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ABSTRACT

We consider neural networks (NNs) where the final layer is down-scaled by a
fixed hyperparameter γ. Recent work has identified γ as controlling the strength
of feature learning. As γ increases, network evolution changes from “lazy” kernel
dynamics to “rich” feature-learning dynamics, with a host of associated benefits
including improved performance on common tasks. In this work, we conduct a
thorough empirical investigation of the effect of scaling γ across a variety of mod-
els and datasets in the online training setting. We first examine the interaction of
γ with the learning rate η, identifying several scaling regimes in the γ-η plane
which we explain theoretically using a simple model. We find that the optimal
learning rate η∗ scales non-trivially with γ. In particular, η∗ ∝ γ2 when γ ≪ 1
and η∗ ∝ γ2/L when γ ≫ 1 for a feed-forward network of depth L. Using this
optimal learning rate scaling, we proceed with an empirical study of the under-
explored “ultra-rich” γ ≫ 1 regime. We find that networks in this regime display
characteristic loss curves, starting with a long plateau followed by a drop-off,
sometimes followed by one or more additional staircase steps. We find networks
of different large γ values optimize along similar trajectories up to a reparame-
terization of time. We further find that optimal online performance is often found
at large γ and could be missed if this hyperparameter is not tuned. Our findings
indicate that analytical study of the large-γ limit may yield useful insights into the
dynamics of representation learning in performant models.

1 INTRODUCTION

The study of large-width limits of neural networks (NNs) has led to a variety of insights about deep
learning. As network width N tends to infinity, networks in either “PyTorch standard” parameter-
ization or neural tangent kernel (NTK) parameterization converge to kernel methods (Jacot et al.,
2018; Lee et al., 2019; Sohl-Dickstein et al., 2020). Kernel methods have a fixed set of features,
and networks in this kernel limit have fixed representations at each layer over training. By contrast,
realistic neural networks adapt their features during the course of training (Fort et al., 2020; Vyas
et al., 2022; Lee et al., 2020). Feature learning is widely believed to be intimately connected to the
excellent performance of NNs on practical tasks.

If one takes a centered NN1 f(x;θ) in NTK parameterization with inputs x and parameters θ and
scales the output as f̃(x;θ) ≡ αf(x;θ), one can control the degree to which the NN learns features.
Taking α → ∞ yields the “lazy limit,” where the network behaves as a kernel (Chizat et al., 2019).
By contrast, if one sets α = (γ

√
N)−1 for fixed γ and simultaneously scales the learning rate as

ηN , one obtains a network whose hidden representations evolve even at infinite width (Geiger et al.,
2020; Mei et al., 2018; Rotskoff & Vanden-Eijnden, 2018; Yang & Hu, 2021; Bordelon & Pehle-
van, 2022), a scaling termed the “maximal update parameterization” or “µP” by Yang & Hu (2021).
Although at practical widths and dataset scales, NNs in standard and NTK parameterization deviate
from their infinite-width kernel limit (Lee et al., 2020), networks in µP achieve their infinite width
behavior at realistic scales (Vyas et al., 2023a; Noci et al., 2024). Networks parameterized in µP
generally achieve better performance, and µP can be utilized effectively for zero-shot hyperparam-
eter transfer from small models to large (Yang et al., 2021; Bordelon et al., 2023). The width does

1In this paper, we assume all networks are centered, meaning that f(x;θ) = 0 at initialization. This can be
achieved by subtracting a non-trainable copy of the network at initialization.
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not affect the degree of feature learning in µP, so we identify γ as the feature learning strength or
richness parameter (Woodworth et al., 2020).

This story leaves γ as a free hyperparameter to be tuned, but despite its importance, little is practi-
cally known about the effects of varying γ. In this paper, we perform a thorough scaling analysis in
which we train a variety of deep networks with γ ranging across many orders of magnitude, with an
eye towards both optimal tuning of γ and cataloging the diverse dynamical phenomena that occur
in different hyperparameter regimes. In addition to studying the lazy (γ ≪ 1) and rich (γ ∼ 1)
regimes, we pay particular attention to what we term the ultra-rich (γ ≫ 1) regime.

In this work, we focus on the online setting, where a fresh batch of data is given at each step and we
train for a fixed time set by a compute budget. This is realistic of modern large-scale language and
vision models and is scientifically clarifying, removing the confounding effect of finite dataset size.

Concretely our contributions are as follows. We systematically vary γ over a suite of models span-
ning MLPs, CNNs, ResNets, and Vision Transformers (ViTs) on a variety of datasets. In all settings:

• Sweeping over both γ and the learning rate η, we observe a characteristic phase portrait of
model performance in the γ-η plane, which depends only on the choice of the loss function
and not the model architecture (Figure 1). We show that the optimal learning rate scales
as η∗ ∼ γ2 in the lazy (γ ≪ 1) regime and η∗ ∼ γ2/L, where L is the model depth, in
the ultra-rich (γ ≫ 1) regime. Our phase portrait reveals an upper limit on γ for a deep
network to be optimizable for a given compute budget.

• After adopting the correct learning rate scaling, we find that large γ networks usually ex-
ceed or match the performance of naive γ = 1 networks if trained for sufficiently long
(Figure 2). This disagrees with findings in the offline training setting (Petrini et al., 2022),
where strong feature learning was found to degrade performance.

• At small γ, we observe the scaling of η with γ predicted by kernel theory. To our knowl-
edge, we are the first to observe that transformer-based architectures on large datasets can
empirically reach the lazy limit. At slightly-too-large η in the lazy (γ ≪ 1) regime, we
observe the “catapult effect” of Lewkowycz et al. (2020) in which the loss quickly grows
large before gradually converging. We see catapults for γ2 ≲ η ≲ γ for cross-entropy loss,
but only in a narrow band around η ∼ γ2 for MSE. Smaller γ leads to larger catapults.

• At large γ, we observe silent alignment as in Atanasov et al. (2022): at early times, the
kernel aligns itself to the task before the loss drops. During this early period, NNs exhibit
strikingly similar dynamics upon rescaling τ = ηt/γ, with the loss often exhibiting step-
wise drops as in (Saxe et al., 2014; Simon et al., 2023b) even in very realistic networks. We
further observe that the loss drops at the end of silent alignment coincide with the Hessian
growth predicted by the edge of stability (EOS; Cohen et al. (2021)).

• At optimal learning rate, we see a surprising agreement in the loss trajectories of large-γ
networks at late times in training. This suggests that large-γ networks are learning similar
features and functions past a certain threshold. We verify this similarity by comparing
losses, accuracies, learned functions, and internal representations.

• Finally, we reproduce and analytically derive our phase portrait and many of the above
behaviors in the simple setting of a linear neural network model (Section 4). There, we
show the modified η scaling in the large γ regime is due to a progressive sharpening effect.

We review the catapult, silent alignment, and progressive sharpening effects in Appendix C.

1.1 RELATED WORKS

Chizat et al. (2019) introduced the laziness parameter α in their seminal work. Mei et al. (2018);
Rotskoff & Vanden-Eijnden (2018) introduced networks in mean-field parameterization. Geiger
et al. (2020) introduced the correct scaling of α with N as α = (γ

√
N)−1 to achieve feature learning

at infinite width. They also highlighted that γ can be identified as the parameter that controls feature
learning. Yang & Hu (2021) expanded this idea to deep networks of arbitrary architecture and
coined the term µP. Bordelon & Pehlevan (2022) described this limit in terms of dynamical mean
field theory. Extensions to infinite depth were performed in Bordelon et al. (2023) and Yang &
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Littwin (2023) and to infinite attention in Bordelon et al. (2024c). We give a review of network
parameterizations in Appendix B. A key motivation for this work is that γ is the main free parameter
in the DMFT description of infinite-width feature learning networks, warranting a more thorough
empirical investigation.

The question of optimal γ was explored in the paper of Petrini et al. (2022). There, for several
models in the offline setting, they showed large γ networks performed worse. In a linear network
toy model, Pesme et al. (2021) showed that SGD noise could be absorbed into a rescaling of α.
Sclocchi et al. (2023) performed a large set of thorough experiments to study the interplay between
the SGD noise in different regimes of γ and find that SGD noise can hurt or help in the offline
setting. By contrast to these papers, we focus on the online setting. We comment on this further
in Section 2.1. Under cross-entropy loss, Agarwala et al. (2020) performed extensive sweeps on
un-centered networks over γ, η, identifying γ as the soft-max temperature, similarly finding that
slightly larger γ achieves top performance. Our cross-entropy results overlap with this work and
recover their findings, but we additionally identify a different way to scale η at large γ, allowing us
to probe the very rich limits without training instability.

Various analytical studies of the large-γ limit have been performed in the setting of linear networks
(Atanasov et al., 2022; Tu et al., 2024), with Jacot et al. (2021) terming this limit the “saddle-to-
saddle” regime. The feature learning parameter has been shown to play a key role in the mechanism
for grokking in (Kumar et al., 2024). The paper of (Kalra et al., 2023) performed a thorough analysis
of the causes of progressive sharpening and catapult behavior in networks across µP and SP in the
offline setting. In the online setting we show that all effects are present in µP and are modulated by
the γ parameter. In the setting of a linear network, (Marion & Chizat, 2024) also found a nontrivial
and depth-dependent sharpening effect. Earlier works studying the effect of varying the γ parameter
(Sclocchi et al., 2023; Bordelon & Pehlevan, 2022; 2023) focused on the offline setting of training
with repeated data until some convergence criterion is satisfied.

2 SETUP AND NOTATION

We train neural networks f(x;θ) parameterized using µP scaling, with the output further down-
scaled by a factor of γ.2 We denote the width of a given network by N and the depth of a feed-
forward network by L.3 We train online on batches Bt = {xµ,yµ}Bµ=1 batch with size B for
t ∈ {1, . . . , T} time steps. The loss of each batch is given by a mean of per-example losses:

LBt
(θ) =

1

B

∑
µ∈Bt

ℓ

(
1

γ
f(xµ;θ),yµ

)
. (1)

We will consider both mean-squared-error and cross-entropy loss for ℓ. In this work we focus on
optimizing the parameters by vanilla SGD, as even in this simple setting, the effect of γ is not well-
understood. For small batch sizes, the the SGD effects are controlled by the ratio η/B (Jastrzebski
et al., 2017; Smith et al., 2020; Sclocchi et al., 2023). We verify this this in Appendix K.

We study networks trained on the datasets, MNIST, CIFAR and TinyImageNet. Our motivation is
to study networks training in the online setting over several orders of magnitude in time. To this
end, we adopt larger versions of these datasets: “MNIST-1M” and CIFAR-5M, and apply strong
data augmentation to TinyImagenet. We generate MNIST-1M using the denoising diffusion model
(Ho et al., 2020) in Pearce (2022). We use CIFAR-5M from Nakkiran et al. (2021). Earlier results
in Refinetti et al. (2023) show that networks trained on CIFAR-5M have very similar trajectories to
those trained on CIFAR-10 without repetition.

2.1 WHY TRAIN ONLINE?
In the modern era of large models, the full training set is seldom repeated (Kaplan et al., 2020;
Muennighoff et al., 2023). Online, the effect of SGD noise was seen to have negligible effect on
scaling both empirically (Vyas et al., 2023b) and theoretically (Paquette et al., 2024). The online
setting thus allows us to isolate properties of γ as an optimization hyperparameter for the population
gradient flow that SGD approximates. This removes the complicated overfitting effects that have
been theoretically shown to build up when data is repeated (Bordelon et al., 2024a), as well as the
many regimes of SGD under an interpolation constraint (Sclocchi & Wyart, 2024).

2We verify our µP implementation, confirming consistency of dynamics across width in Appendix I.
3Here, depth counts the number of weight matrices, e.g. f(x) = W2σ(W1x) has depth L = 2.
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Figure 1: Phase portraits of the γ − η plane for MSE and cross-entropy losses. a,b) Schematics
of the regimes of network training for both losses. As the number of gradient steps increases, the
lower boundaries of the convergent region descend, and the “no training” region shrinks. L here
denotes the network depth. All scalings are obtained analytically in Section 4. c,d) Final accuracies
of deep networks trained across a grid of values of γ, η for c) and MLP on MNIST-1M with MSE
and d) a CNN on CIFAR-5M with cross-entropy loss. As shown by dashed lines, these empirics
agree with our analytical diagrams. These results are robust to the choice of model and task.

3 EMPIRICAL RESULTS

In this section we consider a variety of architectures: MLPs, CNNs, ResNet-18s, and Vision Trans-
formers (ViTs), trained on a variety of tasks. We first discuss the different regimes observed in
the η-γ plane across architectures. We then discuss the properties of the Hessian, and identify spe-
cific dynamical phenomena. Finally, we focus on the large γ limit and show that learned functions
learned representations largely agree across large γ networks.

3.1 PHASE PORTRAIT OF η WITH γ

We begin by considering the γ-η plane for a variety of architectures and datasets. We sweep jointly
over every pair of η, γ in a log-spaced grid running from γ = 10−5 to 105. For each γ, we sweep
from η = 1012 to η = 10−12 downwards in a log-spaced grid until the first convergent η is reached.
After finding the first convergent η, we sweep over a range of η below it. We consider both MSE
and cross-entropy losses. Further details are given in Appendix A.

At small γ, η ∝ γ2 for lazy networks We consider the limit of small γ, γ → 0. This recovers the
lazy limit of Chizat et al. (2019). The (empirical) neural tangent kernel of the network is KNTK ≡
∇f · ∇f ∼ Θ(γ−2). In kernel regression under MSE loss, the maximum achievable learning rate
is proportional to the top eigenvalue of the Hessian. This sets the upper bound to be η ∼ γ2. More
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Figure 2: a) Online loss curves of CNN trained on CIFAR-5M across γ, at the second largest
convergent η. η scales as γ2 for γ < 1 and γ2/L for γ > 1. We also observe that very large γ have
a long period of flat loss before a drop. We overlay dashed lines to highlight the different power
law scalings of loss with training time observed in the lazy and rich regime. b) Final test accuracy
as a function of γ. We see that, as long as one trains long enough, larger γ yields equal or better
generalization to γ = 1, but the returns are marginal past some point. We verify this for other
networks in Appendix L.3. Error bars show the small variance over three initializations.

generally at small γ the Hessian is dominated by the Gauss-Newton term, as we will explicitly write
in Section 3.2, equation 3. This term scales as Θ(γ−2). Moreover, in order to achieve a trainable
network as γ → 0, one needs the loss to have a nonzero change in L in that limit. We have:

Lt+1 − Lt = −η|∇θL|2 = −η

∣∣∣∣∣ 1B
B∑

µ=1

1

γ
∇θf ℓ′

(
1

γ
f(xµ,θ),yµ

)∣∣∣∣∣
2

. (2)

By centering, near initialization ℓ′ is Θγ(1). The left hand side is thus Θ(γ−2), so the minimum
learning rate to see the loss drop in T steps scales as η ∼ γ2/T . We see this on the left region of the
plots in Figure 1(c) and 1(d). We verify that networks of different but sufficiently small γ have the
same loss dynamics in Appendix L.1, indicating that the lazy limit is reached by realistic networks.

At small γ and larger η, catapults can occur For η larger than the sharpness allowed by convex
optimization, the loss explodes early on in time. For a range of η above this, the loss eventually
drops again. This is the catapult effect of Lewkowycz et al. (2020). The maximal learning rate for
these scales as γ2 under MSE loss and as γ under cross-entropy loss. We revisit this in Section 3.3
and Figure 4(a).

At large γ, there are two learning rate scalings Empirically, in Figures 1(c) and 1(d), we ob-
serve a “triangle of optimizability” in the large γ limit. To our knowledge prior works have not
highlighted this fact. The upper boundary of the maximal learning rate before the loss explodes is
found empirically to scale as η ∼ γ2/L. On the other hand, at large γ, activation movement precedes
function movement, by contrast to the lazy limit. The minimal learning rate scaling in order for the
activations to move by Θγ(1) is η ∼ γ, as in (Bordelon & Pehlevan, 2022), or η ∼ γ/T under
a budget of T training steps. Taking C ∝ TB to be the compute budget, we see that generally
increasing C increases the optimizable region for large γ.

Sufficiently large γ NNs see improved scaling laws We plot the loss in time across γ in Fig-
ure 2(a). We overlay two different scaling curves as dashed lines. We see the slopes between the
small γ lazy networks and the large γ rich networks appear substantively different. The former
slope can be predicted from kernel theory, as in Pillaud-Vivien et al. (2018) and Bordelon & Pehle-
van (2021). Increasing γ beyond some threshold does not appear to improve the scaling law. This
echoes similar findings as found by the recent model of Bordelon et al. (2024b).

Large-γ NNs achieve good generalization, given sufficient training time We plot the accuracy
of NNs across γ in Figure 2(b). We see that generalization improves with larger γ, eventually

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

10 4 10 2 100 102 104

10 6

10 4

10 2

100

102

104

106

108

Ei
ge

nv
al

ue
s

Final Hessian Eigenvalues, CIFAR-5M CNN
N=96, L=4, B=256, loss=mse

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

= 2
0

= 2/L
0

(a)

100 101 102 103 104

t

10 12

10 9

10 6

10 3

100

103

106

Sh
ar

pn
es

s, 
m

ax

Sharpness of Loss Landscape, CNN, CIFAR-5M,
N=96, L=4, B=256, loss=mse

=  1e-05
=  1e-04
=  1e-03
=  1e-02
=  1e-01
=  1e+00
=  1e+01
=  1e+02
=  1e+03
=  1e+04
=  1e+05

(b)

100 101 102 103 104

t

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

2
m

ax

Hessian Spectrum, = 1e-05 CNN, CIFAR-5M,
N=96, L=4, B=256, loss=mse 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

(c)

100 101 102 103 104

t

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

2/
L

m
ax

Hessian Spectrum, = 1e+04 CNN, CIFAR-5M,
N=96, L=4, B=256, loss=mse 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

(d)

Figure 3: a) The top 20 eigenvalues of the Hessian at the end of training vs γ for an NN trained with
MSE. We clearly see two regimes. For small γ we see that λmax b) The eigenvalue vs time across
several value of γ. c) The top eigenvalues across time for a lazy network. In the lazy setting, we
see ten outliers, equal to the number of classes. The Hessian otherwise does not change in MSE. d)
The same for a rich network. At late time, rather than seeing a small set of outliers, we see many
eigenvalues grow to a sizeable range. Further plots are given in Appendix M.

reaching a roughly constant value. This contrasts with studies in the offline setting (Geiger et al.,
2020; Sclocchi et al., 2023) where performance decreases at large γ. We highlight that if networks
do not train long enough, a non-monotonicity is indeed present, but this goes away with longer
online training.

3.2 HESSIAN SCALING

We next consider the scaling of the Hessian of the loss as a function of γ. On a batch B of B test
points, this is given by HB = ∇2

θLB, or:

HB =
1

B

B∑
µ=1

∇f(xµ) · ∇f(xµ) ℓ
′′(f(xµ), yµ)︸ ︷︷ ︸

G

+
1

B

B∑
µ=1

∇2f(xµ) ℓ
′(f(xµ), yµ)︸ ︷︷ ︸

R

. (3)

Here, we have split the Hessian into a Gauss-Newton term G and a loss gradient term R. The
Hessian contains important properties about the optimization landscape. One particularly important
quantity is top eigenvalue λmax, also known as the sharpness. The sharpness governs the maximal
allowable learning rate in a convex optimization problem.

Across all tasks we find remarkably consistent behavior of the Hessian spectrum, see Figure 3(a).
For γ ≪ 1, the network stays lazy and the Hessian does not evolve. There, the Hessian is dominated
by the G term, which scales as γ−2. Once γ exceeds a threshold however, we observe a distinct
change in scaling at the end of training. For feed-forward MLPs and CNNs, we verify a scaling
going as γ−2/L. In section 4, we derive this scaling in a linear network model.
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Figure 4: a) At sufficiently small γ, we observe that the loss catapults. Small γ incur a larger
catapult. Further catapult plots are in Appendix N. b) At large γ, we do not observe catapults. At the
optimal learning rate, the loss stays near a saddle for an extended period of time, before suddenly
dropping. We show that during this period, the alignment between the final-layer kernel and the
task grows before the loss drops. Kernel-target alignment is defined in Appendix P. Further silent
alignment plots are in Appendix Q. We also see characteristic step-wise loss drops in this regime.

We also track how the top eigenvalues of the evolve in time in Figures 3(b) to 3(d). For lazy networks
we predictably see no evolution. In the next section we show that small γ but larger η networks can
catapult and lower their sharpness. For rich networks we highlight that a very extensive number of
eigenvalues grow to large scale. This is in contrast with the commonly observed phenomenon that
for a C-class classification task there should be C outliers. Here, in the lazy limit there are indeed
10 distinct outliers, but in the rich regime there are no distinct outliers at late times.

3.3 DYNAMICAL PHENOMENA

We here describe a catalog of different dynamical phenomena that we find in networks trained in the
small- and large-γ regimes. We give background on these effects in Appendix C.

The catapult effect at small γ We see in Figure 4(a) that small γ networks exhibit large increases
followed by decreases in the loss, with remarkably regular behavior, decreasing in scale as γ grows.
In Appendix D, we leverage a similar linear network model to arrive at the desired catapult scalings
with γ under both MSE and cross-entropy loss.

Silent alignment at large γ We now consider the dynamics at large γ. Empirically, we find that
our sweeps do not detect any catapult effects once γ is large enough. Taking the optimal learning
rate for SGD at large γ still yields a long loss plateau. During this plateau, the NN can be shown
to be adapting its features, and appears to align its hidden-layer representations with the task. We
illustrate this in Figure 4(b). This effect was identified in linear networks at small initialization in
Atanasov et al. (2022), and shown to empirically hold in a restricted class of NNs on whitened data.
Here, we show that it arises in a much broader class of realistic settings.

Stepwise loss drops at large γ At very large γ, we often observe loss trajectories following a
characteristic staircase pattern, with one or more plateaus punctuated by sudden drops. This is a
prediction of linear network theory (Saxe et al., 2014; Simon et al., 2023a) that seems to hold even
for very realistic models. We see these step-wise trajectories for MLPS in Figures 4(b), 31 and 41,
CNNs in Figures 31 and 40 and ViTs in Figure 16. We show that, upon rescaling time as τ = ηt/γ,
the early time dynamics coincide. The first loss drop goes as t ∼ γ. We explain the origin of this
timescale in Section 4.

Progressive sharpening at the end of silent alignment Across all tasks and models, we find that
the loss drop that ends silent alignment is always accompanied by a growth in the sharpness to the
final value of approximately 2/η. We show this in Figure 4(b). This is the large γ analogue of the
progressive sharpening effect observed in Cohen et al. (2021). This effect is not present at small γ.
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Figure 5: a) Function outputs between pairs of networks, as described in the main text. We see that
lazy networks have nearly identical function outputs, and that rich networks agree in their function
outputs at the end of training as well. See Appendix R for further plots. b) We study the kernel-target
alignment of final-layer representations across γ at the end of training.

3.4 COMPARING LEARNED FUNCTIONS AND REPRESENTATIONS

Finally, we consider the question of to what extend different networks are learning the “same func-
tion” and the same representations. To this end, we consider two distinct networks A, and B as well
as a held out set of test points. For each point xµ, there is a correct class c, so that [yµ]c′ = δc,c′ as
a one-hot vector. We consider the value that a given network places on [yµ]c. On one axis, we plot
network and on the other we plot network B. Networks are learning the same function if and only
if this plot yields an exact diagonal line. In the lazy limit, we see in Figure 5(a) that indeed the two
networks are learning nearly identical functions. We also see strong agreement between different
network in the rich limit at the end of training. By contrast, rich and lazy networks do not have
substantial function agreement.

We then consider the learned representations in Figure 5(b). Here, we plot a version of centered
kernel alignment (CKA) between the final layer network activation kernel K and the “task kernel”
yy⊤ for y a P × C class label matrix. We see that, after adopting a suitable time rescaling, the
alignment scores for a variety of networks across γ agree. Larger γ networks retain slightly higher
alignment scores.

4 A SIMPLE MODEL EXPLAINING OBSERVED SCALINGS

In this section, we provide a theoretical model that explains all observed scaling relationships em-
pirically observed in Figure 1 and analytically reproduces our phase portraits.

The following simple model will prove sufficient: a deep linear network of width one, trained on
a single example. The network function in this case is f(x) = wL . . . w1x. We will initialize all
weights to 1 at initialization, and due to the commutativity of multiplication they will receive the
same gradients and remain equal throughout training. We are thus justified in replacing all weights
with a single weight w and, letting x = 1, we need only keep track of the function value f = wL.4
We divide the function value by γ and center it by subtracting off its value at initialization before
passing it to the loss function.

4.1 SCALINGS FOR MSE LOSS

We first consider MSE loss with a target value y = 1. All together, this yields a loss equal to

LMSE(w) =
1

2

(
1

γ
(wL − 1)− 1

)2

. (4)

4A technicality: because the variable w is repeated L times, it will receive a gradient L times larger than
one of the original variables wℓ. To recover the original training dynamics, we would thus need to downscale η
by a factor of L. However, because we assume L = Θ(1), we neglect this for simplicity and our γ, T scalings
will be unaffected.
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MSE Loss
Lazy (γ ≪ 1) Ultra-rich (γ ≫ 1)

ηmin ηcrit ηmax ηmin ηmax
γ2

T γ2 γ2 γ
T γ2/L

Cross-Entropy Loss
Lazy (γ ≪ 1) Ultra-rich (γ ≫ 1)

ηmin ηcrit ηmax ηmin ηmax
γ2

T γ2 γ γ
T γ2/L

Table 1: SGD learning rate scalings for our toy models for two loss functions in the lazy and
ultra-rich regimes. All values come out of our one-parameter model except ηcrit for MSE loss,
which comes from the two-parameter model given in Appendix D. Predicted scalings match NN
experiments.

with w = 1 at initialization. The loss is minimized by

w∗ = (γ + 1)
1
L ≈

{
1 + γ

L for γ ≪ 1,

γ
1
L for γ ≫ 1,

(5)

where we use “≈” to indicate that we are neglecting higher-order terms in γ as appropriate to the
regime. In the lazy γ ≪ 1 regime, w∗ is close to the initial w, whereas in the ultra-rich γ ≫ 1
regime, the parameter w must grow substantially. The Hessian of the loss at convergence is then:

L′′
MSE(w∗) =

L2

γ2
w2L−2

∗ ≈

{
L2

γ2 for γ ≪ 1,

L2γ−2/L for γ ≫ 1.
(6)

Maximal convergent learning rates: In order to converge, the learning rate must satisfy η <
2/L′′(w∗) near convergence. Thus, from Equation (6), we see that the maximal convergent learning
rate ηmax will scale as

ηmax ∼
{

γ2 for γ ≪ 1,
γ2/L for γ ≫ 1.

(7)

Minimal nontrivial learning rates: In investigating the minimal learning rates, we can safely take
the gradient flow approximation. We define the error ∆ = −L′(w) = 1− 1

γ (w
L − 1).

When γ ≪ 1, we may linearize the network output with respect to w, and doing so we find that
w ≈ 1 + γ

L (1 − exp(−L2ηT
γ2 )). The error is then given by ∆ ≈ exp(−L2ηT

γ2 ). Therefore, in order
for the loss to move a nontrivial amount, we require the scaling ηmin ∼ γ2/T .

When γ ≫ 1, in order for the network to learn features, we must have that the hidden layer acti-
vations move by Θγ(1). Because in this model these are given by wℓx for each layer ℓ, we see we
require Θγ(1) weight movement. The weight updates are given by ẇ = −ηL′(w) = ηL

γ wL−1∆.
So in order for the network to learn features in T steps of training, we require η > ηFL ∼ γ/T .

Beyond constraining that the activations move, we also consider how long it takes to escape the
initial saddle and lower the loss. Using that w′(t) ≈ ηL

γ wL−1 during the initial period, we find that

w(T ) ≈

 e
LηT
γ if L = 2,(
1− LηT

γ

) −1
L−2

if L ≥ 3.
(8)

This phase ends when the function value wL

γ reaches order unity. In order for this to occur, we need
η ∼ T−1γ log γ if L = 2 and η ∼ γ/T if L ≥ 3. Neglecting the logarithmic factor, we find a lower
bound ηmin ∼ γ

T . Note as a consequence that the early-time dynamics are approximately γ-invariant
after the rescaling τ ≡ ηt/γ. We verify this in Figure 4(b), 5(b), and Appendix L.2.

Critical learning rate for the catapult effect: The above one-parameter model is sufficient to
obtain all the coarse dynamical phenomena we see except for so-called loss “catapults.” As described
by (Lewkowycz et al., 2020), a network trained in the lazy regime with a just-too-large learning rate
will grow quickly in loss, but then move to a flatter region of parameter space and converge.

The catapult effect generally requires two parameter dimensions to describe (Damian et al., 2023),
so our one-parameter model cannot capture it. In Appendix N, we describe and simulate a minimal
two-parameter model that exhibits catapults. We find that for MSE loss, catapults occur in a narrow
band ηcrit < η < ηmax, with ηcrit ∼ γ2 just like ηmax.
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Figure 6: Simulations of our one-parameter model with MSE loss (left; see Equation (4)) and cross-
entropy loss (right; see Equation (9)) with varying γ, η recover our principal phase portrait. Simula-
tions run with L = 5. For simulations of a two-parameter model which exhibits true catapults, see
Figures 8 and 9.

4.2 SCALINGS FOR CROSS-ENTROPY LOSS

We now consider the toy cross-entropy loss

Lxent(w) =
log(ef̃(w) + 1)

1 + e−1
+

log(e−f̃(w) + 1)

1 + e
, (9)

where we use the shorthand f̃(w) = γ−1(wL−1) for the centered and rescaled function output. This
is a binary cross-entropy loss with ground-truth class probabilities p0 = (1 + e)−1 and p1 = 1− p0
chosen so that the loss minimum occurs at f̃(w) = 1. The resulting loss landscape is, scaling-wise,
the same as that for MSE, with one salient difference: when f̃(w) ≫ 1, we have Lxent(w) ∼ |f̃(w)|
as opposed to LMSE ∼ f̃2(w).

The main effect of this difference is seen in the lazy (γ ≪ 1) regime when η is too large for stability
at the minimizer. Once w−1 has grown to order just larger than γ (and we are still seeing linearized
dynamics), it begins to experience constant-sized restoring steps δw ∼ −ηL

γ sign(w−1).5 It is only
if η ∼ γ or larger that this step is large enough to lead to a Θγ(1) change in w, upon which we
escape our initial linear region and can diverge. The result is that the maximum stable learning rate
for our toy model in the lazy regime is ηcrit ∼ γ2, but the maximum nondivergent learning rate is
ηmax ∼ γ. In our minimal two-parameter model described in Appendix D, we find that the loss does
eventually settle back down and converge for ηcrit < η < ηmax, and that this triangle of the phase
diagram is there a true catapult regime. All the above scalings are summarized in Table 1.

We perform simulations of our one-parameter model in a fashion analogous to our parameter sweeps
for deep networks for T = 103 steps of gradient descent. The results, plotted in Figure 6, confirm
our analytical scalings and match our phase portraits for deep networks (e.g. Figure 1). Finally, we
also provide a similar analysis in the case of the Adam optimizer in Appendix Appendix F.

5 CONCLUSION

We have presented a set of large-scale empirical sweeps across γ for deep networks trained on
realistic data. We have empirically identified how the upper bound for optimizable η is determined
across a host of different γ in terms of the training time and the depth of the network. We see that,
conditional on an adjusted learning rate scaling with γ, larger γ NNs are competitive with or better
than γ = 1 NNs after training long enough. We have seen very predictable scaling of hessian spectra
with γ and identified various dynamical phenomena whose appearance is governed by the size of γ.
By appeal to a linear NN, we have been able to explain many of our observed scalings. In future
steps, we hope to to extend our analysis to optimizers beyond SGD.

5Contrast this with the linear-sized restoring steps δw ∼ −L2

γ2 δw which one sees with MSE.
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A EXPERIMENTAL DETAILS

We evaluate all our experiments on A100 and H100 GPUs, using PyTorch. In order to compute
the Hessian eigenvalues we use PyHessian (Yao et al., 2020) evaluated on 1 fixed batch of size 512
at every point in time. In the following subsections we provide individual experimental details for
every model trained.

Across all models, we swept over γ from 10−5 to 105 in a log-spacing with two samples per decade.
We swept over η from 1010 down to a lower limit that varied by experiment, as reported on the plots.
For each run that caused a gradient explosion, the model was not saved. We only saved models with
η less than or equal to the first convergent learning rate for each value of γ. For the MNIST-1M
plots and CIFAR-5M plots, at each value of γ we only kept the seven values of η that are within a
factor of 103 from the top stable η to make the plots as in e.g. Figure 1.

In all cases, we created a CenteredModel class, ensuring that the output of the network is zero at
initialization by making the following definition for the trained function f̃ :

f̃(x,θ) ≡ 1

γ
[f(x,θ)− f(x,θ0)] . (10)

Here, θ0 is the initial setting of the parameters, and is not trainable.

In the case of ViTs we compare training with QK-LayerNorm and QK-Norm in order to account for
the attention logit temperature.

A.1 DETAILS ON THE PARAMETERIZATION

On top of the centering operation explained above, ee parameterize all our networks under µP (and
Depth-µP, respectively) parameterization. More concretely, we define our L layer neural network of
width N f(x) with nonlinearity ϕ(x) as:

h1(x) =
1√
D
W 0x (11)

hℓ+1(x) = τhℓ(x) +
1√
NLα

W ℓϕ(hℓ(x)) (12)

f(x) =
1

γN
WLϕ(hL(x)) (13)

where D is the input dimension, and for τ = 0 and α = 0 we recover µP, and for τ = 1 and α = 1
2

we recover Depth-µP (Bordelon et al., 2023; Yang & Littwin, 2023). When running SGD, we update
the weights with a global learning rate going as ηN . That is:

W ℓ
t+1 = W ℓ

t −Nη∇L (14)

Similar modifications exist for Adam, see (Yang & Littwin, 2023).

In the case of Transformers, we additionally change the attention temperature to 1
dq

following (Yang
et al., 2022). We further detail and contrast this parameterization with the NTK parameterization in
Appendix B.

A.2 COMMENTS ON NUMERICAL STABILITY IN THE LAZY LIMIT

Here we detail a ubiquitous problem that arose in the training of lazy neural networks at small γ. To
our knowledge, this problem has not been highlighted in the literature. At very small values of γ,
approximately 10−3, the appropriate learning rate in the lazy limit scales as η ∼ γ2. This leads to
weight updates on the order of 10−6 or less. Machine epsilon for float32 is near 10−7. Because the
final output of the function involves the subtraction in equation 10, the weight updates matter in both
relative and absolute magnitude. For this reason, we find that we needed to go to double precision to
reliably obtain curves below γ = 10−3. In practice, we find that a value of γ = 10−3 or even 10−2

is essentially enough to reach the lazy limit in the online setting for essentially all tasks listed. See
Appendix L.1 for a check of this.
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We also highlight, that it is insufficient to simply zero out the last layer weights at initialization as a
way to center the network. The lazy limit of a network with zero-initialized last layer weights yields
the final-layer conjugate kernel or NNGP kernel. This kernel has very different properties from the
NTK, especially in that its dimensionality scales as the width rather than the number of parameter
of the network.

A.3 MNIST-1M

MNIST-1M example digits

Figure 7: Examples of digits from the MNIST-1M dataset, with one digit from each class generated.

A diffusion model generated version of MNIST with 1 million images, which we will call MNIST-
1M, was used to train these networks. We swept over a variety of widths, depths, batch sizes,
and architectures. Each individual run took approximately 15 seconds on an A100 GPU. For each
setting of width, depth, batch size, and architecture, we swept over the fine grid of γ, η stated above.
This led to 7 runs per value of γ or approximately 150 runs total for each phase plot. Most runs
were repeated over three initialization seeds, and key quantities, such as loss and accuracy, were
seen to minimally vary over the initialization. This is expected in µP, by arguments of approximate
initialization independence at sufficiently large widths as in (Bordelon & Pehlevan, 2023; Mei et al.,
2019).

The architectures we used were MLPs of depths 2, 3, 4 and a feed-forward CNN of depth 4 consisting
of two convolutional and two feed-forward layers.

The corresponding test set for this dataset is the original MNIST test set.

Although it is quite easy for most networks to get to near 100 percent accuracy in one pass through
this dataset, we believe that it fills an important gap in the space of datasets. It provides a task that
is fast enough to learn, allowing for quick iteration, yet avoiding repetitions of data so as to remain
online. In the era of online training, it is useful to have simple but large-scale datasets in order to test
theory against. We do not claim that this dataset is representative of realistic imagenet scale natural
data, but it is encouraging that virtually all effects observed in the CIFAR-5M and tinyimagenet
datasets are also present in this smaller setting.

We observe that training accuracy on MNIST-1M meaningfully transfers to the original MNIST, and
there is no observed overfitting effect in the networks that we’ve trained.

A.4 CIFAR-10 AND CIFAR-5M

We train on the full dataset of CIFAR-5M introduced in (Nakkiran et al., 2021). This includes both
the train set of 5 million images as well as the 1 million image test set, making for a total of 6
million images. We stay in the one pass setting. We also trained on CIFAR-10 with heavy data
augmentation. We swept over width, depth, batch size, and architecture as above. In essentially all
plots, we followed the same recipe for sweeping over γ and η. For some of the ResNets and Vision
transformers, larger sweeps were performed.
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The architectures we used were feed-forward CNNs of depth 4 as above, ResNets of varying depths
as well as ResNet-18s, and Vision Transformers.

The corresponding test set for this dataset is the original CIFAR-10 test set.

A.5 TINYIMAGENET

In order to train on TinyImagenet in an online setting, we use random data augmentations: rotations
and crops. All the experiments on this dataset have been run using batch size 128. Individual
architectural details are offered for every plot. We train all the models under µP (or Depth-µP
where specified), using stochastic gradient descent (SGD).

B REVIEW OF NTK PARAMETERIZATION AND µ-PARAMETERIZATION

For detailed discussion of µP more generally, see (Yang & Hu, 2021; Yang et al., 2021; Geiger et al.,
2020; Bordelon & Pehlevan, 2022). The aim of this section is conceptual clarity on the difference
between NTK parameterization and µ-parameterization, as well as to give some degree of motivation
of the latter. See also the recent accessible works of (Yang et al., 2023) and (Chizat & Netrapalli,
2023).

There are several equivalent ways of parameterizing NNs that will yield the same dynamics as µP. In
what follows, we focus on a scalar-output feed-forward network for simplicity. The key distinction
between NTK and µ parameterizations it that the hidden layer activations move ΘN (1/

√
N) in the

former and ΘN (1). One can straightforwardly extend the argument to more general architectures.

B.1 NTK

For simplicity, we take all layers to have hidden width N and the input space to have dimension D.
We Given an example xµ, the pre-activation hℓ+1

µ in layer ℓ+1 is given by in terms of the activation
ϕℓ in layer ℓas

hℓ+1
µ =

1√
N

W ℓ · ϕℓ
µ, (15)

where ϕℓ is given by an element-wise nonlinearity an element-wise non-linearity σ acting on hℓ
µ.

The N−1/2 factor enforces that hℓ+1
µ to be Θ(1) in root-mean-square norm at initialization as N →

∞. The output of the network fµ is given by

fµ =
α√
N

wL · ϕL
µ . (16)

In NTK parameterization α is taken to be order 1. It is the laziness parameter identified in (Chizat
et al., 2019). The change in the function is given by

dfµ
dt

= −ηSP

∑
ν

Kµνℓ
′(fν , yν). (17)

Here Kµν = ∇θfµ · ∇θfν is the NTK between data points µ and ν. The NTK is easily seen to be
order α2 and ℓ′ is order 1 at small α. In order to have the change in the function be Θ(1) we set
ηSP = η0/α

2.

By applying the chain rule, one obtains that the preactivations move as (Geiger et al., 2020; Jacot
et al., 2018; Chizat & Bach, 2018)

dhℓ

dt
∼ ηSP

α√
N

=
η0

α
√
N

. (18)

Thus, at large N and α = 1 the pre-activations of this network evolve as Θ(N−1/2). As N → ∞
this becomes a kernel limit, given by the infinite-width NTK that does not learn features.
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B.2 µP

In order to get ΘN (1) preactivation and activation movement, we see that we must take α = 1/γ
√
N

for a constant γ, fixing η0 to be N -independent. This implies that we simply replace the final layer
of the network by:

fµ =
1

γN
wLϕℓ

µ, ηSP = Nη. (19)

As the prior analysis shows, this still yields that dfµ/dt ∼ ThetaN (1) at initialization. Note that we
have not considered how to scale η with γ. The γ scaling is the subject of the empirical studies of
this paper.

C REVIEW OF DYNAMICAL PHENOMENA

In this section we review the essential dynamical phenomena studied in prior literature that arise in
various regions of the η-γ plane studied

C.1 CATAPULT EFFECT

The original catapult effect was studied in (Lewkowycz et al., 2020). There, in the NTK param-
eterization, it was observed that at large but finite width, taking the learning rate η slightly above
the bound given by convex optimization theory 2/λmax led to a regime where the sharpness of the
loss monotonically decreased. Follow up work has observed that the sharpness itself can undergo
catapult behavior (Kalra & Barkeshli, 2023; Kalra et al., 2023). In (Bordelon & Pehlevan, 2023) it
was argued and shown that in µP, one can observe catapults even at infinite width.

C.2 SILENT ALIGNMENT

In (Atanasov et al., 2022), it was argued that linear neural networks trained on whitened data starting
from small initialization undergo an alignment of their weights in the task-relevant direction before
their function output scale has grown sufficiently. The kernel alignment thus grows well before a
loss drop, indicating that even at a loss plateau, the NN has learned a meaningful representation of
the data. The results were empirically tested on a relatively small class of more realistic tasks. Here,
we extend the class of tasks, and observe silent alignment phenomena for nonlinear networks on
realistic and anisotropic tasks.

C.3 EDGE OF STABILITY

In (Cohen et al., 2021), in the setting of full-batch gradient descent, it was observed that the maxi-
mum hessian eigenvalue grew to the scale of 2/η, where it stabilized. This effect was further studied
in (Damian et al., 2023). In the SGD setting, a similar effect persists, though the final sharpness
is modified from the 2/η limit to something that depends more holistically on the spectrum. See
(Agarwala et al., 2022) for a theoretical study and discussion in this setting.

D A TWO-PARAMETER MODEL RECOVERING CATAPULT SCALINGS

In this appendix, we describe a two-parameter model which recovers our main phase portrait and —
unlike the one-parameter model of Section 4 — exhibits true catapult behavior with just-too-large
learning rates in the lazy regime. We will first give an analytical treatment, then conclude with
simulations.

Our model and argument will be very similar to those used by Lewkowycz et al. (2020), but with
a slightly different focus: rather than examining the effect of the width N on catapult behavior, we
study how the γ parameter controls catapult behavior. When width and γ are properly disentangled
(that is, when one uses µP), the width of the network plays no role in determining catapults. Indeed,
recent work (Bordelon & Pehlevan, 2023) has shown that deep networks can catapult even at infinite
width. The catapult effect does not happen at large γ, so we will ultimately focus on small γ.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

We begin with a multi-parameter model which we will shortly simplify. We consider a two-layer
linear network f(x) = W2W1x with width N trained on a single example x,y. We assume that
||x||2 = 1, and then without loss of generality, we may assume the input is scalar with x = 1 due to
the rotational symmetry of SGD. For MSE loss, we will assume the target has ||y|| = 1, and we may
likewise treat the output as scalar without loss of generality. For cross-entropy loss, we will simply
assume the output is scalar.

Relabeling u = W T
2 ∈ RN and v = W1 ∈ RN , we now have a function value f = uTv. We

now make two observations. First, when N is large, u and v will be orthogonal at initialization.
Second, as noted by Lewkowycz et al. (2020), upon training by SGD, u and v will each remain in
the two-dimensional subspace spanned by the two vectors at initialization. We are thus free to rotate
into this subspace and assume u,v ∈ R2.

We will assume that, at initialization, u = [1, 0] and v = [0, 1]. Now observe that, for any loss func-
tion L(f) depending only on f , it will be the case that ∇uL ∝ v and ∇vL ∝ u. As a consequence,
it will be the case that, at all later times, will will continue to have v = swap(u), where swap is
an operation that swaps the two elements of its argument. Denoting u(t) = [u1(t), u2(t)], we thus
have v(t) = [u2(t), u1(t)]. We are down to just two parameters, u1(t) and u2(t), with u1(0) = 1
and u2(0) = 0.

We denote the downscaled network output as f̃ = 1
γ f . Because f̃ |t=0 = 0, we do not need to center

it.

D.1 ANALYTICAL ARGUMENT FOR CATAPULTS FOR MSE LOSS

In this section, we leverage an argument similar to Lewkowycz et al. (2020) to demonstrate how the
γ parameter controls catapult behavior for MSE loss. Let the loss be LMSE = 1

2 (f̃ − 1)2. We then
study the discrete-time dynamics of gradient descent with learning rate η. Upon gradient updates,
we have that [

u1;t+1

u2;t+1

]
=

[
u1;t

u2;t

]
− 1− f̃

γ

[
u2;t

u1;t

]
. (20)

We then define
K ≡ 1

γ2

(
||u||2 + ||v||2

)
=

2

γ2
(u2

1 + u2
2); ∆ ≡ 1− f̃ , (21)

where K is the neural tangent kernel of the model and ∆ is the residual. Using these substitutions,
we find that the discrete-time dynamics yield

f̃t+1 − f̃t = η∆tKt +
η2

γ
∆2

t f̃t,

Kt+1 −Kt =
η∆2

t

γ2

[
ηKt +

4f̃t
∆

]
.

(22)

Suppose now that we choose η too large such that f̃ begins to explode. When f̃ is large, we have that
f̃/∆ ≈ −1. Observe now that, so long as ηKt ≤ 4, we find that K will decrease upon subsequent
gradient steps, eventually stabilizing the dynamics of f̃ . We thus see that the upper bound on η in
the catapult regime scales as η ∼ γ2.

D.2 CROSS-ENTROPY LOSS

As with the one-parameter model of Section 4, we may also train our two-parameter model with
the binary cross-entropy loss given in Equation (9). The dynamics for cross-entropy loss are sub-
stantially more difficult to analyze than those for MSE — in fact, as noted by Meng et al. (2024),
even an ordinary linear model trained with cross-entropy loss will exhibit chaotic dynamic in certain
parameter regimes! In actual fact, the dynamics are quite similar, scaling-wise, to those for MSE,
except in a critical “catapult triangle” in the lazy regime in which ηcrit < η < ηmax, where ηcrit ∼ γ2

and ηmax ∼ γ. Recall that our one-parameter model neither converged nor diverged in this regime.
Our two-parameter model begins to show similar behavior, but, after sufficiently long training time,
bounces to a different part of the loss landscape and converges. The dynamics here are similar to
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Figure 8: Simulations of our two-parameter model with MSE loss recover all our scalings,
plus catapult dynamics. The left plot shows final loss, while the right plot shows the maximum
loss reached during training. Grey pixels indicate divergent runs. Catapults occur along a narrow
band. Note that, for this model, L = 2, so ηmin ∼ γ in the ultra-rich regime.
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Figure 9: Simulations of our two-parameter model with cross-entropy loss recover all our
scalings, plus catapult dynamics. The left plot shows final loss, while the right plot shows the
maximum loss reached during training. Grey pixels indicate divergent runs. Catapult dynamics
occur within a triangular region. The black subtriangle within the catapult triangle for final loss is
made of runs which would eventually converge given substantially more training iterations. Note
that, for this model, L = 2, so ηmin ∼ γ in the ultra-rich regime.

the catapult dynamics described by Damian et al. (2023), except that the “unstable direction” sees
a straight-walled loss basin instead of a quadratic basin (think L(x) = |x| instead of L(x) = x2).
We anticipate an analytical treatment in the style of Damian et al. (2023) would be elucidating, but
it could make up a substantial part of a paper in and of itself, so at this point we turn to numerics.

D.3 SIMULATIONS OF THE TWO-PARAMETER TOY MODEL

We numerically simulate our two-parameter model for both loss functions considered. For MSE, we
train for T = 103 steps. For cross-entropy, we train for T ≈ 3 × 104 steps to give the dynamics in
the “catapult triangle” more time to converge.

The results are shown in Figures 8 and 9. We plot both the final loss and the maximum loss at any
point in training. In both cases, we see phase portraits very similar to those for our one-parameter
model (Figure 6), but we also see the loss exploding before convergence in the catapult phase.
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E SCALING RELATIONSHIPS ARE UNAFFECTED BY LEARNING RATE
WARMUP AND DECAY

In this section, we empirically verify that adding a warmup and cosine decay to the learning rate,
as common in more modern deep learning practice, does not affect the key scaling relationships
observed. The models are trained using learning rate warmup for approximately 5% of the total
number of steps, followed by a cosine decay until the end of training. All models are still trained
with SGD. In the next section, we analyze the effect of alternative optimizers such as Adam and
SignSGD.
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Figure 10: Empirical runs of a 3 layer and readout ConvNet without residuals model trained with
SGD with MSE loss (left; see Equation (4)) and cross-entropy loss (right; see Equation (9)) with
varying γ, η on CIFAR-5m.

F SCALING RELATIONSHIPS FOR ADAM

All analysis thus far treats MSE loss. However, in practice, Adam is a more common choice of
optimizer when training large models, so it is worth asking how our story changes when switching
SGD to Adam. We repeat our analysis our toy model for SignSGD — which is equivalent to Adam
without momentum — in Appendix F. We find a very similar story with different scaling exponents:
ηmin, ηmax ∼ γ when γ ≪ 1 and ηmin, ηmax ∼ γ1/L when γ ≫ 1. Remarkably, unlike with SGD,
the upper and lower scaling exponents are the same in the ultra-rich regime (γ ≫ 1) due to the fact
that Adam escapes the saddle near initialization in O(1) time. This suggests that Adam may be the
optimizer of choice for future investigations into the ultra-rich regime.

In this appendix, we obtain both empirical and analytic phase plots and scaling relationships between
η and γ under the Adam optimizer. We present a variant of the one-parameter model in Section 4
for training with SignSGD (Kingma, 2014). Adam can be thought of as essentially SignSGD with
momentum. The predictions of the one-parameter model are then validated in via simulation.

F.1 THEORETICAL PHASE PLOT FOR SIGNSGD

Adam is essentially SignSGD (Bernstein et al., 2018) with momentum, and the effect of this mo-
mentum will only change our story up to order-unity prefactors, so we instead study SignSGD. The
update rule for SignSGD is

θ 7→ θ − η · sign (∇θL) , (23)

where θ is a vector of parameters and L is the loss. As in Section 4, we wish to determine the viable
range of learning rates for training the centered, rescaled target function f̃(w) = γ−1(wL − 1) on
MSE and cross-entropy losses.

In the lazy regime (γ ≪ 1), we wish the parameter w to move by an amount scaling like
[desired update] ∼ γ. This parameter feels a gradient scaling as [gradient] ∼ γ−1, so with SGD, we
required a learning rate scaling as η ∼ [desired update]/[gradient] ∼ γ2. However, with SignSGD,
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the magnitude of the gradient is irrelevant, and we simply want η ∼ [desired update] ∼ γ. Any
smaller learning rate will lead to no training, and any larger learning rate will lead to too large a
parameter change, greatly overshooting the target.

In the rich regime (γ ≫ 1), we wish the parameter w to move by an amount scaling as
[desired update] ∼ γ1/L. By the same argument, we desire η ∼ γ1/L. Unlike for SGD, the
max and min viable learning rates are the same in the ultra-rich regime: instead of a finite “triangle
of optimizability,” the convergent region extends to arbitrarily large γ. This is because the model
escapes the saddle at initialization immediately because the (effectively) small parameters do not
suppress each other’s gradients. Because of this fast saddle escale, the silent alignment effect does
not occur under the SignSGD or Adam optimizers.

It is unknown to the authors whether catapults occur for SignSGD, and if so, whether there is a
“catapult triangle” in the phase diagram as seen with cross-entropy loss and SGD Figure 1(b,d).

Results of simulations of our one-parameter toy model with SignSGD are shown in Figure 11.
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Figure 11: Simulations of our one-parameter model with SignSGD with MSE loss (left; see Equa-
tion (4)) and cross-entropy loss (right; see Equation (9)) with varying γ, η exhibit predicted scaling
relationships. Simulations run with L = 5. Unlike with SGD, SignSGD does not diverge; instead,
points in the upper region oscillate forever.

F.2 EMPIRICAL PLOTS OF PHASE DIAGRAM ADAM
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Figure 12: Empirical runs of a 3 layer and readout ConvNet without residuals model trained with
Adam with MSE loss (left; see Equation (4)) and cross-entropy loss (right; see Equation (9)) with
varying γ, η on CIFAR-5m.

We supplement the theoretical plots from Figure 11 with empirical plots in a Convolutional Neural
Network with 3 layers and a readout layer, no residuals, trained on CIFAR-5m using Adam with
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MSE and Cross Entropy losses 12. The models are trained using learning rate warmup for approxi-
mately 5% of the total number of steps, followed by a cosine decay until the end of training.
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G ADDITIONAL RESULTS ON SINGLE-INDEX MODELS

In this section we empirically show that the results of the main text transfer to the commonly studied
class of “single index models”. Here, we train a 3-layer MLP of width 200 with on a single-index
model of the form y = (w · x)k where w ∼ N (0, I), x ∼ N (0, I), w ∈ RD, x ∈ RD. Our setting
is the same as in the main text, namely the MLP is parameterized in µP and is centered. We show
the phase portrait of training this model in an online setting with SGD in Figure 13. This portrait is
consistent with that predicted by our linear model.
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Figure 13: Empirical runs of a 3 layer and readout MLP model trained with SGD and MSE loss on
a quadratic single-index model y = (w · x)2. a) Verification of consistency across widths in µP b)
The phase plot observed is as in Figure 1. c) and d) illustrate the same, but for y = 10−1(w · x)3.

H ADDITIONAL RESNET AND VIT PLOTS

Here we supplement the η-γ phase plots in the main text with additional plots across different ar-
chitectures and datasets. We report results for ResNets and visiont transformers. Across all settings,
we recover the phase portraits sketched out in Figures 1.
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Figure 14: Training accuracy for (a) ConvNets and (b) ViTs (with QK-norm) trained on TinyIma-
genet, and (c) ViTs without LayerNorm trained on CIFAR-5M for classification using Cross Entropy
loss, parameterized with µP . Removing LayerNorm causes a sharp maximum learning rate cut-off
in the training of ViTs. Hyperparameters: batch size 128, using random data augmentations for
TinyImagenet, 1 head, 3 transformer blocks.
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Figure 15: The effect of introducing a temperature 1/T parameter in the attention softmax calcula-
tion. For large T , this makes the attention matrix more uniform which leads to easier optimizability
in the large learning rate region. Training is done on CIFAR-10 with random data augmentations,
and with LayerNorm.
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Figure 16: Stepwise loss trajectories can be seen even in the very realistic setting of a vision trans-
former on TinyImageNet. The trajectories here exhibit two lower plateaus in addition to the long
plateau from t = 0 until the first drop.
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I EFFECT OF WIDTH AND CHECK OF µ-CONSISTENCY

In this section we provide checks of µP working. We do this by both plotting in Figure 17 and
Figure 18 as well as their CNN and croseentropy analogues. We observe the following:

• The loss curves as a function of time across widths begin to match as N grows, confirming
that they are converging to an “infinite width” loss curve

• The performance vs the learning rate η across width is stable, as expected in µP.

Importantly, as a consequence of consistency across widths at sufficiently large N , one does not
need to additionally vary the width parameter in order to exhaustively sweep out the space of feature
learning NNs.

I.1 γ-DEPENDENCY OF µ-CONSISTENCY

Here, we study to what extent width-consistency is violated as a function of γ.
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Figure 17: We sweep over N at different values of γ. We see that the dynamics across different N
are closer at larger γ, indicating they are converging faster to their infinite width feature learning
limit than the lazy networks are. We further see that during training we achieve a wider is better
effect, as expected from µP.
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Figure 18: We sweep over N at different values of γ and track the optimal η across N . Plotted is
the loss at the end of training. We observe that the minimum essentially remains stable.
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Figure 19: The same as 17, but for a CNN on CIFAR-5M with MSE loss.
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Figure 20: The same as 18, but for a CNN on CIFAR-5M with MSE loss.
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Figure 21: The same as 18, but for a CNN on CIFAR-5M with cross-entropy loss.
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Figure 22: The same as 17, but for a CNN on CIFAR-5M with cross-entropy loss.
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J EFFECT OF DEPTH

In this section we vary the depth L for both feed-forward MLPs and for ResNets. In the MLP setting,
we find a straightforward change in the η − γ plane. In the rich regime, the maximal observable
learning rate scales as γ2/L, consistent with our model in 4.

J.1 MLPS
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Figure 23: Accuracies after 1000 steps of MLPs trained on MNIST-1M of depth a) L = 2, b) L = 3,
c) L = 4. We see that only for the single hidden layer neural network can arbitrarily large γ values
be optimized. As L grows in the feed-forward setting, the triangle of large γ optimizability shrinks.
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Figure 24: The loss trajectories from selected pixels in Figure 23. We restrict ourselves to the line
η = 3γ2 if γ ≤ 1 and η = 3γ2/L if γ > 1 and only plot pixels in the η-γ grid that are within 10%
of this line.
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J.2 RESNETS AND DEPTH-µP

In this section we test the effect of the parameterization on deep neural networks with residual
connections. Specifically, in Figure 26 and Figure 25 we evaluate the phase plots of neural networks
with increasing depths parameterized in Depth-µP, as detailed in (Bordelon et al., 2023; Yang &
Littwin, 2023), and µP.
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Figure 25: We compare ConvNets with residual connections parameterized in the µP regime in the
online setting by training on CIFAR-5M and testing on CIFAR-10. In this setting the scaling seems
to change as we increase the depth of the networks by adding multiple residual blocks. In the very
deep setting shown in (c), the very rich networks have a flat η ∼ γ scaling, unlike in the Depth-µP
case where networks across all depths have similar scalings.
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Figure 26: We compare ConvNets with residual connections parameterized in the Depth-µP regime
in the online setting by training on CIFAR-5M and testing on CIFAR-10. Note that the scaling
remains much more stable than in Figure 25. We hypothesize that this is due to the downscaling of
the residual branch by 1√

L
.
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K EFFECT OF BATCH SIZE

In this section, we verify that in the online limit, different batch sizes have a relatively negligible
effect on the dynamics. The batch noise does however make it so that smaller batches cause higher
variance in the loss. This is the tradeoff for being able to train to a lower loss at fixed dataset.
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Figure 27: The temporal dynamics of online loss versus time across different values of B at fixed
η. Predictably, smaller B cause larger batch noise variations, but the mean loss path is essentially
identical across orders of magnitude in B. Upon fixing a data or compute constraint, smaller B
networks can train to lower loss values. Larger B networks however are preferable under a wall-
clock time constraint.,
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Figure 28: The η-γ phase plot for two MLPs trained for 1000 steps on MNIST-1M for a) B = 16
and b) B = 256. The location of the dashed lines is unchanged from a) to b) . We see that the
scalings of η with γ are identical. The lazy regime observes essentially no change. However, at
large γ, the maximal optimizable η is decreased when B shrinks, leading to a more constrained
triangle of optimizability at large γ.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

L CONSISTENCY ACROSS γ

In this section we consider how networks at successive γ behave in both the lazy regime γ ≪ 1 and
in the rich regime γ ≫ 1. In the lazy regime, past a certain threshold γ, often on the order of 1e− 3,
we see that for the datasets and models considered, the dynamics are nearly identical throughout
training. This is strongly indicative that these values of γ are small enough to

L.1 LAZY CONSISTENCY

In this section we verify that the lazy limit is indeed reached at γ = 0. One simple way to do this is
to confirm that, conditional on scaling η ∼ γ2, the dynamics agree across γ no matter how small γ
becomes. We plot this in Figure 29.
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Figure 29: Verification that the lazy limit is reached in practice for CNNs and ViTs trained on
CIFAR-5M under MSE and cross-entropy losses. We take η = γ2 in all plots. Except for a few
larger γ networks, we see that the loss curves agree very sharply across arbitrarily small values of
γ. The majority of the small γ curves are on top of one another in these plots.

L.2 EARLY TIME RICH CONSISTENCY

In this section, we verify that NNs in the large γ limit exhibit similar behavior at early time when
time is rescaled to be measured as τ = ηt/γ when η is scaled as γ2/L. Thus τ ∼ tγ−1+2/L. This
reasoning is explain in Section 4 . We highlight this empirically in Figure 30.
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Figure 30: Consistency of dynamics in the large γ early time setting for CNNs and MLPs trained on
CIFAR-5M. We take η ∼ γ2/L in all plots.

L.3 LATE TIME RICH CONSISTENCY

We next study the late time dynamics at large γ. We find that large γ networks reach the same loss
values as networks with γ ∼ O(1) after sufficient time passes for them to escape the plateau.
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Figure 31: Consistency of dynamics in the large γ late time setting for CNNs and MLPs trained on
CIFAR-5M. We take η = γ2/L in all plots. In the inline, we zoom into the location near the first
drop, and see that after adopting this time rescaling, all networks achieve the drop at the exact same
time.

We also highlight how, after sufficiently long time has passed, all large γ networks swept over
achieve comparable final losses. One such example was shown in Figure 2(b).
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Figure 32: Final accuracies across γ for a broader range of networks. We see that for very large
γ NNs that have not yet escaped the saddle point, the accuracy is not competitive. However, after
enough time has passed, these networks also achieve comparable values of the accuracy. The longer
optimization time makes such networks undesirable from a practical perspective.
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Figure 33: MLP on CIFAR-5M under MSE loss. a) The scaling of the sharpness at the end of
training as a function of γ, exhibiting a sharp transition between lazy and rich. b) The sharpness as a
function of time across γ. At large γ and early times, calculating the sharpness runs into numerical
stability issues that make it unreliable.
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Figure 34: As in Figure 33, but for a CNN under crossentropy loss, and including the top 5 eigen-
values in a).
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Figure 35: As in Figure 33, but for a Residual CNN under crossentropy loss, parameterized with
Depth-µP.
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Figure 36: The catapult effect along the η ∼ γ2 line for the MSE loss for MLPs on MNIST-1M and
CIFAR-5M
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Figure 37: The catapult effect along the η ∼ γ line for the cross-entropy loss for CNNs and ViTs.

O ALTERNATIVE SCALINGS OF η WITH γ

In this section, we briefly illustrate how taking alternative scalings of η different from γ2/L can lead
to a network that either undertrains or does not converge at large γ.
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Figure 38: Sketch of phase plots with alternative scalings of η with γ (overlaid in dashed blue lines).
We expect the η ∼ γ3/L scaling to diverge at large γ at any T while the η ∼ γ2/(L+1) will remain
convergent, but under-train compared to the optimal learning rate
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Figure 39: Alternative scalings of η ∼ γ3/L for a) an L = 3 MLP on MNIST-1M and b) an L = 4
CNN on CIFAR-5M. Large γ values not shown are those that have diverged. Indeed, for this scaling,
γ values above 104 are found to have divergent loss dynamics. Similarly, we plot η ∼ γ2/(L+1) in
the same settings in c) and d). All of these networks train, but they do so less efficiently than the
optimal scaling of η ∼ γ2/L. We illustrate the optimal scaling in figures e) and f), and observe that
they achieve better final loss values than c) and d) while still allowing arbitrarily large values of γ to
train.
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P KERNEL-TARGET ALIGNMENT

In this section we define what we mean by kernel-target alignment. In the case of a single-class
task with labels y for each x, we consider a kernel associated to a kernel K originating from an
(initialized or trained) neural network. This can be either the neural tangent kernel, NTK(x,x′) ≡
∇f(x) ·∇f(x′), or the hidden layer kernel, Kℓ(x,x′) ≡ ϕℓ(x) ·ϕℓ(x′)). We evaluate P ×P kernel
gram matrices K on a held out test set of P points. We stack the corresponding labels into a vector
y ∈ RP . The associated kernel-target alignment is given by:

KTA(K,y) ≡ y⊤Ky

∥K∥|y|2
. (24)

Here ∥K∥ is some appropriate norm of the kernel matrix. There are many options, including Frobe-
nius norm, operator norm (maximum singular value), and nuclear norm (sum of singular values).
The alignment during the loss plateau is quite sensitive to the choice of norm on K,. In practice,
we’ve found that the nuclear norm produces the best results, with Frobenius and Operator norm
metrics sometimes resulting in a dip of the alignment before the loss drop rather than a growth.

A related quantity, centered kernel alignment (CKA) (Cortes et al., 2012), has been argued in (Ko-
rnblith et al., 2019) to be a good candidate for the comparison of neural representations. In practice,
we found direct CKA measures between NTKs of different networks to be very noisy and sensitive.
CKA on hidden layer activations yielded more reliable plots.
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Q FURTHER SILENT ALIGNMENT PLOTS
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Figure 40: Silent Alignment for a CNN on CIFAR-5M. There is a subtle, but noticeable increase in
the alignment metric before the loss drop. a) With t on the x-axis b) with ηt/γ on the x-axis. For a
CNN, we see a decrease in the alignment metric after the loss drop. This is due to smaller singular
values growing, causing the nuclear norm in the denominator to grow faster than the numerator.
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Figure 41: Silent Alignment Across Different Depth MLPs on MNIST-1M
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Figure 42: Silent Alignment Across ViTs on CIFAR-5M, evaluated on a single batch of CIFAR-10
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R FURTHER FUNCTION SIMILARITIES
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Figure 43: Further comparisons of learned functions between lazy and rich networks.
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Figure 44: Correlations coefficients between learned functions outputs on a test set between lazy
and rich networks in time

S WEIGHT AND ACTIVATION MOVEMENT ACROSS TIME AND RICHNESS

In this section, we confirm that larger values of γ correlate directly to weight movement across a
variety of norms. We consistently verify that the weights deviate as ∥W ℓ(t) − W ℓ(0)∥ ∼ γ1/L

across layers, times, and γ.
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Figure 45: Weight movement ∥W ℓ(t) − W ℓ(0)∥ for a CNN trained on CIFAR-5M. We plot these
across different layers ℓ at different steps t of training as a function of γ. We see a very sharp
and clear trend that larger value of γ correlate with meaningfully larger movement across a vari-
ety of norms. Specifically, we see that all norms of matrices scale as γ1/L after sufficient training
steps. The dashed black line represents the curve γ1/L for reference. a) Frobenius norm, b) Spec-
tral/Operator nom, c) Nuclear norm.
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