) + n (d) · log (dmax + d0)) .

Proof Notice that for posterior sampling with uniform distribution over parameters, the interpolation
probability pS can be lower bounded as

pS ≥

∣∣∣ΘBTN
(
d;h⋆ ⊕ h̃S

)∣∣∣
|ΘBTN (d)|

and therefore

log

(
1

pS

)
≤ − log


∣∣∣ΘBTN

(
d;h⋆ ⊕ h̃S

)∣∣∣
|ΘBTN (d)|

 .

Then, using the bounds from Lemma 61 with the one from Corollary 4

log

(
1

pS

)
≤ w (d⋆) +N ·H (LS (h⋆)) + 2n (d⋆)N3/4polylogN +O (d0 (d0 + n (d⋆)) · logN)

+O (n (d) · log (dmax + d0))

= w (d⋆) +N ·H (LS (h⋆)) + 2n (d⋆)N3/4polylogN

+O (d0 (d0 + n (d⋆)) · log (N) + n (d) · log (dmax + d0)) .

By taking the expectation and using Jensen’s inequality with the concave H we arrive at

ES [H (LS (h⋆)) | consistent S] ≤ H (ES [LS (h⋆) | consistent S]) = H (ε̂tr)

and hence

ES

[
log

(
1

pS

) ∣∣∣∣ consistent S
]

≤ w (d⋆) +N ·H (ε̂tr) + 2n (d⋆)N3/4polylogN

+O (d0 (d0 + n (d⋆)) · log (N) + n (d) · log (dmax + d0)) .

65

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

Recall Theorem 7. Consider a distribution D induced by a noisy teacher model of depth L⋆ and
widths d⋆ (Assumption 2) with a noise level of ε⋆ < 1/2. Let S ∼ DN be a training set such that
N = o(

√
1/Dmax). Then, there exist constants c1, c2 > 0 such that for any student network of depth

L ≥ max {L⋆, 14}+ 2 and widths d ∈ NL holding

∀l = 1, . . . , L⋆−1 dl ≥ d⋆l +N3/4 · (logN)c1 + c2 · d0 · log (N) , (9)

the generalization error of posterior sampling satisfies the following.

• Under arbitrary label noise,

ES,A(S) [LD (A (S))] ≤ 1− 2−H(ε⋆) + 2N2Dmax +O (Crand (N)) .

• Under independent label noise,∣∣ES,A(S) [LD (A (S))]− 2ε⋆ (1−ε⋆)
∣∣

≤ (1− 2ε⋆)

√
O (Crand (N)) + P (inconsistent S)

P (consistent S)
+

(N − 1)Dmax

3
+ P (inconsistentS) ,

where

Crand (N) =
n (d⋆)·polylog (N)

4
√
N

+
w (d⋆)+d0 (d0 + n (d⋆))·log (N)+n (d)·log (dmax+d0)

N
.

Remark 63 The bound shown in Section 4.2 is found by bounding P (inconsistentS) as in Lemma 18.
Assuming that N = ω

(
n (d⋆)4 polylog (n (d⋆)) + d20 log d0

)
we can deduce that N = ω (w (d⋆))

as well since
w (d⋆) ≤ (n (d⋆) + d0)

2 ≤ 4 (max {n (d⋆) , d0})2 .

Together with N = o
(√

1/Dmax

)
we get the desired form of the bounds.

Proof Corollary 4 implies that there exist c1, c2 > 0 such that a student NN satisfying (9) can
interpolate any consistent dataset, and so posterior sampling is interpolating for all consistent
datasets.

We start by proving the bound for arbitrary label noise.
First, we notice that

ε̂tr = P(Y1 ̸= h⋆(X1) | consistentS) =
P(Y1 ̸= h⋆(X1), consistentS)

P (consistentS)

≤ P(Y1 ̸= h⋆(X1))

P (consistentS)
=

ε⋆

P (consistentS)
.

66

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

The entropy function H is increasing in
[
0, 12
]

and achieves its maximum at 1
2 , so together with

the inequality above, we get,

H (ε̂tr) ≤ H
(
min

{
ε⋆

P(consistentS) ,
1
2

})
= H

(
ε⋆ +min

{
ε⋆

P(consistentS) − ε⋆, 12 − ε⋆
})

= H
(
ε⋆ +min

{
ε⋆ P(inconsistentS)P(consistentS) , 12 − ε⋆

}︸ ︷︷ ︸
≜∆

)
= H (ε⋆ +∆) .

Employing the concavity of the entropy function, we get,

H (ε̂tr) ≤ H (ε⋆ +∆) ≤ H(ε⋆) +H ′(ε⋆) ·∆ ≤ H(ε⋆) + H ′(ε⋆) · ε⋆︸ ︷︷ ︸
≤1
2 ,algebraically

·P (inconsistentS)

P (consistentS)
.

Then, combining the above with Corollary 60, Lemma 62, we have that

− log
(
1− E(S,A(S)) [LD (A (S)) | consistent S]

)
≤ ES [log (1/pS) | consistent S] + 3

N

≤ H (ε̂tr) +
1

N

(
w (d⋆) +N ·H (ε̂tr) + 2n (d⋆)N3/4polylogN

+O (d0 (d0 + n (d⋆)) · log (N) + n (d) · log (dmax + d0))
)

≤ H (ε̂tr) +O
(
n(d⋆)·polylog(N)

4√N
+

w(d⋆)+d0(d0+n(d⋆))·log(N)+n(d)·log(dmax+d0)
N

)
≤ H(ε⋆) + P(inconsistentS)

2P(consistentS)

+O
(
n(d⋆)·polylog(N)

4√N
+

w(d⋆)+d0(d0+n(d⋆))·log(N)+n(d)·log(dmax+d0)
N

)
= H(ε⋆) + P(inconsistentS)

2P(consistentS) +O (Crand (N)) .

Rearranging the inequality results in

E(S,A(S)) [LD (A (S)) | consistent S]

≤ 1− 2
−H(ε⋆)− P(inconsistentS)

2P(consistentS)
−O(Crand(N))

Then, using Lemma 15, we get,

E(S,A(S)) [LD (A (S)) | consistent S]

≤ 1− 2−H(ε⋆) +
P (inconsistentS)

2P (consistentS)
+O (Crand (N)) .

Repeating the argument from the proof of Theorem 6, since for an RV X in [0, 1] and a binary
RV Y we have

E[X] = E[X | Y]P(Y)︸ ︷︷ ︸
≤1

+E[X | ¬Y]︸ ︷︷ ︸
≤1

P(¬Y) ≤ E[X | Y] + P(¬Y) ,

67

PROVABLE TEMPERED OVERFITTING OF MINIMAL NETS AND TYPICAL NETS

we have,

E(S,A(S)) [LD (A (S))] ≤ E(S,A(S)) [LD (A (S)) | consistent S] + P (inconsistent S)

≤ 1− 2−H(ε⋆) +
P (inconsistentS)

2P (consistentS)
+ P (inconsistent S) +O (Crand (N))

≤ 1− 2−H(ε⋆) + 2
P (inconsistentS)

P (consistentS)
+O (Crand (N))

≤ 1− 2−H(ε⋆) + 2
1
2N

2Dmax

1− 1
2N

2Dmax
+O (Crand (N))

≤ 1− 2−H(ε⋆) + 2N2Dmax +O (Crand (N))

where in the last inequality we used t/ (1− t) ≤ 2t for t ∈ [0, 1/2].

Moving on to the independent noise setting, we combine Lemma 59, Lemma 62, and ε̂tr ≤ ε⋆ < 1
2

from Lemma 19, to bound the mutual information as

I (S;A (S)) ≤ ES

[
log

(
1

pS

)
| consistent S

] ≤1︷ ︸︸ ︷
PS (consistent S)+

2

e ln 2

≤ ES

[
log

(
1

pS

)
| consistent S

]
+ 1.1

≤ N ·H (ε⋆) +O (N · Crand (N)) .

Plugging the above into C(N) of Lemma 22, we get,

C (N) =
I (S;A (S))−N ·H (ε⋆) +N · PS∼DN (inconsistent S)

N · P (consistent S)

≤ N ·H(ε⋆)+O(N ·Crand(N))−N ·H(ε⋆)+N ·P(inconsistent S)
N ·P(consistent S)

=
O (Crand (N)) + P (inconsistent S)

P (consistent S)
.

Then we continue as in the arbitrary noise setting to get the desired bound.

68

	Introduction
	Setting
	Model: Fully connected threshold NNs with binary weights
	Data model: A teacher network and label-flip noise
	Learning problem: Classification with interpolators

	Interpolating a noisy training set
	Tempered overfitting of min-size and random interpolators
	Min-size interpolators
	Random NN interpolators (posterior sampling)

	Discussion
	Supplementary material
	Supplementary material for Section 3
	Supplementary material for Section 4
	Related work

	Preliminaries and Auxiliary Results
	Preliminaries
	Auxiliary results

	Data consistency
	Independent label noise

	Generalization bounds
	Arbitrary label noise
	Independent Noise

	Memorizing the label flips (proofs for Section 3)
	Preprocessing the input to reduce the dimension
	Threshold networks computing k-wise independent generators
	A hitting set generator with a non-optimal dependence on
	Networks for computing functions that are constant on certain intervals
	Error reduction
	XOR networks

	The label-flip-memorization network's dependence on the dimension
	Improving the O(d02 N) Term
	A d02 Lower Bound on the Number of Weights

	Generalization results (Proofs for Section 4)
	Derivation of the min-size generalization bounds (Proofs for Section 4.1)
	Derivation of the posterior sampling generalization bounds (Section 4.2)

