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ABSTRACT

Quantization is one of the most effective techniques for compressing Convolutional
Neural Networks (CNNs), which are known for requiring extensive computational
resources. However, aggressive quantization may cause severe degradation in
the prediction accuracy of such networks, especially in image-to-image tasks
such as semantic segmentation and depth prediction. In this paper, we propose
Wavelet Compressed Convolution (WCC)—a novel approach for activation maps
compression for 1 × 1 convolutions (the workhorse of modern CNNs). WCC
achieves compression ratios and computational savings that are equivalent to low
bit quantization rates at a relatively minimal loss of accuracy. To this end, we use a
hardware-friendly Haar-wavelet transform, known for its effectiveness in image
compression, and define the convolution on the compressed activation map. WCC
can be utilized with any 1× 1 convolution in an existing network architecture. By
combining WCC with light quantization, we show that we achieve compression
rates equal to 2-bit and 1-bit with minimal degradation in image-to-image tasks.

1 INTRODUCTION

Over the past years, Convolutional Neural Networks (CNNs) have brought significant improvement
in processing images, video, and audio (LeCun et al., 2015; Krizhevsky et al., 2017). However, CNNs
require significant computational and memory costs, which makes the usage of CNNs difficult in
applications where computing power is limited, e.g., on edge devices. To address this limitation,
several approaches have been proposed to reduce the computational costs of neural networks. Among
the popular ones are weight pruning (Han et al., 2015; Guo et al., 2016), architecture search (Howard
et al., 2019), and quantization (Li et al., 2017; Banner et al., 2018a). In principle, all these approaches
can be applied simultaneously on top of each other to reduce the computational costs of CNNs.

In this work, we focus on quantization. This approach relieves the computational cost of CNNs by
quantizing their weights and activation (feature) maps using low numerical precision so that they can
be stored and applied as fixed point integers (Hubara et al., 2017; Banner et al., 2018a). In particular,
it is common to apply aggressive quantization (less than 4-bit precision) to compress the activation
maps (Esser et al., 2020). Yet, it is known that compressing natural images using uniform quantization
is sub-optimal. Indeed, applying aggressive quantization in certain CNNs can lead to significant
degradation in the accuracy of the network. The impact is especially evident for the image-to-image
tasks such as semantic segmentation (Tang et al., 2019) and depth prediction (Lee et al., 2020), where
each pixel has to be assigned a value. In a recent work that targets quantized U-Nets (Tang et al.,
2019), activations bit rates are kept relatively high (about 8 bits) while the weight bit rates are lower
(down to 2 bits). Beyond that, we note that the majority of the quantization works are applied and
tested on image classification (Esser et al., 2020; Li et al., 2020, and references therein).

This work aims to improve the compression of the activation maps by introducing Wavelet Com-
pressed Convolution (WCC) layers. These layers utilize the Haar-wavelet transform (Daubechies,
1992) to compress the activation maps before applying convolutions. This wavelet transform and
its inverse can be applied efficiently in linear complexity for each channel, using additions and
subtractions, thanks to the simplicity of the Haar basis. The main idea of our approach is to keep the
same top k entries (in magnitude) of the transformed activations maps with respect to all channels
(dubbed as joint shrinkage) and perform the convolution in the wavelet domain on the compressed
signals, saving significant computations. We show that the transform and shrinkage operations
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Figure 1: Comparison between standard quantization and our (joint-channel) wavelet compression.
The plot shows MSE between the quantized and original activation maps based on a batch of 1000
activation maps from the second hidden layer of MobileNetV3 (small) using the ImageNet data set.

commute with the 1× 1 convolution, the heart of modern CNNs. This procedure is applied along
with modest quantization to reduce the computational costs further.

We demonstrate the effectiveness and flexibility of our WCC by applying it in popular network
architectures: DeeplabV3plus (Chen et al., 2018) with MobileNetV2 encoder (Sandler et al., 2018)
for semantic segmentation, and BTS (Lee et al., 2020) with ResNeXt50 encoder (Xie et al., 2017)
for depth prediction. We show that using WCC dramatically improves the results over aggressive
quantization for the same compression rates while retaining the baseline network architecture.

2 RELATED WORK

Quantized Neural Networks: Quantized neural networks have been quite popular recently and
are exhibiting impressive progress in the goal for true network compression and efficient CNN
deployment. Quantization methods include Zhou et al. (2018); Zhang et al. (2018); Banner et al.
(2018b), and in particular Li et al. (2020); Esser et al. (2020); Choi et al. (2019), which show that
the clipping parameters—a highly important parameter in quantization schemes—can be learned
through optimization. Beyond that, there are more sophisticated methods to improve the mentioned
schemes. For example, dynamic quantization schemes utilize different bit allocations at every layer
(Dong et al., 2020; Cai & Vasconcelos, 2020; Uhlich et al., 2020). Non-uniform methods can improve
the quantization accuracy (Yamamoto, 2021) but require a look-up table, which reduces hardware
efficiency. Quantization methods can also be enhanced by combination with pruning (Tung & Mori,
2018) and knowledge distillation for better training (Kim et al., 2019).

The works above focus on image classification. When considering image-to-image tasks like semantic
segmentation, networks tend to be more sensitive to quantization of the activations. In the work
of AskariHemmat et al. (2019), targeting segmentation of medical images, the lowest bit rate for
the activations is 4 bits, and significant degradation in the performance is evident compared to 6
bits. These results are consistent with the work of Tang et al. (2019) that was mentioned earlier,
which uses a higher bit rate for the activations than for the weights. The work of Xu et al. (2018)
uses weight (only) quantization for medical image segmentation as an attempt to remove noise and
not for computational efficiency. The recent work of Liu et al. (2021) shows both a sophisticated
post-training quantization scheme and includes fine-tuned semantic segmentation results. Again
a significant degradation is observed when going from 6 to 4 bits. One exception is the work of
Heinrich et al. (2018) that uses ternary networks (equivalent to 2 bits here) and segments one medical
data set relatively well compared to its full precision baseline.

In this work, we focus on the simplest possible quantization scheme: uniform (across all weights
and activations), quantization-aware training, with per-layer clipping parameters. That is to ensure
hardware compatibility and efficient use of available training data. In principle, one can run our
platform regardless of the quantization type and scenario (e.g., non-uniform/dynamic quantization).
Also, since we target the compression of the activations, then any method that is focused on the
weights (e.g., pruning (Tung & Mori, 2018)) can be combined here as well.
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Wavelet transforms and compression: Wavelet transforms are widely used in image processing
(Porwik & Lisowska, 2004). For example, the JPEG2000 format (Rabbani, 2002) uses the wavelet
domain to represent images as highly sparse feature maps. Recently, wavelet transforms have been
used to define convolutions and architectures in CNNs for various of imaging tasks. For example, the
work of Huang et al. (2017) presents a network architecture for super-resolution, where the wavelet
coefficients are predicted and used to reconstruct the high-resolution image. The works of Duan et al.
(2017); Williams & Li (2018) use wavelet transforms in place of pooling operators to improve CNNs
performance. The former uses dual-tree complex wavelet transform (Kingsbury, 1998), and the latter
learns the wavelet basis as part of the network optimization. In these cases, the wavelet transform is
not used for compression, but to better preserve information with its low-pass filters.

The work of Wolter et al. (2020) proposes a wavelet-based approach to learn basis functions for
the wavelet transform to compresses the weights of linear layers, as opposed to compression of the
activation as we apply here. We use the Haar transform (as opposed to a learned one) for its hardware
efficiency. Using a different transform (known or learned) is also possible, at the corresponding
computational cost. The work of Sun et al. (2021) introduces quantization in the wavelet domain,
somewhat similarly to this work. However, the authors suggest to improve the quantization scheme
by learning a different clipping parameter per wavelet component, but without the feature shrinkage
stage, which is the heart of our approach (we use the same clipping parameter for the whole layer
using 8 bits for hardware efficiency). As mentioned before, one can use our WCC together with
different types of quantization schemes, in particular including Sun et al. (2021), taking the additional
hardware complexity of using different clipping parameter per component into account.

Lastly, Liu et al. (2018) suggest using a modified U-Net architecture for image-to-image translation.
There, wavelet transforms are used for down-sampling, and the inverse is used for up-sampling. This
work is architecture-specific, and the method can not be easily integrated into other architectures.
In contrast, here we propose the WCC layer to easily replace 1× 1 convolutions regardless of the
network architecture. Hence our framework is, in principle, also suitable for post-training quantization
(Banner et al., 2019), where the data is not available, and the original network is not retrained.

3 BACKGROUND

Quantization-aware training Quantization schemes can be divided into post- and quantization-
aware training schemes. Post training schemes perform model training and model quantization
separately, which is most suitable when the training data is not available during the quantization
phase (Banner et al., 2019; Nagel et al., 2019; Cai et al., 2020). On the other hand, quantization-aware
training schemes are used to adapt the model’s weights as an additional training phase. Such schemes
do require training data but generally provide better performance. Quantization schemes can also
be divided into uniform vs. non-uniform methods, where the latter is more accurate but the former
is more hardware friendly (Li et al., 2020; Jung et al., 2019). Lastly, quantization schemes can
utilize quantization parameters per channel within each layer or utilize these parameters only per
layer (where all the channels share the same parameters). Similar to before, per-channel methods
are difficult to exploit in hardware, while per-layer methods are less accurate but are more feasible
for deployment on edge devices. This paper focuses on per-layer and uniform quantization-aware
training for both weights and activations and aims to improve this with wavelet transforms. Other
quantization schemes can be applied within our wavelet compression framework as well.

In quantization-aware training, we set the values of the weights to belong to a small set so that
after training, the application of the network can be carried out in integer arithmetic, i.e., activation
maps are quantized as well. Even though that we use discontinuous rounding functions throughout
the network, quantization-aware training schemes utilize gradient-based methods to optimize the
network’s weights (Han et al., 2015; Yin et al., 2019). In a nutshell, when training, we iterate on the
floating-point values of the weights. During the forward pass, both the weights and activation maps
are quantized, while during the backward pass, the Straight Through Estimator (STE) approach is
used (Bengio et al., 2013), where we ignore the rounding function, whose exact derivative is zero.

The specific quantization scheme that we use is based on Li et al. (2020). First, the pointwise
quantization operator is defined by:

qb(t) =
round((2b−1)·t)

2b−1 , (1)
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where t ∈ [−1, 1] or t ∈ [0, 1] for signed or unsigned quantization, respectively1. The parameter b is
the number of bits that are used to represent t. During the forward pass, each number undergoes three
steps: scale, clip, and round. That is, to get the quantized version of any number, we apply:

If signed: xb = αqb−1(clip(
x

α
,−1, 1)); If unsigned: xb = Qb(x) = αqb(clip(

x

α
, 0, 1)). (2)

Here, x, xb are the real-valued and quantized tensors, and α is the clipping parameter. The parameters
α in (2) play an important role in the error generated at each quantization and should be chosen
carefully. The works of Li et al. (2020); Esser et al. (2020) introduced an effective gradient-based
optimization to find the clipping values α for each layer, again using the STE approximation. This
enables the quantized network to be trained in an end-to-end manner with backpropagation. To
further improve the optimization, weight normalization is also used before each quantization.

Haar wavelet transform and compression. In this section, we describe the Haar-wavelet transform
in deep learning language and its usage for compression. See Vyas et al. (2018) for more details on
the use of wavelets for image compression. Given an image channel x, the one-level Haar transform
can be achieved by a separable 2D stride two convolution with the following kernel:

W =
1

2

[[
1 1
1 1

]
,

[
1 −1
1 −1

]
,

[
1 1
−1 −1

]
,

[
1 −1
−1 1

]]
. (3)

These kernels can also be expressed as a composition of separable 1D kernels [1, 1]/
√
2 and

[1,−1]/
√
2. The result of the convolution [y1,y2,y3,y4] = Conv(W,x) has four channels, each of

which has half the resolution of x. The leftmost kernel in (3) is an averaging kernel, and the three
right kernels are edge-detectors. This, together with the fact that images are piece-wise smooth, leads
to relatively sparse images y2,y3,y4. Hence, if we retain only the few top-magnitude entries in
these vectors, we keep most of the information, as most of the entries we drop are zeros. That is the
main idea of wavelet compression. We denote the Haar-wavelet transform by y = HWT(x), where y
is defined as the concatenation of the vectors y1, ...,y4 into one. Since the kernels in (3) form an
orthonormal basis, applying the inverse transform is obtained by the transposed convolution of (3):

x = iHWT(y) = Conv-transposed(W, [y1,y2,y3,y4]).

However, unlike y2,y3,y4, the averaged image y1 is not sparse, and is just the down-sampled
original x. Hence, in the multilevel wavelet transform, we apply the kernel in (3) on y1 to generate
further down-sampled sparse channels. For example, a 2-level Haar transform can be summarized as[

y1
1,y

1
2,y

1
3,y

1
4

]
= Conv(W,x);

[
y2
1,y

2
2,y

2
3,y

2
4

]
= Conv(W,y1

1), (4)

and the resulting transformed image with 2-levels can be written as the concatenated vector

y =
[
y2
1,y

2
2,y

2
3,y

2
4,y

1
2,y

1
3,y

1
4

]
= HWT(x). (5)

In this work we use 3 levels in all the experiments. To apply compression we define the operator
T that extracts the top k entries in magnitude from the vector y: ycompressed = T · HWT(x). To
de-compress this vector we first zero-fill ycompressed (multiply with T>) and apply the inverse Haar
transform, which is the transposed convolutions in the opposite order.

4 WAVELET COMPRESSED CONVOLUTION

In this work, we aim to reduce the memory bandwidth and computational cost associated with
convolutions performed on intermediate activation maps. To this end, we apply the Haar-wavelet
transform to compress the activation maps, in addition to light quantization of 8 bits. Our method
is most efficient for scenarios with high-resolution feature maps (i.e., large images, whether in 2D
or 3D), where the wavelet compression is most effective. Such cases are mostly encountered in
image-to-image tasks like semantic segmentation, depth prediction, image denoising, in-painting,
super-resolution, and more. Typically, in such scenarios, the size and memory bandwidth used for the
weights are relatively small compared to those used for the features (e.g., point cloud segmentation).

1In most standard CNNs, the ReLU activation is used; hence the activation feature maps are non-negative
and can be quantized using an unsigned scheme. If a different activation function that is not non-negative is
used, or, as in our case, the wavelet coefficients are quantized, signed quantization should be used instead.

4



Under review as a conference paper at ICLR 2022

Figure 2: The workflow of WCC. From Left to right: the input channels, their Haar transform, the
joint shrinkage of the 2D Haar representation into equal sized 1D vectors and a single bit-map (or a
list of indices), the application of the 1× 1 convolution on the 1D vectors, and lastly on the right: the
inverse transform back to the spatial domain. Here, the shrinkage ratio is set to 0.1.

In addition, since we have to predict each pixel, typical architectures do not aggressively down-sample
the images, as opposed to multi-class image classification, where activation maps become small, and
the number of channels grows towards the end of the network.

Convolution in the wavelet domain: Since we focus on computational efficiency, we use the Haar
transform, as it is the simplest and most computationally efficient wavelet variant. Indeed, the Haar
transform involves binary pooling-like operations, which include only additions, subtractions, and a
bit-wise shift. We focus on the compression of fully-coupled 1 × 1 convolutions, as these are the
workhorse of lightweight and efficient architectures like MobileNet (Sandler et al., 2018), ShuffleNet
(Ma et al., 2018), EfficientNet (Tan & Le, 2019), and ResNeXt (Xie et al., 2017). All these modern
architectures rely on 1 × 1 convolutions in addition to grouped or depthwise spatial convolutions
(i.e., with 3 × 3 or larger kernels), which comprise a small part of the computational effort in the
network—the 1 × 1 operations dominate the inference cost (see Appendix B). The main idea of
our method is to transform and compress the input using the wavelet transform prior to the 1 × 1
convolution, then apply it in the wavelet domain on a fraction of the input size. Since the wavelet
compression is applied separately on each channel, it commutes with the 1× 1 convolution. Hence,
applying the convolution in the wavelet domain is equivalent to applying it in the spatial domain.

Joint hard shrinkage: Prior to the 1× 1 convolution, the spatial wavelet transform is applied, and
we get sparse feature maps. Since the different channels result from the same input image propagated
through the network, they typically include patterns at similar locations, and hence the sparsity pattern
of their wavelet-domain representation is relatively similar. This idea of redundancy in the channel
space is exploited in the works of Han et al. (2020); Eliasof et al. (2020); Bae et al. (2021), where part
of the channels are used to represent the others. Therefore, we perform a joint shrinkage operation
between all the channels, in which we zero and remove the entries with the smallest feature norms
across channels, resulting in a compressed representation of the activation maps2. The locations of
the non-zeros in the original image are kept in a single index list or a bit-map for all the channels in
the layer, as they are needed for the inverse transform back to the spatial domain. Lastly, we also
apply light 8-bit quantization to the transformed images to further improve the compression rate. The
weights and wavelet-domain activations are quantized using the symmetric scheme as described in
section 3.

More precisely, the advantage of the wavelet transforms is their ability to compress images. Denote
the Haar transform matrix as H, i.e., Hx = HWT(x). Then, for most natural images we have that

x ≈ H>T>THx (6)
where T is the shrinkage operator described above, and because of its orthogonality, H> is the
inverse transform IHWT. Our WCC layer is defined by:

WCC(K1×1,x) = H>T>K1×1THx, (7)
where K1×1 is the learned convolution matrix. The workflow is illustrated in Figure 2. Note that the
convolution operates on the compressed domain, hence, if T can significantly reduce the dimensions
of the channels, this leads to major savings in computations.

2Regardless of the joint sparsity of the channels, some approaches suggest taking the left-upmost part of the
wavelet transform for any image, so in principle, the joint sparsity may suffice for a general set of images as well.
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Our method aims at compression only. Hence, we show that a 1×1 convolution kernel can be applied
both in the spatial and in the compressed wavelet domain. By its definition, we can write a 1 × 1
convolution as a summation over channels. That is:

y = K1×1x⇒ yi =
∑

j kijxj , (8)

where kij ∈ R are the weights of the convolution tensor. Now, suppose we wish to compress the
result y, through (6). Because T and H are separable and spatial, we get by simple linear arithmetic:

yi ≈ H>T>TH(K1×1x)i = H>T>
∑

j kijTHxj ⇒ y ≈ H>T>K1×1THx. (9)

Hence, the wavelet compression operator, which is known to be highly efficient for natural images,
commutes with the 1×1 convolution, so the latter can be applied on the compressed signal and get the
same result as compressing the result directly. This introduces an opportunity to save computations
on the one hand and use more accurate compression on the other.

The description above is suited for 1× 1 convolutions only, while many CNN architectures involve
spatial convolutions with larger kernels, strides, etc. The main concept is that fully coupled convo-
lutions that mix all channels are expensive, inefficient, and redundant when used with large spatial
kernels (Ephrath et al., 2020). The spatial mixing can be obtained using separable convolutions at less
cost without losing efficiency (Chen et al., 2018). Since we aim at saving computations, separating
the kernels in the architecture is recommended even before discussing any type of lossy compression.
Furthermore, separable convolutions (and the Haar transform) can be applied separately in chunks of
channels or together as part of the 1× 1 convolution using specialized implementation. Hence the
memory bandwidth can be reduced. The 1× 1 convolution, on the other hand, involves all channels
at once; hence it is harder to reduce the bandwidth in this case.

4.1 COMPUTATIONAL COSTS IN BIT OPERATIONS (BOPS)

To evaluate the computational cost involved in WCC we use the measure of Bit-Operations (BOPs)
(Wang et al., 2020; Louizos et al., 2018). First, the number of Multiply-And-Accumulate (MAC)
operations in a convolutional layer is given by

MAC(conv) = Cin · Cout ·NW ·NH ·KW ·KH · 1
SW ·SH

, (10)

where Cin and Cout are the number of input and output channels, (NW , NH) is the size of the input,
(KW ,KH) is the size of the kernel, and (SW , SH) is the stride value. The BOPs count is then

BOPs(conv) = MAC(conv) · bw · ba, (11)
where bw and ba denote the number of bits used for weight and activations.

As described in section 3, the Haar transform is separable between the input channels, and can
be viewed as four 2 × 2 convolutions with stride (2, 2) and binary weights. Hence, the one-level
transform requires 4·Cin ·W ·H ·ba BOPs. The transform can be used with more levels of compression
explained in section 3, on down-scaled inputs, resulting in a total of∑L

l=1 4 · Cin ·NW ·NH · 1
4l−1 · ba (12)

BOPs, where L is the level of compression. Similarly, the inverse-transform result in the same
calculation, only withCout in place ofCin. To demonstrate the relatively small cost of the compression,
consider a 1× 1 convolution with Cin = 160, Cout = 960, input size of (34, 34), and quantization
bw = ba = 8 (which is part of a network used later in section 5). This layer costs 11, 364M BOPs.
Using a 3 levels wavelet transform and its inverse for this layer results in 54M BOPs, a negligible
cost which allows for better compression, as we demonstrate next.

5 RESULTS

In this section, we evaluate our WCC layer’s performance in image-to-image tasks—semantic
segmentation and depth estimation—where the feature maps are relatively large and suitable for
wavelet compression. We compare our method to quantization-aware training based on the work of Li
et al. (2020), which we also use in our method for 8-bit quantization of the shrunk signals. Our code
is implemented in PyTorch (Paszke et al., 2017) based on Torchvision implementations, including the
same data augmentation. We ran our experiments on NVIDIA 24GB RTX 3090 GPU. We detail our
experimental setup for each section separately.

6



Under review as a conference paper at ICLR 2022

(a) Original input image from ImageNet (b) Feature maps from ResNet50 layers.

(c) 2-bit quantized layers (unsigned). (d) 2-bit equivalent wavelet compressed.

Figure 3: Feature maps from layers 2 and 3 (top and bottom triplets, respectively) of a pretrained
ResNet50 on ImageNet. The maps are compressed with uniform quantization (2-bit) and wavelet
compression (25% shrinkage + 8-bit quantization, equivalent to 2-bit quantization in terms of size). It
is clear that wavelet compression loses much less information than aggressive quantization.

5.1 QUALITATIVE COMPRESSION ASSESSMENT

Before describing experiments with common datasets and tasks, we first qualitatively demonstrate the
advantage of our approach. First, we compare the MSE of standard quantization vs our approach on
a feature map from a pretrained MobileNetV3 applied on a batch of 1000 images from the ImageNet
dataset (Krizhevsky et al., 2017). We consider an effective bit rate range of [2, 8]. The quantization
of the shrunk wavelet coefficients is 8 bit, and multiplying it with the compression ratio yields the
effective bit rate. E.g., 8 bit and 25% shrinkage is effectively 2 bits. This also agrees with the BOPs
measure in Eq. (11). Figure 1 shows the MSE comparison per effective bit rate. One can see that the
information loss based on the MSE is more significant in standard quantization. We note that the
quantization parameters in this experiment were chosen by an exhaustive search for minimizing the
MSE for every dot in the plot. Furthermore, in Figure 3 we can see a visualization comparison of a
typical activation map compressed by a standard quantization and our method. It is obvious that the
perceptive degradation in the image approximation is more significant in the standard quantization.
This is not surprising since wavelet image compression is more advanced than uniform quantization.

5.2 SEMANTIC SEGMENTATION

Semantic segmentation is the task of assigning a label to every pixel in the input image. CNNs have
shown significant improvements over traditional methods but at a high computational cost. Our
model of choice here is the popular DeeplabV3plus (Chen et al., 2018) with MobileNetV2 backbone
(Sandler et al., 2018). We evaluated the proposed method on the Cityscapes and Pascal VOC. The
Cityscapes dataset (Cordts et al., 2016) contains images of urban street scenes. The images are of
size 1024x2048 with pixel-level annotation of 19 classes. During training, we used a random crop of
size 768x768 and no crop for the validation set. The Pascal VOC (Everingham et al., 2015) dataset
contains images of size 513x513 with pixel-level annotation of 20 foreground object classes and a
background class. We augmented the dataset similarly to Chen et al. (2018).
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(a) Input image (b) Ground truth (c) Quantization 8/8 (d) Quantization 8/4

(e) WCC 8/8 100% (f) WCC 8/8 50% (g) WCC 8/8 25% (h) WCC 8/8 12.5%

Figure 4: Cityscapes segmentation results. All the networks use weight quantization of 8-bits. (a)
input image. (b) ground truth. (c), (d) normal quantization with 8- and 4-bits activations respectively.
(e)-(h) WCC with 8-bits activations and shrinkage rate of 100%, 50%, 25% and 12.5% respectively.

Precision Wavelet Cityscapes Pascal VOC
(Weight / Activation) shrinkage BOPs (B) mIoU BOPs (B) mIoU

Full precision None 36,377 0.717 4,534 0.715

8bit / 8bit None 2,273 0.701 283 0.712
8bit / 6bit None 1,705 0.683 212 0.678
8bit / 4bit None 1,136 0.173 141 0.095

8bit / 8bit 100% 2,292 0.697 285 0.695
8bit / 8bit 50% 1,213 0.681 150 0.675
8bit / 8bit 25% 673 0.620 82 0.611
8bit / 8bit 12.5% 403 0.552 48 0.519

4bit / 8bit None 1,136 0.682 141 0.675
4bit / 6bit None 852 0.669 106 0.657
4bit / 4bit None 568 0.190 70 0.099

4bit / 8bit 100% 1,156 0.672 144 0.678
4bit / 8bit 50% 616 0.667 76 0.661
4bit / 8bit 25% 346 0.621 42 0.583
4bit / 8bit 12.5% 211 0.549 24 0.515

Table 1: Validation results for semantic segmentation task using DeepLabV3plus with MobileNetV2
as the backbone. Segmentation performance is measured by mean intersection over union (mIoU).

We used two configurations for the weights—4 and 8 bits—and for each of them we used different
compression rates for the activations, both for the standard quantization and our WCC layer. Like
before, our WCC layer with a shrinkage rate of 50% has nearly equal BOPs to reducing the activation
bits from 8 to 4. Likewise, a shrinkage rate of 25% nearly equals to 2 bits.

The training scheme used is similar to Li et al. (2020). We first trained a network in full precision and
then gradually reduced the bit rates (this was used for the WCC as well). For all datasets and model
optimization, we used SGD with momentum 0.9, weight decay 10−4, learning rate decay 0.9, and set
the batch size to 16. For Cityscapes, we trained the full precision model for 160 epochs with a base
learning rate of 0.1, and each of the retrains was trained for 50 epochs with a base learning rate of
0.01. For Pascal VOC, we trained the full precision model for 50 epochs with a base learning rate of
0.01, and each of the retrains was trained for 25 epochs with a base learning rate of 0.002.

Table 1 shows the performance and BOPs of each model, from which we can see that our model
achieves superior performances at high compression configurations, outperforming the 4-bit activation
even with compression rates equivalent to 2- and 1-bits. Figure 4 shows a visual example.

8



Under review as a conference paper at ICLR 2022

Precision (Weight / Activation) Wavelet shrinkage BOPs (B) AbsRel RMSE

Full precision None 156,882 0.061 2.774

8bit / 8bit None 9,805 0.068 2.889

8bit / 8bit 50% 4,910 0.071 3.063

8bit / 4bit None 4,902 0.070 3.065

8bit / 8bit 25%-50% 4,549 0.075 3.228

8bit / 2bit-4bit None 4,541 0.106 4.082

8bit / 8 bit 25% 4,297 0.08 3.352

Table 2: Validation results on BTS, using ResNeXt50 as backbone encoder, measured by absolute
relative difference (AbsRel) and root mean squared error (RMSE), in both lower is better.

Comparison to Liu et al. (2021): This work deals with zero-shot quantization and shows results on
quantization-aware training (fine-tuned) for Cityscapes, albeit using 256× 256 input images. In their
paper, the 8bit/8bit fine-tuned result has a mIoU of 0.613 compared to about 0.7 here, in both the
standard and wavelet cases. Our standard 4bit/8bit setting achieves 0.67 vs. 0.6 for 6bit/6bit by Liu
et al. (2021). Furthermore, when considering 4bit weights, all our wavelet compression results (up to
12.5%) outperform or are on par with the 4bit/4bit result of 0.56 by Liu et al. (2021).

5.3 MONOCULAR DEPTH ESTIMATION

In this section, we apply our compression technique on Big-to-Small (BTS, Lee et al., 2020), a
network architecture for monocular depth estimation—a task of estimating scene depth using a single
image. We evaluated the results on the KITTI dataset (Geiger et al., 2013), containing images of
autonomous driving scenarios, each of size ∼1241x376 pixels. The dataset splits are as in BTS, using
the strategy of Eigen et al. (2014). As in BTS, we use a maximum value of 80 meters for prediction
when testing, and the performance evaluation is based on the cropping scheme of Garg et al. (2016).
We did not modify the initial convolution, the final convolutions, and the depth prediction layer when
applying the compression. Using any compression technique on these layers resulted in a significant
degradation in the results.

In our experiments, we focus on a ResNeXt50 backbone. The compressed models are fine-tuned from
a 8bit/8bit quantized network, trained from scratch. In local planar guidance layers, we use 8bit/4bit
quantization instead of our wavelet scheme. When training, we use the same configuration presented
in the BTS repository. We use the AdamW optimizer (Loshchilov & Hutter, 2019), a learning rate of
0.00014, a weight decay of 0.001, a batch size of 4 images, and train for 50 epochs.

Table 2 shows a comparison between the standard quantization and WCC for BTS. Using our WCC
layer with 50% compression resulted in comparable scores to the alternative method of 8bit/4bit
quantization (with similar BOPs). Moreover, when applying a compression factor of 25% (50% on
low spatial-sized tensors), we achieve superior results to the quantized alternative. This comparison
is presented qualitatively in Appendix A. Finally, in the full 25% compression experiment, we see
that even when aggressively compressing the low spatial-sized tensors, we achieve better results than
using low-precision standard quantization.

6 CONCLUSION

In this work, we presented a new approach for feature map compression, aiming to reduce the memory
bandwidth and computational cost of image-to-image CNNs, where typically the resolution is high.
Our approach is based on the classical Haar-wavelet image compression, which has been used for
years in standard devices and simple hardware, and in real-time. We save the computational cost by
applying 1× 1 convolutions on the shrunk wavelet domain. We show that this approach surpasses
aggressive quantization using the same bit rate at minimal additional costs of the transform.
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REPRODUCIBILITY STATEMENT

The code for running and reproducing the experiments reported in this paper is attached as supple-
mentary material.
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A BTS COMPRESSION RESULTS

(a) Input Image

(b) Wavelet Compression 8/8 25% (50% in small tensors)

(c) Quantization 8/2 (8/4 in small tensors)

Figure 5: Kitti depth estimation prediction examples. We compare two compressed networks with
the same BOP magnitude, the first uses our wavelet compression method and the second uses low-bit
quantization.

B A NOTE ON 1× 1-CONVOLUTIONS

In the case when a certain CNN use 3 × 3 convolution only, one can split it to two convolution, a
depthwise-3× 3 and a 1× 1 (Wang et al., 2017; Vanhoucke, 2014). The depthwise conv involves
with Cin · 3 · 3 ·NW ·NH MAC operations (assuming no strides), while the 1 × 1 conv includes
Cin · Cout ·NW ·NH MAC operations (Cout/9 times more expensive than depthwise). Meaning,
for a large enough Cout, the 3× 3 convolution has about 8-9 times more MAC operations than the
depthwise-3× 3 convolution and 1× 1 convolution.

Some models, such as the ones referenced in section 4, are defined based on that concept. For
example, MobilenetV2 consists of residual blocks that perform 1 × 1, depthwise-3 × 3, and an
additional 1× 1, and for an image input of size 1024× 2048 (e.g. cityscapes), the 1× 1-conv has
a MAC count of 18,022M, while the 3× 3-conv has a MAC count of 1,056M (a full breakdown is
provided in Table 3).

14



Under review as a conference paper at ICLR 2022

Module id Cin Cout K Groups S Dilation H W MAC

InvRes1 conv1 32 32 3 32 1 1 513 1025 150,552,864
InvRes1 conv2 32 16 1 1 1 1 511 1023 267,649,536
InvRes2 conv1 16 96 1 1 1 1 513 1025 807,667,200
InvRes2 conv2 96 96 3 96 2 1 513 1025 112,914,648
InvRes2 conv3 96 24 1 1 1 1 256 512 301,989,888
InvRes3 conv1 24 144 1 1 1 1 258 514 458,307,072
InvRes3 conv2 144 144 3 144 1 1 258 514 169,869,312
InvRes3 conv3 144 24 1 1 1 1 256 512 452,984,832
InvRes4 conv1 24 144 1 1 1 1 258 514 458,307,072
InvRes4 conv2 144 144 3 144 2 1 256 514 42,467,328
InvRes4 conv3 144 32 1 1 1 1 128 256 150,994,944
InvRes5 conv1 32 192 1 1 1 1 258 514 206,069,760
InvRes5 conv2 192 192 3 192 1 1 256 514 56,623,104
InvRes5 conv3 192 32 1 1 1 1 128 256 201,326,592
InvRes6 conv1 32 192 1 1 1 1 258 514 206,069,760
InvRes6 conv2 192 192 3 192 1 1 256 514 56,623,104
InvRes6 conv3 192 32 1 1 1 1 128 256 201,326,592
InvRes7 conv1 32 192 1 1 1 1 258 514 206,069,760
InvRes7 conv2 192 192 3 192 2 1 256 514 14,155,776
InvRes7 conv3 192 64 1 1 1 1 64 128 100,663,296
InvRes8 conv1 64 384 1 1 1 1 66 130 210,862,080
InvRes8 conv2 384 384 3 384 1 1 66 130 28,311,552
InvRes8 conv3 384 64 1 1 1 1 64 128 201,326,592
InvRes9 conv1 64 384 1 1 1 1 66 130 210,862,080
InvRes9 conv2 384 384 3 384 1 1 66 130 28,311,552
InvRes9 conv3 384 64 1 1 1 1 64 128 201,326,592
InvRes10 conv1 64 384 1 1 1 1 66 130 210,862,080
InvRes10 conv2 384 384 3 384 1 1 66 130 28,311,552
InvRes10 conv3 384 64 1 1 1 1 64 128 201,326,592
InvRes11 conv1 64 384 1 1 1 1 66 130 210,862,080
InvRes11 conv2 384 384 3 384 1 1 66 130 28,311,552
InvRes11 conv3 384 96 1 1 1 1 64 128 301,989,888
InvRes12 conv1 96 576 1 1 1 1 66 130 474,439,680
InvRes12 conv2 576 576 3 576 1 1 66 130 42,467,328
InvRes12 conv3 576 96 1 1 1 1 64 128 452,984,832
InvRes13 conv1 96 576 1 1 1 1 66 130 474,439,680
InvRes13 conv2 576 576 3 576 1 1 66 130 42,467,328
InvRes13 conv3 576 96 1 1 1 1 64 128 452,984,832
InvRes14 conv1 96 576 1 1 1 1 66 130 474,439,680
InvRes14 conv2 576 576 3 576 1 1 66 130 42,467,328
InvRes14 conv3 576 160 1 1 1 1 64 128 754,974,720
InvRes15 conv1 160 960 1 1 1 1 66 130 1,378,713,600
InvRes15 conv2 960 960 3 960 1 2 66 130 70,778,880
InvRes15 conv3 960 160 1 1 1 1 64 128 1,258,291,200
InvRes16 conv1 160 960 1 1 1 1 66 130 1,378,713,600
InvRes16 conv2 960 960 3 960 1 2 66 130 70,778,880
InvRes16 conv3 960 160 1 1 1 1 64 128 1,258,291,200
InvRes17 conv1 160 960 1 1 1 1 66 130 1,378,713,600
InvRes17 conv2 960 960 3 960 1 2 66 130 70,778,880
InvRes17 conv3 960 320 1 1 1 1 64 128 2,516,582,400

Total of 1× 1 18,022,413,312
Total of 3× 3 1,056,190,968

Table 3: In depth breakdown of MobilenetV2 (as a backbone for deeplabv3+) for a single Cityscapes’
image input. K and S refer to the size of the symmetric kernels and strides respectively. The first
convolution of the network is omitted, since it is a common practice to avoid quantizing it.
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