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ABSTRACT

Transformers have been established as the de-facto backbones for most recent
advances in sequence modeling, mainly due to their growing memory capacity
that scales with the context length. While plausible for retrieval tasks, it causes
quadratic complexity and so has motivated recent studies to explore viable sub-
quadratic recurrent alternatives. Despite showing promising preliminary results in
diverse tasks, such recurrent architectures underperform Transformers in recall-
intensive tasks, often attributed to their fixed-size memory. In this paper, we in-
troduce Memory Caching (MC), a simple yet effective technique that enhances
recurrent models by caching checkpoints of their memory states (a.k.a. hidden
states). MC allows the effective memory capacity of RNNs to grow with sequence
length, offering a flexible trade-off that interpolates between the fixed memory
(O(L) complexity) of RNNs and the growing memory (O(L2) complexity) of
Transformers. We propose four variants of MC, including gated aggregation and
sparse selective mechanisms, and discuss their implications on both linear and
deep memory modules. Our experimental results on language modeling, and long-
context understanding tasks show that MC enhances the performance of recurrent
models, supporting its effectiveness. In in-context recall tasks, our results indicate
that while Transformers still achieve the best performance, our MC variants show
competitive performance, close the gap with Transformers, and performs better
than state-of-the-art recurrent models.

1 INTRODUCTION

Transformers (Vaswani et al., 2017b) are foundational to recent advances across various domains
(Jumper et al., 2021; Dosovitskiy et al., 2021; Comanici et al., 2025). Their success stems largely
from the attention mechanism, which acts as an associative memory with growing capacity (Ram-
sauer et al., 2021; Bietti et al., 2024; Behrouz et al., 2025b). While effective for many retrieval
tasks (Arora et al., 2024b; Behrouz et al., 2025a; Guo et al., 2025), this growing memory incurs
quadratic complexity and high inference-time memory usage (KV-caching). This has motivated the
development of sub-quadratic architectures that aim to improve efficiency while maintaining perfor-
mance (Dai et al., 2019; Child et al., 2019; Poli et al., 2023).

In particular, recurrent neural networks that aim to compress the past data into their memory
state, maintaining a fixed size over the entire input sequence, have regained attention in recent
years (Katharopoulos et al., 2020; Irie et al., 2021; Sun et al., 2023; Behrouz et al., 2024). De-
spite showing promising preliminary results in diverse short-context language modeling and other
sequence modeling tasks (Irie et al., 2022; Dalal et al., 2025), the fixed-memory state of such recur-
rent architectures is the bottleneck to unleash their actual power. The foundation of these architec-
tures is based on recurrence and data compression, which, with careful design, can result in highly
efficient and expressive learning algorithms (Merrill et al., 2024; Huang et al., 2024). However,
their fixed capacity to compress a growing sequence forces them to forget past information, which
is a critical bottleneck, specifically in recall-intensive and long-context tasks (Arora et al., 2024b;
Kuratov et al., 2024; Sun et al., 2024).

Contributions. We introduce Memory Caching (MC), a general technique that allows the effective
memory of recurrent models to grow with sequence length by caching checkpoints of the memory
states. MC provides a flexible middle ground interpolating between standard recurrence and atten-
tion, offering a controllable complexity of O(NL). This allows for flexible interpolation between
the O(L) complexity of RNNs and the O(L2) complexity of Transformers. Our contributions are
threefold:
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• The MC Framework: We propose segmenting the sequence and caching the compressed memory
state of each segment, allowing the model to directly access compressed information from the
entire history.

• Novel Aggregation Strategies: We introduce four methods to utilize these cached memories:
(i, ii) (Gated) Residual Memory, which uses residual connections and a novel context-aware gating
mechanism; (iii) Memory Soup, inspired by weight souping, which averages the parameters of
cached memory modules (distinct for non-linear memories); and (iv) Sparse Selective Caching
(SSC), which uses a Mixture-of-Experts style router to select only the most contextually relevant
cached memories for efficient aggregation.

• Empirical Validation: We demonstrate the effectiveness of MC on various architectures in-
cluding the deep memory module Titans (Behrouz et al., 2024) and Deep Linear Attention
(DLA) (Behrouz et al., 2025a)), across language modeling, long-context, and retrieval tasks, show-
ing that MC enhances performance and extends the effective context length of RNNs.

2 PRELIMINARIES AND BACKGROUND

In this section, we review necessary background and establish notations.

Notations. We use bold lowercase (resp. uppercase) letters for vectors (resp. matrices) and use
subscript t to refer to the state of the entities correspond to time t. Throughout, we let x ∈ RL×din

be the input, Mt be the state of memory M(·) at time t, K be the keys, V be the values, Q be
the query matrices, and L denote the sequence length. We focus on MLP-based architectures for
memory with LM ≥ 1 layers. Notably, this formulation includes linear matrix-valued memory
modules when LM = 1. When it is needed, we parameterize the memory module M(·) with
θM := {W1, . . . ,WLM , . . . }, which at least includes the parameters of linear layers in the MLP.

Attention. Attention Vaswani et al. (2017a) is the primary building block of Transformers that acts
as their associative memory (Bietti et al., 2023; Sun et al., 2024; Behrouz et al., 2025b). Given input
x ∈ RL×din , causal attention computes output y ∈ RL×din over input dependent key, value, and
query matrices Q = xWQ,K = xWK, and V = xWV as:

yi =

i∑
t=1

exp
(
q⊤
i kt

)
vt∑i

ℓ=1 exp
(
q⊤
i kℓ

) =
1

Zi

i∑
t=1

exp
(
q⊤
i kt

)
vt, (1)

where WQ,WK, and WV ∈ Rdin×din are learnable parameters, and Zi =
∑i

ℓ=1 exp
(
q⊤
i kℓ

)
is the

normalization term. Attention requires O(L2) operations due to the need to access all past tokens.

Linear Attention. Linear attention (Katharopoulos et al., 2020) and its variants (Sun et al., 2023;
Peng et al., 2023; Schlag et al., 2021) improves efficiency of attention by replacing the exp(·) oper-
ator in Equation 1 with a separable kernel ϕ(·), resulting in an efficient recurrent formulation:

yi =

i∑
t=1

ϕ (qi)
⊤
ϕ (kt)vt∑i

ℓ=1 ϕ (qi)
⊤
ϕ (kℓ)

=
1

Zi
Mtϕ (qi) , (2)

where Mt=Mt−1 + vtϕ (kt)
⊤ acts as the fixed-size memory (Katharopoulos et al., 2020).

Test-time Memorization Perspective. . A recent unifying framework interprets the forward pass
of sequence models—including both attention and modern RNNs—as a dynamic learning process
occurring at inference time Sun et al. (2024); Behrouz et al. (2025b); Wang et al. (2025). In this view,
the model acts as an associative memory that actively learns the mapping between input tokens (keys
and values). This memorization is achieved by optimizing an internal objective, often formalized as a
regression problem Wang et al. (2025) or “attentional bias” Behrouz et al. (2025b). This perspective
frames the memory state as a dynamic entity optimized during the forward pass. We leverage this
view by introducing Memory Caching, where cached states serve as checkpoints of this optimization
process, enhancing the model’s ability to retrieve information across long sequences.
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Figure 1: The Overall Memory Caching Method. Each token attends to its online memory as well
as a set of cached memories from the past.

3 RECURRENT NEURAL NETWORKS WITH MEMORY CACHING

RNNs maintain a fixed-size memory to compress the input sequence. As sequences grow long,
this leads to memory overflow and performance degradation. Conversely, attention caches all past
tokens, resulting in a growing memory but quadratic cost. We propose Memory Caching (MC)
to cache intermediate memory states, providing a middle ground where the model’s memory can
grow with arbitrary scale. This allows computational costs to interpolate between O(L) (RNNs)
and O(L2) (Transformers). To this end, given a sequence of tokens x ∈ RL×din , we split the se-
quence into segments S(1), . . . , S(N) with size L(1), . . . , L(N) and use memories M(1), . . . ,M(N)

to compress the segments. The memory update rule or the recurrence for memory corresponds to
s-th segment is:

kt = xtWk, vt = xtWv, qt = xtWq, (3)

M(s)
t = f

(
M(s)

t−1;kt,vt

)
, where 1 ≤ t ≤ L(s) , (4)

where f(·) is the learning update rule (e.g., f
(
M(s)

t−1;kt,vt

)
= M(s)

t−1 + vtk
⊤
t for linear atten-

tion (Katharopoulos et al., 2020)). Using the above formulation, we update the memories in each
segment and cache the last state of previous segments (i.e., {M(s)

L(s)}Ts=1 where T is the index of
the current segment). Standard RNNs compute the output using only the current memory state:
yt = Mt(qt). In contrast, our formulation uses all past cached memories alongside the current
memory (online memory) to compute the output for query qt. Given an arbitrary aggregation func-
tion, Agg(·; ·; ·), the output is:

yt = Agg
(
{M(1)

L(1)(·), . . . ,M
(s−1)

L(s−1)(·)};M
(s)
t (·);qt

)
, (5)

where s is the indices of the current segment. Note that for 1 ≤ i ≤ s, the term M(i)

L(i)(qt) provides
us with the corresponding information to query qt in segment i. In the following sections, we
present different effective choices of Agg(·; ·; ·) function to incorporate the past information into the
computation of the current output and increasing the effective memory capacity of the model.

3.1 RESIDUAL MEMORY

We begin with the simplest Agg(·; ·; ·) operator: a summation, acting as a residual connection
across memory states. In this case, given keys, values, and queries (see Equation 3) and segments
S(1), . . . , S(N), we define the memory update and output computation at time t in segment s as:

M(s)
t = f

(
M(s)

t−1;kt,vt

)
, where 1 ≤ t ≤ L(s) , (6)

yt = M(s)
t (qt)︸ ︷︷ ︸

Online Memory

+

s−1∑
i=1

M(i)

L(i)(qt)︸ ︷︷ ︸
Cached Memories

. (7)

The critical change in memory caching is how the output is computed. In fact, for retrieval of the
memory, the model uses forward passes over both the current memory (called online memory) and
the cached memories for input query qt.

3
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Gated Residual Memory (GRM). When the memory module is strictly linear (i.e., M is a matrix),
the Residual Memory formulation (equation 7) mathematically collapses into a standard fixed-size
memory, as the cached memories can be pre-summed (c.f. equation 12 below). However, in practice,
our experimental results show that even this simple formulation can enhance the power of recurrent
models (see Section 4). A further limitation of the residual approach is that it treats all cached mem-
ories equally, ignoring their relevance to the query qt. To enable selective retrieval, we introduce
input-dependent gating. Given input xt in segment s, we define parameters 0 ≤ γ

(1)
t , . . . , γ

(s)
t ≤ 1

be input-dependent parameters and reformulate the output as:

M(s)
t = f

(
M(s)

t−1;kt,vt

)
, for 1 ≤ t ≤ L(s), yt = γ

(s)
t M(s)

t (qt) +

s−1∑
i=1

γ
(i)
t M(i)

L(i)(qt) (8)

Here, parameters γ
(i)
t modulate the contribution of each segment to the output. When γ

(i)
t → 1

(resp. γ(i)
t → 0), i-th segment has more (resp. less) contribution to the output. Due to these input

dependent parameters, the above formulation cannot be pre-computed before this token and also
cannot be reused for next tokens/segments. Therefore, contrary to the previous variant, it does not
collapse into the fixed-size memory case (even in the linear memory case) and so requires to be
recomputed for every token and needs caching memory states. A simple choice of parametrization
for γ(i)

t s is to define them as linear projection of input xt (similar to projections for keys, values, and
queries). With this parametrization, however, γ(i)

t acts as a position-based filtering/focus, meaning
that the context of xt only determines how much the i-th segment’s memory (based on the position)
contributes, no matter what its context is. To overcome this issue, we suggests making γ

(i)
t as a

function of both xt and i-th segment S(i), incorporating both of their contexts and how similar they
are. To this end, we introduce a connector parameter ut as the linear projection of input, and define
γ
(i)
t as the similarity of ut and i-th segment S(i):

γ
(i)
t = ⟨ut, MeanPooling(S

(i))⟩ where ut = xtWu . (9)
Here, MeanPooling(·) provides a simple representation of segment’s context as the mean of all
tokens. It, however, can be replaced by any other pooling process. As an alternative parameteriza-
tion, we can use ut = qt. When γ

(i)
t = 1, then GRM is equivalent to residual memory variant.

Example. To better illustrate the above formulations and as an illustrative example, we let
f
(
M(s)

t−1;kt,vt

)
= M(s)

t−1 −∇⟨M(s)
t−1(kt),vt⟩, where memory M(·) is an arbitrary feedforward

layer (e.g., MLP or gated MLP layers). This general form is equivalent to Deep Linear Attention
(DLA) (Behrouz et al., 2025a) and when the memory is a matrix (i.e., MLP with one layer) it is
equivalent to the linear attention (Katharopoulos et al., 2020). Using residual memory caching on
DLA results in a model with update and retrieval rules of:

M(s)
t = M(s)

t−1 −∇⟨M(s)
t−1(kt),vt⟩, yt = M(s)

t (qt) +

s−1∑
i=1

M(i)

L(i)(qt) . (10)

When using a linear matrix-valued memory (i.e., linear attention), Equation 10 can be simplified to:

M(s)
t = M(s)

t−1 + vtk
⊤
t , (11)

yt = M(s)
t qt +

s−1∑
i=1

M(i)

L(i)qt =

(
M(s)

t +

s−1∑
i=1

M(i)

L(i)

)
qt . (12)

Memory Complexity. In the retrieval process, we use the current memory (online memory) and
the cached memories of all previous segments and so given a fixed training sequence length, the
number of cached memories is a function of segment lengths. While the memory update process
has not changed and so requires O(L) operation, the retrieval process requires forward pass over all
cached memory and so needs O(N) operations per token. This brings the complexity of the model
to O(NL), where 1 ≤ N ≤ L. Note that when N = 1 (only one segment), we do not need to cache
any memory state, resulting in a simple recurrent memory model. When N = L, it means that each
token is treated as a separate segment and so the memory state for all past tokens are cached. This
closely matches the intuition behind the power of attention. In fact, attention by caching all past
tokens, provide a direct access to each part of the sequence, enhancing the retrieval ability.

4
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Figure 2: Sparse Selective Caching (SSC) of Memories. A router measures the contextual similarity
of each token to its past segments and chooses a subset of past cached memory for better efficiency.

3.2 MEMORY SOUP

Viewing the recurrence as a meta-learning process where memory states are checkpoints, we intro-
duce the Memory Soup variant, inspired by Wortsman et al. (2022). The core idea is to combine
the memory states (parameters) into a single data-dependent memory for retrieval. Similar to the
previous variant, we use M(i)

L(i) to refer to the cached memory corresponds to i-th segment and pa-

rameterize it with θM(i)

L(i)

:= {W (i)
1 , . . . ,W

(i)
c }. Note that the architecture of memory is unchanged

and so c (the number of parameters) is the same for all memory states. Accordingly, the memory
update and retrieval process for memory caching is defined as:

M(s)
t = f

(
M(s)

t−1;kt,vt

)
, for 1 ≤ t ≤ L(s) , yt = M∗

t (qt) , (13)

where M∗
t is parametrized as: θM∗

t
:= {

∑s
i=1 γ

(i)
t W

(i)
1 , . . . ,

∑s
i=1 γ

(i)
t W

(i)
c }. Therefore, each

token has its own memory for retrieval that also depends on the input-data and can change. In fact,
one can interpret the above process as a memory system that each token, builds its own memory to
retrieve corresponding information from. Note that here γ

(i)
t parameters are defined with the same

process as Equation 9.

When the memory module M is linear, Memory Soup is mathematically equivalent to GRM (Equa-
tion 8). This is because souping the weights and then applying the query is identical to applying the
query to individual memories and then ensembling the outputs, due to the linearity of the operation.
The distinction becomes crucial when using deep or non-linear memory modules (e.g., DLA or Ti-
tans). In these cases, the equivalence breaks down. Memory Soup constructs a new, input-dependent
memory module M∗

t by interpolating the parameters themselves, effectively creating a specialized
non-linear retrieval function tailored for that specific timestep.

3.3 SPARSE SELECTIVE CACHING (SSC) OF MEMORIES

The previous variants attend to all past cached memories, which can cause significant memory over-
head for ultra-long sequences. We introduce Sparse Selective Caching (SSC), where each token
contextually selects a subset of cached memories, improving efficiency. To this end, inspired by
Mixture of Experts (MoEs) (Shazeer et al., 2017), we use a router that based on the token and its
similarity to the context of each segment choose a subset of cached memories. For each segment
S(i), following Equation 9, we let MeanPooling(S(i)) =

∑
j∈S(i) kj , and define the relevance

score of each segment S(i) to query xt as:

r
(i)
t = ⟨ut, MeanPooling(S

(i))⟩, where ut = xtWu . (14)
Given relevance scores, the router chooses k of the cached memories with highest relevance, i.e.,
Rt = arg Top-k({r(i)t }s−1

i=1 ), as well as the current online memory for retrieval. Given selected
memories, the retrieval process is the same as previous variants but using only selected memories:

M(s)
t = f

(
M(s)

t−1;kt,vt

)
, where 1 ≤ t ≤ L(s) ,

yt = γ
(s)
t M(s)

t (qt) +
∑
i∈Rt

γ
(i)
t M(i)

L(i)(qt) . (15)
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Table 1: Performance of models on language modeling and common-sense reasoning tasks.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ ↑

760M params / 30B tokens

Transformer++ 24.18 24.27 36.3 67.2 41.8 52.0 65.6 33.4 39.1 61.7 49.64

RetNet 25.77 24.19 34.5 66.8 41.2 51.9 63.6 32.5 38.8 56.2 48.19
DeltaNet 24.52 24.38 36.8 67.3 44.5 51.8 64.2 32.7 39.6 60.1 49.63
Miras (Memora) 22.28 22.31 38.2 67.8 49.3 53.3 63.6 36.1 40.9 63.0 51.53

Samba∗ 21.07 22.85 39.2 68.9 47.8 53.1 65.8 34.9 38.9 63.1 51.46

DLA 23.12 22.09 36.1 68.0 47.9 52.7 65.8 34.6 39.1 59.6 50.48
+ Log-Linear 23.08 21.15 36.8 68.1 47.7 53.0 65.6 35.1 39.2 59.3 50.60
+ GRM 22.91 20.10 37.5 69.2 48.7 52.8 66.1 36.8 40.3 59.9 51.41
+ Memory Soup 22.78 20.49 37.2 69.6 48.3 53.4 65.8 36.5 39.6 60.2 51.33
+ SSC 23.14 20.86 37.0 68.4 47.7 52.7 66.0 35.2 39.7 60.1 50.85

Titans (LMM) 20.04 21.96 37.4 69.3 48.5 52.3 66.3 35.8 40.1 62.8 51.56
+ Log-Linear 19.79 20.62 37.8 70.1 48.0 52.5 66.8 35.6 40.3 62.8 51.74
+ GRM 19.14 20.21 38.3 70.6 48.4 54.0 67.5 36.4 41.7 63.5 52.55
+ Memory Soup 19.52 20.38 38.0 71.4 48.6 53.7 67.1 35.4 41.3 63.1 52.33
+ SSC 19.39 20.46 37.7 70.9 48.7 53.5 66.9 36.3 41.2 63.1 52.29

1.3B params / 100B tokens

Transformer++ 17.92 17.73 42.6 71.4 51.3 54.1 69.9 36.0 41.8 58.4 53.19

RetNet 18.91 17.04 41.2 71.3 49.1 55.2 67.5 34.1 41.4 61.0 52.60
DeltaNet 18.62 17.10 41.6 70.1 49.4 52.7 67.6 35.2 39.7 54.8 51.39
Miras (Memora) 15.90 12.04 48.7 73.1 56.0 57.4 71.5 37.9 40.2 61.3 55.76

Samba∗ 16.15 13.21 45.2 71.5 53.8 55.8 69.1 36.7 40.6 63.0 54.46

DLA 16.31 12.29 44.5 70.6 53.9 54.2 69.6 36.0 40.8 60.2 53.72
+ Log-Linear 16.22 12.25 44.9 71.1 54.5 54.8 70.0 36.6 41.3 60.7 54.24
+ GRM 16.08 12.10 45.8 72.5 55.9 55.8 71.5 41.2 42.8 62.2 55.96
+ Memory Soup 16.16 12.17 45.6 71.9 55.4 55.6 70.9 37.7 42.0 61.5 55.08
+ SSC 16.20 12.19 45.3 71.7 54.8 55.3 70.4 37.1 41.4 61.1 54.64

Titans (LMM) 15.60 11.41 49.1 73.1 56.3 59.8 72.4 40.8 42.1 61.0 56.82
+ Log-Linear 15.49 11.38 49.4 73.6 56.5 60.3 72.8 41.1 42.5 61.3 57.19
+ GRM 15.37 11.29 50.4 74.5 57.4 61.5 73.8 42.6 43.9 62.5 58.33
+ Memory Soup 15.42 11.31 49.9 74.2 57.3 60.8 73.5 42.2 43.4 62.0 57.91
+ SSC 15.44 11.35 49.6 73.8 57.0 60.6 73.1 41.9 42.8 61.8 57.58

In this formulation, MeanPooling(S(i)) of each segment can be pre-computed and so computing
the relevance score as well as choosing Top-k segments for each token are simply parallelizable.
Also, such computations do not require to store the state of the cached memories in the accelerators
(i.e., GPUs, TPUs, etc.). Therefore, this process only requires loading the “selected” memories for
each token and so can enhance memory consumption during both training and inference.

Effective Memory. One interesting interpretation of SSC is to see it as a sparse unified memory
module. We illustrate this in Figure 2 (Right). One can see SSC as a model with growing memory,
where for each token activates a subset of parameters for memory write operation (storing the token),
and a larger subset of parameters for retrieval. This formulation allows the memory to (1) store
information without any interfering with past memories, and (2) efficiently and adaptively retrieve
information. The segment size, here, determines the size of the blocks in the unified memory that
become active together.

4 EXPERIMENTS

Next, we evaluate the effectiveness of memory caching in improving the performance of models on
language modeling, commonsense reasoning, needle in haystack, and in-context recall tasks.

Experimental Setup. We train our models with training context window of size
{1K, 2K, 4K, 8K, 16K, 32K} and segment lengths ranging from {16, 32, 64, 128, 256, 512} tokens
using FineWeb dataset (Penedo et al., 2024). Unless stated otherwise, the default context length
is 4K with 256 segment length. We use model size of 760M, and 1.3B parameters and train them
on 30B and 100B tokens sampled from the dataset. Perplexity is measured on held-out validation
data. As for the downstream tasks, we evaluate trained models on Wikitext (Merity et al., 2017),
LMB (Paperno et al., 2016), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), Wino-
Grande (Sakaguchi et al., 2021), ARC-easy (ARC-e) and ARC-challenge (ARC-c) (Clark et al.,
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Table 2: NIAH experiments, including three single-needle tasks—S-NIAH-1 (passkey retrieval), S-
NIAH-2 (numerical needle), and S-NIAH-3 (UUID-based needle).

S-NIAH-1 S-NIAH-2 S-NIAH-3
(pass-key retrieval) (number in haystack) (uuid in haystack)

Model 4K 8K 16K 4K 8K 16K 4K 8K 16K

Transformer 88.6 76.4 79.8 100 98.8 94.2 78.0 69.2 40.8

DLA 96.4 71.2 44.0 79.6 42.6 28.2 18.2 8.8 4.0
+ Log-Linear 100 96.2 70.4 87.6 70.4 18.0 28.8 20.4 6.0
+ GRM 100 100 82.4 94.6 82.8 54.8 48.2 34.4 18.2
+ Memory Soup 100 100 78.2 91.8 77.2 40.4 43.0 32.8 14.8
+ SSC 100 98.2 76.8 89.2 74.8 37.6 34.0 28.6 11.2

Titans (LMM) 100 100 100 99.6 84.6 75.4 74.2 42.8 21.2
+ Log-Linear 100 100 100 95.6 88.4 74.8 76.0 48.4 24.2
+ GRM 100 100 100 99.8 96.6 88.2 89.4 69.0 32.2
+ Memory Soup 100 100 100 98.8 92.2 83.0 84.2 61.8 28.6
+ SSC 100 100 100 98.6 90.4 79.6 81.0 54.2 27.0

2018), SIQA (Sap et al., 2019), and BoolQ (Clark et al., 2019). Additional details about the experi-
mental setups and other used datasets are in Appendix B.

4.1 LANGUAGE MODELING

We start with common and academic-scale language modeling. The results of DLA, and Titans with
and without memory caching are reported in Table 1. There are four observations: (1) Compar-
ing DLA, Titans, and LA with their enhanced version with memory caching, we observe that all
memory caching variants provides consistent improvements on different downstream tasks, and also
on average over their baseline. This shows the importance of memory caching to further enhance
memory bounded models. (2) As discussed earlier, memory caching can be seen as a hybrid of
sparse attention with recurrent model. Comparing memory caching enhanced models and two of the
state-of-the-art hybrid models, memory caching provides a more powerful solution to the problem
of limited memory in recurrent models. Particularly, Titans + MC and DLA + MC achieves +0.8%
performance gain over the Titans. (3) MC enhanced variants show better performance compared
to simple recurrent models. We also compare against the Log-Linear attention approach Guo et al.
(2025), which utilizes a hybrid caching strategy. (4) Comparing among MC variants and Log-Linear
method, we observed that our three variants provide better results. Furthermore, GRM and then SSC
achieves better results among our provided methods. We attribute this performance gain to larger
effective memory size that MC provides for the model.

4.2 NEEDLE-IN-A-HAYSTACK TASKS

We evaluate the impact of MC on long-context retrieval using Needle-in-a-Haystack (NIAH) tasks
(Table 2). MC-enhanced DLA and Titans consistently outperform the base models. Furthermore,
MC variants outperform the Log-Linear approach, especially at longer contexts. Log-Linear strug-
gles because it forces a single memory to compress very large initial segments (e.g., 8K tokens in a
16K sequence), whereas MC distributes the compression load more effectively.

4.3 IN-CONTEXT RETRIEVAL TASKS

In-context recall tasks are among the most challenging benchmarks for recurrent neural networks.
In this section, we follow Arora et al. (2024b) and perform experiments on SWDE (Lockard
et al., 2019), NQ (Kwiatkowski et al., 2019), DROP (Dua et al., 2019), FDA (Arora et al., 2023),
SQUAD (Rajpurkar et al., 2016), and TQA (Kembhavi et al., 2017) to evaluate and compare the
performance of MC-enhanced variants with baselines and Transformers. The results are reported in
Table 3. While Transformers still achieve the best results in in-context recall tasks, our MC variants
show competitive performance, close the gap with Transformers, and performs better than state-of-
the-art recurrent models. We again attribute this performance to larger memory capacity that scales
with sequence length.
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Table 3: Accuracy on retrieval tasks w/ input truncated to different lengths.

SWDE SQuAD FDA

Model 512 1024 2048 16k 512 1024 2048 16k 512 1024 2048 16k

Transformer 46.2 43.7 44.4 44.0 33.1 33.3 33.6 33.4 71.0 69.5 71.6 71.0
Titans (MAL) 51.9 48.6 48.3 48.5 28.3 29.2 29.1 28.8 71.1 73.9 72.1 71.7

DLA 44.5 39.9 32.7 32.5 23.8 24.0 23.8 24.1 55.6 40.2 25.9 23.3
+ Log-Linear 43.7 37.7 30.4 30.6 27.8 27.8 27.9 28.3 55.1 39.6 22.3 18.9
+ GRM 52.4 48.9 48.7 48.5 29.5 30.7 30.7 30.1 63.3 51.6 48.9 41.5
+ Memory Soup 49.5 45.0 38.0 37.7 28.4 28.6 28.5 29.1 60.5 48.4 37.2 34.6
+ SSC 47.0 42.5 35.5 35.3 26.0 28.1 27.1 28.8 58.0 46.0 28.8 29.4

Titans (LMM) 43.2 34.4 29.2 29.7 25.7 26.2 26.3 25.6 59.3 45.5 35.4 32.5
+ Log-Linear 48.0 41.4 37.2 37.0 27.2 27.3 27.2 27.1 67.0 55.5 41.2 32.4
+ GRM 52.6 49.3 49.5 50.1 29.7 30.4 31.5 32.0 72.9 68.7 61.1 52.6
+ Memory Soup 50.3 46.7 44.8 45.4 29.2 29.7 29.8 30.3 70.3 63.8 55.7 45.8
+ SSC 48.6 44.2 41.0 41.4 28.3 28.8 28.5 28.8 68.2 59.4 47.6 38.9

TriviaQA Drop NQ Avg.
Model 512 1024 2048 16k 512 1024 2048 16k 512 1024 2048

Transformer 47.5 48.5 47.4 47.6 21.8 22.0 21.5 21.4 23.6 23.1 23.7 41.00
Titans (MAL) 44.8 45.1 44.6 44.8 20.6 20.5 20.8 20.9 22.1 22.4 22.5 40.46

DLA 43.3 44.2 43.5 43.2 20.1 19.9 20.6 20.0 19.7 18.4 18.5 30.51
+ Log-Linear 43.7 44.8 43.6 43.8 20.3 20.2 20.8 20.2 19.9 18.8 21.0 30.75
+ GRM 50.1 47.3 44.8 50.0 21.9 21.8 22.0 21.7 23.5 23.3 23.4 38.03
+ Memory Soup 48.0 46.4 44.2 48.7 21.5 21.3 21.7 21.2 22.8 22.4 22.5 35.05
+ SSC 45.8 45.5 43.9 46.1 20.9 20.7 21.2 20.6 21.4 20.6 21.8 33.09

Titans (LMM) 44.2 44.7 43.9 44.5 20.2 20.1 20.3 20.6 20.1 19.5 19.1 31.75
+ Log-Linear 44.5 44.9 44.1 44.7 20.4 20.4 20.5 20.7 21.5 19.8 20.4 34.37
+ GRM 50.2 47.5 45.3 50.9 21.7 21.8 21.9 21.5 23.7 23.4 23.3 40.50
+ Memory Soup 48.3 46.6 44.8 49.4 21.3 21.4 21.7 21.1 22.9 22.2 22.5 38.43
+ SSC 46.1 45.7 44.3 46.9 20.8 20.7 21.2 20.9 21.9 20.4 21.5 36.27

Table 4: Accuracy on LongBench tasks (Bai et al., 2024): NarrativeQA, QasperQA, MultiFieldQA, Hot-
potQA, 2WikiMultiQA, Musique, GovReport, QMSum, MultiNews, TREC, TriviaQA, SamSum, LCC, and
RepoBench-P.

Single-Doc QA Multi-Doc QA Summarization Few-shot Code

Model NQA QQA MFQ HQA 2WM Mus GvR QMS MNs TRC TQA SSM LCC RBP

Transformer 11.5 9.6 19.1 21.5 28.9 6.5 13.0 9.2 3.1 27.2 27.9 15.1 22.9 29.1

DLA 9.4 17.5 12.1 11.8 22.3 4.8 9.5 7.4 5.1 4.8 23.5 9.7 38.4 34.9
+ Log-Linear 10.1 10.2 17.1 12.4 23.3 5.5 6.6 12.7 5.8 18.6 24.7 16.2 31.6 31.0
+ GRM 11.6 10.3 19.8 18.2 26.9 6.4 13.5 14.1 6.9 25.7 28.2 18.3 32.7 33.9
+ Memory Soup 11.2 10.3 19.5 16.7 25.1 6.3 11.2 13.8 6.2 22.5 26.9 17.7 32.3 33.5
+ SSC 10.7 10.2 18.8 14.2 24.8 5.9 8.4 12.9 6.1 20.5 25.7 16.8 31.9 32.6

Titans (LMM) 8.7 12.5 18.4 15.6 26.1 6.7 10.5 12.6 11.8 37.1 26.2 24.5 31.3 31.4
+ Log-Linear 9.6 8.9 19.3 18.7 26.9 6.8 6.7 12.9 2.8 11.2 42.7 25.0 29.5 29.7
+ GRM 11.8 9.4 19.9 21.4 29.1 7.2 8.4 13.3 3.1 14.8 49.7 25.5 31.0 32.8
+ Memory Soup 10.7 9.2 19.6 20.2 28.2 7.1 7.8 13.1 3.0 13.7 47.1 25.3 30.8 31.4
+ SSC 9.9 9.1 19.4 19.8 27.5 6.9 7.1 13.0 2.8 12.5 44.8 25.2 29.9 30.8

4.4 LONG CONTEXT UNDERSTANDING TASKS

We evaluate long-context understanding on LongBench (Bai et al., 2024) (Table 4). All MC-
enhanced variants provide performance gains compared to their base RNNs, again attributed to their
increased memory capacity.
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Figure 3: Average accuracies (mean ± std) on
MQAR over 5 seeds.

Figure 4: Training throughput comparison of
memory caching variants and baselines.

4.5 MULTI-QUERY ASSOCIATIVE RECALL (MQAR)

In this section, we evaluate the performance of MC-enhanced variants in Multi-Query Associa-
tive Recall (MQAR) task (Arora et al., 2024a). The results are reported in Figure 3. Our models
show good performance compared to their base RNNs also the state-of-the-art recurrent models,
achieving the best performance per dimension value compared to state-of-the-art models such as
Atlas (Behrouz et al., 2025a).

4.6 ABLATION STUDIES
Figure 5: Ablation Study on MC. All design choices
of MC are positively contributing to its effectiveness.

Model Language Modeling C.S. Reasoning Retrieval
ppl ↓ acc ↑ acc ↑

Titans (GRM) 13.3 58.3 40.5
- Context-dependent 13.4 57.4 33.0
- Gating 13.5 56.9 32.4
- Linear Memory 13.7 56.3 34.5

Titans (SSC) 13.4 57.6 36.3
- Context-dependent 13.4 57.1 32.6
- Gating 13.5 56.8 31.9
- Linear Memory 13.8 56.8 33.4

In this section, we evaluate the effect of
design choices in the MC framework. The
first choice is wether γ should be the func-
tion of only input or also the context of
blocks. The results are reported in Fig-
ure 5. This design choice has shown sig-
nificant improvement on average. The sec-
ond design is to remove the gating. Note
that without gating, the design collapses
into residual memory. The results show
even this simple design can enhance the
performance of the models. Finally, in the third design, we use a linear memory module. Sur-
prisingly, using memory caching results in more robustness of the performance with respect to the
memory architecture and expressivity.

4.7 EFFICIENCY

Finally, we evaluate the training throughput of our variants with baselines. The results are reported
in Figure 4. Our MC variants provide a middle ground between Transformers and RNNs, and they
become extremely efficient compared to Transformers, when increasing the context length. These
results indicate that our SSC variant has the best of both worlds and while performs on par or better
compared to other variants in the diverse downstream tasks that we discussed earlier, they also add
minimal overhead compare to their original base RNN variant. Furthermore, they show significantly
better efficiency in longer sequences.

5 CONCLUSION

In this paper, we present Memory Caching (MC), a simple technique applicable to all recurrent
neural networks, that caches a subset of memory state, allowing subsequent tokens directly attend
to its past relevant tokens. Our experiments show improvements over a subset of baselines. A lot
of choices in this paper have been made to keep the resulting model as simple as possible, better
showing the effect of memory caching idea. In future work, more expressive pooling or routing
mechanism can be used to further enhance the performance.
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A RELATED WORK

Modern Linear Recurrent Neural Networks. Recent efforts have focused on alleviating the
quadratic complexity and context-length limitations of Transformers, motivating the development
of efficient recurrent alternatives that offer faster inference and training (Tiezzi et al., 2024). Early
models such as RetNet (Sun et al., 2023), RWKV (Peng et al., 2023), and S5 (Smith et al., 2023) re-
lied on data-independent transition matrices with Hebbian-like updates. A subsequent wave of work
introduced input-dependent parameters into linear RNN architectures (e.g., linear RNNs (Hasani
et al., 2023; Smith et al., 2023), RWKV6 (Peng et al., 2024)), alongside more expressive update
mechanisms, including variants of the delta rule (Peng et al., 2025; Schlag et al., 2021; Yang et al.,
2024b;a; Liu et al., 2024). This line of research has further extended to deeper architectures, incor-
porating delta-rule-like updates (Sun et al., 2024) or data-dependent momentum-based rules with
forget gating (Behrouz et al., 2024). More recently, Siems et al. (2025) enhanced delta-rule models
by applying multiple gradient descent updates per token, yielding more expressive state-tracking
capabilities. Beyond linear recurrent models, several works investigate RNNs with non-linear recur-
rence (Behrouz et al., 2025b; Csordás et al., 2024; Merrill et al., 2024; Lim et al., 2024; Schöne et al.,
2025; Karami & Mirrokni, 2025; Von Oswald et al., 2023; Gonzalez et al., 2024), with emphasis on
accelerating their training (Gonzalez et al., 2024; Lim et al., 2024; Schöne et al., 2025).

Efficient Attention Mechanisms. In addition to recurrent architectures, recent work has proposed
using structured matrices to improve the efficiency of token and channel mixing layers. For example,
Butterfly matrices (Dao et al., 2019), Monarch matrices (Dao et al., 2022), and Block Tensor-Train
matrices (Qiu et al., 2024) provide compact yet expressive parameterizations that reduce the com-
putational burden of dense projections. Other approaches design sparse or hybrid attention mecha-
nisms, such as sliding-window attention or models that combine localized recurrence with selective
long-range connections (Nguyen et al., 2021; Arora et al., 2024b; Munkhdalai et al., 2024). Another
family of approaches reduces the quadratic complexity of attention to nearly log-linear time. Classi-
cal examples include Reformer (Kitaev et al., 2020), which uses locality-sensitive hashing to cluster
queries and keys, and LogSparse Transformer (Li et al., 2019) and Informer (Zhou et al., 2021),
which rely on structured sparsity patterns for efficiency in long-sequence and time-series tasks. Sub-
sequent work has introduced more elaborate designs, such as multi-resolution attention (Zeng et al.,
2022), which progressively refines attention scores from coarse to fine levels, and Fast Multipole
Attention (Kang et al., 2023), which adapts the fast multipole method for scalable long-range inter-
actions. Recently, Guo et al. (2025) introduce Log-Linear Attention, a framework that augments
linear attention with a logarithmically growing set of hidden states organized via Fenwick tree par-
titioning. This design achieves O(T log T ) training complexity and O(log T ) decoding memory,
while preserving hardware-efficient parallelization.

Fast Weight Programs and Meta Learning. The view of linear layers as key-value associative
memory systems dates back to Hopfield networks (Hopfield, 1982). This idea was later extended
through the development of fast weight programmers, in which dynamic fast programs are integrated
into recurrent neural networks to function as writable memory stores (Schlag et al., 2021; Schmid-
huber, 1992; 1993). Among the learning paradigms for such systems, Hebbian learning (Hebb,
2005) and the delta rule (Prados & Kak, 1989) have been most prominent. Both rules have been ex-
tensively studied in the literature (Munkhdalai & Yu, 2017; Schmidhuber, 1992; Munkhdalai et al.,
2019; Schlag et al., 2021; Irie et al., 2021; Yang et al., 2024b;a).

Hopfield Networks. Our formulation builds on the broad concept of associative memory, where the
goal is to learn mappings between keys and values. Seminal work by Hopfield (1982) introduced
Hopfield Networks as one of the earliest neural architectures explicitly based on associative memory,
formalized through the minimization of an energy function for storing key-value pairs. While clas-
sical Hopfield networks have seen reduced applicability due to limitations in vector-valued memory
capacity and the structure of their energy function, recent studies have sought to enhance their ca-
pacity through various approaches (Krotov, 2021; Li et al., 2024; Krotov & Hopfield, 2016). In
particular, extensions of their energy functions with exponential kernels have been explored (Krotov
& Hopfield, 2016; Lucibello & Mézard, 2024). Moreover, connections between modern Hopfield
networks and Transformer architectures have been actively investigated (Ramsauer et al., 2021; Hu
et al., 2024).
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Table 5: Architectural Details.

Model Block Dim Head Peak LR Token

760M 24 1536 16 1.25e-3 30B
1.3B 18 2048 8 7e-4 100B

B EXPERIMENTAL DETAILS

In our experimental setup we follow recent studies on recurrent models (Yang et al., 2024a; Behrouz
et al., 2024; 2025b; Zhang et al., 2025; Guo et al., 2025), we use Wikitext (Merity et al., 2017),
LMB (Paperno et al., 2016), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), Wino-
Grande (Sakaguchi et al., 2021), ARC-easy (ARC-e) and ARC-challenge (ARC-c) (Clark et al.,
2018), SIQA (Sap et al., 2019), and BoolQ (Clark et al., 2019). Also, the baselines results are from
Behrouz et al. (2025b; 2024). In the training, we use a vocabulary size of 32K and use training
length of 4K tokens (2K for SWA). We employ AdamW optimizer with learning rate of 4e-4 with
cosine annealing schedule with batch size of 0.5M tokens, and weight decay of 0.1.

For the memory architecture, unless state otherwise, we use an MLP with 2 layers with expan-
sion factor of 4 and GELU activation function (Hendrycks & Gimpel, 2016). We also use residual
connections and layer norm at the end of each chunk: M(x) = x+W1σ(W2x).
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