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Abstract
Prompt caching is critical for reducing latency and
cost in LLM inference—OpenAI and Anthropic
report up to 50–90% cost savings through prompt
reuse. Despite its widespread success, little is
known about what constitutes an optimal prompt
caching policy, particularly when optimizing tail
latency—a metric of central importance to prac-
titioners. The widely used Least Recently Used
(LRU) policy can perform arbitrarily poor on this
metric, as it is oblivious to the heterogeneity of
conversation lengths. To address this gap, we
propose Tail-Optimized LRU, a simple two-line
modification that reallocates KV cache capacity
to prioritize high-latency conversations by evict-
ing cache entries unlikely to affect future turns.
Though the implementation is simple, we prove
its optimality under a natural stochastic model of
conversation dynamics, providing the first theoret-
ical justification for LRU in this setting—a result
that may be of independent interest to the caching
community. Experimentally, on real conversation
data WildChat (Zhao et al., 2024), Tail-Optimized
LRU achieves up to 27.5% reduction in P90 tail
Time to First Token latency and 23.9% in P95
tail latency compared to LRU, along with up to
40% decrease in SLO violations of 200ms. We
believe this provides a practical and theoretically
grounded option for practitioners seeking to opti-
mize tail latency in real-world LLM deployments.

1. Introduction
Prompt caching is essential. By December 2024, Chat-
GPT handled 1 billion user messages every day with 300
million weekly active users (OpenAI Newsroom, 2024). To
efficiently use scarce and costly GPU resources, prompt
caching was proposed (Gim et al., 2024): it caches the KV
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cache of existing queries, allowing a new query to skip some
computation by reusing the KV cache it shares with existing
queries (vLLM Team, 2025). Prompt caching can reduce
prefill computation thus Time to First Token (TTFT). This
technique has been adopted by OpenAI and Anthropic, both
reporting a significant amount (50-90%) of latency and cost
reductions (OpenAI, 2024; Anthropic, 2024). Despite the
practical impact of prompt caching, little is known about
how much existing caching policies—such as the Least Re-
cently Used (LRU) policy—can be improved upon with
respect to key metrics in LLM inference systems, which is
the main motivation of this work.

Tail latency drives user experience but is hard to opti-
mize. In real-time user-facing applications, companies care
about high-percentile response time, e.g., 95% of requests
complete within 200 ms. In LLM applications, Users ar-
rive to request services through an alternating sequence of
prompts and responses that we call turns. Each prompt,
along with all previous chat history, is treated as a job re-
quest. When the cache is full, the server must decide which
KV cache blocks to evict, under four layers of uncertainty:
1) when new conversations are arriving; 2) the number of fu-
ture turns of existing conversations; 3) the size of future user
prompt and model response; and 4) the arrival order of turns
from concurrent conversations competing for cache space.
Here, KV cache blocks are the atomic cacheable units of
tokens, e.g., a single block may consist of 128 tokens (Ope-
nAI, 2024). These intertwined dynamics make tail latency
optimization in LLM inference uniquely challenging.

Existing approaches. Classic caching/paging algorithms
mostly focus on maximizing cache hit rate, not tail latency.
Existing caching designs for LLM utilize Least-Recently-
Used (LRU) as the eviction policy, including vLLM (Kwon
et al., 2023), SGLang (Zheng et al., 2024), and Moon-
cake (Qin et al., 2025). LRU evicts the least recently ac-
cessed item in the cache, but it does not distinguish between
long or short conversations that could have different implica-
tions for tail latency: evicting 10 tokens from a 2000-token
chat is far more likely to hurt tail latency than from a 10-
token chat. Therefore, LRU can perform arbitrarily poorly
on tail latency.

Our approach: Tail-Optimized LRU. To bridge this
gap, we introduce Tail Excess Latency: TEL =
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i max{TTFT(i)−ξ, 0}, where TTFT(i) denote the Time

to First Token experienced by the ith request and ξ ≥ 0 is a
user-specific latency threshold. We approximate TTFT by
the number of uncached blocks.

For a conversation with chat history length L and whose
next prompt is expected to add Q blocks, caching more
than L+Q− ξ blocks cannot improve TEL as the number
of uncached blocks is already lower than ξ. Any blocks
beyond this TEL-safe budget can therefore be evicted “for
free” (Figure 1). Motivated by this observation, we propose
Tail-Optimized LRU, a two-line addition of LRU. Upon
cache overflow, Tail-Optimized LRU works in two phases:
1) Proactive trimming: first evict blocks from conversations
whose cache size exceeds the TEL-safe budget L+Q− ξ;
2) If space is still needed, evict blocks using LRU.

In practice, the next-prompt length is unknown; T-LRU can
use an estimate Q̂ such as the empirical average or a model
prediction. Implementation requires only one extra book-
keeping: mark proactively trimmed blocks as “infinitely
old,” after which any existing LRU engine can evict them in
the usual way.

Time
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L1
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# of uncached blocks
Turn 2 Turn 3
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Cached blocks at Turn 2

Figure 1: Proactive trimming: A three-turn conversation
{(Q1, A1), (Q2, A2), (Q3, A3)} is shown, Li denotes chat his-
tory (i.e., L1 = Q1 + A1, L2 = L1 + Q2 + A2). Bars indicate
the number of uncached blocks each turn incurs; the red dashed
line marks the latency threshold ξ. Turn 1: projected load for
next request is L1 +Q2 < ξ; no caching is needed. Turn 2: now
L2+Q3 > ξ, at least L2+Q3− ξ blocks must be cached (green),
but caching more won’t improve TEL further.

Contributions.

• We derive the hindsight optimal policy for Tail Excess
Latency: evict down to the TEL-safe budget L+Q− ξ
then use furthest-in-future policy (Theorem B.1).

• We introduce a novel policy, Tail-Optimized LRU (Al-
gorithm 1), which dominates LRU under any arrival
trace (Theorem 3.1) and requires minimal change to
LRU in implementation.

• We propose a novel stochastic model for multi-turn
conversations that characterize uncertainties in LLM

Figure 2: Difference between LRU and T-LRU: In this example,
there are two conversations with a total of three turns. The top
panel shows the total job size (chat history plus user prompt) at
each step. For simplicity we assume response length is zero. The
bottom panel shows the number of cached blocks updated after
each turn arrival. The cache capacity is 100 blocks and user prompt
length does not exceed 100 blocks. LRU evicts all of conversation
A’s cache blocks immediately after step 2, causing a maximum
uncached blocks of 200 at step 3. In contrast, Tail-Optimized
LRU (T-LRU) with ξ = 160 partially caches conversation B due
to proactive trimming—reserving cache space for conversation
A and brings the maximum uncached blocks to 150. That’s a
50-block improvement over LRU, closing about 50% of the gap to
the hindsight optimum of 100 uncached blocks.

workload, which should be of broad interest to the
caching community. Within it, we prove a general-
ized Tail-Optimized LRU is optimal (Theorem D.2);
demonstrating the optimality of classic LRU (for aver-
age latency) and Tail-Optimized LRU as special cases.

• We evaluate variants of Tail-Optimized LRU, LRU,
and hindsight optimal policy on real multi-turn chat
traces. Our policy achieves up to 23.9% reduction in
P95 tail latencies compared with LRU, along with up
to 38.9% decrease in SLO violations compared with
the strongest baseline, and offers insights on how to
choose the latency threshold ξ (Section 4).

2. Preliminary
Caching Decision. When a request arrives, the server can
reuse any KV cache blocks from its chat history; evicted
blocks must be recomputed.1 As keeping KV blocks is
strictly beneficial while space remains, the policy only needs
to specify what to evict when the cache overflows. We focus
on optional caching, where computation uses a separate
workspace from the KV cache memory. After serving the
request and updating its chat history, the server decides
which newly produced blocks to save and evict to satisfy
cache capacity. This allows us to treat the number of blocks
to evict as a fixed target, as one can make caching decisions

1In practice, evicted blocks may be retrieved from other storage
layers (e.g., CPU DRAM or SSD). We focus on a single-layer
cache and do not consider inter-layer transfer.
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after serving the request. See Appendix E for discussion of
forced caching and how our results extend to that setting.

Latency Objective: Tail Excess Latency. Percentile tail
latency is notoriously hard to optimize. Instead, we intro-
duce the Tail Excess Latency (TEL) metric as an amenable
approximation: TEL =

∑
i max{TTFTi − ξ, 0}, where

TTFTi denote the Time to First Token experienced by the
ith request and ξ ≥ 0 is a user-chosen threshold. TEL mir-
rors Conditional Value at Risk (CVaR) but with an explicit,
user-chosen threshold (Bäuerle & Ott, 2011; Chow et al.,
2015); it also resembles SLO attainment metrics (Zhong
et al., 2024), but TEL weighs larger violations proportionally
more. Setting ξ = 0 recovers the average-latency objective.
Although our theory centers on TEL, in the experiments we
report conventional metrics (tail latency and SLO violation
rate) to allow straightforward comparisons in future studies.
Section 4 also discusses how to pick ξ.

Why does caching matter for TEL? Empirically, TTFT
grows roughly linearly with the number of uncached token
blocks that must be processed during the prefill (Figure 3).
This is potentially due to (1) parallelization in the prefill
stage and (2) the dominance of the feed-forward linear lay-
ers during inference (Kamath et al., 2025; Zhu et al., 2024;
Ye et al., 2025). Therefore, we adopt this approximation:
TTFT = chat history length + current prompt length −
cached history length, all in units of the number of KV
blocks cached.

3. Tail-Optimized LRU
We propose Tail-Optimized LRU, an online policy that also
maps into the future and caches just enough to prevent
conversations’ next turns from affecting TEL.

Pseudocode is given in Algorithm 1. We believe Tail-
Optimized LRU is a practical, low-friction upgrade for any
LLM caching system that already relies on LRU: its no-
worse-than-LRU guarantee (Theorem 3.1) eliminates adop-
tion risk, while the lightweight modifications from standard
LRU (Section 3) minimize adoption costs.
Theorem 3.1 (Dominance of Tail-Optimized LRU). Let
Q̄ be a known upper bound on prompt lengths. For ev-
ery possible arrival trace and identical initial cache state,
Tail-Optimized LRU runs with Q̄ incurs lower Tail Excess
Latency than LRU.

Theorem 3.1 ensures that our proposed policy never de-
grades system performance compared to LRU. Such a guar-
antee stems from two properties of T-LRU. First, by using
a conservative upper bound Q̄ as the next-prompt length,
our “free eviction” phase never increases latency above the
latency threshold ξ than LRU. In fact, by setting Q̄ ≥ ξ,
Tail-Optimized LRU is reduced to LRU. Second, proac-
tively trimming cache blocks within TEL-safe budget frees

Algorithm 1 Tail-Optimized LRU Policy
Input: Number of conversations N , Time to Last Turn {τi},

cache sizes {Xi}, conversation history lengths {Li},
arriving conversation θ, arriving conversation length
L′
θ

Parameters: Policy parameters: threshold ξ, next-turn
length estimate {Q̂i}

Output: Updated cache sizes {Xi}
Lθ ← L′

θ, Xθ ← Lθ, τθ ← 0 // Update system
state for arriving conversation

while
∑

i∈[N ] Xi > C do
foreach i ∈ [N ] do

if Xi ≥ Li + Q̂i − ξ then
Xi ← Xi − 1 // ‘‘Free Eviction’’
under TEL objective

if
∑

i∈[N ] Xi ≤ C then
return X

while
∑

i∈[N ] Xi > C do
Find j = argmaxi∈[N ]:Xi≥1 τi // Evict using
LRU
Xj ← Xj − 1

return X

up space to cache conversations that would otherwise con-
tribute to tail latency.

Lightweight Integration with Existing Caching Systems.
Implementing Tail-Optimized LRU in a cache system based
on LRU only requires an extra bookkeeping: mark blocks
that can be evicted “for free” (i.e., blocks identified in the
proactive trimming phase) as infinitely old. Then these
blocks can be evicted seamlessly by any existing LRU en-
gine in the usual way. This design is also compatible with
the paged KV cache technique, which stores keys and values
in non-contiguous memory space.

4. Experiments
4.1. Datasets and Metrics.

We conduct experiments on two chat datasets: ShareGPT
and WildChat (Figure 4). We sample the first 1000-2000
turns based on a subset of the conversation traces and cal-
culate the (medium, P90, P95, P99) latency under different
caching policies. The model we used is Vicuna-7b and
Mixtral-8x7B, and the default latency is measured on A100
with Vicuna with TP = 1 (no tensor parallelism) and with-
out mixed bathing. Results on ShareGPT can be found in
Appendix G.2.

4.2. Tail Latency Reduction.

We measure the tail latency reduction of our policy against
LRU and Threshold LRU—caches only if the conversation
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Table 1: Relative latency improvement of T-LRU over LRU with various ξ

ξ = 50ms ξ = 100ms ξ = 200ms ξ = 300ms ξ = 500ms

Capacity p90 p95 p90 p95 p90 p95 p90 p95 p90 p95 p99

1000 4.0% 0.0% 4.5% 1.0% 5.3% 1.5% 7.3% 2.0% -1.4% -1.3% 3.2%
2000 1.2% 0.6% 3.4% 0.6% 5.1% 3.4% 9.2% 4.4% -4.9% -2.8% 3.3%
4000 1.7% 0.7% 4.1% 2.8% 10.5% 4.2% 13.3% 10.8% -7.5% -3.4% 3.4%
6000 5.0% 2.1% 10.6% 4.0% 16.0% 11.4% 14.3% 15.4% -8.7% -4.2% 3.4%
8000 2.2% 0.7% 10.5% 8.5% 23.0% 15.8% 8.8% 19.5% -13.7% -3.5% 1.4%

10000 3.6% 7.4% 20.0% 15.7% 27.5% 20.1% 6.9% 23.9% -13.3% -3.5% -0.0%

Table 2: Relative improvement of T-LRU: % reduction in requests with latency > 200ms

Capacity ξ = 50ms ξ = 100ms ξ = 150ms ξ = 200ms ξ = 500ms
LRU Thre-LRU LRU Thre-LRU LRU Thre-LRU LRU Thre-LRU LRU Thre-LRU

1000 1.2% -1.2% 4.1% 1.8% 6.5% 4.2% 8.8% 6.6% -1.8% -4.2%
2000 2.4% 1.2% 6.1% 4.9% 9.1% 8.0% 13.3% 12.3% -4.8% -6.1%
4000 3.9% 1.3% 7.1% 4.7% 14.3% 12.0% 22.1% 20.0% -12.3% -15.3%
6000 2.0% 0.7% 12.2% 11.0% 20.9% 19.9% 30.4% 29.5% -12.2% -13.7%
8000 4.3% 2.2% 16.4% 14.6% 29.3% 27.7% 33.6% 32.1% -19.3% -21.9%

10000 7.4% 4.6% 25.9% 23.7% 31.9% 29.8% 40.7% 38.9% -19.3% -22.9%

length exceeds a fixed threshold, then fall back to LRU for
further evictions. We fix the input parameter next-prompt
length Q̂ for Tail-Optimized LRU to be the average prompt
length (200 for WildChat), and use 1024 as the threshold for
Threshold-LRU following the one used by OpenAI (OpenAI,
2024). Across cache capacities C and tail-latency threshold
ξ, T-LRU lowers P90 tail TTFT by up to 27.5% and P95 tail
TTFT by up to 23.9% relative to LRU, and achieves similar
gains over Threshold-LRU (Tables 1–3).

Sensitivity to latency threshold ξ. The benefit peaks when
latency threshold ξ matches the target tail percentile. For
example, with capacity C = 1000 under LRU, medium, P90,
P95, and P99 tail latencies are roughly 40 ms, 240 ms, 326
ms, and 505 ms. Therefore, setting ξ = 200 ms yields the
largest improvement in P90 tail latency; setting ξ = 300 ms
yields the largest improvement in P95 tail latency. A high
value, e.g. ξ = 500 ms, relaxes protection for moderate tails
and only provides protection for extreme tails —up to 3%
of increase in P99 tail latency.

The latency threshold ξ can be tuned either based on fixed
service level objective (e.g., a target TTFT), or adaptively
based on the observed tail latency. For example, the
decision-maker can periodically update ξ to match the de-
sired tail latency TTFT observed over recent turns. Raising
ξ makes proactive trimming more aggressive, and could po-
tentially increase average latency as the policy allows more
turns to incur latency up to ξ, reflecting the classic trade-off
between average and tail performance.

Comparing Threshold-LRU and Tail-Optimized LRU.
Threshold-LRU is a straightforward patch for LRU’s blind-
ness to conversation length—in industry systems such as at
OpenAI, prompt-cache is enabled only when the running
chat history exceeds a fixed length. The heuristic is simple
but ignores the forthcoming prompt length, so it can under-

protect a short history followed by a long prompt. The
two policies differ in the question they ask at eviction time:
Threshold-LRU asks if the chat history exceeds a threshold
whereas Tail-Optimized LRU asks if the projected next re-
quest length (chat history + next prompt length) exceeds a
threshold. In fact, Theorem 3.1 generalizes: if Threshold-
LRU uses a threshold cutoff of ξ − Q̄ with Q̄ denotes the
upper bound on user prompt length, then T-LRU using Q̄
incurs less Tail Excess Latency on any arrival trace.

4.3. SLO Violation Reduction.

We now measure the count of requests that a service-level
objective, another objective similar to Tail Excess Latency—
the amount of latency beyond a threshold. Table 2 reports
the improvement on SLO attainment ratio (relative drop in
requests whose TTFT exceeds 200 ms). With the latency
threshold ξ set to 200 ms SLO, compared to LRU, T-LRU
reduces between 8.8% (small cache capacity) and 40.7%
(large cache capacity) of violations.

Sensitivity to latency threshold ξ. When ξ is much lower
than the SLO (ξ = 50 or 100 ms), the improvement is
modest because both baselines already satisfy most requests;
when ξ is far higher (ξ = 500 ms), T-LRU focuses on larger
tails and can allow for a few extra 200 ms violations.

These results echo the design goal: TEL minimization penal-
izes how much a request overshoots ξ, yet the same trimming
logic also cuts the number of SLO violations whenever ξ
aligns or is slightly below the target latency budget.

5. Future Directions and Conclusions
We propose a simple modification to the Least Recently
Used caching policy that improve tail latency in multi-turn
conversation LLM service. Our focus is on a single storage
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layer, and exploring hierarchical KV caching architectures
such as in (Qin et al., 2025), could provide insights into
better managing multi-layer resources. Another interesting
direction is how to jointly optimize caching and load balanc-
ing. (Srivatsa et al., 2024) has initiated work on this topic,
and further studies using a queuing theory perspective could
systematically analyze the trade-offs involved.
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Appendix

A. Related Work
Classic Caching (Paging). The caching problem is well-studied from the competitive analysis perspective, with the
hindsight optimal (Belady, 1966), optimal deterministic (Sleator & Tarjan, 1985), and randomized algorithms (Fiat et al.,
1991) are known. Beyond worst-case competitive ratio, many works model structured request processes to capture the
temporal locality normally observed in practice. These include access graph model (Borodin et al., 1995; Chrobak & Noga,
1999), independent reference model (Coffman & Denning, 1973; King, 1972; Dan & Towsley, 1990; Che et al., 2002), Shot
Noise Model (Leonardi & Torrisi, 2015), LRU Stack and Working Set Model (Jain, 1990), and Inter-Reference Gap Model
(Phalke & Gopinath, 1995). Our model differs by allowing new object arrivals with independent request processes per object.
For broader overviews, see (Borodin & El-Yaniv, 2005), and for caching with predictions, see (Lykouris & Vassilvitskii,
2021; Mhaisen et al., 2022).

While most existing caching research focuses on maximizing hit rates, the closest related work to ours is (Berger et al.,
2018), where they also use caching to reduce tail latency, but their design for web services does not apply directly to our
single-machine LLM setting.

Prompt Caching. Prompt caching reuses precomputed KV states from chat history to reduce prefill computation. There
have been many system-level works (Pope et al., 2023; Gim et al., 2024; Jin et al., 2024; Zhu et al., 2023; Lin et al., 2024;
Srivatsa et al., 2024; Kwon et al., 2023; Zheng et al., 2024; Qin et al., 2025) and theory work (Zhu et al., 2023), but little is
explored on optimizing tail latency through mathematical modeling.

B. Hindsight Optimal Policy for TEL
Hindsight Optimal Policy for TEL With both the decision timeline and objective clarified, we next ask: If the system knew
the entire future arrival trace, what caching policy would minimize TEL? Understanding this hindsight-optimal benchmark
unveils what’s important to improve tail latency and thus guides our policy design. Let T denote the discrete time horizon,
N denote the number of conversations, and C denote the cache capacity (in cache blocks). Define Ai ⊆ [T ] as the time
steps when conversation i issues a request. For t ∈ Ai, let qi,t and ai,t denote the user prompt and model response lengths.
The hindsight policy chooses cache variables xi,t ∈ N: the number of cache blocks conversation i can reuse at the beginning
of step t, and slack variables ui,t ≥ 0 to minimize TEL:

min
xi,t,ui,t∈N

∑
i∈[N ]

∑
t∈Ai

ui,t (1)

s.t. ui,t ≥
t∑

j=1

qi,j +

t−1∑
j=1

ai,j − xi,t − ξ, ∀i ∈ [N ], t ∈ Ai (slack variable) (2)

∑
i∈[N ]

xi,t ≤ C, ∀t ∈ [T ] (capacity constraint) (3)

xi,t+1 ≤
t∑

j=1

(qi,j + ai,j), ∀i ∈ [N ], t ∈ Ai, t < T (4)

xi,t+1 ≤ xi,t, ∀i ∈ [N ], t /∈ Ai, t < T (cannot conjure caches) (5)

Here
∑t

j=1 qi,j +
∑t−1

j=1 ai,j is the total length of the chat history plus the prompt of the turn issued at step t, i.e., the
number of blocks the model needs to process in the prefill stage, and ui,t describes the TEL objective as the optimal
ui,t = (

∑t
j=1 qi,j +

∑t−1
j=1 ai,j − xi,t − ξ)+. Constraint (4) requires one cannot cache more than total chat history;

constraint (5) says a conversation’s cache allocation can grow only when that conversation arrives.

Theorem B.1 (Hindsight Optimal Policy Structure). The hindsight optimal policy that minimizes TEL caps the number of
KV cache blocks allocated to each conversation by TEL-safe budget; if additional evictions are required, it evicts cache

7



Tail-Optimized Caching for LLM Inference

blocks from conversations that will arrive furthest in the future. Specifically, let x∗ denote an optimal solution to

max
xi,t∈N

∑
i∈[N ]

∑
t∈Ai

xi,t

s.t. (3), (4), (5)

xi,t ≤

(
t∑

j=1

qi,j +

t−1∑
j=1

ai,j − ξ

)+

, ∀i ∈ [N ], t ∈ Ai. (cache just enough)

Then x∗ is an optimal solution to the TEL problem (1).

Setting ξ = 0 recovers average latency minimization, and in this case, the theorem implies the furthest-in-future eviction
strategy is optimal—we recover the Belady optimal policy, which was shown to maximize cache hit rate in classical
caching problems (Belady, 1966). Therefore, the hindsight optimal policy for minimizing TEL can be characterized as a
threshold-capped version of the Belady policy. We call this policy Tail-Optimized Belady.

Proof. Fix a feasible x, the optimal u is given by

ui,t =

 t∑
j=1

qi,j +

t−1∑
j=1

ai,j − xi,t − ξ

+

,

as otherwise we have ui,t infeasible or can be improved. Thus we can focus on cache decisions x.

We first show that the optimal solution to the optimization problem (1) must satisfies xi,t ≤
(∑t

j=1 qi,j +
∑t−1

j=1 ai,j − ξ
)+

for every i ∈ [N ], t ∈ Ai. Suppose not, i.e., the optimal x′ to (1) satisfies x′
i,t >

(∑t
j=1 qi,j +

∑t−1
j=1 ai,j − ξ

)+

for some
i ∈ [N ], t ∈ Ai. Then we have

t∑
j=1

qi,j +

t−1∑
j=1

ai,j − x′
i,t − ξ < 0, u′

i,t = 0.

In this case, setting xi,t =
(∑t

j=1 qi,j +
∑t−1

j=1 ai,j − ξ
)+

will not affect the objective value while releasing cache capacity
that can be directed to other pages, which contradicts the optimality of x′.

Thus the optimal solution satisfies

∑
i∈[N ]

∑
t∈Ai

ui,t =
∑
i∈[N ]

∑
t∈Ai

 t∑
j=1

qi,j +

t−1∑
j=1

ai,j − xi,t − ξ

+

=
∑
i∈[N ]

∑
t∈Ai

1


t∑

j=1

qi,j +

t−1∑
j=1

ai,j − ξ ≥ 0

 ·
 t∑

j=1

qi,j +

t−1∑
j=1

ai,j − xi,t − ξ


+

∑
i∈[N ]

∑
t∈Ai

1


t∑

j=1

qi,j +

t−1∑
j=1

ai,j − ξ < 0

 · 0
=

∑
i∈[N ]

∑
t∈Ai

1


t∑

j=1

qi,j +

t−1∑
j=1

ai,j − ξ ≥ 0


 t∑

j=1

qi,j +

t−1∑
j=1

ai,j − ξ

− ∑
i∈[N ]

∑
t∈Ai

xi,t

where the last equality holds as xi,t = 0 for the case with
∑t

j=1 qi,j +
∑t−1

j=1 ai,j − ξ < 0.

Therefore, minimizing
∑

i∈[N ]

∑
t∈Ai

ui,t is equivalent to maximizing
∑

i∈[N ]

∑
t∈Ai

xi,t as the first term is a constant.
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C. Proof of Theorem 3.1
Proof. Let’s fix an arbitrary sample path of user prompt traces {qi,t} and model response traces {ai,t}. Let’s assume the
optional caching setting, as the proof for forced caching setting is similar and in fact simpler, as the caching policy doesn’t
consider the arriving conversation when making eviction decisions.

Suppose conversation θ arrives and the three policies start with the same cache states. For convenience let Lθ = Lθ+Q+A,
and λθ = λturn denote the length of conversation θ after service and the belief turn rate updated upon its arrival.

For conversations with length Li ≤ ξ − Q̄ (we assume ξ > Q̄),

• Threshold LRU caches zero tokens by definition of the threshold,

• Tail-Optimized LRU also caches zero because Li + Q̄− ξ ≤ 0,

• LRU caches at least zero tokens.

By the next time such conversations arrive, the length of the chat history plus the user prompt is no longer than Li + Q̄ ≤ ξ,
thus the costs (i.e., number of uncached tokens) under all three policies are all zero.

For conversations with length Li ≥ ξ − Q̄,

• Threshold LRU first stores the entire history (Li tokens) then, if necessary, evicts according to LRU;

• Tail-Optimized LRU only stores Li + Q̄− ξ and then, if necessary, also evicts according to LRU;

Hence, before the common LRU-eviction stage begins, Tail-Optimized LRU has already evicted more tokens that Threshold
LRU. As the three policies start with the same cache state, the additional number of tokens to evicted according to LRU are
ordered as

LRU ≥ ThLRU ≥ TLRU.

Let XLRU
i denote the number of blocks cached under LRU for conversation i.

• If XLRU
i ≥ Li + Q̄− ξ, then we must have

XThLRU
i ≥ XLRU

i ≥ Li + Q̄− ξ = XTLRU
i ,

and such an inequality holds until the next time conversation i arrives again, as the three policies use the same priority
order at the LRU eviction phase, and the extra tokens evicted by Tail-Optimized LRU before using LRU is always no
less than the other two. The costs under all three policies are all zero.

• If XTLRU
i < Li + Q̄− ξ, then we must have

XTLRU
i ≥ XThLRU

i ≥ XLRU
i ,

due to the relative ordering of number to evicted according to LRU, and such an inequality holds until the next time
conversation i arrives again as well. Thus, the costs under all three policies ordered as

(Li +Qi −XTLRU
i − ξ)+ ≤ (Li +Qi −XThLRU

i − ξ)+ ≤ (Li +Qi −XLRU
i − ξ)+.

Because the comparison was carried out on an arbitrary sample path, the same ordering holds almost surely, which completes
the proof.

D. Optimality of Tail-Optimized LRU in a Stochastic Conversation Model
In this section, we prove the optimality of a generalized Tail-Optimized LRU policy under stochastically generated traces,
which covers the optimality of Tail-Optimized LRU (Algorithm 1) and LRU as special cases.
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Stochastic Conversation Model. Classic caching models fail to capture the nature of LLM workload: multi-turn conver-
sations start, terminate, and grow in size over time; see related work in Section A. To address this gap, we build a novel
stochastic model that characterizes these unique features of LLM workloads.

Real traces from (Zhao et al., 2024) reveals strong temporal locality in multi-turn conversations: the longer a user goes
without sending their next prompt, the less likely they are to ever return. We capture this pattern by modeling the number of
active conversations as a continuous-time birth-death process:

• New conversations are “born” at rate λconv > 0, and each active conversation “dies” at rate µ > 0. We index
conversations by their first-turn order, i = 1, 2, . . ..

• While active, conversation i generates requests according to an independent Poisson process with rate λ̄i > 0. At each
turn, a random prompt length Q is drawn from a known (possibly conversation-specific) distribution; the length of
model responses A follows an arbitrary distribution that the decision-maker does not need to know.

For simplification, we assume that KV caches cannot be reused across different conversations. This assumption is also
grounded by security and privacy concerns—e.g., vLLM implement cache isolation to prevent timing-based inference
attacks.2

Belief Markov Decision Process. The decision-maker only observes the turns as they arrive, but departures are never
observed. Thus the problem is modeled as a partially observable Markov decision process (POMDP), where the optimal
policy is defined for each possible belief state over the POMDP states. As the conversations arrive and depart independently,
we can decompose the belief state to be the individual expected turn rates of each conversation.

Let πi(t) denote the decision-maker’s belief at time t that conversation i is still active, then its expected turn-arrival rate is
πi(t) · λ̄i. The belief is updated using

πi(t) = exp(−µ(t− last turn time)),

as each conversation lasts for an exponential amount of time with mean µ.

Therefore, the system state at time t of the belief MDP is given by (λ(t),L(t),X(t)), where Li(t) is the total length
(blocks) of conversation i at time t and Xi(t) is the number of KV cache blocks from conversation i, all prior to the arrival
at time t. The decision-maker chooses X ′, which blocks to cache after serving each request, to minimize the Tail Excess
Latency for M requests for arbitrary M ∈ N.

Expected-Tail-Optimized LRU (ET-LRU). ET-LRU chooses the post-arrival cache allocation that minimizes the expected
TEL at the next turn, using current beliefs of turn-arrival rates. Formally,
Definition D.1 (Expected Tailed-Optimized LRU). Let θ denote the index of the conversation arriving at time t with new
prompt length Q and model response length A, X(t−) denote the cache state before arrival, and λ(t+),L(t+) denote the
belief turn-arrival rates and chat history lengths updated after service (λθ(t

+) = λ̄θ, Lθ(t
+) = Lθ(t

−) +Q+A). ET-LRU
chooses

XETLRU ∈ argmin
∑
i

λi(t
+) · E[(Li(t

+) +Qi − Yi − ξ)+] (6)

s.t. Yθ ≤ Lθ(t
+), (optional caching) (7)

Yi ≤ Xi(t
−), ∀i ̸= θ, (cannot conjure caches) (8)∑

i

Yi ≤ C. (capacity constraint)

where the expectation is taken over Qi, the random user prompt length for conversation i at its next arrival.

The probability that conversation i generates the next request is proportional to its belief turn-arrival rates λi(t
+), thus

λi(t
+) · E[(Li(t

+) +Qi −X ′
i − ξ)+] is the expected TEL contributed by conversation i. Here constraint (7) implies that

the decision-maker can cache at most the total chat history of conversation θ just served; constraint (8) says a conversation’s
cache allocation can grow only whenn it arrives.

2https://docs.vllm.ai/en/stable/design/v1/prefix_caching.html
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Theorem D.2 (Optimality of Expected-Tail-Optimized LRU). Expected-Tail-Optimized LRU (Definition D.1) is an optimal
online caching policy for minimizing Tail Excess Latency under the stochastic conversation model above.

The proof is by induction on the number of turns and comparing the value-to-go functions under our policy and another policy
that evicts differently. Here, the least-recently-used time reflects the expected turn-arrival rate and thus can approximate
furthest-in-future. Theorem D.2 has three implications:

• LRU is optimal for average latency. Setting ξ = 0 and assuming homogeneous turn-arrival rates across conversations,
the objective in optimization problem (6) reduces to max

∑
i exp(−µ(t− last turn time))Yi, thus ET-LRU reduces to

LRU. Therefore, Theorem D.2 establishes the optimality of LRU for minimizing average latency under our stochastic
arrival model. To the best of our knowledge, such a result had not previously been established.

• Optimality of Tail-Optimized LRU: if the user prompt length is deterministic, Expected-Tail-Optimized LRU is reduced
to a deterministic version as stated in Algorithm 1 (with estimate Q̂ replaced by deterministic Q). Theorem D.2 thus
establishes the optimality of Tail-Optimized LRU in this model.

• When Q = 0 after the first turn and responses also have zero length, our model reduces to classic caching with unit
page size. In this case, the optimal policy “evicts the block whose conversation is least likely to return”, generalizing
least-recently-used.

Therefore, Expected-Tail-Optimized LRU serves as a common backbone across three classic caching regimes, providing
theoretical justification for adopting LRU and Tail-Optimized LRU for LLM inference workload.

Proof. Given system state λ,L,X , let θ denote the index of the conversation that is the kth arrival with user prompt length
Q and model response length A. The finite-horizon value-to-go function is

Vk(λ,L,X, θ,Q,A) = (Lθ +Q−Xθ − ξ)+︸ ︷︷ ︸
number of uncached blocks above threshold

+ min
X′∈X (X,θ,Lθ+Q+A)

Eτ,θ′,Q′,A′

Vk+1( Φ(λ, θ, τ)︸ ︷︷ ︸
belief arrival state transition

, Ψ(L, θ,Q+A)︸ ︷︷ ︸
conversation length transition

,X ′, θ′, Q′, A′)


with VM+1(·) = 0, where the feasible caching decision space is

X (X, θ, L) = {Y ∈ Ndim(X,θ) :
∑
i

Yi ≤ C, 0 ≤ Yθ ≤ L, 0 ≤ Yi ≤ Xi, i ̸= θ}

with dim(X, θ) = dim(X) + 1{θ > dim(X)}, here dim(X) denotes the dimension of vector X , and the dimension
expands when a new conversation arrives; Φ(λ, θ, τ) update the belief turn rate of conversation θ to λ̄i, then discount
belief turn rates of all conversations by exp(−µτ); Ψ(L, θ,Q+A) updates the conversation length vector. Specifically, we
increase the dimension of L if necessary (i.e., when θ represents a new conversation), and add Q+A to its θth entry.

Let θ denote the index of the conversation that is the kth arrival, with user prompt length Q and model response length A.
Define the belief arrival rate vector as λ, the conversation length vector as L, and the cached token length vector as X , the
cost-to-go function is given by:

Vk(λ,L,X, θ,Q,A) = (Lθ +Q−Xθ − ξ)+

+ min
X′∈X (X,θ,Lθ+Q+A)

Eτ,θ′,Q′,A′ [Vk+1(Φ(λ, θ, τ),Ψ(L, θ,Q+A),X ′, θ′, Q′, A′)]

with VM+1(·) = 0. Let’s rewrite Φ(λ, θ, τ) = Φ(Γ(λ, θ), τ) with

• Γ(λ, θ) updates the return rate vector upon the arrival of conversation θ. Specifically, this operator changes the belief
arrival rate of conversation θ to λ̄i.

• Φ(λ, τ) discount all return rates by exp(−µτ).
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The proof is by using induction and argue that if we choose a different caching state than XTLRU, the cost will be higher. At
last arrival M , VM (λ,L,X, θ,Qθ, Aθ) = (Lθ +Qθ −Xθ − ξ)+ and any caching policy is optimal.

Suppose this holds for the kth + 1 arrival. We proceed to show that the result holds for the kth arrival. To simplify the
notation, we define

Jk(λ,L,X) = Eτ,θ,Qθ,Aθ
[Vk(Φ(λ, τ),L,X, θ,Qθ, Aθ)], λ̃ = Γ(λ, θ), L̃ = Ψ(L, θ,Qθ +Aθ),

Then we need to prove
Jk+1(λ̃, L̃,XETLRU) ≤ Jk+1(λ̃, L̃,X ′)

To see this, by definition of state transition, suppose the inter-arrival time is τ , the discounted arrival rates are

λ̃i · exp(−µτ) with λ̃θ = λ̄θ.

From these expressions, we can conclude that regardless of value of τ , the return rates at next arrival maintain the same
relative ordering as in λ for conversations. Note that due to heterogeneous turn rates across conversations, conversation
θ that arrived at the kth arrival may not have the highest turn rate. Without loss of generality, let’s assume τ = 0 and
let p̃j = λ̃j/(λconv +

∑
i λ̃i) denote the probability that conversation j returns at the next arrival, and p̃dim(X(1))+1 =

λconv/(λconv +
∑

i λ̃i) denote the probability that a new conversation starts at the next arrival.

We proceed to show this holds for any number of tokens evicted by treating each token eviction separately. Among all
conversations that have arrived so far and have at least one cached token, list their indices as i(1), i(2), . . . in ascending
order of the ranking criterion score

λ̃iP(L̃i +Qi − ξ ≥ Xi),

Insert conversation θ that just arrives into this ordered list according to its own score

λ̄θP(Qθ − ξ ≥ 0)

Let X(1) denote the cache state that evicts a token from conversation i(1), and X(k) denote the cache state that evicts a
token from conversation i(k) with k > 1.

Jk+1(λ̃, L̃,X(1))

=
∑

i∈dim(X(1))+1

p̃iEQi [(L̃i +Qi −Xi(1)− ξ)+]

+ p̃i(1)EQi(1),Ai(1)

[
min

X′(1)∈X (X(1),i(1),L̃i(1)+Qi(1)+Ai(1))
Jk+2(Γ(λ̃, i(1)),Ψ(L̃, i(1), Qi(1) +Ai(1)),X

′(1))

]

+ p̃i(k)EQi(k),Ai(k)

[
min

X′(1)∈X (X(1),i(k),L̃i(k)+Qi(k)+Ai(k))
Jk+2(Γ(λ̃, i(k)),Ψ(L̃, i(k), Qi(k) +Ai(k)),X

′(1))

]

+
∑

i ̸=i(1),i(k)

EQi,Ai

[
min

X′(1)∈X (X(1),i,L̃i+Qi+Ai)
Jk+2(Γ(λ̃, i),Ψ(L̃, i, Qi +Ai),X

′(1))

]

≤
∑

i∈dim(X(1))+1

p̃iEQi
[(L̃i +Qi −Xi(k)− ξ)+]

+ p̃i(1)EQi(1),Ai(1)

[
min

X′(k)∈X (X(k),i(1),L̃i(1)+Qi(1)+Ai(1))
Jk+2(Γ(λ̃, i(1)),Ψ(L̃, i(1), Qi(1) +Ai(1)),X

′(k))

]

+ p̃i(k)EQi(k),Ai(k)

[
min

X′(k)∈X (X(k),i(k),L̃i(k)+Qi(k)+Ai(k))
Jk+2(Γ(λ̃, i(k)),Ψ(L̃, i(k), Qi(k) +Ai(k)),X

′(k))

]

+
∑

i̸=i(1),i(k)

EQi,Ai

[
min

X′(k)∈X (X(k),i,L̃i+Qi+Ai)
Jk+2(Γ(λ̃, i),Ψ(L̃, i, Qi +Ai),X

′(k))

]
= Jk+1(λ̃, L̃,X(k)),

where the inequality holds as
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• by Definition D.1, X(1) is the optimal solution while X(k) is a feasible solution, and p̃i are proportional to λ̃i, thus∑
i∈dim(X(1))

p̃iEQi
[(L̃i +Q−Xi(1)− ξ)+] ≤

∑
i∈dim(X(1))

p̃iEQi
[(L̃i +Q−Xi(k)− ξ)+]

and the expected cost incurred when a new conversation arrives (with probability p̃dim(X(1))+1) is EQ[(Q− ξ)+] for
both caching state, thus∑

i∈dim(X(1))+1

p̃iEQi [(L̃i +Qi −Xi(1)− ξ)+] ≤
∑

i∈dim(X(1))+1

p̃iEQi
[(L̃i +Qi −Xi(k)− ξ)+]

• by induction hypothesis, the optimal X ′(1)∗ and X ′(k)∗ are given by the optimization problem (6). Fix a user prompt
length Qi and a model response length Ai and we compare the cost-to-do under X(1) and X(k).

– if conversation i(1) arrives next, then one need to evict one more token from X(1) than from X(k). Suppose
the extra token evicted from X(1) is from conversation i(k), then X ′(1)∗ = X ′(k)∗. If not, then this means the
extra token evicted is from another conversation with better ranking criterion, thus we have

Jk+2(Γ(λ̃, i(1)),Ψ(L̃, i(1), Qi(1) +Ai(1)),X
′(1)∗)

≤Jk+2(Γ(λ̃, i(1)),Ψ(L̃, i(1), Qi(1) +Ai(1)),X
′(k)∗)

by the induction hypothesis.
– if conversation i(k) arrives next, then one need to evict one more token from X(k) than from X(1). In the

optional caching model, the extra token evicted form X(k) must be from conversation i(1) by the definition of
the ranking of conversations, thus X ′(1)∗ = X ′(k)∗.

Jk+2(Γ(λ̃, i(k)),Ψ(L̃, i(k), Qi(k) +Ai(k)),X
′(k)∗)

=Jk+2(Γ(λ̃, i(k)),Ψ(L̃, i(k), Qi(k) +Ai(k)),X
′(k)∗)

– if conversation other than i(1), i(k) arrives next, then X ′(k)∗ and X ′(1)∗ need to evict the same number of
tokens. If X ′(k) evicts at least one token from conversation i(k), then X ′(1)∗ = X ′(k)∗. If not, then this means
X ′(1)∗ evicts one token from another conversation with better ranking criterion, thus we have

Jk+2(Γ(λ̃, i)),Ψ(L̃, i, Ai),X
′(1)∗) ≤ Jk+2(Γ(λ̃, i),Ψ(L̃, i, Ai),X

′(k)∗).

Therefore, by induction, the result holds for all k ≥ 1.

Greedy Implementation. The optimization problem (6) need not be solved explicitly as a token-by-token greedy procedure
suffices. At a high-level, the algorithm ranks each token by arrival rates weighted by its counterfactual cost, i.e., the cost
increase when we evict this token.

P(Li +Qi − ξ ≥ Xi) = E[(Li +Qi − ξ − (Xi − 1))+]− E[(Li +Qi − ξ −Xi)
+]

i.e., the difference in expected cost if we further evict one token when we have Xi tokens in cache.

In the implementation of the algorithm, one can use min-heap to process which token to evict using the ranking criterion.
The computational complexity of the algorithm is given by O(|E|+ n log |E|), where |E| is number of conversations with
non-zero cached tokens and n is the number of tokens one needs to evict.

We show that Algorithm 2 indeed returns a cache state that is an optimal solution to the optimization problem (6).

Lemma D.3. Algorithm 2 returns an optimal solution to the optimization problem (6).

Proof. We prove by contradiction. Note that it is possible for the algorithm to return multiple optimal solutions, and it is
also possible for the optimization problem (6) to have multiple optimal solutions. Suppose not, then the two set of solutions
do not intersect. Let X∗ denote one optimal solution. Then there must exist two conversations i, j such that X∗

j ≥ 1 and

λiP(Li +Qi − ξ ≥ X∗
i + 1) > λjP(Lj +Aj − ξ ≥ X∗

j ),

13
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Algorithm 2 Expected-Tail-Optimized LRU Policy
Input: Number of conversations N , cache sizes {Xi}, current lengths {Li}, belief turn rates {λi}, distribution of length

of user prompt {Qi}, threshold ξ, arriving conversation θ, arriving user prompt length Q, arriving model response
length A, tokens to evict n

Output: Updated cache sizes {Xi}
evicted← 0
Lθ ← Lθ +Q+A // Update system state for arriving conversation θ

Xθ ← Lθ

λθ ← λ̄θ

for each i ∈ E do
Compute vi ← λi · P(Li +Qi − ξ ≥ Xi) // Ranking criterion

while evicted < n do
Find j = argmini∈[N ],Xi≥1 vi // Conversation with minimum value
Xj ← Xj − 1 // Evict one token
evicted← evicted + 1
vj ← λj · P(Lj +Qj − ξ ≥ Xj) // Update ranking criterion

return {Xi}.

Then we can construct another solution X ′ such that X ′
k = X∗

k for k ̸= i, j, and X ′
i = X∗

i + 1, X ′
j = X∗

j − 1. Then the
difference between the objective values of X ′ and X∗ is given by

OBJ(X ′)−OBJ(X∗) = λiE[(Li +Qi − ξ − (X∗
i + 1))+] + λjE[(Lj +Qj − ξ − (X∗

j − 1))+]

−
(
λiE[(Li +Qi − ξ −X∗

i )
+] + λjE[(Lj +Qj − ξ −X∗

j )
+]
)

= λjP(Lj +Aj − ξ ≥ Xj)− λiP(Li +Qi − ξ ≥ Xi + 1)

< 0,

which contradicts the optimality of X∗.

E. Discussion on Forced Caching
Implementation of Tail-Optimized LRU. To implement forced caching, especially at GPU level, the server needs to decide
which block to evict as serving the turn. The server may not know the total number of cache blocks to evict due to the
uncertainty in the model response length, nevertheless the server can repeatedly call our algorithm to evict more tokens if
needed.

Hindsight optimal policy. To model forced caching, we replace optional caching constraint (4) with

xi,t+1 =

t∑
j=1

(qi,j + ai,j),∀i ∈ [N ], t ∈ Ai and t < T, (9)

i.e., when a turn arrives, the server is required to cache its whole chat history including newly generated response. Theorem
B.1 continues to hold under forced caching.

No-Worse-Than-LRU Guarantee Theorem 3.1 continues to hold under forced caching.

Expected-Tail-Optimized LRU. To model forced caching, we replace feasible caching decision space under optional
caching with

XF (X, θ, L) = {Y ∈ Ndim(X,θ) :
∑
i

Yi ≤ C, Yθ = L, 0 ≤ Yi ≤ Xi, i ̸= θ}.

Theorem D.2 continues to hold under forced caching, i.e., Expected-Tail-Optimized LRU remains to be optimal, if

• every future prompt (if it arrives) has a known, fixed length Q ≥ 0. Here this fixed length can be heterogeneous across
conversations and across turns. Crucially, the decision-maker still does not know if any given conversation will return;
they only know that should it return, its next-turn question length will be Q. In this case, Expected-Tail-Optimized
LRU is reduced to a deterministic version as stated in Algorithm 1.
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• conversations have homogeneous turn rates λturn.

This fixed-prompt-length assumption holds when prompts are pre-specified. When Q = 0 after the first turn and responses
also have zero length, our model reduces to classic paging with unit page size.

F. Additional Figures

Figure 3: Experimental results demonstrating the linear fit. We used Vicuna-7B with vLLM’s prefix-caching enabled on a
Colab A100 GPU. The plot shows TTFT latency as a function of total prompt length and cached-prefix size.
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Figure 4: Distributions of turns and tokens of ShareGPT (Contributors, 2025) and WildChat (Zhao et al., 2024) datasets.

G. Additional Experiment Results

Table 3: Relative latency improvement of T-LRU over Threshold-LRU with various ξ

ξ = 50ms ξ = 100ms ξ = 200ms ξ = 300ms ξ = 500ms

Capacity p90 p95 p90 p95 p90 p95 p90 p95 p90 p95 p99

1000 1.5% 0.0% 2.0% 1.0% 2.9% 1.5% 4.8% 2.0% -4.0% -1.3% 3.2%
2000 0.4% 0.6% 2.7% 0.6% 4.4% 3.4% 8.6% 4.4% -5.7% -2.8% 3.3%
4000 0.3% 0.0% 2.7% 2.1% 9.3% 3.5% 12.0% 10.2% -9.0% -4.2% 3.4%
6000 4.7% 1.2% 10.4% 3.1% 15.7% 10.6% 14.1% 14.6% -9.1% -5.2% 3.4%
8000 1.1% 0.7% 9.5% 8.5% 22.2% 15.8% 7.8% 19.5% -14.9% -3.5% 1.4%

10000 2.4% 6.1% 19.0% 14.6% 26.6% 19.0% 5.7% 22.8% -14.7% -5.0% -0.0%

G.1. Offline Baselines and T-LRU Variants with Future Knowledge.

In this section, we provide experiment results of Tail-Optimized Baledy (the hindsight-optimal policy for Tail Excess
Latency), serving as the best possible benchmark, and two variants of T-LRU with future knowledge. End-Aware T-LRU
knows whether a conversation will continue (return) or not, but does not know the length of future prompts. This variant
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evicts all blocks from a conversation if it terminates. Length-Aware T-LRU knows both whether a conversation will continue
or not AND the exact length of the next user prompt. This variant uses the exact user prompt to perform proactive trimming,
while T-LRU uses the empirical average as the next prompt length. These variants create a predictability spectrum that helps
us quantify maximum potential benefits from different levels of prediction.

We highlight two observations from Figure 5. First, tail improvement is achieved with a modest cost to the median. T-LRU
(blue squares) consistently beats LRU and Threshold-LRU at the tail (around 300 ms), but its median latency is slightly
higher (around 40 ms). The trade-off is expected and in fact intended: reduce the worst-case delays by sacrificing a few
milliseconds on typical requests.

Second, a single-bit forecast “will this conversation continue?” is a remarkably powerful signal. End-Aware T-LRU performs
much better than T-LRU, while Length-Aware T-LRU gains only a small additional edge from knowing the exact prompt
length. In practice, predicting whether a single conversation will continue is much easier than forecasting exact prompt
sizes, and vastly easier than predicting the full arrival sequences required by Tail-Optimized Belady. Existing works like (Jin
et al., 2023) propose models to predict the length of model response with up to 98.61% prediction accuracy, underscoring
the practical viability of deploying End-Aware policies.

Note that Tail-Optimized Belady is the optimal policy for our TEL objective for the ξ chosen, thus it is not necessarily
the optimal policy for tail latency at different levels. On the other hand, solving for the optimal policy for tail latency is
computationally hard.

Figure 5: Latency results for various settings (threshold latency ξ = 100, 200, 300 ms) from top to bottom panels.

G.2. Results on ShareGPT with Synthetic Timestamps

ShareGPT (Contributors, 2025) does not include timestamps of each request, thus we generate them with the stochastic
model described in Section D. Specifically, for each conversation, we draw exponential inter-arrival times with rate λconv = 1,
then for each conversation, we generate inter-arrival times between each turn within a conversation using Exponential
distribution with rate λturn = 3. The average prompt length in ShareGPT is approximately 100 tokens (we thus set Q̂ = 100
in implementation), with an average of 3.5 turns per conversation.
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Tables 4–5 show that Tail-Optimized LRU still beats both LRU and Threshold-LRU: it trims P90 by up to 10%, and P95 by
up to 7%. The smaller improvement compared to the ones observed in WildChat (Tables 1–3) stem from the already-high
base latencies under LRU (with capacity C = 1000 under LRU, medium, P90, P95, P99 tail latencies are roughly 209 ms,
1415 ms, 2447 ms, 3649 ms), thus percentage improvements shrink.

Table 4: Relative latency improvement of T-LRU over LRU with various ξ (ShareGPT)

ξ = 50ms ξ = 100ms ξ = 200ms ξ = 300ms ξ = 500ms

Capacity p90 p95 p90 p95 p90 p95 p90 p95 p90 p95

1000 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.9% 0.6% 0.9% 0.9%
2000 0.7% 0.0% 0.7% 0.2% 0.9% 1.5% 1.4% 2.0% 2.7% 2.3%
4000 0.6% 0.6% 0.7% 1.8% 2.0% 2.5% 2.5% 3.0% 4.2% 3.5%
6000 0.7% 1.3% 2.1% 2.9% 4.9% 3.6% 8.1% 4.2% 10.0% 4.7%
8000 1.5% 0.9% 2.6% 1.8% 3.5% 2.5% 4.8% 3.6% 9.6% 5.0%

10000 0.9% 0.7% 3.6% 1.7% 4.3% 2.9% 5.1% 3.6% 9.0% 6.9%

Table 5: Relative latency improvement of T-LRU over Threshold-LRU with various ξ (ShareGPT)

ξ = 50ms ξ = 100ms ξ = 200ms ξ = 300ms ξ = 500ms

Capacity p90 p95 p90 p95 p90 p95 p90 p95 p90 p95

1000 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.9% 0.6% 0.9% 0.9%
2000 0.7% 0.0% 0.7% 0.2% 0.9% 1.5% 1.4% 2.0% 2.7% 2.3%
4000 0.6% 0.6% 0.7% 1.8% 2.0% 2.5% 2.5% 3.0% 4.2% 3.5%
6000 0.7% 0.8% 2.1% 2.4% 4.9% 3.1% 8.1% 3.7% 10.0% 4.2%
8000 0.8% 0.3% 2.0% 1.2% 2.9% 2.0% 4.1% 3.0% 9.0% 4.5%

10000 0.9% 0.6% 3.6% 1.6% 4.3% 2.8% 5.1% 3.5% 9.0% 6.8%

Using a 200 ms SLO, T-LRU cuts the share of requests above the budget by 2–8% across capacities (Table 6). Improvements
again peak when ξ is near the desired percentile; extremely high ξ trades those mid-tail wins for heavier protection of the
extreme tail, echoing the WildChat pattern.

Table 6: Relative improvement of T-LRU: % reduction in requests with latency > 200ms (ShareGPT)

Capacity ξ = 50ms ξ = 100ms ξ = 150ms ξ = 200ms ξ = 500ms
LRU Thre-LRU LRU Thre-LRU LRU Thre-LRU LRU Thre-LRU LRU Thre-LRU

1000 0.7% 0.0% 1.7% 1.0% 2.3% 1.6% 2.3% 1.6% -3.5% -4.2%
2000 1.1% 1.0% 1.9% 1.8% 2.6% 2.5% 3.1% 3.0% -8.6% -8.7%
4000 1.8% 1.3% 3.9% 3.4% 4.7% 4.2% 4.8% 4.3% -15.6% -16.2%
6000 1.9% 1.1% 4.7% 3.9% 6.0% 5.2% 4.7% 3.9% -26.2% -27.2%
8000 1.2% 0.9% 4.3% 4.0% 4.9% 4.6% 2.9% 2.6% -39.3% -39.7%

10000 2.2% 1.8% 6.5% 6.1% 7.9% 7.6% 3.3% 3.0% -50.7% -51.2%

Lastly, in spite of the extra foresight, End-Aware T-LRU and Length-Aware T-LRU show only marginal gains over T-LRU,
and all three policies perform very closely to Tail-Optimized Belady, the optimal hindsight policy that minimizes the Tail
Excess Latency. This is exactly what our stochastic model predicts: under Poisson arrivals, LRU’s recency order is already
a near-perfect proxy for “furthest in the future”, the rule the hindsight policy uses for eviction, so extra foresight offers
diminishing returns.
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Figure 6: Latency results for various settings (threshold latency ξ = 100, 200, 300 ms) from top to bottom panels (ShareGPT)
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