
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MEMORY CACHING: RNNS WITH GROWING MEMORY

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers have been established as the de-facto backbones for most recent
advances in sequence modeling, mainly due to their growing memory capacity
that scales with the context length. While plausible for retrieval tasks, it causes
quadratic complexity and so has motivated recent studies to explore viable sub-
quadratic recurrent alternatives. Despite showing promising preliminary results in
diverse tasks, such recurrent architectures underperform Transformers in recall-
intensive tasks, often attributed to their fixed-size memory. In this paper, we in-
troduce Memory Caching (MC), a simple yet effective technique that enhances
recurrent models by caching checkpoints of their memory states (a.k.a. hidden
states). MC allows the effective memory capacity of RNNs to grow with sequence
length, offering a flexible trade-off that interpolates between the fixed memory
(O(L) complexity) of RNNs and the growing memory (O(L2) complexity) of
Transformers. We propose four variants of MC, including gated aggregation and
sparse selective mechanisms, and discuss their implications on both linear and
deep memory modules. Our experimental results on language modeling, and long-
context understanding tasks show that MC enhances the performance of recurrent
models, supporting its effectiveness. In in-context recall tasks, our results indicate
that while Transformers still achieve the best performance, our MC variants show
competitive performance, close the gap with Transformers, and performs better
than state-of-the-art recurrent models.

1 INTRODUCTION

Transformers (Vaswani et al., 2017b) are foundational to recent advances across various domains
(Jumper et al., 2021; Dosovitskiy et al., 2021; Comanici et al., 2025). Their success stems largely
from the attention mechanism, which acts as an associative memory with growing capacity (Ram-
sauer et al., 2021; Bietti et al., 2024; Behrouz et al., 2025b). While effective for many retrieval
tasks (Arora et al., 2024b; Behrouz et al., 2025a; Guo et al., 2025), this growing memory incurs
quadratic complexity and high inference-time memory usage (KV-caching). This has motivated the
development of sub-quadratic architectures that aim to improve efficiency while maintaining perfor-
mance (Dai et al., 2019; Child et al., 2019; Poli et al., 2023).

In particular, recurrent neural networks that aim to compress the past data into their memory
state, maintaining a fixed size over the entire input sequence, have regained attention in recent
years (Katharopoulos et al., 2020; Irie et al., 2021; Sun et al., 2023; Behrouz et al., 2024). De-
spite showing promising preliminary results in diverse short-context language modeling and other
sequence modeling tasks (Irie et al., 2022; Dalal et al., 2025), the fixed-memory state of such recur-
rent architectures is the bottleneck to unleash their actual power. The foundation of these architec-
tures is based on recurrence and data compression, which, with careful design, can result in highly
efficient and expressive learning algorithms (Merrill et al., 2024; Huang et al., 2024). However,
their fixed capacity to compress a growing sequence forces them to forget past information, which
is a critical bottleneck, specifically in recall-intensive and long-context tasks (Arora et al., 2024b;
Kuratov et al., 2024; Sun et al., 2024).

Contributions. We introduce Memory Caching (MC), a general technique that allows the effective
memory of recurrent models to grow with sequence length by caching checkpoints of the memory
states. MC provides a flexible middle ground interpolating between standard recurrence and atten-
tion, offering a controllable complexity of O(NL). This allows for flexible interpolation between
the O(L) complexity of RNNs and the O(L2) complexity of Transformers. Our contributions are
threefold:

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• The MC Framework: We propose segmenting the sequence and caching the compressed memory
state of each segment, allowing the model to directly access compressed information from the
entire history.

• Novel Aggregation Strategies: We introduce four methods to utilize these cached memories:
(i, ii) (Gated) Residual Memory, which uses residual connections and a novel context-aware gating
mechanism; (iii) Memory Soup, inspired by weight souping, which averages the parameters of
cached memory modules (distinct for non-linear memories); and (iv) Sparse Selective Caching
(SSC), which uses a Mixture-of-Experts style router to select only the most contextually relevant
cached memories for efficient aggregation.

• Empirical Validation: We demonstrate the effectiveness of MC on various architectures in-
cluding the deep memory module Titans (Behrouz et al., 2024) and Deep Linear Attention
(DLA) (Behrouz et al., 2025a)), across language modeling, long-context, and retrieval tasks, show-
ing that MC enhances performance and extends the effective context length of RNNs.

2 PRELIMINARIES AND BACKGROUND

In this section, we review necessary background and establish notations.

Notations. We use bold lowercase (resp. uppercase) letters for vectors (resp. matrices) and use
subscript t to refer to the state of the entities correspond to time t. Throughout, we let x ∈ RL×din

be the input, Mt be the state of memory M(·) at time t, K be the keys, V be the values, Q be
the query matrices, and L denote the sequence length. We focus on MLP-based architectures for
memory with LM ≥ 1 layers. Notably, this formulation includes linear matrix-valued memory
modules when LM = 1. When it is needed, we parameterize the memory module M(·) with
θM := {W1, . . . ,WLM , . . . }, which at least includes the parameters of linear layers in the MLP.

Attention. Attention Vaswani et al. (2017a) is the primary building block of Transformers that acts
as their associative memory (Bietti et al., 2023; Sun et al., 2024; Behrouz et al., 2025b). Given input
x ∈ RL×din , causal attention computes output y ∈ RL×din over input dependent key, value, and
query matrices Q = xWQ,K = xWK, and V = xWV as:

yi =

i∑
t=1

exp
(
q⊤
i kt

)
vt∑i

ℓ=1 exp
(
q⊤
i kℓ

) =
1

Zi

i∑
t=1

exp
(
q⊤
i kt

)
vt, (1)

where WQ,WK, and WV ∈ Rdin×din are learnable parameters, and Zi =
∑i

ℓ=1 exp
(
q⊤
i kℓ

)
is the

normalization term. Attention requires O(L2) operations due to the need to access all past tokens.

Linear Attention. Linear attention (Katharopoulos et al., 2020) and its variants (Sun et al., 2023;
Peng et al., 2023; Schlag et al., 2021) improves efficiency of attention by replacing the exp(·) oper-
ator in Equation 1 with a separable kernel ϕ(·), resulting in an efficient recurrent formulation:

yi =

i∑
t=1

ϕ (qi)
⊤
ϕ (kt)vt∑i

ℓ=1 ϕ (qi)
⊤
ϕ (kℓ)

=
1

Zi
Mtϕ (qi) , (2)

where Mt=Mt−1 + vtϕ (kt)
⊤ acts as the fixed-size memory (Katharopoulos et al., 2020).

Test-time Memorization Perspective. . A recent unifying framework interprets the forward pass
of sequence models—including both attention and modern RNNs—as a dynamic learning process
occurring at inference time Sun et al. (2024); Behrouz et al. (2025b); Wang et al. (2025). In this view,
the model acts as an associative memory that actively learns the mapping between input tokens (keys
and values). This memorization is achieved by optimizing an internal objective, often formalized as a
regression problem Wang et al. (2025) or “attentional bias” Behrouz et al. (2025b). This perspective
frames the memory state as a dynamic entity optimized during the forward pass. We leverage this
view by introducing Memory Caching, where cached states serve as checkpoints of this optimization
process, enhancing the model’s ability to retrieve information across long sequences.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 1: The Overall Memory Caching Method. Each token attends to its online memory as well
as a set of cached memories from the past.

3 RECURRENT NEURAL NETWORKS WITH MEMORY CACHING

RNNs maintain a fixed-size memory to compress the input sequence. As sequences grow long,
this leads to memory overflow and performance degradation. Conversely, attention caches all past
tokens, resulting in a growing memory but quadratic cost. We propose Memory Caching (MC)
to cache intermediate memory states, providing a middle ground where the model’s memory can
grow with arbitrary scale. This allows computational costs to interpolate between O(L) (RNNs)
and O(L2) (Transformers). To this end, given a sequence of tokens x ∈ RL×din , we split the se-
quence into segments S(1), . . . , S(N) with size L(1), . . . , L(N) and use memories M(1), . . . ,M(N)

to compress the segments. The memory update rule or the recurrence for memory corresponds to
s-th segment is:

kt = xtWk, vt = xtWv, qt = xtWq, (3)

M(s)
t = f

(
M(s)

t−1;kt,vt

)
, where 1 ≤ t ≤ L(s) , (4)

where f(·) is the learning update rule (e.g., f
(
M(s)

t−1;kt,vt

)
= M(s)

t−1 + vtk
⊤
t for linear atten-

tion (Katharopoulos et al., 2020)). Using the above formulation, we update the memories in each
segment and cache the last state of previous segments (i.e., {M(s)

L(s)}Ts=1 where T is the index of
the current segment). Standard RNNs compute the output using only the current memory state:
yt = Mt(qt). In contrast, our formulation uses all past cached memories alongside the current
memory (online memory) to compute the output for query qt. Given an arbitrary aggregation func-
tion, Agg(·; ·; ·), the output is:

yt = Agg
(
{M(1)

L(1)(·), . . . ,M
(s−1)

L(s−1)(·)};M
(s)
t (·);qt

)
, (5)

where s is the indices of the current segment. Note that for 1 ≤ i ≤ s, the term M(i)

L(i)(qt) provides
us with the corresponding information to query qt in segment i. In the following sections, we
present different effective choices of Agg(·; ·; ·) function to incorporate the past information into the
computation of the current output and increasing the effective memory capacity of the model.

3.1 RESIDUAL MEMORY

We begin with the simplest Agg(·; ·; ·) operator: a summation, acting as a residual connection
across memory states. In this case, given keys, values, and queries (see Equation 3) and segments
S(1), . . . , S(N), we define the memory update and output computation at time t in segment s as:

M(s)
t = f

(
M(s)

t−1;kt,vt

)
, where 1 ≤ t ≤ L(s) , (6)

yt = M(s)
t (qt)︸ ︷︷ ︸

Online Memory

+

s−1∑
i=1

M(i)

L(i)(qt)︸ ︷︷ ︸
Cached Memories

. (7)

The critical change in memory caching is how the output is computed. In fact, for retrieval of the
memory, the model uses forward passes over both the current memory (called online memory) and
the cached memories for input query qt.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Gated Residual Memory (GRM). When the memory module is strictly linear (i.e., M is a matrix),
the Residual Memory formulation (equation 7) mathematically collapses into a standard fixed-size
memory, as the cached memories can be pre-summed (c.f. equation 12 below). However, in practice,
our experimental results show that even this simple formulation can enhance the power of recurrent
models (see Section 4). A further limitation of the residual approach is that it treats all cached mem-
ories equally, ignoring their relevance to the query qt. To enable selective retrieval, we introduce
input-dependent gating. Given input xt in segment s, we define parameters 0 ≤ γ

(1)
t , . . . , γ

(s)
t ≤ 1

be input-dependent parameters and reformulate the output as:

M(s)
t = f

(
M(s)

t−1;kt,vt

)
, for 1 ≤ t ≤ L(s), yt = γ

(s)
t M(s)

t (qt) +

s−1∑
i=1

γ
(i)
t M(i)

L(i)(qt) (8)

Here, parameters γ
(i)
t modulate the contribution of each segment to the output. When γ

(i)
t → 1

(resp. γ(i)
t → 0), i-th segment has more (resp. less) contribution to the output. Due to these input

dependent parameters, the above formulation cannot be pre-computed before this token and also
cannot be reused for next tokens/segments. Therefore, contrary to the previous variant, it does not
collapse into the fixed-size memory case (even in the linear memory case) and so requires to be
recomputed for every token and needs caching memory states. A simple choice of parametrization
for γ(i)

t s is to define them as linear projection of input xt (similar to projections for keys, values, and
queries). With this parametrization, however, γ(i)

t acts as a position-based filtering/focus, meaning
that the context of xt only determines how much the i-th segment’s memory (based on the position)
contributes, no matter what its context is. To overcome this issue, we suggests making γ

(i)
t as a

function of both xt and i-th segment S(i), incorporating both of their contexts and how similar they
are. To this end, we introduce a connector parameter ut as the linear projection of input, and define
γ
(i)
t as the similarity of ut and i-th segment S(i):

γ
(i)
t = ⟨ut, MeanPooling(S

(i))⟩ where ut = xtWu . (9)
Here, MeanPooling(·) provides a simple representation of segment’s context as the mean of all
tokens. It, however, can be replaced by any other pooling process. As an alternative parameteriza-
tion, we can use ut = qt. When γ

(i)
t = 1, then GRM is equivalent to residual memory variant.

Example. To better illustrate the above formulations and as an illustrative example, we let
f
(
M(s)

t−1;kt,vt

)
= M(s)

t−1 −∇⟨M(s)
t−1(kt),vt⟩, where memory M(·) is an arbitrary feedforward

layer (e.g., MLP or gated MLP layers). This general form is equivalent to Deep Linear Attention
(DLA) (Behrouz et al., 2025a) and when the memory is a matrix (i.e., MLP with one layer) it is
equivalent to the linear attention (Katharopoulos et al., 2020). Using residual memory caching on
DLA results in a model with update and retrieval rules of:

M(s)
t = M(s)

t−1 −∇⟨M(s)
t−1(kt),vt⟩, yt = M(s)

t (qt) +

s−1∑
i=1

M(i)

L(i)(qt) . (10)

When using a linear matrix-valued memory (i.e., linear attention), Equation 10 can be simplified to:

M(s)
t = M(s)

t−1 + vtk
⊤
t , (11)

yt = M(s)
t qt +

s−1∑
i=1

M(i)

L(i)qt =

(
M(s)

t +

s−1∑
i=1

M(i)

L(i)

)
qt . (12)

Memory Complexity. In the retrieval process, we use the current memory (online memory) and
the cached memories of all previous segments and so given a fixed training sequence length, the
number of cached memories is a function of segment lengths. While the memory update process
has not changed and so requires O(L) operation, the retrieval process requires forward pass over all
cached memory and so needs O(N) operations per token. This brings the complexity of the model
to O(NL), where 1 ≤ N ≤ L. Note that when N = 1 (only one segment), we do not need to cache
any memory state, resulting in a simple recurrent memory model. When N = L, it means that each
token is treated as a separate segment and so the memory state for all past tokens are cached. This
closely matches the intuition behind the power of attention. In fact, attention by caching all past
tokens, provide a direct access to each part of the sequence, enhancing the retrieval ability.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: Sparse Selective Caching (SSC) of Memories. A router measures the contextual similarity
of each token to its past segments and chooses a subset of past cached memory for better efficiency.

3.2 MEMORY SOUP

Viewing the recurrence as a meta-learning process where memory states are checkpoints, we intro-
duce the Memory Soup variant, inspired by Wortsman et al. (2022). The core idea is to combine
the memory states (parameters) into a single data-dependent memory for retrieval. Similar to the
previous variant, we use M(i)

L(i) to refer to the cached memory corresponds to i-th segment and pa-

rameterize it with θM(i)

L(i)

:= {W (i)
1 , . . . ,W

(i)
c }. Note that the architecture of memory is unchanged

and so c (the number of parameters) is the same for all memory states. Accordingly, the memory
update and retrieval process for memory caching is defined as:

M(s)
t = f

(
M(s)

t−1;kt,vt

)
, for 1 ≤ t ≤ L(s) , yt = M∗

t (qt) , (13)

where M∗
t is parametrized as: θM∗

t
:= {

∑s
i=1 γ

(i)
t W

(i)
1 , . . . ,

∑s
i=1 γ

(i)
t W

(i)
c }. Therefore, each

token has its own memory for retrieval that also depends on the input-data and can change. In fact,
one can interpret the above process as a memory system that each token, builds its own memory to
retrieve corresponding information from. Note that here γ

(i)
t parameters are defined with the same

process as Equation 9.

When the memory module M is linear, Memory Soup is mathematically equivalent to GRM (Equa-
tion 8). This is because souping the weights and then applying the query is identical to applying the
query to individual memories and then ensembling the outputs, due to the linearity of the operation.
The distinction becomes crucial when using deep or non-linear memory modules (e.g., DLA or Ti-
tans). In these cases, the equivalence breaks down. Memory Soup constructs a new, input-dependent
memory module M∗

t by interpolating the parameters themselves, effectively creating a specialized
non-linear retrieval function tailored for that specific timestep.

3.3 SPARSE SELECTIVE CACHING (SSC) OF MEMORIES

The previous variants attend to all past cached memories, which can cause significant memory over-
head for ultra-long sequences. We introduce Sparse Selective Caching (SSC), where each token
contextually selects a subset of cached memories, improving efficiency. To this end, inspired by
Mixture of Experts (MoEs) (Shazeer et al., 2017), we use a router that based on the token and its
similarity to the context of each segment choose a subset of cached memories. For each segment
S(i), following Equation 9, we let MeanPooling(S(i)) =

∑
j∈S(i) kj , and define the relevance

score of each segment S(i) to query xt as:

r
(i)
t = ⟨ut, MeanPooling(S

(i))⟩, where ut = xtWu . (14)
Given relevance scores, the router chooses k of the cached memories with highest relevance, i.e.,
Rt = arg Top-k({r(i)t }s−1

i=1 ), as well as the current online memory for retrieval. Given selected
memories, the retrieval process is the same as previous variants but using only selected memories:

M(s)
t = f

(
M(s)

t−1;kt,vt

)
, where 1 ≤ t ≤ L(s) ,

yt = γ
(s)
t M(s)

t (qt) +
∑
i∈Rt

γ
(i)
t M(i)

L(i)(qt) . (15)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Performance of models on language modeling and common-sense reasoning tasks.

Model Wiki. LMB. LMB. PIQA Hella. Wino. ARC-e ARC-c SIQA BoolQ Avg.
ppl ↓ ppl ↓ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ acc n ↑ acc ↑ acc ↑ ↑

760M params / 30B tokens

Transformer++ 24.18 24.27 36.3 67.2 41.8 52.0 65.6 33.4 39.1 61.7 49.64

RetNet 25.77 24.19 34.5 66.8 41.2 51.9 63.6 32.5 38.8 56.2 48.19
DeltaNet 24.52 24.38 36.8 67.3 44.5 51.8 64.2 32.7 39.6 60.1 49.63
Miras (Memora) 22.28 22.31 38.2 67.8 49.3 53.3 63.6 36.1 40.9 63.0 51.53

Samba∗ 21.07 22.85 39.2 68.9 47.8 53.1 65.8 34.9 38.9 63.1 51.46

DLA 23.12 22.09 36.1 68.0 47.9 52.7 65.8 34.6 39.1 59.6 50.48
+ Log-Linear 23.08 21.15 36.8 68.1 47.7 53.0 65.6 35.1 39.2 59.3 50.60
+ GRM 22.91 20.10 37.5 69.2 48.7 52.8 66.1 36.8 40.3 59.9 51.41
+ Memory Soup 22.78 20.49 37.2 69.6 48.3 53.4 65.8 36.5 39.6 60.2 51.33
+ SSC 23.14 20.86 37.0 68.4 47.7 52.7 66.0 35.2 39.7 60.1 50.85

Titans (LMM) 20.04 21.96 37.4 69.3 48.5 52.3 66.3 35.8 40.1 62.8 51.56
+ Log-Linear 19.79 20.62 37.8 70.1 48.0 52.5 66.8 35.6 40.3 62.8 51.74
+ GRM 19.14 20.21 38.3 70.6 48.4 54.0 67.5 36.4 41.7 63.5 52.55
+ Memory Soup 19.52 20.38 38.0 71.4 48.6 53.7 67.1 35.4 41.3 63.1 52.33
+ SSC 19.39 20.46 37.7 70.9 48.7 53.5 66.9 36.3 41.2 63.1 52.29

1.3B params / 100B tokens

Transformer++ 17.92 17.73 42.6 71.4 51.3 54.1 69.9 36.0 41.8 58.4 53.19

RetNet 18.91 17.04 41.2 71.3 49.1 55.2 67.5 34.1 41.4 61.0 52.60
DeltaNet 18.62 17.10 41.6 70.1 49.4 52.7 67.6 35.2 39.7 54.8 51.39
Miras (Memora) 15.90 12.04 48.7 73.1 56.0 57.4 71.5 37.9 40.2 61.3 55.76

Samba∗ 16.15 13.21 45.2 71.5 53.8 55.8 69.1 36.7 40.6 63.0 54.46

DLA 16.31 12.29 44.5 70.6 53.9 54.2 69.6 36.0 40.8 60.2 53.72
+ Log-Linear 16.22 12.25 44.9 71.1 54.5 54.8 70.0 36.6 41.3 60.7 54.24
+ GRM 16.08 12.10 45.8 72.5 55.9 55.8 71.5 41.2 42.8 62.2 55.96
+ Memory Soup 16.16 12.17 45.6 71.9 55.4 55.6 70.9 37.7 42.0 61.5 55.08
+ SSC 16.20 12.19 45.3 71.7 54.8 55.3 70.4 37.1 41.4 61.1 54.64

Titans (LMM) 15.60 11.41 49.1 73.1 56.3 59.8 72.4 40.8 42.1 61.0 56.82
+ Log-Linear 15.49 11.38 49.4 73.6 56.5 60.3 72.8 41.1 42.5 61.3 57.19
+ GRM 15.37 11.29 50.4 74.5 57.4 61.5 73.8 42.6 43.9 62.5 58.33
+ Memory Soup 15.42 11.31 49.9 74.2 57.3 60.8 73.5 42.2 43.4 62.0 57.91
+ SSC 15.44 11.35 49.6 73.8 57.0 60.6 73.1 41.9 42.8 61.8 57.58

In this formulation, MeanPooling(S(i)) of each segment can be pre-computed and so computing
the relevance score as well as choosing Top-k segments for each token are simply parallelizable.
Also, such computations do not require to store the state of the cached memories in the accelerators
(i.e., GPUs, TPUs, etc.). Therefore, this process only requires loading the “selected” memories for
each token and so can enhance memory consumption during both training and inference.

Effective Memory. One interesting interpretation of SSC is to see it as a sparse unified memory
module. We illustrate this in Figure 2 (Right). One can see SSC as a model with growing memory,
where for each token activates a subset of parameters for memory write operation (storing the token),
and a larger subset of parameters for retrieval. This formulation allows the memory to (1) store
information without any interfering with past memories, and (2) efficiently and adaptively retrieve
information. The segment size, here, determines the size of the blocks in the unified memory that
become active together.

4 EXPERIMENTS

Next, we evaluate the effectiveness of memory caching in improving the performance of models on
language modeling, commonsense reasoning, needle in haystack, and in-context recall tasks.

Experimental Setup. We train our models with training context window of size
{1K, 2K, 4K, 8K, 16K, 32K} and segment lengths ranging from {16, 32, 64, 128, 256, 512} tokens
using FineWeb dataset (Penedo et al., 2024). Unless stated otherwise, the default context length
is 4K with 256 segment length. We use model size of 760M, and 1.3B parameters and train them
on 30B and 100B tokens sampled from the dataset. Perplexity is measured on held-out validation
data. As for the downstream tasks, we evaluate trained models on Wikitext (Merity et al., 2017),
LMB (Paperno et al., 2016), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), Wino-
Grande (Sakaguchi et al., 2021), ARC-easy (ARC-e) and ARC-challenge (ARC-c) (Clark et al.,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: NIAH experiments, including three single-needle tasks—S-NIAH-1 (passkey retrieval), S-
NIAH-2 (numerical needle), and S-NIAH-3 (UUID-based needle).

S-NIAH-1 S-NIAH-2 S-NIAH-3
(pass-key retrieval) (number in haystack) (uuid in haystack)

Model 4K 8K 16K 4K 8K 16K 4K 8K 16K

Transformer 88.6 76.4 79.8 100 98.8 94.2 78.0 69.2 40.8

DLA 96.4 71.2 44.0 79.6 42.6 28.2 18.2 8.8 4.0
+ Log-Linear 100 96.2 70.4 87.6 70.4 18.0 28.8 20.4 6.0
+ GRM 100 100 82.4 94.6 82.8 54.8 48.2 34.4 18.2
+ Memory Soup 100 100 78.2 91.8 77.2 40.4 43.0 32.8 14.8
+ SSC 100 98.2 76.8 89.2 74.8 37.6 34.0 28.6 11.2

Titans (LMM) 100 100 100 99.6 84.6 75.4 74.2 42.8 21.2
+ Log-Linear 100 100 100 95.6 88.4 74.8 76.0 48.4 24.2
+ GRM 100 100 100 99.8 96.6 88.2 89.4 69.0 32.2
+ Memory Soup 100 100 100 98.8 92.2 83.0 84.2 61.8 28.6
+ SSC 100 100 100 98.6 90.4 79.6 81.0 54.2 27.0

2018), SIQA (Sap et al., 2019), and BoolQ (Clark et al., 2019). Additional details about the experi-
mental setups and other used datasets are in Appendix B.

4.1 LANGUAGE MODELING

We start with common and academic-scale language modeling. The results of DLA, and Titans with
and without memory caching are reported in Table 1. There are four observations: (1) Compar-
ing DLA, Titans, and LA with their enhanced version with memory caching, we observe that all
memory caching variants provides consistent improvements on different downstream tasks, and also
on average over their baseline. This shows the importance of memory caching to further enhance
memory bounded models. (2) As discussed earlier, memory caching can be seen as a hybrid of
sparse attention with recurrent model. Comparing memory caching enhanced models and two of the
state-of-the-art hybrid models, memory caching provides a more powerful solution to the problem
of limited memory in recurrent models. Particularly, Titans + MC and DLA + MC achieves +0.8%
performance gain over the Titans. (3) MC enhanced variants show better performance compared
to simple recurrent models. We also compare against the Log-Linear attention approach Guo et al.
(2025), which utilizes a hybrid caching strategy. (4) Comparing among MC variants and Log-Linear
method, we observed that our three variants provide better results. Furthermore, GRM and then SSC
achieves better results among our provided methods. We attribute this performance gain to larger
effective memory size that MC provides for the model.

4.2 NEEDLE-IN-A-HAYSTACK TASKS

We evaluate the impact of MC on long-context retrieval using Needle-in-a-Haystack (NIAH) tasks
(Table 2). MC-enhanced DLA and Titans consistently outperform the base models. Furthermore,
MC variants outperform the Log-Linear approach, especially at longer contexts. Log-Linear strug-
gles because it forces a single memory to compress very large initial segments (e.g., 8K tokens in a
16K sequence), whereas MC distributes the compression load more effectively.

4.3 IN-CONTEXT RETRIEVAL TASKS

In-context recall tasks are among the most challenging benchmarks for recurrent neural networks.
In this section, we follow Arora et al. (2024b) and perform experiments on SWDE (Lockard
et al., 2019), NQ (Kwiatkowski et al., 2019), DROP (Dua et al., 2019), FDA (Arora et al., 2023),
SQUAD (Rajpurkar et al., 2016), and TQA (Kembhavi et al., 2017) to evaluate and compare the
performance of MC-enhanced variants with baselines and Transformers. The results are reported in
Table 3. While Transformers still achieve the best results in in-context recall tasks, our MC variants
show competitive performance, close the gap with Transformers, and performs better than state-of-
the-art recurrent models. We again attribute this performance to larger memory capacity that scales
with sequence length.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Accuracy on retrieval tasks w/ input truncated to different lengths.

SWDE SQuAD FDA

Model 512 1024 2048 16k 512 1024 2048 16k 512 1024 2048 16k

Transformer 46.2 43.7 44.4 44.0 33.1 33.3 33.6 33.4 71.0 69.5 71.6 71.0
Titans (MAL) 51.9 48.6 48.3 48.5 28.3 29.2 29.1 28.8 71.1 73.9 72.1 71.7

DLA 44.5 39.9 32.7 32.5 23.8 24.0 23.8 24.1 55.6 40.2 25.9 23.3
+ Log-Linear 43.7 37.7 30.4 30.6 27.8 27.8 27.9 28.3 55.1 39.6 22.3 18.9
+ GRM 52.4 48.9 48.7 48.5 29.5 30.7 30.7 30.1 63.3 51.6 48.9 41.5
+ Memory Soup 49.5 45.0 38.0 37.7 28.4 28.6 28.5 29.1 60.5 48.4 37.2 34.6
+ SSC 47.0 42.5 35.5 35.3 26.0 28.1 27.1 28.8 58.0 46.0 28.8 29.4

Titans (LMM) 43.2 34.4 29.2 29.7 25.7 26.2 26.3 25.6 59.3 45.5 35.4 32.5
+ Log-Linear 48.0 41.4 37.2 37.0 27.2 27.3 27.2 27.1 67.0 55.5 41.2 32.4
+ GRM 52.6 49.3 49.5 50.1 29.7 30.4 31.5 32.0 72.9 68.7 61.1 52.6
+ Memory Soup 50.3 46.7 44.8 45.4 29.2 29.7 29.8 30.3 70.3 63.8 55.7 45.8
+ SSC 48.6 44.2 41.0 41.4 28.3 28.8 28.5 28.8 68.2 59.4 47.6 38.9

TriviaQA Drop NQ Avg.
Model 512 1024 2048 16k 512 1024 2048 16k 512 1024 2048

Transformer 47.5 48.5 47.4 47.6 21.8 22.0 21.5 21.4 23.6 23.1 23.7 41.00
Titans (MAL) 44.8 45.1 44.6 44.8 20.6 20.5 20.8 20.9 22.1 22.4 22.5 40.46

DLA 43.3 44.2 43.5 43.2 20.1 19.9 20.6 20.0 19.7 18.4 18.5 30.51
+ Log-Linear 43.7 44.8 43.6 43.8 20.3 20.2 20.8 20.2 19.9 18.8 21.0 30.75
+ GRM 50.1 47.3 44.8 50.0 21.9 21.8 22.0 21.7 23.5 23.3 23.4 38.03
+ Memory Soup 48.0 46.4 44.2 48.7 21.5 21.3 21.7 21.2 22.8 22.4 22.5 35.05
+ SSC 45.8 45.5 43.9 46.1 20.9 20.7 21.2 20.6 21.4 20.6 21.8 33.09

Titans (LMM) 44.2 44.7 43.9 44.5 20.2 20.1 20.3 20.6 20.1 19.5 19.1 31.75
+ Log-Linear 44.5 44.9 44.1 44.7 20.4 20.4 20.5 20.7 21.5 19.8 20.4 34.37
+ GRM 50.2 47.5 45.3 50.9 21.7 21.8 21.9 21.5 23.7 23.4 23.3 40.50
+ Memory Soup 48.3 46.6 44.8 49.4 21.3 21.4 21.7 21.1 22.9 22.2 22.5 38.43
+ SSC 46.1 45.7 44.3 46.9 20.8 20.7 21.2 20.9 21.9 20.4 21.5 36.27

Table 4: Accuracy on LongBench tasks (Bai et al., 2024): NarrativeQA, QasperQA, MultiFieldQA, Hot-
potQA, 2WikiMultiQA, Musique, GovReport, QMSum, MultiNews, TREC, TriviaQA, SamSum, LCC, and
RepoBench-P.

Single-Doc QA Multi-Doc QA Summarization Few-shot Code

Model NQA QQA MFQ HQA 2WM Mus GvR QMS MNs TRC TQA SSM LCC RBP

Transformer 11.5 9.6 19.1 21.5 28.9 6.5 13.0 9.2 3.1 27.2 27.9 15.1 22.9 29.1

DLA 9.4 17.5 12.1 11.8 22.3 4.8 9.5 7.4 5.1 4.8 23.5 9.7 38.4 34.9
+ Log-Linear 10.1 10.2 17.1 12.4 23.3 5.5 6.6 12.7 5.8 18.6 24.7 16.2 31.6 31.0
+ GRM 11.6 10.3 19.8 18.2 26.9 6.4 13.5 14.1 6.9 25.7 28.2 18.3 32.7 33.9
+ Memory Soup 11.2 10.3 19.5 16.7 25.1 6.3 11.2 13.8 6.2 22.5 26.9 17.7 32.3 33.5
+ SSC 10.7 10.2 18.8 14.2 24.8 5.9 8.4 12.9 6.1 20.5 25.7 16.8 31.9 32.6

Titans (LMM) 8.7 12.5 18.4 15.6 26.1 6.7 10.5 12.6 11.8 37.1 26.2 24.5 31.3 31.4
+ Log-Linear 9.6 8.9 19.3 18.7 26.9 6.8 6.7 12.9 2.8 11.2 42.7 25.0 29.5 29.7
+ GRM 11.8 9.4 19.9 21.4 29.1 7.2 8.4 13.3 3.1 14.8 49.7 25.5 31.0 32.8
+ Memory Soup 10.7 9.2 19.6 20.2 28.2 7.1 7.8 13.1 3.0 13.7 47.1 25.3 30.8 31.4
+ SSC 9.9 9.1 19.4 19.8 27.5 6.9 7.1 13.0 2.8 12.5 44.8 25.2 29.9 30.8

4.4 LONG CONTEXT UNDERSTANDING TASKS

We evaluate long-context understanding on LongBench (Bai et al., 2024) (Table 4). All MC-
enhanced variants provide performance gains compared to their base RNNs, again attributed to their
increased memory capacity.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 3: Average accuracies (mean ± std) on
MQAR over 5 seeds.

Figure 4: Training throughput comparison of
memory caching variants and baselines.

4.5 MULTI-QUERY ASSOCIATIVE RECALL (MQAR)

In this section, we evaluate the performance of MC-enhanced variants in Multi-Query Associa-
tive Recall (MQAR) task (Arora et al., 2024a). The results are reported in Figure 3. Our models
show good performance compared to their base RNNs also the state-of-the-art recurrent models,
achieving the best performance per dimension value compared to state-of-the-art models such as
Atlas (Behrouz et al., 2025a).

4.6 ABLATION STUDIES
Figure 5: Ablation Study on MC. All design choices
of MC are positively contributing to its effectiveness.

Model Language Modeling C.S. Reasoning Retrieval
ppl ↓ acc ↑ acc ↑

Titans (GRM) 13.3 58.3 40.5
- Context-dependent 13.4 57.4 33.0
- Gating 13.5 56.9 32.4
- Linear Memory 13.7 56.3 34.5

Titans (SSC) 13.4 57.6 36.3
- Context-dependent 13.4 57.1 32.6
- Gating 13.5 56.8 31.9
- Linear Memory 13.8 56.8 33.4

In this section, we evaluate the effect of
design choices in the MC framework. The
first choice is wether γ should be the func-
tion of only input or also the context of
blocks. The results are reported in Fig-
ure 5. This design choice has shown sig-
nificant improvement on average. The sec-
ond design is to remove the gating. Note
that without gating, the design collapses
into residual memory. The results show
even this simple design can enhance the
performance of the models. Finally, in the third design, we use a linear memory module. Sur-
prisingly, using memory caching results in more robustness of the performance with respect to the
memory architecture and expressivity.

4.7 EFFICIENCY

Finally, we evaluate the training throughput of our variants with baselines. The results are reported
in Figure 4. Our MC variants provide a middle ground between Transformers and RNNs, and they
become extremely efficient compared to Transformers, when increasing the context length. These
results indicate that our SSC variant has the best of both worlds and while performs on par or better
compared to other variants in the diverse downstream tasks that we discussed earlier, they also add
minimal overhead compare to their original base RNN variant. Furthermore, they show significantly
better efficiency in longer sequences.

5 CONCLUSION

In this paper, we present Memory Caching (MC), a simple technique applicable to all recurrent
neural networks, that caches a subset of memory state, allowing subsequent tokens directly attend
to its past relevant tokens. Our experiments show improvements over a subset of baselines. A lot
of choices in this paper have been made to keep the resulting model as simple as possible, better
showing the effect of memory caching idea. In future work, more expressive pooling or routing
mechanism can be used to further enhance the performance.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Simran Arora, Brandon Yang, Sabri Eyuboglu, Avanika Narayan, Andrew Hojel, Immanuel Trum-
mer, and Christopher Ré. Language models enable simple systems for generating structured views
of heterogeneous data lakes. arXiv preprint arXiv:2304.09433, 2023.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli, James Zou, Atri
Rudra, and Christopher Re. Zoology: Measuring and improving recall in efficient language
models. In The Twelfth International Conference on Learning Representations, 2024a. URL
https://openreview.net/forum?id=LY3ukUANko.

Simran Arora, Sabri Eyuboglu, Michael Zhang, Aman Timalsina, Silas Alberti, James Zou, Atri
Rudra, and Christopher Re. Simple linear attention language models balance the recall-throughput
tradeoff. In Forty-first International Conference on Machine Learning, 2024b. URL https:
//openreview.net/forum?id=e93ffDcpH3.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding. In ACL (1), pp. 3119–3137, 2024. URL
https://aclanthology.org/2024.acl-long.172.

Ali Behrouz, Peilin Zhong, and Vahab Mirrokni. Titans: Learning to memorize at test time. arXiv
preprint arXiv:2501.00663, 2024.

Ali Behrouz, Zeman Li, Praneeth Kacham, Majid Daliri, Yuan Deng, Peilin Zhong, Meisam Raza-
viyayn, and Vahab Mirrokni. Atlas: Learning to optimally memorize the context at test time.
arXiv preprint arXiv:2505.23735, 2025a.

Ali Behrouz, Meisam Razaviyayn, Peilin Zhong, and Vahab Mirrokni. It’s all connected: A jour-
ney through test-time memorization, attentional bias, retention, and online optimization. arXiv
preprint arXiv:2504.13173, 2025b.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint. Advances in Neural Information Processing Systems, 36:
1560–1588, 2023.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint. Advances in Neural Information Processing Systems, 36,
2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. arXiv preprint arXiv:1904.10509, 2019.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. In Jill
Burstein, Christy Doran, and Thamar Solorio (eds.), Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Papers), pp. 2924–2936, Minneapolis, Min-
nesota, June 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1300. URL
https://aclanthology.org/N19-1300/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

10

https://openreview.net/forum?id=LY3ukUANko
https://openreview.net/forum?id=e93ffDcpH3
https://openreview.net/forum?id=e93ffDcpH3
https://aclanthology.org/2024.acl-long.172
https://aclanthology.org/N19-1300/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Róbert Csordás, Christopher Potts, Christopher D Manning, and Atticus Geiger. Recurrent neural
networks learn to store and generate sequences using non-linear representations. In Proceedings
of the 7th BlackboxNLP Workshop: Analyzing and Interpreting Neural Networks for NLP, pp.
248–262, 2024.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc Viet Le, and Ruslan Salakhut-
dinov. Transformer-xl: Attentive language models beyond a fixed-length context. In Anna Ko-
rhonen, David R. Traum, and Lluı́s Màrquez (eds.), ACL (1), pp. 2978–2988. Association for
Computational Linguistics, 2019. ISBN 978-1-950737-48-2.

Karan Dalal, Daniel Koceja, Gashon Hussein, Jiarui Xu, Yue Zhao, Youjin Song, Shihao Han,
Ka Chun Cheung, Jan Kautz, Carlos Guestrin, et al. One-minute video generation with test-time
training. arXiv preprint arXiv:2504.05298, 2025.

Tri Dao, Albert Gu, Matthew Eichhorn, Atri Rudra, and Christopher Ré. Learning fast algorithms for
linear transforms using butterfly factorizations. In International conference on machine learning,
pp. 1517–1527. PMLR, 2019.

Tri Dao, Beidi Chen, Nimit S Sohoni, Arjun Desai, Michael Poli, Jessica Grogan, Alexander Liu,
Aniruddh Rao, Atri Rudra, and Christopher Ré. Monarch: Expressive structured matrices for
efficient and accurate training. In International Conference on Machine Learning, pp. 4690–
4721. PMLR, 2022.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. arXiv
preprint arXiv:1903.00161, 2019.

Xavier Gonzalez, Andrew Warrington, Jimmy Smith, and Scott Linderman. Towards scalable and
stable parallelization of nonlinear rnns. Advances in Neural Information Processing Systems, 37:
5817–5849, 2024.

Han Guo, Songlin Yang, Tarushii Goel, Eric P Xing, Tri Dao, and Yoon Kim. Log-linear attention.
arXiv preprint arXiv:2506.04761, 2025.

Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and
Daniela Rus. Liquid structural state-space models. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
g4OTKRKfS7R.

Donald Olding Hebb. The organization of behavior: A neuropsychological theory. Psychology
press, 2005.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

Jerry Yao-Chieh Hu, Dennis Wu, and Han Liu. Provably optimal memory capacity for modern
hopfield models: Transformer-compatible dense associative memories as spherical codes. arXiv
preprint arXiv:2410.23126, 2024.

Yuzhen Huang, Jinghan Zhang, Zifei Shan, and Junxian He. Compression represents intelligence
linearly. In First Conference on Language Modeling, 2024. URL https://openreview.
net/forum?id=SHMj84U5SH.

11

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=g4OTKRKfS7R
https://openreview.net/forum?id=g4OTKRKfS7R
https://openreview.net/forum?id=SHMj84U5SH
https://openreview.net/forum?id=SHMj84U5SH


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Kazuki Irie, Imanol Schlag, Robert Csordas, and Juergen Schmidhuber. Going beyond linear trans-
formers with recurrent fast weight programmers. Advances in neural information processing
systems, 34:7703–7717, 2021.

Kazuki Irie, Imanol Schlag, Róbert Csordás, and Juergen Schmidhuber. A modern self-referential
weight matrix that learns to modify itself. In International Conference on Machine Learning, pp.
9660–9677. PMLR, 2022.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. nature, 596(7873):583–589, 2021.

Yanming Kang, Giang Tran, and Hans De Sterck. Fast multipole attention: A divide-and-conquer
attention mechanism for long sequences. arXiv preprint arXiv:2310.11960, 2023.

M. Karami and V. Mirrokni. Lattice: Learning to efficiently compress the memory, 2025.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Aniruddha Kembhavi, Minjoon Seo, Dustin Schwenk, Jonghyun Choi, Ali Farhadi, and Hannaneh
Hajishirzi. Are you smarter than a sixth grader? textbook question answering for multimodal
machine comprehension. In Proceedings of the IEEE Conference on Computer Vision and Pattern
recognition, pp. 4999–5007, 2017.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. arXiv
preprint arXiv:2001.04451, 2020.

Dmitry Krotov. Hierarchical associative memory. arXiv preprint arXiv:2107.06446, 2021.

Dmitry Krotov and John J Hopfield. Dense associative memory for pattern recognition. Advances
in neural information processing systems, 29, 2016.

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Igorevich Sorokin, Artyom
Sorokin, and Mikhail Burtsev. BABILong: Testing the limits of LLMs with long context
reasoning-in-a-haystack. In The Thirty-eight Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?
id=u7m2CG84BQ.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, et al. Natural questions: a
benchmark for question answering research. Transactions of the Association for Computational
Linguistics, 7:453–466, 2019.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng
Yan. Enhancing the locality and breaking the memory bottleneck of transformer on time series
forecasting. Advances in neural information processing systems, 32, 2019.

Xiaoyu Li, Yuanpeng Li, Yingyu Liang, Zhenmei Shi, and Zhao Song. On the expressive power of
modern hopfield networks. arXiv preprint arXiv:2412.05562, 2024.

Yi Heng Lim, Qi Zhu, Joshua Selfridge, and Muhammad Firmansyah Kasim. Parallelizing
non-linear sequential models over the sequence length. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
E34AlVLN0v.

Bo Liu, Rui Wang, Lemeng Wu, Yihao Feng, Peter Stone, and Qiang Liu. Longhorn: State space
models are amortized online learners. arXiv preprint arXiv:2407.14207, 2024.

Colin Lockard, Prashant Shiralkar, and Xin Luna Dong. Openceres: When open information extrac-
tion meets the semi-structured web. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pp. 3047–3056, 2019.

12

https://openreview.net/forum?id=u7m2CG84BQ
https://openreview.net/forum?id=u7m2CG84BQ
https://openreview.net/forum?id=E34AlVLN0v
https://openreview.net/forum?id=E34AlVLN0v


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Carlo Lucibello and Marc Mézard. Exponential capacity of dense associative memories. Physical
Review Letters, 132(7):077301, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mix-
ture models. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=Byj72udxe.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space mod-
els. In Forty-first International Conference on Machine Learning, 2024. URL https:
//openreview.net/forum?id=QZgo9JZpLq.

Tsendsuren Munkhdalai and Hong Yu. Neural semantic encoders. In Proceedings of the conference.
Association for Computational Linguistics. Meeting, volume 1, pp. 397. NIH Public Access, 2017.

Tsendsuren Munkhdalai, Alessandro Sordoni, Tong Wang, and Adam Trischler. Metalearned neural
memory. Advances in Neural Information Processing Systems, 32, 2019.

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient
infinite context transformers with infini-attention. arXiv preprint arXiv:2404.07143, 2024.

Tan Nguyen, Vai Suliafu, Stanley Osher, Long Chen, and Bao Wang. Fmmformer: Efficient and
flexible transformer via decomposed near-field and far-field attention. Advances in neural infor-
mation processing systems, 34:29449–29463, 2021.

Denis Paperno, German Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernandez. The LAMBADA dataset:
Word prediction requiring a broad discourse context. In Katrin Erk and Noah A. Smith (eds.),
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 1525–1534, Berlin, Germany, August 2016. Association for Com-
putational Linguistics. doi: 10.18653/v1/P16-1144. URL https://aclanthology.org/
P16-1144/.

Guilherme Penedo, Hynek Kydlı́ček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data
at scale. Advances in Neural Information Processing Systems, 37:30811–30849, 2024.

Bo Peng, Eric Alcaide, Quentin Gregory Anthony, Alon Albalak, Samuel Arcadinho, Stella Bider-
man, Huanqi Cao, Xin Cheng, Michael Nguyen Chung, Leon Derczynski, Xingjian Du, Matteo
Grella, Kranthi Kiran GV, Xuzheng He, Haowen Hou, Przemyslaw Kazienko, Jan Kocon, Jiaming
Kong, Bartłomiej Koptyra, Hayden Lau, Jiaju Lin, Krishna Sri Ipsit Mantri, Ferdinand Mom, At-
sushi Saito, Guangyu Song, Xiangru Tang, Johan S. Wind, Stanisław Wozniak, Zhenyuan Zhang,
Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu. RWKV: Reinventing RNNs for the transformer era.
In The 2023 Conference on Empirical Methods in Natural Language Processing, 2023. URL
https://openreview.net/forum?id=7SaXczaBpG.

Bo Peng, Daniel Goldstein, Quentin Anthony, Alon Albalak, Eric Alcaide, Stella Biderman, Eugene
Cheah, Xingjian Du, Teddy Ferdinan, Haowen Hou, et al. Eagle and finch: Rwkv with matrix-
valued states and dynamic recurrence. arXiv preprint arXiv:2404.05892, 2024.

Bo Peng, Ruichong Zhang, Daniel Goldstein, Eric Alcaide, Haowen Hou, Janna Lu, William Merrill,
Guangyu Song, Kaifeng Tan, Saiteja Utpala, et al. Rwkv-7” goose” with expressive dynamic state
evolution. arXiv preprint arXiv:2503.14456, 2025.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y Fu, Tri Dao, Stephen Baccus, Yoshua
Bengio, Stefano Ermon, and Christopher Ré. Hyena hierarchy: Towards larger convolutional
language models. In International Conference on Machine Learning, pp. 28043–28078. PMLR,
2023.

DL Prados and SC Kak. Neural network capacity using delta rule. Electronics Letters, 25(3):
197–199, 1989.

Shikai Qiu, Andres Potapczynski, Marc Finzi, Micah Goldblum, and Andrew Gordon Wil-
son. Compute better spent: Replacing dense layers with structured matrices. arXiv preprint
arXiv:2406.06248, 2024.

13

https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=Byj72udxe
https://openreview.net/forum?id=QZgo9JZpLq
https://openreview.net/forum?id=QZgo9JZpLq
https://aclanthology.org/P16-1144/
https://aclanthology.org/P16-1144/
https://openreview.net/forum?id=7SaXczaBpG


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Lukas Gru-
ber, Markus Holzleitner, Thomas Adler, David Kreil, Michael K Kopp, Günter Klambauer, Jo-
hannes Brandstetter, and Sepp Hochreiter. Hopfield networks is all you need. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=tL89RnzIiCd.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan Le Bras, and Yejin Choi. Social IQa: Com-
monsense reasoning about social interactions. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xi-
aojun Wan (eds.), Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pp. 4463–4473, Hong Kong, China, November 2019. Association for Com-
putational Linguistics. doi: 10.18653/v1/D19-1454. URL https://aclanthology.org/
D19-1454/.

Imanol Schlag, Kazuki Irie, and Juergen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, pp. 9355–9366. PMLR, 2021.

Juergen Schmidhuber. Learning to control fast-weight memories: An alternative to recurrent nets.
accepted for publication in. Neural Computation, 1992.

Juergen Schmidhuber. Reducing the ratio between learning complexity and number of time varying
variables in fully recurrent nets. In ICANN’93: Proceedings of the International Conference on
Artificial Neural Networks Amsterdam, The Netherlands 13–16 September 1993 3, pp. 460–463.
Springer, 1993.

Mark Schöne, Babak Rahmani, Heiner Kremer, Fabian Falck, Hitesh Ballani, and Jannes Gladrow.
Implicit language models are rnns: Balancing parallelization and expressivity. arXiv preprint
arXiv:2502.07827, 2025.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=B1ckMDqlg.

Julien Siems, Timur Carstensen, Arber Zela, Frank Hutter, Massimiliano Pontil, and Riccardo
Grazzi. Deltaproduct: Increasing the expressivity of deltanet through products of householders.
arXiv preprint arXiv:2502.10297, 2025.

Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for se-
quence modeling. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=Ai8Hw3AXqks.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive
hidden states. arXiv preprint arXiv:2407.04620, 2024.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue, Jianyong Wang, and
Furu Wei. Retentive network: A successor to transformer for large language models. arXiv
preprint arXiv:2307.08621, 2023.

Matteo Tiezzi, Michele Casoni, Alessandro Betti, Tommaso Guidi, Marco Gori, and Stefano
Melacci. On the resurgence of recurrent models for long sequences: Survey and research op-
portunities in the transformer era. arXiv preprint arXiv:2402.08132, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017a. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

14

https://openreview.net/forum?id=tL89RnzIiCd
https://openreview.net/forum?id=tL89RnzIiCd
https://aclanthology.org/D19-1454/
https://aclanthology.org/D19-1454/
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=Ai8Hw3AXqks
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017b. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Johannes Von Oswald, Maximilian Schlegel, Alexander Meulemans, Seijin Kobayashi, Eyvind
Niklasson, Nicolas Zucchet, Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, et al.
Uncovering mesa-optimization algorithms in transformers. arXiv preprint arXiv:2309.05858,
2023.

Ke Alexander Wang, Jiaxin Shi, and Emily B Fox. Test-time regression: a unifying framework for
designing sequence models with associative memory. arXiv preprint arXiv:2501.12352, 2025.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022.

Songlin Yang, Jan Kautz, and Ali Hatamizadeh. Gated delta networks: Improving mamba2 with
delta rule. arXiv preprint arXiv:2412.06464, 2024a.

Songlin Yang, Bailin Wang, Yu Zhang, Yikang Shen, and Yoon Kim. Parallelizing linear transform-
ers with the delta rule over sequence length. Advances in Neural Information Processing Systems,
37:115491–115522, 2024b.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a
machine really finish your sentence? In Anna Korhonen, David Traum, and Lluis Marquez
(eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 4791–4800, Florence, Italy, July 2019. Association for Computational Linguistics. doi: 10.
18653/v1/P19-1472. URL https://aclanthology.org/P19-1472/.

Zhanpeng Zeng, Sourav Pal, Jeffery Kline, Glenn M Fung, and Vikas Singh. Multi resolution
analysis (mra) for approximate self-attention. In International conference on machine learning,
pp. 25955–25972. PMLR, 2022.

Tianyuan Zhang, Sai Bi, Yicong Hong, Kai Zhang, Fujun Luan, Songlin Yang, Kalyan
Sunkavalli, William T Freeman, and Hao Tan. Test-time training done right. arXiv preprint
arXiv:2505.23884, 2025.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting. In Proceedings
of the AAAI conference on artificial intelligence, volume 35, pp. 11106–11115, 2021.

15

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/P19-1472/


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A RELATED WORK

Modern Linear Recurrent Neural Networks. Recent efforts have focused on alleviating the
quadratic complexity and context-length limitations of Transformers, motivating the development
of efficient recurrent alternatives that offer faster inference and training (Tiezzi et al., 2024). Early
models such as RetNet (Sun et al., 2023), RWKV (Peng et al., 2023), and S5 (Smith et al., 2023) re-
lied on data-independent transition matrices with Hebbian-like updates. A subsequent wave of work
introduced input-dependent parameters into linear RNN architectures (e.g., linear RNNs (Hasani
et al., 2023; Smith et al., 2023), RWKV6 (Peng et al., 2024)), alongside more expressive update
mechanisms, including variants of the delta rule (Peng et al., 2025; Schlag et al., 2021; Yang et al.,
2024b;a; Liu et al., 2024). This line of research has further extended to deeper architectures, incor-
porating delta-rule-like updates (Sun et al., 2024) or data-dependent momentum-based rules with
forget gating (Behrouz et al., 2024). More recently, Siems et al. (2025) enhanced delta-rule models
by applying multiple gradient descent updates per token, yielding more expressive state-tracking
capabilities. Beyond linear recurrent models, several works investigate RNNs with non-linear recur-
rence (Behrouz et al., 2025b; Csordás et al., 2024; Merrill et al., 2024; Lim et al., 2024; Schöne et al.,
2025; Karami & Mirrokni, 2025; Von Oswald et al., 2023; Gonzalez et al., 2024), with emphasis on
accelerating their training (Gonzalez et al., 2024; Lim et al., 2024; Schöne et al., 2025).

Efficient Attention Mechanisms. In addition to recurrent architectures, recent work has proposed
using structured matrices to improve the efficiency of token and channel mixing layers. For example,
Butterfly matrices (Dao et al., 2019), Monarch matrices (Dao et al., 2022), and Block Tensor-Train
matrices (Qiu et al., 2024) provide compact yet expressive parameterizations that reduce the com-
putational burden of dense projections. Other approaches design sparse or hybrid attention mecha-
nisms, such as sliding-window attention or models that combine localized recurrence with selective
long-range connections (Nguyen et al., 2021; Arora et al., 2024b; Munkhdalai et al., 2024). Another
family of approaches reduces the quadratic complexity of attention to nearly log-linear time. Classi-
cal examples include Reformer (Kitaev et al., 2020), which uses locality-sensitive hashing to cluster
queries and keys, and LogSparse Transformer (Li et al., 2019) and Informer (Zhou et al., 2021),
which rely on structured sparsity patterns for efficiency in long-sequence and time-series tasks. Sub-
sequent work has introduced more elaborate designs, such as multi-resolution attention (Zeng et al.,
2022), which progressively refines attention scores from coarse to fine levels, and Fast Multipole
Attention (Kang et al., 2023), which adapts the fast multipole method for scalable long-range inter-
actions. Recently, Guo et al. (2025) introduce Log-Linear Attention, a framework that augments
linear attention with a logarithmically growing set of hidden states organized via Fenwick tree par-
titioning. This design achieves O(T log T ) training complexity and O(log T ) decoding memory,
while preserving hardware-efficient parallelization.

Fast Weight Programs and Meta Learning. The view of linear layers as key-value associative
memory systems dates back to Hopfield networks (Hopfield, 1982). This idea was later extended
through the development of fast weight programmers, in which dynamic fast programs are integrated
into recurrent neural networks to function as writable memory stores (Schlag et al., 2021; Schmid-
huber, 1992; 1993). Among the learning paradigms for such systems, Hebbian learning (Hebb,
2005) and the delta rule (Prados & Kak, 1989) have been most prominent. Both rules have been ex-
tensively studied in the literature (Munkhdalai & Yu, 2017; Schmidhuber, 1992; Munkhdalai et al.,
2019; Schlag et al., 2021; Irie et al., 2021; Yang et al., 2024b;a).

Hopfield Networks. Our formulation builds on the broad concept of associative memory, where the
goal is to learn mappings between keys and values. Seminal work by Hopfield (1982) introduced
Hopfield Networks as one of the earliest neural architectures explicitly based on associative memory,
formalized through the minimization of an energy function for storing key-value pairs. While clas-
sical Hopfield networks have seen reduced applicability due to limitations in vector-valued memory
capacity and the structure of their energy function, recent studies have sought to enhance their ca-
pacity through various approaches (Krotov, 2021; Li et al., 2024; Krotov & Hopfield, 2016). In
particular, extensions of their energy functions with exponential kernels have been explored (Krotov
& Hopfield, 2016; Lucibello & Mézard, 2024). Moreover, connections between modern Hopfield
networks and Transformer architectures have been actively investigated (Ramsauer et al., 2021; Hu
et al., 2024).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 5: Architectural Details.

Model Block Dim Head Peak LR Token

760M 24 1536 16 1.25e-3 30B
1.3B 18 2048 8 7e-4 100B

B EXPERIMENTAL DETAILS

In our experimental setup we follow recent studies on recurrent models (Yang et al., 2024a; Behrouz
et al., 2024; 2025b; Zhang et al., 2025; Guo et al., 2025), we use Wikitext (Merity et al., 2017),
LMB (Paperno et al., 2016), PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), Wino-
Grande (Sakaguchi et al., 2021), ARC-easy (ARC-e) and ARC-challenge (ARC-c) (Clark et al.,
2018), SIQA (Sap et al., 2019), and BoolQ (Clark et al., 2019). Also, the baselines results are from
Behrouz et al. (2025b; 2024). In the training, we use a vocabulary size of 32K and use training
length of 4K tokens (2K for SWA). We employ AdamW optimizer with learning rate of 4e-4 with
cosine annealing schedule with batch size of 0.5M tokens, and weight decay of 0.1.

For the memory architecture, unless state otherwise, we use an MLP with 2 layers with expan-
sion factor of 4 and GELU activation function (Hendrycks & Gimpel, 2016). We also use residual
connections and layer norm at the end of each chunk: M(x) = x+W1σ(W2x).

17


	Introduction
	Preliminaries and Background
	Recurrent Neural Networks with Memory Caching
	Residual Memory
	Memory Soup
	Sparse Selective Caching (SSC) of Memories

	Experiments
	Language Modeling
	Needle-In-A-Haystack Tasks
	In-context Retrieval Tasks
	Long Context Understanding Tasks
	Multi-Query Associative Recall (MQAR)
	Ablation Studies
	Efficiency

	Conclusion
	Related Work
	Experimental Details

