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Abstract

Transformers have emerged as a competitive alternative to convnets in vision
tasks, yet they lack the architectural inductive bias of convnets, which may hin-
der their potential performance. Specifically, Vision Transformers (ViTs) are not
translation-invariant and are more sensitive to minor image translations than stan-
dard convnets. Previous studies have shown, however, that convnets are also not
perfectly shift-invariant, due to aliasing in downsampling and nonlinear layers.
Consequently, anti-aliasing approaches have been proposed to certify convnets
translation robustness. Building on this line of work, we propose an Alias-Free
ViT, which combines two main components. First, it uses alias-free downsam-
pling and nonlinearities. Second, it uses linear cross-covariance attention that
is shift-equivariant to both integer and fractional translations, enabling a shift-
invariant global representation. Our model maintains competitive performance in
image classification and outperforms similar-sized models in terms of robustness
to adversarial translations[l]

1 Introduction

Transformers, primarily designed for language modeling [58]], have become dominant in vision tasks
[26}134]. Since they were originally designed for sequential data, their underlying attention mechanism
is not sensitive to the locality of information in visual data. As a result, Vision Transformers (ViTs)
exhibit a lack of shift-invariance, a shortcoming that becomes evident in cases where small image
translations lead to significant deviations in output [25} 51].

To mitigate this gap, many studies have been conducted on the integration of convolutional priors,
such as spatial hierarchy and shift-invariance, into ViT architectures. For example, approaches include
hierarchical patch merging [39]], the incorporation of convolutional layers [61]], and the design of
relative positional encodings [62]. Furthermore, some works have drawn parallels between self-
attention and dynamic convolutions [1} 9} 27], motivating reinterpretations of the attention mechanism
through a convolutional lens.

Despite being more spatially aware than transformers, convnets are not perfectly shift-invariant
due to aliasing introduced by strided convolutions and pooling layers [4, [67]. This has led to
a line of research that aims to restore shift-invariance, by methods including anti-aliasing filters
(2141231132, 140L 167, [71] and adaptive sampling techniques [0, 46]]. Building on these advances, recent
works have adapted such methods for transformer architectures. For example, Adaptive Polyphase
Sampling (APS) has been employed to achieve cyclic shift-equivariance in ViTs [13}47]. However,
despite the latter approach efficiently guaranteeing shift-invariance for integer pixel cyclic shifts, it
falls short in fractional (i.e., sub-pixel) shifts and “standard” shifts (i.e. imitating camera translation)
[L1L'40,51]).

'Our code is available at|github.com/hmichaeli/alias_free_vit.
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Figure 1: Overview of the Alias-Free Vision Transformer (AFT) architecture. The input image is
first processed by an alias-free patch embedding module composed of convolutional layers (Conv),
batch normalization (BN), and alias-free activation, composed of upsampling (AF-Up), GELU and
downsampling (AF-Down). The result is reshaped to a token matrix form and fed through L Alias-
Free Transformer blocks, each consisting of alias-free layer normalization (AF-LN), cross-covariance
attention (XCA), alias-free local patch interaction (AF-LPI), and alias-free MLP (AF-MLP) layers,
interconnected by residual connections. The result is concatenated with a learnable class token
embedding and fed into two Alias-Free Class Attention blocks composed of an XCA layer and an
MLP applied on the class token. The final representation is the updated class token, which is fed into
a final linear classifier. Detailed explanations of each component are provided in Section E}

As aliasing is primarily related to downsampling layers, which are not frequently used in ViTs,
only few studies have been conducted on integrating aliasing-reduction techniques to achieve shift-
invariance in ViTs. Qian et al. [42] propose plugging a low-pass filter post self-attention to reduce
aliasing, however, this only provides a partial solution, as it does not resolve the inherent lack of
shift-equivariance in self-attention and aliasing in other nonlinearities. Recent works study aliasing
in latent diffusion models [2, 164, [70]] that typically include attention layers, in order to improve their
consistency i.e. in video generation. However, these works do not address the main issue in the
self-attention operation. A similar problem may also hinder transformer neural operators which have
recently become popular [28 38| 52], as aliasing has been shown to be related to discretization errors
(5 144] 169].

Another emerging direction focuses on linear and softmax-free attention mechanisms, initially
proposed to reduce the quadratic complexity of standard attention in large language models (LLMs)
[7, 133, 159]. In the vision domain, models such as XCiT [16]] and SimA [35] demonstrate that
alternative attention formulations, e.g., using cross-covariance or linear attention, can maintain
competitive performance without directly computing a full attention map. Beyond improved efficiency,
we now show that such mechanisms enable designing a transformer-based architecture that is shift-
equivariant, similar to convnets.

Contributions. In this paper

* We present in Section [2]a certain class of shift-equivariant attention layers (SEA), including linear
attention and cross-covariance attention, which is useful for vision tasks.

* We design in Section [3] a shift-invariant, alias-free Vision Transformer (AFT) using cross-
covariance attention and alias-free nonlinearities and show it has a competitive performance
in image classification.

* We show in Section 4] that the AFT is robust (~ 99% consistency) to fractional cyclic shifts, and
significantly more robust to practical translations than other similar models, albeit with increased
computational overhead due to the alias-free components.



2 Methods

2.1 Preliminaries: the Vision Transformer

The Vision Transformer (ViT) [15] transfers the Transformer architecture [58]] from text to images

by interpreting an image as a sequence of visual tokens. Given an input 2 € RE*H#*W the image

is partitioned into N = F; W non-overlapping patches of resolution p x p. Each patch is flattened

and projected by a learned linear layer into a D-dimensional embedding, forming X € RV*?_ For
classification, a learnable “class” token is prepended to X and later serves as a global representation,
propagated into the classification module. Learnable absolute positional encodings P € R(N+1)xD
are then added to compensate for the permutation-invariance of self-attention.

The resulting sequence X = X + P is processed by L identical Transformer encoder blocks. Each
block is composed of a Multi-Head Self-Attention (MHSA) module with a two-layer Feed-Forward
Network (FFN), interleaved with Layer Normalization (LN) and residual connections:

XO = x4 MHSA(LN (5((‘5—1))) , (1
X0 = xO 4 FFN(LN (X“))) , )
where /=1,...,Land X(© = X.

Multi-Head Self-Attention. Each of the h heads linearly projects the input into queries, keys
and values, Q = XW,, K = XW,, V = XW,, with W, W, W,, € RP*4 and d;, = D/h.
Self-Attention is then computed as

SA (X) = softmax (QKT / \/dh> V. 3)
The outputs of all heads are concatenated and projected back to R” by a final linear layer.

Feed-Forward Network. The FFN first expands the embedding dimension to 4D, applies a GELU
activation [30], and projects back:

FFN (X) = Wy GELU (W1 X + by) + ba, 4
with W, € R*P*D and W, € RP*4D,

2.2 Linear Attention

Notably, Equation (3 requires computing QK T € RV <N explicitly, which has a quadratic cost in
the number of tokens. This has motivated many linear complexity variants of self-attention [7}33}/59].
In vision, SimA removes softmax entirely by maintaining stability using /;—normalized @) and K [33].
XCiT mixes channels instead of tokens with cross-covariance attention (XCA) [16]],

XCA(X) = V softmax (KT Q/T) , ®)
where Q, K are (5-normalized along the token dimension and 7 > 0 is a learnable temperature.

2.3 Alias-Free Vision Transformer

Next, we describe our proposed model, replacing every ViT component that is not shift-equivariant

with a modification that restores equivariance. For brevity, the analysis is given for a one-dimensional

signal. The same principles can be applied in the two-dimensional case by viewing the sequence of
H w

N tokens in a two-dimensional representation, namely X € R» *» xD

Similar to Karras et al. [32] and Michaeli et al. [40]], we view the input as a discrete sampling of an

underlying band-limited continuous signal. The main difference from a standard convnet emerges

*In practice two-dimensional signals tokens are also stacked into a one-dimensional sequence (formally the
row-stack). Nevertheless, shift-equivariance in the two dimensions is still maintained under this representation.



after tokenization: the patch-embedding matrix X € RV X stores the sequence length NV along its
first axis, and the embedding dimension D in the second axis. Thus, the spatial and channel roles are
swapped compared to convnet feature maps, where the channel index comes first and spatial indices
follow. Throughout our analysis, we therefore interpret the D columns of X as D “channels” of a
length-/V one-dimensional signal. Maintaining shift-equivariance then amounts to ensuring that each
column transforms equivariantly under fractional translations in the continuous domain.

Shift invariance and equivariance. We reuse the definitions of Michaeli et al. [40]. Let z[n] be a
discrete signal, T its sample spacing, and z(t) the unique 5-band-limited signal with z[n] = 2(nT).

2
For any (possibly non-integer) shift A € R,
Taz[n] = z(nT + A).

An operator f is shift-equivariant if f(Tax) = 7a f(x) and shift-invariant if f(rax) = f(z) for all
x and A.

In some cases, we may claim that a value is shift-equivariant. This is a slight abuse of the definition
to say the overall operator computing this value is shift-equivariant w.r.t. the input signal.

Patch embedding. Algebraically, the tokenization process described in Section[2.T]is equivalent to a
convolution with kernel size p, stride p, and D output channels. By separating this stride-p convolution
into a stride-1 convolution followed by an alias-free downsampling [21], the composite operator
becomes shift-equivariant [32} 40l 67]]. However, this requires inserting a single low-pass filter with
cut-off 1/p, which would severely attenuate high-frequency content, especially for large patches.
Instead, we employ a convolutional patch-embedding that replaces the single stride-p layer with a
short convnet of progressively smaller strides, often used in hybrid models [16} 24} |61} [66]. Here,
we can avoid aliasing by plugging a low-pass filter with a larger cut-off before each downsampling
layer, and by using an alias-free activation function [32| 40]]. This gradual approach still enables the
network to learn high-frequency features, despite the anti-aliasing components.

Positional encoding. Absolute positional encoding injects the global index of each token and
therefore breaks shift-equivariance. Several relative schemes have been proposed that depend only on
pairwise offsets and thus preserve shift-equivariance at the token level [8, |39} 150]. These methods,
however, do not guarantee equivariance to pixel-level translations, as they cause the patch contents
themselves to change. Notably, the convolutional patch embedding already breaks permutation
invariance of the tokens, possibly reducing the need for additional positional signals. Moreover, recent
studies demonstrate that hybrid transformers can learn effectively without any explicit positional
encoding [31[68]. Consistent with this observation, we find empirically (Section[4.4) that positional
encoding may be unnecessary in architectures that include convolutional layers inside the transformer
blocks, such as XCiT [[16].

Shift-Equivariant Attention. We next show a class of attention operations that, by removing the
softmax in Equation (3), are shift-equivariant. This primarily includes the linear attention, which,
although still less common, is attractive for its lower complexity [33l 154] and yields competitive
vision results [35]. Formally,

SEA (X) = Qf (K'V), (6)
where we keep the existing notation Q = XW,, K = XWj, V = XW,, and let f : RP*P —
RP*P be an arbitrary function.

We now establish the desired property in three steps.
Proposition 1. @), K and V are shift-equivariant.

Proof. Each column of ), K or V is a fixed linear combination of the columns of X. As the columns
of X are merely the channels of the same signals, they translate together, and any linear combination
of them is also shift-equivariant.

O

Proposition 2. f (K TV) is shift-invariant.



Proof sketch. Consider the matrix entry (K 'V) . = K"V}, where K; and V; denote columns. By

ij
Parseval’s theorem,
1 T

A fractional translation by 7 multiplies both Fourier transforms by the same phase factor e/“”, which
cancels in the product. Hence, every entry of K |V remains unchanged due to a translation (see
formal proof in appendix E]) An important observation is that since K 'V is shift-invariant, any
matrix operation can be applied on it without compromising this property.

Proposition 3. V' = Qf (K V) is shift-equivariant.

Proof. Column j of V"’ satisfies
D
.
Vi= ) Qif(K'V),.
i=1

i.e. a sum of shift-equivariant columns Q; (Proposition [I) scaled by shift-invariant coefficients
f(KTV) ; (Proposition . The resulting column is therefore shift-equivariant. O

g

As mentioned above, since K 'V is shift-invariant, any matrix operation f can be applied on it
without compromising the overall shift-equivariance. By the same argument, K ' Q) is also shift-
invariant; thus a row-wise softmax on K ' Q as used in XCA (Equation ) is permissible. Note
that in XCA, the columns of ) and K are /5-normalized along the token dimension, which as well
maintains shift-equivariance [40].

MLP. The MLP linear layers apply the same linear transformation on all tokens, maintaining
shift-equivariance as in Proposition[I} However, pointwise nonlinearities induce aliasing that breaks
fractional shift-equivariance. This can be solved similarly to [40] by an alias-free activation function,
which includes upsampling before the nonlinearity and downsampling back after low-pass filtering.

Layer normalization. Per-token LayerNorm rescales each column differently and breaks equiv-
ariance. The same problem has been addressed by Michaeli et al. [40], by using a global variant,
namely
X = 7Xi‘2_u, Wi = %ZXU’ UQ:ﬁZ(Xij—Mi)2- (N
Vo©te i i

where 1 is computed per token and o2 per layer.

Class token. Prepending the “class” token interferes with the signal representation of the columns
of the embedding matrix, and breaks shift-equivariance. A simple solution is to instead construct
a global representation using global average pooling over the embedding dimension after the last
transformer block, i.e.

N

% 1 (L) D

X = E X R 8
N P i € ’ ®)

similar to the common approach in convnets and a few other ViTs [24} 39, |65)]. This, assuming
shift-equivariance is maintained, yields a shift-invariant global representation [40]].

Class Attention. Some ViTs append the class token only after L patch-only blocks and update it
through a few class-attention (CA) layers [[10, |16} 156]. These layers usually fix the patch embeddings
and update only the class token embedding by attending it to itself and to the frozen patch embeddings.
We find that when using SEA after concatenating the class token, Propositions[T]to[3]still hold w.r.t. the
patch tokens, and additionally the class token remains shift-invariant (see proof in appendix [A).
Retaining similarity to the original class attention blocks, we only propagate the class embedding
through the MLP, which also prevents aliasing in the nonlinearity. We use this approach instead of
global average pooling since we find it performs slightly better.



3 Implementation

We implement the Alias-Free Vision Transformer (AFT) based on XCiT architecture [[16]. XCiT
replaces standard self-attention with cross-covariance attention, described in Equation @ This,
by Proposition 3] preserves shift-equivariance. The remaining modifications focus on eliminating
aliasing in the patch-embedding, local patch interaction (LPI), and MLP blocks. The overall model is
presented in Figure[I]

Conv Patch Embedding. XCiT patch embedding (PE) module is a sequence of blocks composed
of strided convolution, batch normalization, and GELU. Similar to [40]], we replace the strided convo-
lution with a stride of 1 and insert an alias-free downsampling at the end of the block, implemented
by truncation of high-frequencies in the Fourier domain, using Fast Fourier Transform (FFT) [22} 45].
We replace zero-padding with circular padding. We use alias-free activation functions by wrapping
the GELU activation with upsampling and alias-free downsampling layers [32|40]. In contrast to
[40], we find that replacing the GELU with a polynomial activation to get perfect shift-invariance
degrades the model performance significantly. Conversely, we find that keeping GELU affects the
translation-robustness marginally. We do not add positional encodings and do not prepend a class
token at this stage; the class token is appended only before the class attention blocks.

AFT Block. Following the patch embedding, XCiT is composed of a sequence of Blocks, each
consisting of three components: cross-covariance attention (XCA), local patch interaction (LPI),
and MLP. As argued in Section[2.3] the XCA is already shift-equivariant. The LPI consists of two
convolutional layers, batch normalization, and activation layers, and we treat each of them as in
the PE, forming an alias-free version we denote AF-LPI. The MLP applies a shared two-layer FFN
on each token, and can be viewed as a convolutional layer with kernel size 1. Therefore, the only
required modification to form the alias-free variant (AF-MLP) is converting the activation function
into an alias-free activation. We replace all LayerNorm instances, applied before XCA, LPI, and
MLP, with the alias-free layer norm described in Section@

Classification. After the last AFT block we append a learnable class token and apply two AF class
attention blocks. Each block consists of AF-LN, an XCA layer, and an MLP applied only to the class
token. Residual connections are used around XCA and the MLP, mirroring the AFT blocks. By the
SEA properties, the patch tokens remain shift-equivariant and the class token is shift-invariant (see
Proposition[d). The final prediction is obtained by a linear classifier applied to the class token.

4 Experiments

We evaluate our Alias-Free Transformer (AFT) on the ImageNet dataset [[12] and compare its accuracy
and shift consistency with the baseline XCiT model. We additionally compare our method with
the adaptive polyphase sampling (APS) approach [13} 47]], which we implement by replacing the
strided-convolutions in the PE with stride-1 convolutions followed by APSPool [6], and using the
standard class attention blocks for classification (maintaining integer shift-invariance). We use the
nano and small XCiT versions with 12 layers and patch-size 16, processing inputs of size 224 x 224.

We train all models for 400 epochs, following the XCiT training recipe [[16], using PyTorch [41], on a
single machine with 8 x NVIDIA RTX A6000. We observe a slight improvement for the AF models
when training with a smaller batch size; therefore, we reduce the batch size from 1024 to 512 for the
AF versions (See additional details in Appendix [D.T].

In Sections @] and @] we evaluate the baseline, APS, and AFT models using cyclic translations
and implement m /n-fractional translation by translating in m pixels the n-upsampled image using
sinc-interpolation, as our and the APS models were initially designed under those assumptions. In
Section[4.3| we use more “realistic” types of translations, and add additional publicly available ViTs
to the comparison.

4.1 Accuracy and shift consistency

The results in Table([T] (left) show the classification accuracy and consistency, defined as the percentage
of validation samples whose prediction did not change after a random translation. The alias-free



Table 1: ImageNet accuracy and cyclic shift consistency. Left: Shift consistency is defined as
the percentage of test samples that did not change their prediction following a random translation.
The alias-free models have similar accuracy to the baseline models, and much higher consistency in
both integer and half-pixel translations. Right: Adversarial accuracy is defined as the percentage
of correctly classified samples in the worst case at the corresponding grid (Equation (9)). See
Appendix B for additional results.

Model Test Integer Half-pixel Adversarial Adversarial
ode accuracy  shift consist.  shift consist. | integer grid  half-pixel grid
XCiT-Nano (Baseline) 70.4 83.7 82.0 50.9 52.9
XCiT-Nano-APS 68.4 100.0 87.5 68.4 62.9
XCiT-Nano-AF (ours) 70.5 99.2 98.7 69.9 69.5
XCiT-Small (Baseline) 82.0 91.4 89.8 70.9 71.3
XCiT-Small-APS 81.3 100.0 94.0 81.3 78.2
XCiT-Small-AF (ours) 81.8 99.5 994 81.3 81.1

models have similar accuracy to the baseline models, and much higher consistency in both integer
and half-pixel translations. The APS models, on the other hand, achieve near-100% consistency under
integer translations, as expected. However, they have a more modest improvement in consistency to
half-pixel shifts.

4.2 Adversarial robustness

To show a practical implication of shift consistency, we ask whether an adversary, free to translate the
image within a prespecified grid, can find any shift that flips the label. We define adversarial accuracy
as the fraction of images that are classified correctly in the worst-case at this grid. In Table|l|(right),
we show results for cyclic integer and half-pixel translations, reporting adversarial accuracy over the
following grids

Tinteger = { (6,5)| =6 < 4,5 <6} Tharr = { (4,%) | -6<4,j <6} 9

The AFT models maintain high accuracy under both integer and half-pixel attacks, having 2% relative
accuracy reduction in the nano version and less than 1% reduction in the small model. This is in
contrast to the baseline models, with relative accuracy reductions of 25% and 14% in the nano
and small models respectively. As expected, the APS models maintain their accuracy under the
integer grid adversarial attacks. Their accuracy under half-pixel grid attacks decreases slightly in
comparison to the baseline models. The reason for this is that the APS is invariant to any two
half-pixel translations, as these differ in exact integer translations. We expect the APS accuracy to
decrease more under arbitrary fractional translations, as can be seen in Section@] and [40]. See
Appendix [B] for additional results.

4.3 Robustness to realistic shifts

The experiments above use cyclic translations, which may leave unnatural image artifacts in realistic
cases (where the input is not a sample of some periodic signal). We therefore test two more realistic
perturbations and measure adversarial accuracy exactly as in Section d.2] See Appendix [C] for
visualizations of the used translations.

* Crop-shifts. The image is first center-cropped, then cropped in offsets (05, ) with 05|, |0, < s.
This mimics a camera translation that moves content out of view instead of wrapping it around.

* Bilinear fractional shifts. To simulate sub-pixel motion, we translate the image by (4, /6, 6,,/6)
with |0,[, |0, < s, using bilinear interpolation. Here, we leave an edge of one pixel of the original
image in each direction to avoid edge artifacts.

We compare the baseline, APS and AFT XCiT-Small models with other publicly available trained
models, in similar scale as XCiT-small (26M) (indicates number of parameters): CvI-13 (20M),
Swin-T (28M), and ViT-Base (86M). We repeat these experiments with s (max-shift) in the range 0
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Figure 2: ImageNet adversarial accuracy under realistic translations. Adversarial accuracies
under (a) "Crop-shifts," simulating camera translations, and (b) "Bilinear fractional shifts," simulating
realistic sub-pixel image translations. The Alias-Free Transformer (AFT) consistently outperforms
baseline XCiT, APS, and other vision transformer variants (CvT, Swin and ViT), demonstrating
superior robustness against realistic translations.

to 6. The results in Figure [2] show our model has improved robustness to both these types of realistic
shifts, despite not being specifically designed for them. Among the additional baselines, the vanilla
ViT degrades the most under crop-shifts, whereas under bilinear fractional shifts it is surprisingly
competitive and in fact better than the hybrid backbones (XCiT, Swin, CvT).

4.4 Ablation study

We conduct an ablation study on XCiT-Nano to evaluate the impact of each of the alias-free mod-
ifications on the model performance. We train the baseline model on ImageNet with one specific
change, and report the results in Table 2] Surprisingly, replacing the layer norm with alias-free
layer-norm and replacing class attention with average pooling cause a much larger degradation in
accuracy in comparison to the marginal degradation in the final alias-free model. On the other hand,
removing the positional encoding leads to a small improvement in accuracy, emphasizing that it may
be unnecessary in hybrid architectures.

Table 2: Ablation study on alias-free compo-
nents of XCiT-Nano (ImageNet). Evaluation
of isolated alias-free modifications to the base-
line model. Alias-free layer normalization (AF-

Table 3: Training runtime. Train time was mea-
sured on 8 x NVIDIA RTX A6000 using batch
size 1024 for the baseline model and batch size
512 in the APS and AF models, due to memory

LayerNorm) and replacing class-attention with ~ constraints.

average pooling (AvgPool) result in notable ac-

curacy degradation individually. Removing posi- Model Train time

tional encoding slightly improves performance. (hours]

The final combined alias-free model retains near- XCiT-Small (Baseline) 69

baseline accuracy. XCiT-Small-APS 98
XCiT-Small-AF (ours) 487

Model Accuracy  Change (%)
Baseline 70.4 -
Cyclic convolution 70.4 +0.0%
AvgPool 69.1 -1.8%
AF-LayerNorm 69.6 -1.1%
No positional encoding 70.7 +0.4%
AF (AvgPool) 70.4 +0.0%
AF (AF Class Attention) 70.6 +0.3%




5 Related work

A few studies have shown a broad effect of aliasing in deep neural networks, e.g., breaking shift-
equivariance in convnets [4} [67]], inconsistencies in image generation [32| |64} [70]], and breaking
continuous-discrete equivalence in neural operators [5} 19} 155, 169].

Shift invariant convnets. For a long time, convolutional neural networks have held dominance in
vision thanks to their useful inductive biases, including translation invariance. However, previous
studies have shown their output can in fact change in a large extent due to small translations [4}[17].
This has led to extensive research to find the root causes and resolve this problem. Azulay and Weiss
[4]], Zhang [67] have identified shift-invariance breaks as a result of aliasing in downsampling and
nonlinear layers. Consequently, other studies suggested solving this problem by plugging a low-pass
filter before downsampling [23}29,167]], and preventing aliasing in nonlinearities by using smooth
activation functions [31} 40, 57] and by applying activations after upsampling [32, 40, 60]. Other
works suggested maintaining shift-invariance in convnets by downsampling on adaptive grids [6} 46].
Specifically, the adaptive sampling method (APS) [6l146] has been shown to retain perfect consistency
to integer cyclic translations, while the anti-aliasing approach maintains consistency in fractional
translations as well. Worth mentioning here are recent works that propose transforming the input
into a “canonic” shift-invariant representation [[11}51]], which theoretically makes equivariance of the
following neural network unnecessary.

Shift invariant transformers. Vision transformers have gained dominance despite not having the
convnet priors and being even more sensitive to image translations. Some studies have proposed
hierarchical ViT architectures similar to convnets [[14} 18} 39} 49| 162], and “hybrid” architectures
including convolutional layers directly [61]. Furthermore, some works have drawn parallels between
self-attention and dynamic convolutions [1} |9, 27]], motivating reinterpretations of the attention
mechanism through a convolutional lens. Few studies have taken inspiration from these studies
aiming to retain shift-invariance in convnets and implemented their ideas into ViTs. Qian et al.
[42] proposes plugging a low-pass filter post self-attention to reduce aliasing, partially improving
consistency similar to Zhang [67]. Ding et al. [[13], Rojas-Gomez et al. [47]] adapt the adaptive
sampling method (APS) into ViT layers, certifying consistency to integer cyclic translations. Other
studies proposed more general framework for group equivariant attention [48} 63]]. Yet, to the best of
our knowledge, no other work has dealt with the invariance of ViTs to fractional shifts.

Linear attention. The standard Transformer architecture relies on softmax-based attention [58]],
characterized by quadratic computational complexity in the number of tokens. To overcome scalability
limitations, linear and kernel-based attention mechanisms have been proposed [[7,133]], substantially
reducing complexity while maintaining performance. For example, linear attention leverages a linear
approximation of the softmax kernel, achieving significant efficiency gains [39]. In vision, models
like SimA [35] and XCiT [16] utilize simplified normalization schemes to replace the expensive
softmax operation, enabling to avoid a direct computation of full attention maps.

6 Discussion and limitations

In this paper, we propose a shift-invariant alias-free vision transformer by introducing a class of
shift-equivariant attention operations. We show that the AFT maintains competitive accuracy and
superior robustness to fractional shifts, compared to other ViTs. We next discuss a few of our model
limitations.

Polynomial activation function Michaeli et al. [40] propose replacing nonlinear activation func-
tions, such as GELU, with polynomial approximations. This mathematically ensures the overall
activation layer (including upsampling) is shift-equivariant w.r.t. continuous domain, namely perfectly
consistent to fractional shifts. In our experiments, we observe that this leads to a significant reduction
in performance, which is caused specifically due to the activation replacement in the patch-embedding
stage (see Appendix [B). On the other hand, we observe that the filtered activation function using
GELU leads to a rather small reduction in consistency. Notably, the certified consistency is limited to
cyclic shifts and fractional shifts performed by sinc-interpolation, both induce artifacts that do not



appear in natural images. We find that similar to the AFC, our model also has significant improvement
in robustness to realistic translations despite the imperfect consistency to cyclic shifts.

Runtime performance The alias-free modifications we perform in our model to attain shift
invariance, despite not requiring any additional parameter, cause a substantial runtime increase, as
shown in Table[3] This is mainly due to the downsampling and upsampling, which are implemented in
the Fourier domain using FFT, similar to other works [22| 23} 40} 43| [70], seemingly underoptimized
for GPU as of today [20} 53].
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A Full proofs
Proposition 2.  f (K "V) is shift-invariant.

Proof. The problem can be simplified by considering an arbitrary entry in K 'V, since

(KTV),, =KV,

2%
where K;, V; are the i-th and j-th columns of K and V, representing 1-dimensional signals.

By Parseval theorem, this inner product between signals equals to their inner product in Fourier

domain: ) .
KV, = 27/ Ki () V; (w)dw. (10)
™

Denote K™ and V7 the queries and values of a 7-shifted input signal w.r.t. the input signal of K and
V. Following Proposition|[I] a translation by 7 of the input « yields a translation by 7 of both K and
V. The Fourier transform of the translated signals differs by a phase which cancels out in the inner
product, thus we get the same product:

1 us

TTy/T _ > Pr¥
K[V = o B K] (w)V} (w) dw (11)

1 T , - ' *

= | K@ (Vs @) e™) dw (12)
T™J)_n
Y N o

=5 K; (w)V; (w)dw (13)

=K;'V;. (14)

O

Class Attention. Below we formalize the statement regarding shift-invariance of the Class Attention
layer in Section[2.3]

Proposition 4. Let Q = XW,, K = XWj, and V = XW,, be the query, key and value matrices of
a patch sequence X € RN*P . Append the sequence with a class token,

Q = [QTv(ICls]Ta f( = [KTakcls

with learnable vectors qus, keis, Vais € RP. Our CA layer applies the SEA update

1Y V= VT e (15)

V' = SEA(Q, K, f/) = Qf(f{Tf/) € RIVHDXD (16)

where f: R(P*D) S RPXD js any matrix function. Denote the output by V' = [V’ T véls] T with
V' € RN*P_ Then

1. Patch equivariance: V' is shift-equivariant.

2. Class invariance: v.,, is shift-invariant.

Proof. Let Q™ K™ and V7 be the keys and values obtained from the 7-translated input X, and define
- T . T - T
Q= @) aw) o K= [ k] o V= () ] o an)

Shift-invariance of the attention weights. Since the translation 7 acts only on patch tokens, we get
KV = (K" V" 4+ kawwle = K"V + kv, = KTV, (18)

T

where the middle equality uses Proposition The rank-one class term kcisv,),

dent of the input translation), hence f (f( T) is shift-invariant.

is constant (indepen-
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It holds that .
V' =Qr (KTV) = [T (KTV), bt (K7V)] (19)

Patch equivariance. From Equation li the patch tokens post CAare V' = QT f (KT ‘7), where

f <I~( Tf/) is shift-invariant, therefore V" is shift-equivariant similar to Proposition

Class invariance. From Equation , the class token post CA is ¢ . f (f( Tf/), which is shift-
invariant.

B Additional results

B.1 Additional datasets

We evaluate all models from section 4.1 on three additional classification benchmarks — CIFAR-10,
CIFAR-100 [37], and Stanford Cars [36] — under two protocols: (i) fine-tuning ImageNet-pretrained
checkpoints and (ii) training from scratch. In both protocols, we train each model using the ImageNet
recipe of Table [8| with 1,000 epochs, where in the fine-tuning protocol, we initialize the model
weights using the checkpoints from section d.I] We report top-1 accuracy together with cyclic shift
consistency for integer and half-pixel translations, defined exactly as in Section

Across all datasets, AFT maintains near-perfect shift-equivariance (above 99% consistency in integer
and half-pixel shifts). Additionally, when fine-tuned, the XCiT-Small-AF model is slightly but
consistently more accurate than the baseline on all three datasets, suggesting that the shift-invariance
prior can benefit larger transformers when adapting to small datasets.

Table 4: CIFAR and Stanford Cars (fine-tuning): accuracy and cyclic shift consistency. We
fine-tune ImageNet-pretrained checkpoints on CIFAR-10/100 and Stanford Cars. Metrics are top-1
test accuracy and consistency to integer and half-pixel cyclic translations (as in Section .T).

CIFAR-10 CIFAR-100 Stanford Cars
Model Test Integer Half-pixel Test Integer Half-pixel Test Integer Half-pixel
ode accuracy  shift consist.  shift consist.  accuracy  shift consist.  shift consist. accuracy = shift consist.  shift consist.
XCiT-Nano (Baseline) 98.0 98.0 98.1 84.3 89.4 89.9 92.3 95.2 95.1
XCiT-Nano-APS 97.7 100.0 99.4 84.1 100.0 96.9 922 100.0 97.0
XCiT-Nano-AF (ours) 97.7 99.9 99.9 84.3 99.6 99.4 92.1 99.9 99.8
XCiT-Small (Baseline) 98.2 98.4 98.5 85.6 87.4 89.6 92.6 95.4 96.3
XCiT-Small-APS 98.3 100.0 99.5 85.4 100.0 96.2 922 100.0 97.2
XCiT-Small-AF (ours) 98.4 99.9 99.9 85.8 99.6 99.5 93.0 99.9 99.9

Table 5: CIFAR and Stanford-Cars (from scratch): accuracy and cyclic shift consistency. Models
are trained from scratch on each dataset using the ImageNet training setup with 1,000 epochs; metrics
as in Section[4.1]

CIFAR-10 CIFAR-100 Stanford Cars
Model Test Integer Half-pixel Test Integer Half-pixel Test Integer Half-pixel
ode accuracy  shift consist.  shift consist. accuracy = shift consist. ~ shift consist. accuracy = shift consist.  shift consist.
XCiT-Nano (Baseline) 97.2 98.0 98.0 82.4 90.3 90.2 86.5 91.6 91.7
XCiT-Nano-APS 97.2 100.0 99.2 82.3 100.0 97.1 84.1 100.0 933
XCiT-Nano-AF (ours) 96.5 99.9 99.9 81.3 99.5 99.4 853 99.7 99.6
XCiT-Small (Baseline) 98.3 98.7 98.7 853 91.3 91.3 89.6 95.1 94.5
XCiT-Small-APS 98.0 100.0 99.4 85.1 100.0 95.7 90.5 100.0 96.5
XCiT-Small-AF (ours) 97.6 99.9 99.9 83.4 99.6 99.6 88.5 99.8 99.8

B.2 Global average pooling vs AF Class Attention

In section [2] we propose two mechanisms to get a shift-invariant global representation out of the
AFT — a global average pooling over the embedding dimension and an alias-free class attention
that leverages SEA to maintain a shift-invariant class token. We compare the final AF class attention
(AFCA) head with a global average pooling (AvgPool) head within the AFT architecture. As shown
in Table[6] both AFCA and AvgPool maintain near-perfect shift consistency. AFCA demonstrates
consistent improvement over AvgPool in top-1 accuracy, most visible in the Small variant.
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Table 6: AF class attention vs. global average pooling (AFT). Top-1 accuracy and cyclic shift con-
sistency (integer and half-pixel) on ImageNet. AvgPool and AFCA retain near-perfect equivariance,
while AFCA provides a consistent accuracy gain, most notably for the Small variant.

Test Integer Half-pixel
Model accuracy  shift consist.  shift consist.
XCiT-Nano-AF (AvgPool) 70.35 99.0 98.6
XCiT-Nano-AF (AF-CA) 70.48 99.2 99.4
XCiT-Small-AF (AvgPool) 80.70 99.5 99.4
XCiT-Small-AF (AF-CA) 81.81 99.5 99.4

B.3 Polynomial vs GELU comparison

Similar to the Alias-Free ConvNet (AFC) of Michaeli et al. [40], certified shift-invariance in the
Alias-Free Transformer (AFT) can be achieved by replacing the filtered GELU activations with
polynomial approximations. We therefore train an alias-free XCiT-Nano variant whose activations
are polynomials with learnable coefficients per embedding channel, following Michaeli et al. [40].
We use polynomials of degree 2 in the AFT blocks and degree 3 in the patch-embedding stage (PE),
which remains alias-free thanks to the downsampling layers following the activations in the PE. The
results in Table [/| show that the full polynomial model (‘“Poly”) has near-100% shift consistency,
with a small gap that can be attributed to numerical errors, similar to the case in the APS model (see
Table[I). However, we observe that unlike in the AFC, polynomial activations lead to a significant
reduction in accuracy.

Interestingly, when the four GELU activations in the PE are retained and only the block activations
are replaced (“GELU (PE), Poly (Blocks)”), most of the lost accuracy is recovered. This may indicate
that polynomial activations limit the representational capacity of the convolutional PE which is much
shallower than the convnet tested in AFC.

Table 7: Effect of polynomial activations on ImageNet performance and shift consistency. Top-1
accuracy and consistency (%) of XCiT-Nano with the standard filtered GELU, full polynomial
replacement (Poly), and a hybrid that keeps GELU in the patch-embedding (PE)

Test Integer Half-pixel
Model accuracy  shift consist.  shift consist.
GELU 70.4 98.8 98.4
Poly 65.8 99.7 99.6
GELU (PE), Poly (Blocks) 68.5 99.4 98.7

C Translation visualization

We provide visual examples of the translations described in the paper in Figures [3|and [4]

D Experiments details

As mentioned in Sectiond] we used the same training settings as in XCiT [16]], except for lowering
the batch size for the AF model. We report the used training hyperparameters in Table 8]

D.1 Batch size choice

Aiming to avoid expensive hyperparameter tuning, we used the XCiT original recipe [16]. However,
in our early experimentations, we observed fluctuations in the training curves of the AF and APS
models, which were alleviated by reducing the batch size. To decide fair batch sizes, we trained the
Nano variants of Baseline, APS, and AF with batch sizes 512 and 1024 and picked, for each method,
the configuration that performed best. The Baseline favored 1024 (top-1 70.4 vs. 70.1 at 512), while
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(a) Original image (b) Circular integer shift (c) Circular half-pixel shift

Figure 3: Visualization of cyclic shifts. (a) Original ImageNet [12] validation-set image. (b) Circular
shift of 16 pixels in horizontal and vertical axes. (c) Circular shift of 16.5 pixels in horizontal and
vertical axes. The original image is upsampled by a factor 2, circularly shifted by 33 pixels, and

downsampled by factor 2.
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(a) Original image (b) Crop-shift (c) Bilinear fractional shift

Figure 4: Visualization of realistic shifts. (a) Original ImageNet [12] validation-set image —
224 x 224 center crop of the original 256 x 256 image. (b) Crop-shift of the original image of 16
pixels in the horizontal and vertical axes. The cropped area is shifted by 16 pixels with respect to the
cropped area in the original image. (c) Bilinear fractional shift of 0.5 pixels in horizontal and vertical
axes. We use a 226 x 226 center crop of the original 256 x 256 image and simulate a fractional-pixel
shift using a grid-sample with a fractional offset.

Table 8: Hyperparameters. Unless stated otherwise, the same settings apply to all models.

Category Parameter Value
Optimizer AdamW
Optimizer (81, B2) (0.9, 0.999)
Weight decay 0.05
Base LR 1 x 1073 (Baseline), 5 x 10~% (AF, APS)
. . Warm-up epochs 5
Learning rate scheduling LR decay Cosine
Min LR 1x107°
Data Resolution 224 x 224
Batch size 1024 (Baseline), 512 (AF, APS)
Reeularization Layer scale (¢ init) 1.0
& Stochastic depth 0.0 (Nano), 0.05 (Small)

APS and AF favored 512 (APS: 68.7 vs. 67.2 at 1024; AF: 70.4 vs. 70.1 at 1024). We therefore used
batch size 1024 for the Baseline and 512 for APS and AF throughout the paper. Note that the figures
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above for the AF and APS models are with an AvgPool head. We applied the same choice to the
Nano and Small variants with CA and AFCA heads without further tuning.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope? [Yes] ,

Justification: We describe the proposed alias-free model in sections[2]and [3]and evaluate its
performance in section 4]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of the proposed model compared to other studies in
the field in section [6l

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes],
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Justification: The main theoretical results are presented in propositions [I]to[3] each followed
by a proof or proof sketch (in this case we provide a full proof in the supplementary material).

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We explain in detail all parts of the proposed model in sections[2]and 5] Some
elements (including the baseline model, layers in our proposed model, models we evaluate
for comparison, and training recipe) are based on other public manuscripts to which we
refer.

Guidelines:

» The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We intend to release the code and trained models upon acceptance of the paper.
The model implementation and training details are explained in the paper, and the only
dataset we used (ImageNet) is publicly available.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The training regime is explained in Section 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We train all models once due to high computation costs. The rest of the results
are deterministic.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the type of hardware we used in Section /4 and report training
runtime in Section

Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

o If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The proposed method is an image classification model trained on standard
datasets (ImageNet) consisting mostly of animals and objects, and has no higher risk of
negative societal impact than other studies in the field.

Guidelines:
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11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release data. The proposed method is an image-
classification model trained on standard datasets (ImageNet) and has no high risk of misuse.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All relevant assets, including models, datasets, and the implementation frame-
work, are mentioned with a proper citation and have standard open-source licenses.

Guidelines:
* The answer NA means that the paper does not use existing assets.

 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The model and training details are fully explained in the paper. We intend to
release the code and trained models upon acceptance of the paper.

Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used

only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not involve LLMs as any important, original, or non-standard
components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

27


https://neurips.cc/Conferences/2025/LLM

	Introduction
	Methods
	Preliminaries: the Vision Transformer
	Linear Attention
	Alias-Free Vision Transformer

	Implementation
	Experiments
	Accuracy and shift consistency
	Adversarial robustness
	Robustness to realistic shifts
	Ablation study

	Related work
	Discussion and limitations
	Full proofs
	Additional results
	Additional datasets
	Global average pooling vs AF Class Attention
	Polynomial vs GELU comparison

	Translation visualization
	Experiments details
	Batch size choice


