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ABSTRACT
Cross-modal fusion aims to establish a consistent correspondence
between arbitrary modalities. Due to the inherent differences be-
tween these modalities, accurately modeling their correspondence
is a challenging task. Referring image segmentation (RIS) is a fun-
damental cross-modal task that intends to segment a desired object
from an image based on a given natural language expression. In
this paper, we propose an efficient algorithm called the Deep Cross-
Modal Fusion Network (DCMFNet) to address this challenge. The
proposed algorithm leverages the contextual information from lin-
guistic context to guide themodeling of the visual context, gradually
highlighting the referent in the image. The network architecture
employs an innovative fusion strategy known as Iterative Gated
Fusion (IGF) to capture the consistency relationship between multi-
modal features. IGF iteratively adjusts the relative importance of
features at each level based on high-level semantics, emphasiz-
ing the shared information while suppressing the irrelevant parts.
Specifically, IGF consists of cascaded fusion units and gating units.
The fusion units integrate high-level semantics with the features
from the previous layer to enhance the representation. The gating
units perceive the discrepancy between the enhanced features and
the original representation, and selectively weight and integrate
the important features for further refinement. Through multi-layer
iterative optimization, IGF gradually establishes a fine-grained cor-
respondence between arbitrary modalities. Extensive experimental
results on the Referring Image Segmentation task demonstrate the
effectiveness and utility of the proposed method.
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1 INTRODUCTION
Referring image segmentation (RIS) is a challenging multimodal
task involving computer vision and natural language processing.
This task requires a comprehensive understanding and accurate
modeling of the correspondence between vision and language to
correctly segment the particular object described by a natural lan-
guage expression in the image. Unlike the traditional semantic
segmentation problem [3, 5, 38, 44] that aims to classify each pixel
into predefined labels, referring image segmentation is not confined
to predefined categories and makes the pixel-level prediction based
on categories contained in natural language expressions. Similar
to many interesting scene understanding problems that combine
visual and linguistic data for reasoning such as vision-language
navigation [50], visual question answering [1, 14, 61], cross-modal
retrieval [7, 36, 40], etc., the RIS problem shows the potential way
to use language to guide an intelligent body to interact with the
environment, which has a wide range of application scenarios such
as interactive image editing [8], language-driven human-computer
interaction [47], etc. The RIS task has gained wider scholarly atten-
tion in recent years, and some existing works [10, 12, 19, 54] have
achieved excellent performance. It is worth noting that there are
two major challenges to further address in this task, one of which
is how to establish a more consistent visual-linguistic correspon-
dence so that the referent can be accurately identified in complex
visual and linguistic scenarios, and the other is how to capture more
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Figure 1: Illustration of our proposed deep cross-modal fu-
sion network for referring image segmentation. Given an
input image and a natural language expression, the proposed
model first exploits linguistic context to contiguously guide
visual context modeling to build the consistent correspon-
dence between vision and language, which progressively
highlights the referent. Then themodel refines the prediction
mask of the referent by utilizing high-level visual features
to guide the integration of low-level visual features. Note-
worthy, the fusion processes of multi-modal and multi-level
visual features are both done by the proposed iterative gated
fusion.

valid visual information related to the referent to refine the final
prediction mask.

Benefiting from the development of Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks (RNNs), we can
gain a deeper understanding of vision and language and promote
building more consistent relationships between modalities with the
powerful learning capabilities of these networks. Prior methods
to solve the RIS task [17, 29, 33, 42] concatenate visual features,
spatial coordinates, and linguistic features to obtain the multimodal
feature representation and then rely on the deep learning models
to learn a particular correspondence between co-embedded ele-
ments. The main limitation of this approach is that it can only
model the shallow interaction between vision and language and
cannot accurately predict the segmentation mask. Recently, some
referring segmentation works [10, 19, 21, 22, 39, 57] utilize the atten-
tion mechanisms to model the visual-linguistic interaction. These
approaches can roughly divide into two types, i.e., modular atten-
tion networks [22, 39, 57] and attention-reasoning structure net-
works (e.g., attention-graph structured reasoning [13, 19], attention-
multimodal tree reasoning [21], and attention-based cross-modal
transformer [10]). These attention-based methods deepen the in-
teraction between vision and language and achieve remarkable
results. However, the single-layer attention fusion strategy adopted
bymost of them still has limitations in modeling multimodal feature
interactions, that is, lack of deep interaction and underutilization
of language guidance. Specifically, these attention fusion strategies
use a single-layer structure to model the correspondence between
modalities by computing an attention map to update the modali-
ties. But such single-layer fusion strategies may lead to inaccurate
relationship modeling and make it difficult to fully utilize language
features that provide crucial prompts for deep interaction. Further-
more, previous referring segmentation works have rarely explored

the linguistic context to guide visual context modeling in the en-
coder, which ignores the potential of encoders to align multimodal
features. We believe that high-level visual and linguistic features
with sufficient semantic information can interact to form a com-
mon semantic space that can be learned by encoders in favor of
highlighting the spatial regions associated with the referent.

Refining the prediction mask is another major challenge for the
referring image segmentation task. After constructing a consistent
correspondence between vision and language, the model typically
generates a fine-grained multimodal feature that implicitly high-
lights the spatial region where the referent resides. In order to
obtain a more accurate prediction mask, it is necessary to sup-
plement the visual information related to the referent. A popular
approach in this field is to integrate multi-level visual features.
Some previous works (e.g., CMSA [57], CMPC [19]) individually
and repeatedly process visual features at different levels and then
use gating mechanisms to aggregate the multi-level visual informa-
tion, which seriously increases the computational cost. Some recent
works (e.g., BUSNet [54], BRINet [18], LSCM [21]) adopt bidirec-
tional (i.e., bottom-up and top-down) pathways to fuse multi-level
visual features using attention or gating mechanisms, which are
also prone to the redundant computation. Unlike these methods,
we introduce a novel iterative gated fusion to integrate multi-level
visual context on a simple single path, which reduces redundant
calculations efficiently and is proven utility.

To address the limitations of the above methods, we propose a
deep cross-modal fusion network (DCMFNet) to build more consis-
tent corresponding relations between modalities and thus improve
segmentation performances. Figure 1 shows an example that il-
lustrates the deep cross-modal fusion network, where language
continuously guides visual context modeling in the encoder and
high-level visual features guide low-level visual features to sup-
plement detail information, all of which are fused with iterative
gated fusion, resulting in the referent being gradually highlighted
and refined. The proposed iterative gated fusion (IGF) strategy em-
ploys a multi-layer structure to deepen the interaction between
modalities, with a bidirectional fusion unit and an adaptive gating
unit (ASGate) embedded in each layer to dynamically reconcile
the relative strength of features in each spatial region according to
high-level semantics so as to highlight the referent and suppress
the others. Specifically, the gating module adaptively selects spatial
regions of high-level semantic concern, and the fusion unit builds
long-range dependencies between modalities to weight features.
Through intra-layer and inter-layer iterative optimization, IGF grad-
ually builds consistent correspondence between modalities, which
helps the DCMFNet generate the accurate segmentation mask.

Our main contributions can be summarized as follows:

• We propose a deep cross-modal fusion network (DCMFNet)
for the referring image segmentation task. DCMFNet fully
exploits the potential of high-level semantic guidance and
encoders to build consistent correspondence between modal-
ities, thereby improving segmentation performances.

• We propose a novel fusion strategy called Iterative Gated
Fusion (IGF), which can deeply fuse multi-modal and multi-
level contextual information.
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• The proposed method outperforms many previous state-of-
the-art methods on multiple referring image segmentation
datasets. Extensive experiment results demonstrate the ef-
fectiveness and utility of the proposed method.

2 RELATEDWORK
Referring image segmentation aims to segment the specific object
corresponding to a natural language expression in an image. Differ-
ent from traditional unimodal semantic segmentation [3, 5, 38, 44]
and instance segmentation [35], the key for referring image segmen-
tation is to learn a particular correspondence between modalities
by building the deep interaction between vision and language.

Pioneering referring image segmentation methods [18]– [21]
usually adopt a concatenation-convolution scheme, which typi-
cally relies on deep learning models to learn the particular corre-
spondence between vision and language. LSTM-CNN [18] directly
concatenates the visual feature map with spatial coordinates and
linguistic features and then feeds the com- bined features into a
fully convolutional network (FCN) [1] to generate the segmentation
mask. Later, recurrent interaction fusion strategy is introduced in
[19]–[21], RMI [20] mim- ics human decision-making process to
progressively perform cross-modal interaction in a word-reading
order. DMN [21] exploits the recursive nature of language to in-
tegrate visual feature maps in multiple steps. In RRN [19], the
concatenated multimodal features top-down integrate multi-level
features to refine the segmentation mask.

Recently, some works consider attention mechanisms to learn
the correspondence between vision and language. These attention-
based methods can be roughly divided into two types: modular at-
tention networks and attention-reasoning structure networks. The
former updates the corresponding modalities by calculating the cor-
relation between multiple modalities, and the latter uses the reason-
ing structure combined with attention to aggregate the global con-
text. For example, CMSA [57] introduces the self-attention mech-
anism to capture long-term dependencies for adaptively focusing
on informative words and important regions. ESE-FN [48] learns
modal and channel-wise Expansion-Squeeze-Excitation (ESE) atten-
tions for attentively fusing the multi-modal features in the modal
and channel-wise ways. MMSA [16] designs multiperspective and
hierarchical fusion modules to perform mutual attention fusion.
KWA [45] adopts a vision-guided linguistic attention mode to learn
the importance of words to each spatial region. BRINet [18] explores
the bidirectional guidance between visual and linguistic features.
Cross-image attention is introduced in [22] for enhancing visual
cues. EFN [12] transforms the vision encoder into a multimodal
feature learning network. In addition, since the graph and tree
structures can represent data relationships, some works introduce
them to perform multimodal reasoning combined with attention.
CMPC [19] constructs a multimodal graph and utilizes the graph
convolution to reason among vertexes for highlighting the refer-
ent. Language graph or tree structures parsed from the expression
[55] are introduced in NMTree [34], LSCM [21], and BUSNet [54],
they take the dependencies among words as prior knowledge to
restrict the communication among word nodes for modeling valid
multimodal context. More recently, VLT [10] and ReSTR [25] in-
troduce the cross-modal transformer to build the deep interaction

between multimodal features at the decoding stage, achieving state-
of-the-art performances. Recent work SAM [27] excels at producing
high-quality masks by leveraging diverse prompts like points or
boxes. Unlike traditional SAM models that require large-scale train-
ing, our proposed approach enables precise mask generation with
small-scale training. This achievement is attributed to our inno-
vative modeling strategy, i.e., globally, we explore using language
to guide visual encoding in the encoder and using the high-level
feature to guide low-level feature integration in the decoder, and
locally, we establish the deep interaction between guidance and
guided features by embedding the iterative gated fusion module in
the network.

In this paper, we exploit the potential of high-level semantic
guidance and encoders to establish consistent correspondences
between modalities. Furthermore, we also propose a novel and
practical iterative gated fusionmodule capable of deeply integrating
multi-modal and multi-level contextual information.

3 METHOD
The overall architecture of the proposed network is illustrated in
Figure 2. Given an input image and a natural language expression,
we first extract linguistic features from the text encoder and then
embed linguistic features into different stages of the vision encoder
via the proposed iterative gated fusion (IGF) module to guide the
visual context modeling. Each iteration of the gated fusion module
generates a finer feature that more precisely highlights the referent.
The feature output by the IGF module will be fed into the next
visual encoding stage for the encoder to learn the correspondence
of multimodal contexts. To clarify the boundary of the referent and
generate an accurate mask, we supplement the visual detail infor-
mation to the spatial regions where the referent resides. We first
extract themulti-scale contextual information via the Atrous Spatial
Pyramid Pooling (ASPP) module [6] and then utilize the generated
high-level semantic features to guide the integration of low-level
visual features via the IGF module. In the following sections, we
elaborate on the design of the iterative gated fusion module in
Section 3.1, language-guided visual encoding in Section 3.2, and
decoder in Section 3.3.

3.1 Iterative Gated Fusion
The iterative gated fusion (IGF) module is a simple but effective
deep fusion module, which progressively deepens the interaction
between the guidance features and guided features within multiple
iteration steps. In this work, the guidance features refer to the
features connected by the pink line in Figure 2 (e.g., linguistic
feature 𝐿 , high-level visual feature𝑀𝑑𝑒𝑐 ), and the guided features
refer to the features connected by the blue line (e.g., low-level visual
feature 𝑉1 and high-level visual feature 𝑉3,𝑉4).

The details of the iterative gated fusion module are depicted in
Figure 3. Given the guidance feature 𝑋 and guided feature 𝑌 ∈
R𝐶𝑣×𝐻×𝑊 , we first resize them to keep the spatial size consistent
and then feed the feature maps into the 1 × 1 convolution layer
respectively to obtain the initial inputs of the iterative process
𝑥 ∈ R𝐶

′
𝑙
×𝐻×𝑊 and 𝐺0 ∈ R𝐶′

𝑣×𝐻×𝑊 , where 𝐶′
𝑙
, 𝐶′

𝑣 , 𝐻 , and 𝑊

denote the channel numbers, height, and width of the initial inputs,
respectively. Then, the input features 𝑥 and 𝐺0 are passed into the
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Figure 2: An overview of our approach. The proposed method consists of two stages including language-guided visual encoding
and multi-level visual feature fusion. In the first stage, we use a text encoder to extract the language features 𝐿 and then
selectively embed language features into different stages of visual encoding to guide visual context modeling and exploit the
encoder to learn multi-modal feature representations. In the first stage, the network models the consistent correspondence
between vision and language and generates the fine features 𝐸𝑒𝑛𝑐 that highlight the spatial region where the referent resides.
To obtain a more accurate prediction mask, we feed 𝐸𝑒𝑛𝑐 into ASPP [6] to extract multi-scale information and supplement the
visual detail information to the referent based on the indication of the highlighted spatial region (i.e., using the high-level
visual feature𝑀𝑑𝑒𝑐 to guide the integration of the low-level visual feature 𝑉1). The constructed network adopts a novel and
practical iterative gated fusion (IGF) to unify the multi-modal and multi-level visual feature fusion.

IGF layers cascaded in depth (denoted IGF(1) , IGF(2) , ..., IGF(𝐿) )
to perform deep interaction. The interaction at the 𝑡-th time step
occurs between 𝑥 and 𝐺𝑡−1, given by:

𝐹𝑡 ,𝐺𝑡 = IGF(𝑡 ) (𝑥,𝐺𝑡−1), (1)

where 𝐹𝑡 ∈ R𝐶′
𝑣×𝐻×𝑊 and 𝐺𝑡 ∈ R𝐶′

𝑣×𝐻×𝑊 are hidden states up-
dated by the fusion unit and gated unit respectively with taking
the current input 𝑥 and previous hidden state 𝐺𝑡−1 as inputs.

Fusion Unit. Each IGF layer first uses a multi-head bilinear
fusion [2] to associate the current input 𝑥 and the previous hidden
state 𝐺𝑡−1, which models the long-range dependencies between
modalities to enhance the response of spatial regions related to
guidance features and weaken the others. The structure of the
fusion unit as shown in Figure 4 The update process of the fusion
unit is formulated as follows:

𝐹𝑡 = 𝜏 (
5∑︁

𝑖=1
(𝜏 (𝑊1𝑥) ⊙ 𝜏 (𝑊2𝐺𝑡−1))), (2)

where𝑊1 ∈ R𝐶
′
𝑣×𝐶′

𝑙 and𝑊2 ∈ R𝐶′
𝑣×𝐶′

𝑣 are weight matrices for
linear transformation, ⊙ denotes the element-wise multiplication,

𝜏 (·) denotes the tanh function, Σ denotes integrating the multi-
head output features, i.e., stacking and summing along the channel
dimension.

The guided features can deeply fuse with guidance features
within multiple rounds of fusion processing. However, the fusion
process may introduce noise (e.g., unimportant semantic informa-
tion and spatial details irrelevant to the referent). Therefore, we
propose an adaptive selection gate (ASGate), which can dynamically
select useful information and suppress interference caused by noise
to achieve the signal response shift toward the referent-related
regions.

Gating Unit. Figure 5 shows the structure of the proposed Adap-
tive Selection Gate (ASGate). The gating unit takes the fused feature
𝐹𝑡 generated by the current fusion unit and the hidden feature𝐺𝑡−1
generated by the previous gating unit as input. In the gating unit,
the input features are first integrated and fed into a convolutional
layer with a sigmoid function to form a learnable referent-aware
weight matrix to weighted the fused feature 𝐹𝑡 . The aware matrix
assigns higher weights to spatial regions with high-level semantic
interest and low weights to noisy features. Then, the gating unit
perceives the difference between the feature 𝐹𝑡 and the weighted
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Figure 3: Illustration of the proposed Iterative Gated Fusion
(IGF) layers. IGF takes the guidance feature 𝑋 and guided
feature𝑌 as inputs, first adjusts their spatial size and channel
number, then deepens the interaction between input features
through the fusion-gate scheme within 𝐿 times optimization,
and finally aggregates the output features of each layer as
the output of IGF. In the multi-layer structure, the guidance
feature 𝑋 (e.g., linguistic features, high-level visual features)
can continuously guide the guided features 𝑌 (e.g., low-level
visual features) to build a more consistent correspondence
between modalities.

Figure 4: The structure of the fusion unit.

feature 𝑓𝑡 and aggregates the difference region through the con-
catenation and convolution operations followed by a non-linear
activation function. Finally, the generated feature 𝐺𝑡 will be used

Figure 5: Illustration of the proposed Adaptive Selection Gate
(ASGate). ASGate is an implementation of the gating unit
in iterative gating fusion, which can perceive, select, and
aggregate the important features corresponding to the spatial
regions concerned by guidance features.

as the input feature for the next round of optimization. The gating
process of the adaptive selection gate to generate the hidden feature
𝐺𝑡 can be formulated as follows:

𝑧𝑡 = 𝜎 (𝑊𝑧 (𝐹𝑡 +𝐺𝑡−1) + 𝑏𝑧),
𝑓𝑡 = 𝐹𝑡 ⊙ 𝑧𝑡 ,

𝐺𝑡 = tanh(𝑊𝑔 ( [𝐹𝑡 ; 𝑓𝑡 ]) + 𝑏𝑔),
(3)

where 𝜎 (·) denotes the sigmoid function. [;] denotes the concatena-
tion operation.𝑊𝑧 ∈ R𝐶′

𝑣×𝐶′
𝑣 and𝑊𝑔 ∈ R(𝐶′

𝑣+𝐶′
𝑣 )×𝐶′

𝑣 represent the
learnable parameters of the 3 × 3 convolution operations. 𝑏𝑧 and
𝑏𝑔 are biases.

Multi-layer Progressive Interaction. The IGFmodule adopts a
multi-layer progressive interaction strategy. The guidance features
deeply fuse with guided features within 𝐿 times fusing and gating
iterations. The IGF module integrates the fused features 𝐹 (𝐿) =

[𝐹1, 𝐹2, ..., 𝐹𝐿] generated by 𝐿 layers as the output. The process of
generating the output feature of the IGF module can be formulated
as follows:

𝐼𝐺𝐹 ∗ = Conv( [𝐹1; 𝐹2; ...; 𝐹𝐿]), (4)
where 𝐼𝐺𝐹 ∗ ∈ R𝐶𝑣×𝐻×𝑊 is the output feature of IGF layers, its
shape is the same as the guided feature 𝑌 . Conv(·) denotes the 3×3
convolution operation.

3.2 Language-Guided Visual Encoding
In this section, we elaborate on the design of the vision encoder in
DCMFNet. To efficiently utilize the encoder to model valid multi-
modal context, we mainly consider the following points: (1) Differ-
ential processing of high-level and low-level visual features: During
the visual encoding, high-level visual features contain rich semantic
information, suitable for interacting with linguistic features, while
low-level visual features own amounts of spatial detail information
that are suitable for refining the identified referent. (2) Multiple-step
guided encoding: To model the deep interaction between vision and
language, we selectively embed IGF layers into different stages of
the vision encoder, realizing the contiguous guidance of language
to visual encoding from local to the whole.

As shown in Figure 2, given a natural language expression, we
first employ a language encoder to extract the linguistic feature
𝐿 ∈ R𝐶𝐿 and then apply a linear layer to map it to 𝐿 ∈ R𝐶𝑙 . For
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Table 1: Comparison with the state-of-the-art methods on four datasets using overall IoU as metric. “-” denotes no data available.
DCRF denotes DenseCRF [28] post-processing.

Vision encoder UNC UNC+ G-ref ReferIt
val testA testB val testA testB val test

RMI [33] ResNet-101 44.33 44.74 44.63 29.91 30.37 29.43 34.40 57.34
RRN+DCRF [29] ResNet-101 55.33 57.26 53.95 39.75 42.15 36.11 36.45 63.63
MAttNet [58] Res101-MRCN 56.51 62.37 51.70 46.67 52.39 40.08 - -
NMTree [34] Res101-MRCN 56.59 63.02 52.06 47.40 53.01 41.56 - -
CMSA+DCRF [57] ResNet-101 58.32 60.61 55.09 43.76 47.60 37.89 39.98 63.80
STEP [4] ResNet-101 60.04 63.46 57.97 48.19 52.33 40.41 46.40 64.13
CGAN [39] ResNet-101 59.25 62.37 53.94 46.16 51.37 38.24 46.54 -
BRINet+DCRF [18] ResNet-101 61.35 63.37 59.57 48.57 52.87 42.13 48.04 63.46
LSCM+DCRF [21] ResNet-101 61.47 64.99 59.55 49.34 53.12 43.50 48.05 66.57
CMPC+DCRF [19] ResNet-101 61.36 64.53 59.64 49.56 53.44 43.23 49.05 65.53
SANet [31] ResNet-101 61.84 64.95 57.43 50.38 55.36 42.74 44.53 65.88
TV-Net [22] ResNet-101 61.87 65.61 60.10 50.30 54.43 43.52 49.92 65.38
BUSNet [54] ResNet-101 62.56 65.61 60.38 50.98 56.14 43.51 49.98 -
EFN [12] ResNet-101 62.76 65.69 59.67 51.50 55.24 43.01 51.93 66.70
DCMFNet-Res101 (Ours) ResNet-101 65.84 69.34 63.09 54.78 60.03 49.30 51.99 66.74
ReSTR [25] Transformer 67.22 69.30 64.45 55.78 60.44 48.27 54.48 70.18
DCMFNet-Trans (Ours) Transformer 71.00 73.49 67.17 60.55 66.34 52.18 57.79 68.36

an input image, we first employ a four-stage vision encoder to ex-
tract the visual features {𝑉1,𝑉2,𝑉3} of the first three stages, where
𝑉𝑖 ∈ R𝐶

𝑖
𝑣×𝐻 ′

𝑖 ×𝑊 ′
𝑖 , 𝑖 ∈ {1, 2, 3}, with 𝐶𝑖

𝑣 , 𝐻 ′
𝑖
, and𝑊 ′

𝑖
being the chan-

nel number, height, and width of the visual feature map at 𝑖-th stage,
respectively. Then, we insert the IGF layers to perform the deep
interaction between the high-level visual feature 𝑉3 and linguistic
feature 𝐿 to obtain the input feature 𝐸3 of the next encoding stage.
Next, in the fourth encoding stage, we again insert the IGF layers to
realize the second guidance of language to visual encoding, obtain-
ing the visual feature 𝐸4. To further align linguistic features with
multi-level visual features, we incorporate the encoding features𝑉2,
𝐸3, and 𝐸4 to form a multi-level visual feature𝑀 and fuse it with 𝐿

via the IGF layers forming the deeply fused feature 𝐸𝑒𝑛𝑐 . Finally,
the low-level visual feature 𝑉1 and high-level visual feature 𝐸𝑒𝑛𝑐
are input to the decoder for predicting the mask 𝑃 . The process by
which linguistic features guide visual encoding can be formulated
as follows:

𝐸3 = IGF(𝐿,𝑉3),
𝐸4 = IGF(𝐿, Encoder(𝐸3)),
𝑀 = ConvBN( [𝑉2 ↓;𝐸3 ↓;𝐸4]),
𝐸𝑒𝑛𝑐 = IGF(𝐿,𝑀),
𝑃 = Decoder(𝑉1, 𝐸𝑒𝑛𝑐 ),

(5)

where ConvBN denotes the 3× 3 convolutional layer attached with
a batch normalization layer. ↓ denotes the downsampling operation.
𝐸3, 𝐸4, and 𝐸𝑒𝑛𝑐 represent the language-guided visual encoding
features.

3.3 Decoder
Multi-Level Feature Fusion. It has become a common idea in RIS
that multi-level feature fusion can improve segmentation results.
Unlike previous works, our whole process does not have repeated

treatment and only uses the IGF module to complete the multi-
modal and multi-scale feature aggregation. At the decoding stage,
we first take the visual feature 𝐸𝑒𝑛𝑐 from the encoder fed into the
ASPPmodule [6] to capture multi-scale context, forming the feature
𝑀𝑑𝑒𝑐 . Then the high-level guidance feature𝑀𝑑𝑒𝑐 is resized to the
spatial size of the low-level visual feature 𝑉1 and deeply interacts
with𝑉1 via IGF layers to supplement spatial details of the concerned
regions. The process of multi-level feature fusion can be formulated
as follows:

𝐸𝑑𝑒𝑐 = IGF(𝑀𝑑𝑒𝑐 ↑,𝑉1), (6)

where ↑ denotes the upsampling operation.
Segmentation. After obtaining the fine feature 𝐸𝑑𝑒𝑐 , we need a

segmentation structure to transform the feature 𝐸𝑑𝑒𝑐 into a segmen-
tation mask. Following [30], we adopt a hierarchical segmentation
structure to process the multimodal feature. The segmentation
structure consists of two stacked 3 × 3 convolution and one 1 × 1
convolution for classifying pixels (represented by the green line
in Figure 2). Each 3 × 3 convolutional layer attaches with batch
normalization and ReLU activation, and a Dropout layer.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets. To verify the effectiveness of our proposed method, we
conduct extensive experiments on four benchmark datasets for RIS:
RefCOCO (UNC) [59], RefCOCO+ (UNC+) [59], G-Ref [41], and
ReferIt [24].

The RefCOCO and RefCOCO+ (i.e., UNC and UNC+) datasets are
collected from the MS COCO dataset [32]. The RefCOCO dataset
contains 19,994 images with 142,209 language expressions for 50,000
objects, and the RefCOCO+ dataset contains 141,564 expressions re-
ferring to 49,856 objects in 19,992 images. In the RefCOCO dataset,
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each image has multiple objects with the same category, and refer-
ring expressions are not restricted. The language expressions in the
RefCOCO+ dataset contain more appearance information without
location information.

The G-Ref dataset is collected from the MS COCO dataset via
Amazon’s Mechanical Turk and includes 104,560 expressions re-
ferring to 54,822 objects in 26,711 images. Compared to the other
datasets, G-Ref has longer language descriptions.

The ReferIt dataset is built upon the IAPR TC-12 [11] and com-
prises 19,894 images with 130,525 language expressions for 96,654
segmented image regions. Its annotations contain not only objects
but also stuff (e.g., ground and water).

Implementation Details. Our network is trained using Adam
[26] optimizer with an initial learning rate of 1.82𝑒−05 for the vision
encoder and 1.82𝑒−04 for the rest modules. For feature dimensions,
considering the GPU memory limits, we set 𝐶′

𝑣 = 𝐶𝑣/2, 𝐶′
𝑙
= 𝐶𝑙 =

256 for the first two IGF layers, 𝐶′
𝑣 = 𝐶𝑣 = 𝐶′

𝑙
= 256 for the third

IGF layers,𝐶′
𝑣 = 𝐶𝑣 = 𝐶′

𝑙
= 128 for the last IGF layers, and𝐶𝐿 = 768.

We adopt the language representation model [53] as our language
encoder. The deeplab ResNet-101 [15] and vision transformer [37]
are used as the visual backbone. During the end-to-end training, we
set the maximum length of language expression to 15 for RefCOCO,
RefCOCO+, ReferIt, and 20 for G-Ref and resize the input image to
480 × 480. We train our network for 15 epochs with a batch size of
6 on an NVIDIA RTX3090 GPU and use the sigmoid cross-entropy
loss as the loss function to guide the network training.

Evaluation Metrics. Following the setup of previous works
[10, 22], we use twometrics for the experimental evaluation: Overall
Intersection-over-Union (Overall IoU) and Prec@X. The Overall IoU
metric calculates the ratio of the total intersection areas and the total
union areas between the predicted mask and the ground-truth mask
for all test samples, which reflects the overall performance of the
proposed methods. The Prec@X metric calculates the percentage
of test samples whose IoU exceeds the threshold X, which shows
the precision distribution of predicted masks in detail.

4.2 Comparison with State-of-the-art
Approaches

To make comparisons as fair as possible, reducing the impact of
the vision encoder with different capacities on performances, we
compare DCMFNet-Res101with EFN [12], DCMFNet-Transwith Re-
STR [25], respectively. The results in Table 1 show that our method
outperforms many other methods on multiple datasets. In partic-
ular, DCMFNet-Res101 achieves the average IoU gains of 3.38%,
4.79% on the UNC, UNC+ datasets over EFN. More remarkably, our
DCMFNet-Trans achieves the average IoU gains of 3.56%, 4.86%,
3.31% on the UNC, UNC+, G-Ref datasets over ReSTR. We attribute
these performance gains to our modeling scheme. Locally, we build
the deep interaction between guidance and guided features by em-
bedding the IGF module in the network. Globally, we explore using
language to guide visual encoding in the encoder and using the
high-level feature to guide low-level feature integration in the de-
coder.

In addition, we compare DCMFNet-Dark53 with VLT [10], and
LTS [23] on three sets using different metrics. Since VLT and
LTS methods are implemented by TensorFlow, and the proposed

DCMFNet is implemented by PyTorch, we reproduced the DarkNet-
53[43] backbone with PyTorch. Although the performance of our
reproduced DarkNet-53 is not as good as that used by VLT and LTS,
it can be seen from the results in Table 3 that the DCMFNet-Dark53
with a lower-performance backbone has achieved the higher per-
formance than VLT and LTS. Darknet-53 is better than ResNet-101,
and it has a similar performance to ResNet-152 [43]. In Table 1,
DCMFNet-Res101 with ResNet-101 achieved comparable perfor-
mance to VLT with DarkNet-53. These results demonstrate the
effectiveness of the proposed method.

4.3 Ablation Studies
We conduct extensive experiments on the validation set of the
RefCOCO dataset to investigate why DCMFNet is effective.

Language-Guided Visual Encoding. Our language-guided
visual encoding divides into two stages. In the first stage (denoted
LGVE-1), we selectively embed the IGF layers into the encoding
layers of the vision encoder to achieve local guidance of language
to visual encoding, formed the visual feature 𝐸𝑖 is fed into the next
encoding layer for the encoder to learn the multimodal feature
representation. In the second stage (denoted LGVE-2), we again
embed the IGF layers for further cross-modal alignment to generate
the feature 𝐸𝑒𝑛𝑐 for decoding.

In rows 1 to 7 of Table 2, we carefully control variables to verify
the effectiveness of language-guided visual encoding. Firstly, we
evaluate the first stage of language-guided visual encoding (corre-
sponding to rows 1 to 5 of Table 2, LGVE-1). We can see that the
Overall IoU and Prec@X performances of the model with LGVE-1
(rows 3 to 5 of Table 2) are higher than that of the model without co-
embedding visual and linguistic features during the visual encoding
(row 1 and row 2 of Table 2), which indicates the co-embedding
of visual and linguistic elements at the visual encoding stage is
beneficial for the network to learn higher-quality multimodal rep-
resentation.

In addition, we selectively embed IGF layers in different visual
encoding layers to further explore the co-embedding of visual and
linguistic features at the visual encoding stage. From the results of
Table 2, we can see that the model with the IGF layers embedded
in the last two visual encoding layers (row 4 of Table 2, Figure 2,
Full model) achieves the best metric performances, while the model
with the IGF layers embedded in the highest layer (row 3 of Table 2)
drops by 2.61% average Prec@X performance and 1.3% Overall
IoU performance compared to the full model. Similarly, the model
with IGF layers embedded in the last three encoding layers (row 5
of Table 2) drops by the 1.35% average Prec@X performance and
1.27% Overall IoU performance. We consider the reasons for such
results are that only co-embeds language features in the highest
layer cannot fully exploit the learning ability of the vision encoder,
while co-embeds language features at the third from last encoding
layer may affect the discrimination of the referent in subsequent
visual coding processes due to the visual feature 𝑉2 lacking suf-
ficient semantic information and containing lots of spatial detail
information irrelevant to the referent, the visual feature 𝑉3 from
the penultimate encoding layer owning more semantic information
can interact with language features more effectively, enabling the
encoder to learn more accurate multimodal representation.
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Table 2: Ablation studies of deep cross-modal fusion network on the RefCOCO val set.

Ei Eenc Edec Prec@0.5 Prec@0.6 Prec@0.7 Prec@0.8 Prec@0.9 Overall IoU(LGVE-1) (LGVE-2) (MLFF)
1 - - - 79.32 74.28 65.30 41.39 16.13 66.92
2 - ✓ ✓ 81.19 77.30 71.43 59.38 30.58 69.19
3 E4 ✓ ✓ 81.60 77.97 72.16 60.48 31.47 69.70
4 E3, E4 ✓ ✓ 83.81 80.30 74.78 63.83 34.02 71.00
5 E2, E3, E4 ✓ ✓ 82.80 79.27 73.45 62.18 32.29 69.73
6 E3, E4 - ✓ 83.40 80.09 74.59 62.94 33.71 70.74
7 E3, E4 ✓ - 83.14 79.35 71.85 54.26 20.89 68.66
Ablation studies of Multi-Level Feature Fusion (MLFF):
8 DCMFNet w/o MLFF 83.14 79.35 71.85 54.26 20.89 68.66
9 with Concat Fusion 83.39 79.72 73.32 60.04 26.91 70.23
10 with Gated Fusion [57] 83.25 79.68 73.57 61.10 28.60 70.40
11 with Gated Bi-directional Fusion [18] 83.63 79.92 74.24 62.03 29.06 70.55
12 with Iterative Gated Fusion (Ours) 83.81 80.30 74.78 63.83 34.02 71.00

Figure 6: Attention results from different stages of DCMFNet. Note: LGVE-1 and LGVE-2 denote the first and second stages of
language-guided visual encoding, respectively, and described in Section 4.3, while MLFF denotes Multi-Level Feature Fusion,
described in Section 3.3.

Table 3: Comparison between our method, VLT [10], and LTS
[23] using DarkNet-53 [43] as the vision encoder on three
sets.

Method UNC UNC+ G-ref
testA testA val

LTS [23] 67.76 58.32 -
VLT [10] 68.29 59.20 49.76

DCMFNet-Dark53 (Ours) 68.38 59.24 51.50

Method Prec@0.5 Prec@0.9 IoU
LTS [23] 78.47 12.92 67.76

DCMFNet-Dark53 (Ours) 82.15 28.18 68.38

Further, we evaluate the second stage of language-guided visual
encoding (LGVE-2). We remove the IGF module that aligns lan-
guage and multi-level visual features (row 6 of Table 2) from the
full model, that is, removing the third IGF module in the encoder in
Figure 2, resulting in a drop of 0.4% average Prec@X performance
and 0.24% Overall IoU performance. Such results are reasonable be-
cause the multi-level visual feature𝑀 formed by the integration of
𝑉2, 𝐸3, 𝐸4, the introduction of feature𝑉2 brings more inconsistency
information (e.g., irrelevant spatial detail information ), while the
inconsistency can be reduced by further aligning the language and
visual feature.

The above results demonstrate the effectiveness of language-
guided visual encoding and IGF layers integrating multimodal fea-
tures.

2024-05-23 07:54. Page 8 of 1–12.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

DCMFNet: Deep Cross-Modal Fusion Network for Referring Image Segmentation with Iterative Gated Fusion Graphics Interface 2024, June 03–06, 2024, Barrington, Halifax

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Figure 7: Attention results from different layers of IGF. The attention results of the IGF layers in the first row are from LGVE-2,
and those in the second row are from MLFF. Note: 𝐹𝑖 is the output feature of the 𝑖-th layer of IGF, and 𝐼𝐺𝐹 ∗ is the final output
feature of the IGF module.

Table 4: Ablation studies of depth 𝐿 of IGF layers.

𝐿 Overall IoU Prec@0.5 Prec@0.7 Prec@0.9
1 69.91 82.67 72.99 31.08
2 70.37 83.34 74.66 33.19
3 70.48 83.35 74.01 33.21
4 70.68 83.58 74.86 33.39
5 71.00 83.81 74.78 34.02
6 70.36 83.35 74.00 33.01
7 70.33 83.64 74.54 33.14

Multi-Level Feature Fusion. In this ablation study, we further
evaluate the multi-level feature fusion (denoted MLFF) component.
We first remove the IGF layers in the decoder, that is, removing
the last IGF layers in Figure 2, resulting in a drop of 5.45% average
Prec@X performance and 2.34% Overall IoU performance (row 7 of
Table 2) compared to the full model. Then, we carefully compare the
ablation results of rows 2 to 6 of Table 2 with those of row 7 and find
that integrating low-level visual features can significantly improve
the performances of Prec@0.8 and Prec@0.9 with high thresholds,
meaning the proportion of predicted masks that are highly consis-
tent with the ground-truth increases. In addition, we also compare
IGF with the previous multi-level feature fusion modules (Concat
Fusion, Gated Fusion [57] and Gated Bi-directional Fusion [18]),
and the results of Table 2 shows that MLFF with iterative gated
fusion achieves better performances. Such results demonstrate the
effectiveness of MLFF and IGF layers in integrating multi-level
features.

Depth of IGF. We further examine the effect of the depth of
IGF layers on the network. From the results in Table 4, we observe
that the IGF with multiple layers achieves better Overall IoU and
Prec@X performances than the IGF with a single layer, which
verifies the effectiveness of the multi-step progressive interaction
strategy adopted by the IGF layers. Moreover, we also observe that
with the increase of the depth 𝐿 of IGF layers, the performances
of the network first steadily increase and achieve the best at 𝐿 = 5
and then decrease at 𝐿 = 6. We consider the reason for such results

Table 5: Ablation studies of the output feature 𝐼𝐺𝐹 ∗ of IGF
layers

Settings Overall IoU Prec@0.5 Prec@0.7
Conv(𝐺5) 70.15 83.39 73.88
Conv(𝐹5) 70.25 83.50 74.31

Conv( [𝐹1; 𝐹2; 𝐹3; 𝐹4;𝐺5]) 70.30 83.60 74.55
Conv( [𝐹1; 𝐹2; 𝐹3; 𝐹4; 𝐹5]) 71.00 83.81 74.78

Table 6: Ablation studies of the gating unit of IGF layers.

Module Params Overall IoU Prec@0.5
ConvLSTMCell [46] 4.72M 70.17 82.94
ConvGRUCell [9] 3.54M 70.61 83.45
ASGate (Ours) 1.77M 71.00 83.81

is that the deeper IGF layers enable the deep interaction between
guidance features and guided features as well as make the difficulty
of network optimization. Similar observations are also reported by
[60].

Settings for the output feature of IGF. Table 5 shows differ-
ent settings of the output feature of IGF layers. We can see that
incorporating features from multiple layers achieves better perfor-
mance than setting only using the last layer. The setting formed
by integrating the output features of each fusion unit achieves the
best performance, so we use the setting as the default.

Adaptive Selection Gate. Table 6 shows the performance of
using different gated mechanisms as the gating unit of the IGF
layers. We can see that compared with ConvLSTMCell [46] and
ConvGRUCell [9], the proposed ASGate achieves the better per-
formances under different metrics with fewer parameters. These
results are reasonable since ASGate is more concise and is more
targeted. ASGate perceives the differences between the enhanced
visual features and the original visual representation, adaptively

2024-05-23 07:54. Page 9 of 1–12.
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Figure 8: Prediction results with different stages removed. (a) Original Image. (b) DCMFNet without MLFF. (c) DCMFNet without
LGVE-1. (d) DCMFNet without LGVE-2. (e) DCMFNet. (f) Ground Truth.

selects spatial regions of high-level semantic interest and aggre-
gates them with the enhanced visual features in preparation for
enhancement and suppression of the fusion unit.

Qualitative results.We first visualize the attention results from
different stages of DCMFNet in Figure 6. The visualization shows
that DCMFNet gradually highlights the referent from LGVE-1 to
LGVE-2 and clarifies the boundaries of the referent at MLFF, finally
generating the predicted mask close to the ground truth. We also
visualize the attention results from different layers of IGF in Figure 7,
respectively. It can be seen that with the depth 𝐿 increasing, the
signal response gradually shifts toward spatial regions related to
the referent. In addition, we visualize the predicted results with
different components removed in Figure 8. These qualitive results
demonstrate the effectiveness of the proposed method.

Limitation. The proposed network uses language to continu-
ously guides visual context modeling, which relies on the accuracy
of semantic information extracted by the text encoder. Recent stud-
ies [20, 49, 51, 52, 56] have shown that transformer and bert based
text encoders show great potential in enhancing the RIS task per-
formance. In addition, the paper explores the potential ability of
the vision encoder to align vision and language, leaving unexplored
the potential of the language encoder to align visual and linguistic
features, and we will explore this possibility in the future.

5 CONCLUSION
In this paper, we introduce a deep cross-modal fusion network
(DCMFNet) for the referring image segmentation task. DCMFNet
achieves cross-modal and multi-level feature alignment to segment
the referent from an image by embedding the core component
Iterative Gated Fusion (IGF) layers multiple times in the encoder
and decoder. The proposed method outperforms many previous
state-of-the-art methods on multiple benchmark datasets.
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