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ABSTRACT

Graph classification aims to predict the class label for an entire graph. Recently,
Graph Neural Networks (GNNs)-based approaches become an essential strand to
learn low-dimensional continuous embeddings of the entire graphs for graph label
prediction. While GNNs explicitly aggregate the neighborhood information and
implicitly capture the topological structure for graph representation, they ignore the
relationships among graphs. In this paper, we propose a Graph-Graph Similarity
Network to tackle the graph classification problem by constructing a SuperGraph
through learning the relationships among graphs. Each node in the SuperGraph
represents an input graph, and the weights of edges denote the similarity between
graphs. By this means, the graph classification is then transformed into a classical
node classification problem. Specifically, we employ an Adversarial Autoencoder
to align embeddings of all the graphs to a same distribution. After the alignment, we
design the Graph-Graph Similarity Network to learn the similarity between graphs,
which functions as the adjacency matrix of the SuperGraph. By running node
classification algorithms on the SuperGraph, we can predict the labels of graphs.
Experiments on five widely used benchmarks under a fair setting demonstrate the
effectiveness of our method.

1 INTRODUCTION

Nowadays, there is an increasing number of applications on graph-structured data ranging from
e-commence to biological molecules. In the graph structure, each node represents an entity, and edges
linking two nodes denote the relationship between the two entities. For instance, in citation networks,
each node denotes a paper, and edges indicate the citationships between papers. Another example is
that in social networks, nodes and edges respectively represent users and their friendships. As graphs
are always irregular with various number of nodes and edges, it is difficult to apply Convolutional
Neural Networks (CNNs) (LeCun et al., 1995) to the graph domain directly. Encouraged by the
success of CNNs, Graph Neural Networks (GNNs) (Scarselli et al., 2008) have recently become
the most popular tool for graph-structured data by effectively combining node features and graph
topology. The research on GNN is mainly developing into two lines. The first category is to infer
labels of individual nodes by a given graph structure, and the second one is to predict the class labels
of unseen graphs by a given set of graphs with different structures and sizes. In this paper, we focus
on the second one, graph classification problem.

The majority of the GNN-based methods (Hamilton et al., 2017b; Zhou et al., 2018; Wu et al., 2020;
Zhang et al., 2018a;b; Ying et al., 2018; Wang et al., 2018; Juan et al., 2019; Bui et al., 2018) mainly
involve transforming, propagating, and aggregating node features across the graph, where they focus
on the supervised or semi-supervised scenarios using the graph labels during the training process.
When no class labels are available in graphs, some methods (Kipf & Welling, 2016b; Pan et al.,
2018) have been proposed to learn the graph embeddings in an unsupervised way by adopting an
autoencoder framework. Whether supervised or not, the unfixed structures and number of nodes
bring in huge difficulties in graph classification. Firstly, the representations generated by convolution
are high-level node representations. While the task is to predict labels for graphs, it is necessary to
find a way to extract graph-level features. Secondly, the sizes and structures of graphs are different
from each other. In order to generate representations for graphs by a shared model, how to align
all the graphs to a same distribution is essential to be solved. Last but not least, the current graph
classification methods seek the independent graph representation. Unfortunately, the relationships
among different graphs are ignored.
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In this paper, we propose a Graph-Graph Similarity Network to tackle the graph classification problem
by constructing a SuperGraph from all the input graphs. While previous GNN-based approaches
focus on generating graph-level representations to denote the identities of graphs, we present to find
the relationship between graphs and make the prediction with this global information. Specifically,
we first capture high-level node representations by Graph Convolutional Network. Then we utilize the
Adversarial Autoencoder (Makhzani et al., 2015) to align all the graphs to a same space distribution.
The max-pooling method is employed to down-sample and collapse node representations into graph
representations. Next, we design a neural network for learning the similarity between graphs by the
generated graph representations, which is the key part for the construction of the SuperGraph. On the
SuperGraph, we run the K-Nearest Neighbors algorithm (Duda & Hart, 1973) and get the predictions
for the graphs. In summary, our contributions are as follows:

• We address the problem of measuring the similarity between graphs. Comparing with the
traditional metrics that are pre-defined and fixed, our method is more flexible and efficient with
the guidance of the graph labels and network inference.

• We propose a novel Graph-Graph (G2G) model consisting of Graph Convolutional Network,
Heterogeneous Space Alignment, Graph-Graph Similarity Network, and SuperGraph to learn
effective graph-level representations under a common representation space and explore the
complex relationships between graphs, converting the graph classification problem to the node
classification problem, and finally predict labels for graphs.

• Extensive experimental results demonstrate that our G2G model outperforms other baseline
models on all the five public datasets. We also provide similarity visualizations and an ablation
study on G2G, which demonstrates the effectiveness of our Graph-Graph Similarity Network.

2 RELATED WORKS

In this section, we briefly review related work on graph classification and metric learning. Our work
is also connected with Graph Convolutional Network and Generative Adversarial Network, whose
related work is discussed comprehensively and thoroughly in their surveys (Wu et al., 2019; Pan
et al., 2019). At the end of this part, we explain how our method is different from previous studies.

Graph Classification. Graph classification is the task of predicting the class labels of unseen
graphs. Early popular approaches adopt graph kernels, which allow kernel-based methods such as
Support Vector Machine (SVM) (Suykens & Vandewalle, 1999) to work directly on graphs for graph
classification. By decomposing graphs into small substructures(e.g., shortest paths (Borgwardt &
Kriegel, 2005), random walks (Vishwanathan et al., 2010), subtree structures (Shervashidze et al.,
2011), or graphlets (Kriege & Mutzel, 2012)), the kernel function compares two graphs by comparing
all the pair-wise substructures. However, graph kernels are restricted to substructures with few
nodes because of the combinatorial complexity of substructure enumeration. Recently, Graph Neural
Networks (GNNs) have been popular because they can extract features from graphs efficiently.
GraphSAGE (Hamilton et al., 2017a) leverages node feature information to efficiently generate node
embeddings for previously unseen data. Graph Attention Networks (GATs) (Veličković et al., 2017)
utilize the attention mechanism to aggregate neighborhood representations with different weights.
While the above methods are mainly designed for learning meaningful node representations, they
face a computational challenge and are unable to generate graph-level representations. To solve this
problem, other GNN-based approaches are often combined with pooling operations, which not only
down-sample the nodes to generate smaller representations but also obtain a compact representation
on the graph level. For example, DiffPool (Ying et al., 2018) proposes to softly assign nodes to a
set of clusters on the basis of a supervised criterion. DGCNN (Zhang et al., 2018b) enables learning
from global graph topology by sorting vertex features instead of summing them up.

Metric Learning. Many classification methods are based on calculating the difference or similarity
between two data points. Traditional distance metrics are commonly used in machine learning, such
as Euclidean distance (Lee et al., 2012), Cosine distance (Kim, 2014), and Wasserstein distance (Shen
et al., 2018; Frogner et al., 2015). Differently, metric learning aims to learn distance functions,
which are then used to support tasks like classification and clustering. Some methods (Lim &
Lanckriet, 2014; McFee & Lanckriet, 2010) learn a linear transformation of the input data, while
others (Bai et al., 2019; Li et al., 2019) employ deep neural networks for nonlinear metric learning,
which is known as deep metric learning. Driven by loss functions, deep metric learning learns
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Figure 1: Graph-Graph (G2G) model overview. There are four components in the framework: Graph
Convolutional Network (GCN), Heterogeneous Space Alignment, Graph-Graph Similarity Network,
and SuperGraph. The input graphs are organized into triplets. For each triplet, an anchor graph, a
positive graph, and a negative graph is included, where the positive graph has the same label with
the anchor graph, and the negative has a different label with the anchor graph. Firstly, all the graphs
are processed by a shared GCN to get informative embeddings. Then in the Heterogeneous Space
Alignment, all the embeddings are aligned to a same distribution. After the alignment, a max-pooling
layer is utilized to obtain the feature representation for each graph, and a Graph-Graph Similarity
Network is designed to calculate the similarity between graphs. Finally, a SuperGraph is built by the
feature representations and the similarity matrix. Then a node classification algorithm can be applied
to the SuperGraph to predict the labels of the graphs.

feature embedding from the input data, which shows the importance of the loss function definition.
Contrastive loss (Hadsell et al., 2006) is one of the most popular pairwise losses, which minimizes
the distance between pairs of the same class (positive), and maximizes the distance between pairs
of different classes (negative). Different from contrastive loss, triplet loss (Schroff et al., 2015) is
defined based on an anchor sample, a positive sample, and a negative sample. Triplet loss defines the
difference by relative similarity, and thus suits for more scenarios compared to the contrastive loss.

Our work is different from previous graph classification studies in the following aspects. Kernel-
based methods cannot generate graph-level representations automatically and compute efficiently
on large scale graphs, and GNN-based approaches ignore the relationship between graphs, while
our work intends to involve both informative graph-level features and similarity between graphs
when predicting class labels for graphs. In the metric learning aspect, traditional distance metrics are
all pre-defined and fixed, so we adopt the deep metric learning method to acquire the distances by
training a neural network together with zero-one loss and triplet loss.

3 METHODOLOGY

In this section, we first elaborate on the addressed graph classification problem, then introduce our
proposed Graph-Graph (G2G) model, followed by the designated objective function in detail.

3.1 PROBLEM DEFINITION

A graph can be represented by G = (V,X,A), where V = {v1, v2, ..., vn} is the set of vertexes,
X ∈ Rn×d denotes the features of each vertex, and A ∈ {0, 1}n×n represents the adjacency
matrix. Given a set of labeled graphs D = {(G1, y1), (G2, y2), ..., (GN , yN )} where yi ∈ Y is the
corresponding label of graph Gi ∈ G, the graph classification problem can be defined as to learn a
mapping function f : G → Y , which maps graphs to labels. To achieve the goal, we further define a
procedure g : G → (F, S) to convert graphs to finite-dimensional representations F ∈ RN×D and a
similarity matrix S ∈ RN×N that denotes the similarity between graphs. N is the number of graphs
in G, and D is the dimension of the produced representations. A mapping function h : (F, S)→ Y is
employed to predict labels for graphs.

In this graph classification problem, there are three challenges we have to deal with. The first one is
how to get a fixed-length vector representation for each graph. A graph consists of vertexes, vertex
features, and the relationship between vertexes. In order to apply standard machine learning methods
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for classification, it is necessary to find a way to extract useful feature vectors that contain both
feature and relationship information of nodes from these input graphs. The second one is how to
align the graphs to a same distribution. The existing GNN-based methods aggregates the node-level
embeddings to present a graph, which cannot guarantee that all graph representations are in the same
feature space due to the differences in sizes and structures of graphs. Thus it is essential to learn
a common graph-level representation space. And the third one is how to calculate a meaningful
similarity between graphs. With the vector representation of the graphs, Euclidean distance, cosine
distance, Wasserstein distance, and graph alignment techniques can be used for graph similarity.
However, these pre-defined metrics are inflexible to capture the similarity across multiple graphs.

3.2 MODEL

The goal of graph classification is to predict class labels associated with the graphs. While most
Graph Neural Network (GNN)-based approaches generate graph-level representations for graphs
by utilizing the node features and graph structure information, they ignore the connections between
graphs. To exploit this relationship instead of only focusing on the identities of graphs, we present
a model to calculate the similarity between graphs and build a SuperGraph by the similarity and
graph level representations of graphs, which converts the graph classification problem to the node
classification problem, and thus involves the relationship between graphs.

Specifically, to solve the graph classification problem and tackle the above challenges, we proposed
the Graph-Graph (G2G) model illustrated in Figure 1. We first use Graph Convolutional Network
to combine both node features and relationship between nodes of a graph. Then an Adversarial
Autoencoder is employed to learn an invariant space for all the graph representations, which is
essential for the similarity calculation. The generator produces the fake graph representation, while
the discriminator judges whether the input graph representation is real or fake. The generator learns a
universal graph space, and all the graph representations from GCN are fed into the unified generator
to eliminate the different feature spaces issue. After the alignment, a pooling layer is added to get
finite-dimensional vector representations for graphs with different number of nodes. With the features
for graphs, a Graph-Graph Similarity Network trained by zero-one loss and triplet loss is designed to
get the similarity between graphs, solving the problem of similarity calculation. The zero-one loss
works as a guide for training, and the triplet loss makes the generated pair-wise similarity meaningful
by encouraging each graph closer to graphs that belong to the same class with it than graphs of
different classes. The feature representations of graphs, together with the similarity matrix, can
formulate another graph, which is called the SuperGraph in this paper. Each node of the SuperGraph
denotes an input graph, and the weights of edges in the SuperGraph is denoted by the similarity
matrix. Then the graph classification problem is transformed into the node classification problem.
Finally, a standard machine learning method for node classification can be utilized on the SuperGraph
to predict the labels for the graphs, which captures not only the features of graphs but also the
relationship between graphs. In general, Our model takes both graph structure similarity and graph
label similarity into consideration. The graph structure similarity is captured by the GCN and the
Heterogeneous Space Alignment part, and Supergraph takes the graph labels into account. The model
takes graphs as the input and outputs the feature representations of graphs and the similarity between
graphs in the first stage. Then for the second stage, we run a node classification method for node
classification on the SuperGraph to get the predictions of graph labels.

3.3 OBJECTIVE FUNCTION

Our model consists of four parts: Graph Convolutional Network (GCN), Heterogeneous Space
Alignment, Graph-Graph Similarity Network, and SuperGraph. In this section, We use θ =
{θG, θQ, θP , θS} to denote the trainable parameters set of four parts in the G2G model. Specif-
ically, θG denotes the trainable parameters in the GCN part, θQ is the trainable parameters in the
encoder, θP is the trainable parameters in the decoder, and θS represents the trainable parameters
in the Graph-Graph Similarity Network. Our goal is to minimize the objective function through
adjusting θ by the model and dataset. Each part is detailed as follows.

Graph Convolutional Network. We use GCN (Kipf & Welling, 2016a) to make use of both node
features and the relationship of nodes in a graph. While the features of nodes are of the same
dimension, a shared GCN can be employed for all the graphs. The Graph Convolutional Network
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(GCN) embedding of the static inputs is as follows:

C
(l+1)
θ = σ(D̃−

1
2 ÃD̃−

1
2C

(l)
θ θ

(l)
G ). (1)

Here Ã = A+ In is the adjacency matrix A with added self-connections. In ∈ Rn×n is the identity
matrix, D̃ is the degree matrix of Ã, and θ(l)G is a layer-specific trainable weight matrix. C(l) denotes
the matrix in the lth layer, and C(0) = X . We employ σ(·) = ReLU(·) as the activation function.

Heterogeneous Space Alignment. This part is designed as an Adversarial Autoencoder (Makhzani
et al., 2015), which includes an encoder, a decoder, and a discriminator, aiming to match the aggre-
gated posterior of the hidden codes with an arbitrary prior distribution using an adversarial training pro-
cedure. Specifically, let C be the input and z be the hidden code of the autoencoder. Denote by q(z|C)
and q(C|z) an encoding distribution and the decoding distribution, respectively. Then the aggregated
posterior distribution of q(z) on the hidden codes can be computed as q(z) =

∫
C
q(z|C)p(C)dC,

where p(C) is the marginal distribution of inputs. Let p(z) be the prior distribution one wants to
impose on the codes. The network minimizes the reconstruction error for the autoencoder, and
meanwhile guides q(z) to match p(z) through attaching an adversarial network on top of the hidden
codes of the autoencoder.

Let E be the generated embeddings. Here we use Q(X) = σ(X × θQ) to denote the encoder,
P (X) = σ(X × θP ) the decoder. Then Eθ = P (Q(Cθ)). D(·) denotes the discriminator telling
apart the true hidden codes sampled based on z. Then the reconstruction loss of the autoencoder is
calculated by the following equation:

LR;θ =

N∑
i

‖Ei;θ − Ci;θ‖22. (2)

We utilize the max-pooling method to get vector representations from the hidden layer of the
autoencoder. The adversarial loss is as follows:

LA;θ = Ez∼p(z)[logD(z)] + EC∼p(C)[log(1−D(maxpool(Q(Cθ))))]. (3)

Graph-Graph Similarity Network. The features of graphs F is generated by a pooling layer. Here
we also use the max-pooling method, that is Fθ = maxpool(Eθ). Then to get the similarity between
graphs, we employ a neural network to simulate the calculation process, which is shown as follows:

Sθ = σ(Fθ × θS)× σ(Fθ × θS)>. (4)

To guide the calculation of similarity matrix, we first build a Label matrix Y , where Yi,j = 1 if
yi 6= yj , and otherwise Yi,j = 0. Then we utilize both zero-one loss and triplet loss (Schroff et al.,
2015) as the constraints, which are designed as follows:

LZ;θ =
N∑
i

N∑
j

((1− Si,j;θ)2 · Yi,j + S2
i,j;θ · (1− Yi,j)), (5)

LT ;θ =
∑

(Ga,Gp,Gn)

max(S2
a,n;θ − S2

a,p;θ, α), (6)

where α is the margin of triplet loss, and (Ga, Gp, Gn) denotes a triplet of graphs. Ga is the anchor
graph, Gp is the positive graph, and Gn is the negative graph. Here positive/negative means the
samples that have the same/different labels with a chosen sample (also known as Anchor).

Combining Eq. (2), Eq. (3), Eq. (5) and Eq. (6), our overall objective function is shown as follows:
minθ LR;θ + λALA;θ + λZLZ;θ + λTLT ;θ, (7)

where λA, λZ , and λT are hyperparameters controlling the weights of LG , LZ , and LT respectively.
Then we utilize Stochastic Gradient Descent (Robbins & Monro, 1951) to optimize the objective
function in the discriminator, and Adam (Kingma & Ba, 2014) to minimize other parts.

SuperGraph. With the generated features F and the similarity matrix S, we get a topological
graph representation, which is called the SuperGraph in this paper. In the SuperGraph, each node
corresponds to an input graph, and the weight of each edge denotes the relationship between the
corresponding graphs of the two vertexes. With this SuperGraph, we turn the graph classification
problem into the node classification problem, and many machine learning methods like graph kernels
or GCNs can be applied on it without limitation. In our experiments, we employ the K-Nearest
Neighbors algorithm (Duda & Hart, 1973) on the SuperGraph and get the predictions.
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Table 1: Statistics of five datasets, MUTAG, ENZYMES, PROTEINS, D&D, and NCI1.
Dataset # Graph # Class Avg. # Node Avg. # Edge # Node Label Node Attr.

MUTAG 188 2 17.93 19.79 7 No
ENZYMES 600 6 32.63 62.14 3 Yes
PROTEINS 1113 2 39.06 72.82 3 Yes

D&D 1178 2 284.32 715.66 89 No
NCI1 4110 2 29.87 32.30 37 No

4 EXPERIMENTS

In this section, we first describe the datasets and experimental setup, then evaluate our model. Finally,
we provide exploitative experiments for ablation study and comparison with different distance metrics.

4.1 DATASET

We evaluate our model on five datasets, graphs in which are derived from small chemical compounds
or protein molecules: MUTAG (Debnath et al., 1991), ENZYMES (Schomburg et al., 2004), PRO-
TEINS (Borgwardt et al., 2005), D&D (Dobson & Doig, 2003), and NCI1 (Wale et al., 2008). Table 1
shows the statistics and properties of each dataset. In these datasets, each graph belongs to only one
class, and all the nodes are labeled. For ENZYMES and PROTEINS, node attributes are provided,
which are used as node features in our experiment. For the other three datasets, we utilize one-hot
node labels as the node features. For all the datasets, we perform 10-fold cross validation (Cawley
& Talbot, 2010) to evaluate model performance, and report the accuracy averaged over 10 folds.
Specifically, we employ the splits of the datasets provided by Errica et al. (2019), who provides a
grounding for rigorous evaluations of graph classification models. While they did not include a split
for MUTAG, we generate a 10-fold split for MUTAG and test all the methods on it.

4.2 BASELINES AND EXPERIMENTAL SETTINGS

We select five baseline methods that are based upon Graph Neural Networks: GraphSAGE (Hamilton
et al., 2017a), GIN (Xu et al., 2018), ECC (Simonovsky & Komodakis, 2017), DGCNN (Zhang et al.,
2018b), and DiffPool (Ying et al., 2018). GraphSAGE first performs sum, mean or max-pooling
neighborhood aggregation. GIN extends it with arbitrary aggregation functions on multi-sets. ECC
weights neighbor aggregation according to specific parameters learned for each edge label. DGCNN
proposes a SortPooling layer, which performs pooling by sorting vertex features to a meaningful
order. DiffPool learns a differentiable soft cluster assignment for nodes at each layer of a deep GNN
to hierarchically pool graph nodes. All the five methods utilize the information within a graph to
predict its label. The settings of each baseline method follow the work of Errica et al. (2019), and
the displayed experimental results of the baseline methods in Tabel 2 on all the datasets except for
MUTAG. For MUTAG, we run the tool provided by Errica et al. (2019) with their settings1.

In experiments, we employ pseudo nodes to pad the input graphs to a same size. The features of
pseudo nodes are zero-vectors, and the pseudo nodes do not link to any other nodes. All network
parameters of our proposed Graph-Graph (G2G) model are initialized by xavier uniform (Glorot &
Bengio, 2010). The hyperparameter settings are as follows. The weights of the adversarial loss λA,
the zero-one loss λZ , and the triplet loss λT are separately set to 0.1, 1.0, and 1.0. The margin of
triplet loss α is 0.5. We adopt a two-layer GCN and apply batch normalization after each layer of the
model. We run the training stage 500 epochs for each dataset. The Adam optimizer with a learning
rate of 0.0003 is utilized to minimize the loss for the G2G model, and the SGD optimizer with a
learning rate of 0.0001 is to optimize the trainable parameters in the discriminator.

4.3 RESULTS

The classification results are listed in Table 2. As we can see, our proposed G2G model achieves the
best scores on all five datasets. Experiments demonstrate that our method consistently outperforms

1Since we follow the setting of Errica et al. (2019) for fair comparisons, the performance of the baseline
methods on MUTAG might be different from the ones reported in the original papers
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Table 2: Experimental results (% accuracy with standard deviation). The best scores are in bold.
Methods MUTAG ENZYMES PROTEINS D&D NCI1

GraphSAGE 83.3 ± 9.0 58.2 ± 6.0 73.0 ± 4.5 72.9 ± 2.0 76.0 ± 1.8
GIN 83.9 ± 7.8 59.6 ± 4.5 73.3 ± 4.0 75.3 ± 2.9 80.0 ± 1.4
ECC 75.9 ± 6.4 29.5 ± 8.2 72.3 ± 3.4 72.6 ± 4.1 76.2 ± 1.4

DGCNN 80.3 ± 10.9 38.9 ± 5.7 72.9 ± 3.5 76.6 ± 4.3 76.4 ± 1.7
DiffPool 81.2 ± 9.3 59.5 ± 5.6 73.7 ± 3.5 75.0 ± 3.5 76.9 ± 1.9

G2G 90.3 ± 6.4 68.0 ± 3.6 78.3 ± 2.2 77.0 ± 4.8 80.3 ± 2.4

Figure 2: Similarity matrices of the training set of MUTAG along different iterations. The final
similarity matrix of MUTAG with epoch=500 is in Figure 3.

baseline methods on all five datasets. Moreover, our results excel the second best method by nearly
5%, 10% and 5% on MUTAG, ENZYMES, and PROTEINS and pass all significance tests with
p-value < 0.05. While on other two datasets, our results also pass the significance tests against other
baseline methods, except for DGCNN on D&D and GIN on NCI1, which indicates that our model
performs significantly better than the baseline models in most cases. The reason is that previous
GNN-based graph classification methods build a classifier on top of the graph-level representations,
while we transform it to label propagation on the SuperGraph. Instead of using independent graph
information like other methods, our model incorporates the relationship between graphs by the
generated pairwise similarity matrix. Together with the zero-one loss which drives the training
process of the Graph-Graph Similarity Network, the triplet loss further promotes graphs closer to its
corresponding positive graphs than to the negative ones under our learned distance metric.

To further analyze the performance of the G2G model, we visualize the similarity matrix of the
SuperGraph generated by our model. Figure 2 displays the similarity matrices on one training set
of MUTAG along iterations, where the darker color denotes the higher similarity. It is expected to
see that the similarity matrix becomes more and more block-structured with more iterations, which
indicates the effectiveness of the G2G model. Moreover, Figure 3 shows the similarity matrices
on one training set of MUTAG, ENZYMES, D&D, and NCI1, and their similarity matrices on the
corresponding testing sets. The classes can be easily identified on the training set, and the dark
squares lie on the diagonal of the matrix, demonstrating the effectiveness of our designed objective
function for training. Although the performance drops a little on the testing set, the dark squares are
still recognizable on the diagonal on MUTAG, D&D, and NCI1. These demonstrate the generalization
of our G2G model. The structure of ENZYMES is not so significant as on other datasets. This might
result from the multi-classes of graphs. Instead of two classes in the other four datasets, ENZYMES
includes six kinds of class labels, which brings more challenges to the classification problem.

4.4 ABLATION STUDY

To study the impact of the Graph-Graph Similarity Network and the function of SuperGraph, we run
an ablation study on the five datasets. The results are reported in Table 3. We can clearly see that with
Heterogeneous Space Alignment part, the performance improves, which demonstrates the positive
effect of Aversarial Autoencoder, because it learns a common graph-level representation space. While
by adding a Graph-Graph Similarity Network to the “C+H” model, the performance is improved
even without using the learned similarity. It is because the triplet loss optimizes the representations
such that graphs belonging to the same class are closer to each other than those of different classes.
The “C+H+G” model already outperforms the baseline methods on MUTAG and ENZYMES and
has comparable results with them on PROTEINS, D&D, and NCI1. Furthermore, building the
SuperGraph with the generated similarity matrix increased the performance again. Overall, The
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Table 3: Ablation study results (% accuracy with standard deviation). The best scores are in
bold. Here C, H, G and S respectively denote Graph Convolutional Network, Heterogeneous Space
Alignment, Graph-Graph Similarity Network, and SuperGraph.

Models MUTAG ENZYMES PROTEINS D&D NCI1

C 83.0 ± 11.5 55.2 ± 6.6 70.4 ± 4.1 72.4 ± 2.5 72.6 ± 2.0
C + H 86.2 ± 7.1 57.7 ± 7.9 70.7 ± 2.8 72.7 ± 4.4 75.1 ± 2.4

C + H + G 87.1 ± 7.1 65.7 ± 6.6 73.0 ± 3.8 74.4 ± 3.6 77.9 ± 2.1
C + H + G + S 90.3 ± 6.4 68.0 ± 3.6 78.3 ± 2.2 77.0 ± 4.8 80.3 ± 2.4

Figure 3: Visualization of final similarity matrices on MUTAG, ENZYMES, D&D, and NCI1.

controlled ablation study in Table 3 shows that each component has a necessary and positive effect
on G2G model, which verifies our motivations.

4.5 COMPARISON WITH DIFFERENT DISTANCE METRICS

Figure 4: Distance metrics for graph similarity.

We run some experiments on the representa-
tions extracted by the G2G model with Eu-
clidean distance, cosine distance, and Wasser-
stein distance as the comparisons. We first
calculate the pair-wise distance of the graph-
level features and then apply the K-Nearest
Neighbour algorithm like G2G to get the pre-
dictions for each kind of distance metrics. Fig-
ure 4 exhibits the average accuracy of each
distance metric on each dataset, indicating that
our Graph-Graph Similarity Network is more
effective than other distance metrics in the graph classification problem. Our method is a learned
non-linear transformation, which is more expressive and flexible.

5 CONCLUSION

In this paper, we addressed the graph classification problem and presented a Graph-Graph model,
which explored the relationship between graphs. Specifically, we first employed Graph Convolutional
Network and Adversarial Autoencoder to learn effective graph-level representations under a common
representation space. Next, a Graph-Graph Similarity Network was designed to learn the similarity
between graphs by zero-one loss and triplet loss, and a Supergraph was built upon it, which trans-
formed graph classification to label propagation on the Supergraph. Finally, we adopted the K-Nearest
Neighbors algorithm to get the predictions. The experiments on public datasets validated that our
method performed better than other baseline models, and the Graph-Graph Similarity Network as
well as the SuperGraph performed positive impacts on tackling the graph classification tasks.
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