
Offline evaluation in RL: soft stability weighting to
combine fitted Q-learning and model-based methods

Anonymous Author(s)
Affiliation
Address
email

Abstract

The goal of offline policy evaluation (OPE) is to evaluate target policies based on1

logged data under a different distribution. Because no one method is uniformly2

best, model selection is important, but difficult without online exploration. We3

propose soft stability weighting (SSW) for adaptively combining offline estimates4

from ensembles of fitted-Q-evaluation (FQE) and model-based evaluation meth-5

ods generated by different random initializations of neural networks. Soft stabil-6

ity weighting computes a state-action-conditional weighted average of the median7

FQE and model-based prediction by normalizing the state-action-conditional stan-8

dard deviation of ensembles of both methods relative to the average standard devi-9

ation of each method. Therefore it compares the relative stability of predictions in10

the ensemble to the perturbations from random initializations, drawn from a trun-11

cated normal distribution scaled by the input feature size. We extend this approach12

to soft stability weighting via partial rollouts (SSWPR), which introduces weights13

over different timesteps corresponding to partial rollouts. We show on two sim-14

ulated environments that both FQE and model-based approaches have systematic15

errors in different regions of the state space and our soft stability weighting metric16

provides a signal as to which method achieves less state/action-conditional error,17

suggesting benefits from our approach. Soft-stability weighting outperforms sim-18

ple averaging of fitted-Q-evaluation and model-based estimates, improves upon19

both approaches half of the time, and is never the worst. Although our experi-20

ments focus on FQE and model-based approaches, SSW can be used to combine21

other and more methods.22

Soft Stability Weighting23

Introduction In many real-world applications of reinforcement learning (RL), policy optimization24

through online interaction with the environment is impractical or impossible due to constraints on25

safety, performance, or time. In such settings, one key challenge is off-policy evaluation (OPE):26

estimating the value of a target policy based on batch data without the ability to collect data online.27

A unique challenge is that it is not possible to validate such estimates, since it requires running28

policies on the real environment [14]. Many algorithms have been proposed for offline evaluation29

of reinforcement learning agents, including importance sampling methods, doubly robust methods,30

fitted q-evaluation (FQE), and model-based evaluation (MBE) [11, 13, 9, 3, 12]. (See Appendix B for31

a more in-depth discussion of related work). But, performance across different evaluation methods32

can vary greatly across different types of reinforcement learning tasks. As a consequence, model33

selection is necessary but difficult compared to supervised learning because typical out-of-sample34

validation is not possible.35

Problem Setup Please see Appendix A for a complete description. The environment is a Markov36

Decision Process M = (S,A, p, r, µ0, γ) with state-space S, action space A, p(s′|s, a) is the37

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

transition function given state s and action a, r(s, a) is reward given a state s and action a,38

µ0(s). Given a policy π(a|s), the value of π is defined to be v(π) = Es∼µ0 [V
π(s)] where39

V π(s) = E
[∑∞

t=1 γ
t−1rt|s

]
is the state value function in the infinite horizon setting. The Q-40

function is Qπ(s, a) = Es′∼p(s,a)(r(s, a) + γV (s′)). Fitted-Q-evaluation iteratively fits a Q func-41

tion from the logged data: Qπ(s, a) = Eπ
s′∼p(s,a)(

∑N
i=1 γ

i−1ri|s1 = s, a1 = a),. The Q function42

parametrized by θ fits Bellman residuals from the previous iteration’s parameter θ′. Model based43

evaluation (MBE) fits neural networks for the rewards and transition dynamics models.44

45

Soft Stability Weighting (SSW) We propose two methods for adaptively weighting the estimates
from FQE and MBE: Soft Stability Weighting (SSW) and Soft Stability Weighting via Partial Roll-
outs (SSWPR). Even though this method can be used to combine any number of evaluation meth-
ods, we focus on FQE and model-based evaluation (MBE), since both are popularly used [5]. Our
metric is based on ensembles for each individual method, obtained by random initializations of the
neural networks used in each method.1 These ensembles are informative of the stability of predic-
tions to arbitrary random initializations, drawn from a truncated normal distribution standardized by
feature size. We measure stability of the state-action (s, a) conditional predictions by normalizing
the standard deviation of the (s, a)-conditional predictions of a method (over the predictions of the
ensemble from random initializations) relative to the quantile (over the population of (s, a) tuples)
of the (s, a)-conditional standard deviation. We evaluate the (s, a)-conditional standard deviation
over the predictions of the ensemble, i.e. the random initializations. We denote the (s, a)-conditional
standard deviation of ensemble predictions for a method m ∈ {FQE,MB} as σ̂m(s, a). In order
to compare the standard deviation of (s, a)-conditional predictions and assess which method is less
stable, we also normalize the standard deviation by subtracting the lower marginal c−quantile of
the conditional standard deviation (marginalizing over the distribution of (s, a)) and dividing by the
interquantile range. The overall stability metric for FQE is

uFQE(s, a) = min

(
1,max

(
σ̂FQE(s, a)− quantileDπb

(σ̂FQE, c)

quantileDπb
(σ̂FQE, 1− c)− quantileDπb

(σ̂FQE, c)
, 0

))
,

where c < 1/2 because we normalize by an interquantile range. We additionally truncate the
stability metric by 0 and 1. Once both uFQE(s, a) and uMB(s, a) are computed, we can compute the
weight α as α(s, a) = σ(log(

uFQE(s,a)
uMB(s,a))), where σ is the sigmoid function and 0 ≤ α(s, a) ≤ 1. The

final weighting that comprises SSW, derived from the conditional standard deviation of predictions
over the ensemble of random initializations, is

SSW(s, a) = (1− α(s, a))QFQE(s, a) + α(s, a)QMB(s, a).

Intuitively, α(s, a) biases towards 0 and puts more weight on QFQE(s, a) if the stability metric of46

the FQE ensemble is low relative to that of the model-based method. α(s, a) biases towards 1 and47

puts more weight on QMB(s, a) if the stability metric of the FQE ensemble is high relative to that of48

the model-based method. In the case that the stability metric for each method is similar, α(s, a) puts49

near equal weight on QFQE(s, a) and QMB(s, a). Lastly, we weight between median values of each50

ensemble’s predictions due to the robustness of the median to outliers. SSW generalizes to different51

and additional methods by replacing the α(s, a) normalization to [0, 1] with a softmax operator.52

Soft stability weighting via partial rollouts (SSWPR) We propose a second weighting method53

based on partial rollouts - rollouts from a dynamics model that are terminated at step k before the54

end of a trajectory. Given an ensemble of dynamics models, an ensemble of FQE models, and a55

specific state-action pair (s, a) that we are querying, we compute independent partial rollouts up56

to k steps starting from (s, a) from each of the dynamics models in the given ensemble. At each57

simulated step of each rollout, we compute the SSW(sit, a
i
t) between individual pairs of FQE and58

dynamics models where (sit, a
i
t) is the state and action at time t in the ith partial rollout as well59

as CRi
t which is the discounted sum of rewards of partial rollout i up to time t. Given a time60

point t and a partial rollout i, we then have an estimate of the value of (s, a) given as v̂it(s, a) =61

1For FQE, we fit (iteratively) the Q-function; we initiate randomly a multi-layer perception with 2 residual
blocks and a hidden layer size of 50. For model-based approaches, we randomly initialize two neural networks
with hidden layer size of 200 and 3 hidden layers to estimate the transition dynamics and reward function. See
the appendix for more details.

2

CRi
t+γt ∗SSW(sit, a

i
t). We compute the standard deviation of predictions at (s, a) across all partial62

rollouts for a fixed t as ut = std(v̂t(s, a)). We can then compute weights using the softmax function63

across t: αt = softmax(−u)t, where
∑k

t=1 αt = 1. We compute final value estimate for (s, a) as64 ∑k
t=1 αt ∗median(v̂t(s, a)), where the median is computed across partial rollouts. Intuitively, we65

can interpret the SSWPR estimate as weighting across time where estimates at each time point66

interpolate between the SSW estimate at time t in the partial rollout and the collected rewards from67

partial rollout i up to time t.68

Unlike SSW, SSWPR can leverage value estimates from simulated states local to the original state69

that is being conditioned upon. If the value estimates at a simulated state at time t are more stable,70

then more weight is placed on median(v̂t(s, a)) relative to other times and vice versa. The full71

algorithm is given below.272

Algorithm: Inputs: Ensemble size of Nens, ensemble of FQE models {Q̂FQE
i }1:Nens , ensemble of73

dynamics models {(P̂i, r̂i)}1:Nens where P̂ denotes the transition model and r̂ denotes the rewards74

model, a maximum horizon of k, and a given state and action (s, a)75

1. For i in 1 to Nens :76

(a) Compute partial rollout PRi from transition model P̂i for up to k simulated steps77

(b) For j in 1 to Nens :78

i. Compute SSW(sit, a
i
t) using FQE model Q̂FQE

j and dynamics model (P̂j , r̂j) for79

each time step t in PRi80

ii. Compute (s, a)-conditional value, v̂it(s, a) = CRi
t+γt SSW(sit, a

i
t) where CRi

t =81 ∑t
j=1 γ

t−1r̂i are the collected rewards up to time t82

2. Compute standard deviation and median σ̂(v̂t(s, a)),median(v̂t(s, a)) across rollouts for83

t in 1 to k84

3. Compute weights αt = softmax(−σ̂(v̂t(s, a)))t85

4. Output
∑k

t=1 αt ·median(v̂t(s, a)) as the final conditional value estimate86

Experimental Results87

We give a brief description here of our experimental setup in two simulated RL environment tasks:88

2D World and Mountain Car3. More details on the experimental setup are in the Appendix. Baseline89

methods include simple ensembles of either approach, and simple averaging. These are reasonable90

baselines because using either approach is quite common; and comparing against simple averaging91

shows whether the stability weighting mechanism has any performance boosts compared to naive,92

non-adaptive combination. We compare against an ensemble of FQE models and an ensemble of93

dynamics models for model-based evaluation. We take a simple average of conditional estimates94

from the FQE ensemble and the ensemble of dynamics models as a further baseline. The last (un-95

achievable) “skyline" is an adaptive oracle selection between FQE and model-based method where96

value estimates conditioned on the state come from the method with the lower error. This final com-97

parison is unachievable in practice but is a useful benchmark for the potential improvement of the98

two proposed methods.99

To evaluate each method trained using the dataset of a particular behavior policy and a given evalu-100

ation policy, we first sample 500 (s, a, r, s′) tuples from Monte Carlo rollouts using the evaluation101

policy on the oracle environment. This setup allows us to evaluate how accurately the offline evalu-102

ation methods can estimate the value of the evaluation policy throughout the state-space where the103

evaluation policy is likely to visit. We compute conditional value estimates using each of the meth-104

ods and compare them against the estimate using Monte Carlo rollouts using the target evaluation105

policy on the oracle environment. The latter estimate serves as ground-truth to compare the offline106

evaluation methods against. This is done for each pair of behavior and evaluation policies.107

2Note that for the experiments in this work, we used k = 5 steps for the partial rollout length. We chose
to use a smaller value of 5 compared to the max time step of 300 in the 2D-world environment due to the
computational cost of querying value estimates on partial rollouts. However, in our stability experiments we
compare against using values of k = 3 and k = 7 to check the robustness of SSWPR to a perturbation of this
parameter.

3The 2D world is a two-dimensional continuous state- and action-space environment designed with piece-
wise heterogeneity in underlying models and variance. The mountain car environment is a standard one-
dimensional state space environment used in evaluation of offline methods.

3

Table 1: Mean absolute error for conditional value estimates from (s, a, r, s′) tuples from Monte
Carlo rollouts of the evaluation policy on the 2DWorld environment)
πe πb FQE MB Avg.

FQE,MB
Oracle SSW SSWPR

πb1 πb1 5.9 3.7 4.0 3.7 4.4 4.1
πb1 πe1 5.0 3.8 3.2 3.8 3.5 3.9
πb1 πe2 13.3 8.7 9.3 8.7 8.6 8.6
πb1 πe3 18.0 51.1 21.4 18.0 11.8 11.9
πb2 πb2 10.5 5.4 7.4 5.1 6.3 6.0
πb2 πe1 20.1 8.1 14.1 8.1 8.6 8.6
πb2 πe2 11.5 8.1 14.1 8.1 13.5 14.6
πb2 πe3 17.1 31.1 17.3 17.1 17.8 16.1

Table 2: Error of conditional value estimates
vs. Monte Carlo rollouts of the evaluation pol-
icy on the 2DWorld environment

Method MAE # best #
worst

outp

FQE 12.7 0 6 NA
MB 15.1 3 2 NA
FQE+MB 10.6 1 0 2
SSW 9.2 3 0 4
SSWPR 9.2 2 0 3

Table 3: Error of conditional value estimates vs.
Monte Carlo rollouts of the evaluation policyon
the Mountain Car environment

Method MAE #
best

#
worst

#
outp.

FQE 10.7 0 7 NA
MB 7.1 2 1 NA
FQE+MB 8.2 1 0 2
SSW 6.5 3 0 6
SSWPR 6.3 5 0 5

The results for each pair of behavior (πb) and evaluation (πe) policies are shown in Table 1 for the108

2D World task, and summary results across pairs are shown in Tables 2 and 3 for 2D World and109

Mountain Car tasks. We include the performance of FQE and MB ensembles, the simple average110

(FQE+MB), the oracle skyline (Oracle), and our methods SSW and SSWPR. The columns in-111

dicate, over a wide range of pairs of evaluation and behavior policies, the number of times each112

method has the best MAE, worst; and for SSW,SSWPR, how many times they outperform both113

FQE and model-based methods. Empirically, SSW and SSWPR have the lowest mean average er-114

ror of 9.2 and 9.1, respectively, across pairs of behavior and evaluation policies. Note that SSW and115

SSWPR outperform both FQE and the model-based method individually, which achieves average116

errors of 12.7 and 15.0. Our results also show that neither SSW and SSWPR are outperformed by117

both FQE and the model-based method on any pair of behavior and evaluation policy. Half the time,118

SSW and SSWPR outperform both FQE and the model-based method. Lastly, SSW and SSWPR119

outperform a simple averaging of FQE and MBE, which achieves an average error of 10.6.120

We also show additional results in the appendix that visualize individual predictions of SSW,121

SSWPR, FQE, and the model-based method against the target values in figs. 6 to 13. Qualitatively,122

we see that in cases where the model-based method and FQE are biased in opposite directions,123

SSW and SSWPR tend to outperform both FQE and the model-based method, exemplified by Fig-124

ures 10 and 12. We also see that SSW and SSWPR tend to reduce the extremity of outlier values125

produced by either the model-based method or FQE, shown by Figures 9, 10 and 12. In the case126

that FQE and the model-based method are biased in the same direction, SSW and SSWPR tend127

to have less utility as shown in Figure 11.We additionally include histogram of absolute errors of128

SSW, SSWPR, FQE, and the model-based method in Figures 14 and 16 to 21 and appendix D.129

Visually, we see that SSW and SSW tend to produce less extreme absolute errors compared with130

FQE and the model-based method as shown in Figures 17, 19 and 21. Both stability methods give131

lower errors in many cases unlike FQE as shown in Figures 17, 19 and 21. We note that SSW and132

SSWPR have similar errors on average.133

Conclusion In conclusion, we have proposed SSW and SSWPR to combine methods based on134

state-action-conditional standard deviation of their predictions (normalized by average variability).135

We show that the stability metric is informative, and in experiments on two simulated environments,136

our state-adaptive weighting often outperforms both FQE and model-based methods, and is never137

the worst. The same adaptive weighting scheme can of course be adapted to other types of methods,138

although we have investigated the two most popular approaches, as well as additional methods.139

4

References140

[1] Altieri, N., R. L. Barter, J. Duncan, R. Dwivedi, K. Kumbier, X. Li, R. Netzorg, B. Park,141

C. Singh, Y. S. Tan, T. Tang, Y. Wang, C. Zhang, and B. Yu (2021, 2). Curating a covid-19142

data repository and forecasting county-level death counts in the united states. Harvard Data143

Science Review NaN(Special Issue 1). https://hdsr.mitpress.mit.edu/pub/p6isyf0g.144

[2] Cesa-Bianchi, N., Y. Freund, D. P. Helmbold, and M. K. Warmuth (2005). On-line prediction145

and conversion strategies. Machine Learning 25, 71–110.146

[3] Chua, K., R. Calandra, R. McAllister, and S. Levine (2018). Deep reinforcement learning in147

a handful of trials using probabilistic dynamics models. In Proceedings of the 32nd Interna-148

tional Conference on Neural Information Processing Systems, NIPS’18, Red Hook, NY, USA,149

pp. 4759–4770. Curran Associates Inc.150

[4] Duan, Y., Z. Jia, and M. Wang (2020). Minimax-optimal off-policy evaluation with linear func-151

tion approximation. In Proceedings of the 37th International Conference on Machine Learning,152

ICML’20. JMLR.org.153

[5] Fu, J., M. Norouzi, O. Nachum, G. Tucker, Z. Wang, A. Novikov, M. Yang, M. R. Zhang,154

Y. Chen, A. Kumar, C. Paduraru, S. Levine, and T. L. Paine (2021). Benchmarks for deep off-155

policy evaluation. ArXiv abs/2103.16596.156

[6] Hao, B., X. Ji, Y. Duan, H. Lu, C. Szepesvari, and M. Wang (2021). Bootstrapping statistical157

inference for off-policy evaluation. ArXiv abs/2102.03607.158

[7] Kidambi, R., A. Rajeswaran, P. Netrapalli, and T. Joachims (2020). Morel: Model-based offline159

reinforcement learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin (Eds.),160

Advances in Neural Information Processing Systems, Volume 33, pp. 21810–21823. Curran As-161

sociates, Inc.162

[8] Kingma, D. and J. Ba (2014, 12). Adam: A method for stochastic optimization. International163

Conference on Learning Representations.164

[9] Kostrikov, I. and O. Nachum (2020). Statistical bootstrapping for uncertainty estimation in165

off-policy evaluation. ArXiv abs/2007.13609.166

[10] Kumar, A., J. Fu, G. Tucker, and S. Levine (2019). Stabilizing Off-Policy Q-Learning via167

Bootstrapping Error Reduction. Red Hook, NY, USA: Curran Associates Inc.168

[11] Le, H., C. Voloshin, and Y. Yue (2019, 03). Batch policy learning under constraints.169

[12] Mausam and A. Kolobov (2012). Planning with Markov Decision Processes: An AI Perspec-170

tive. Morgan amp; Claypool Publishers.171

[13] Precup, D., R. S. Sutton, and S. P. Singh (2000). Eligibility traces for off-policy policy evalu-172

ation. In Proceedings of the Seventeenth International Conference on Machine Learning, ICML173

’00, San Francisco, CA, USA, pp. 759–766. Morgan Kaufmann Publishers Inc.174

[14] Prudencio, R., M. Maximo, and E. Colombini (2022, 03). A survey on offline reinforcement175

learning: Taxonomy, review, and open problems.176

[15] Yu, B. and K. Kumbier (2020). Veridical data science. Proceedings of the National Academy177

of Sciences 117(8), 3920–3929.178

[16] Zhang, R., X. Zhang, C. Ni, and M. Wang (2022, 02). Off-policy fitted q-evaluation with179

differentiable function approximators: Z-estimation and inference theory.180

[17] Zhang, S. and N. Jiang (2021). Towards hyperparameter-free policy selection for offline rein-181

forcement learning. Advances in Neural Information Processing Systems 34.182

5

A Problem Setup183

The environment is a Markov Decision Process M = (S,A, p, r, µ0, γ) where S is the state-space,184

A is the action space, p(s′|s, a) is the transition function given state s and action a, r(s, a) denotes185

the reward function given a state s and action a, µ0(s) is the initial state distribution, and γ ∈ [0, 1]186

is the discount factor. At each time step t, the agent receives some state st and selects an action at187

via π(at|st) to take and receives reward rt and the next state st+1 from the environment.188

Given a policy π(a|s), the value of π is defined to be v(π) = Es∼µ0 [V
π(s)] where

V π(s) = Es′∼p(s,a),a∼π

[∑∞
t=1 γ

t−1rt|s
]

is the state value function in the infinite horizon setting. Related is the Q-function which restricts
the action taken at state s and is defined to be

Qπ(s, a) = Es′∼p(s,a)(r(s, a) + γV (s′)).

In the typical reinforcement learning setting, the goal is to train a policy π such that the value189

function is maximized. An additional goal in reinforcement learning is to evaluate the value of a190

policy π. The aim is to compute an estimate of V π(s) where s is directly given or where s ∼191

µ0. We focus on the offline reinforcement learning setting where one only has access to logged192

data of the form D = (si, ai, ri, s
′
i) and access to the real environment M is not available [14].193

The logged data is derived from one or more behavior policies which is denoted by πb. In the194

episodic reinforcement learning scenario, the logged data can also be written as D = {τi} where195

τ = (s1, a1, r1, s
′
1, . . . , sn, an, rn, s

′
N) where the length of the episode N can vary across episodes.196

In the typical setting, the logged data is static and assumed to come from the target environment.197

Additional data collection from the actual environment is not possible.198

The goal of offline evaluation or off-policy evaluation is to estimate v(πe) where πe denotes the199

evaluation policy. The evaluation policy is the policy which we want to estimate the value using the200

logged data D deriving from the behavior policy. Offline evaluation is especially difficult because201

the goal is estimate the value of a policy which is typically not represented in the logged data.202

B Related work203

Fitted Q-evaluation204

Fitted Q-evaluation (FQE) is a off-policy temporal difference learning algorithm based on a slight
variation of the fitted Q-iteration algorithm [11]. FQE involves learning the following Q function
from the logged data:

Qπ(s, a) = Eπ
s′∼p(s,a)

(∑N
i=1 γ

i−1ri|s1 = s, a1 = a
)
,

which can intuitively be interpreted as the value of taking action a at state s and then following
policy π for the rest of the trajectory. Note that the value of the policy can be written in terms of the
Q-function E[Qπ(s, π(s))] where s ∼ µ0. The Q-function is trained by minimizing the following

E(s,a,r,s′)∼D[(Qθ(s, a)− r − γQθ′(s′, π(s′))2],

where θ are the parameters of the function class used to approximate the Q-function and θ′ are the205

parameter values in the previous iteration of the training process.206

FQE is typically implemented as shown below [11]. We assume an evaluation policy πe, a function207

class F, and a dataset D = {(si, ai, ri, s′i)}ni=1. The algorithm proceeds as follows:208

1. Randomly initialize parameters of Qπe
0 ∈ F209

2. for k from 1 to K210

3. (a) Compute FQE target yi = ri + γQπe

k−1(s
′
i, πe(s

′
i)) for every i211

(b) Construct training data as follows: DFQEk
= {(si, ai, yi)}ni=1212

(c) Solve Qπe

k = argminf∈F
1
n

∑n
i=1(f(si, ai)− yi)

2213

4. Output Qπe

K214

6

Model-based evaluation215

Model-based (MB) evaluation is similar to model-based reinforcement learning in that it involves216

learning a simulation of the real environment M. More specifically, both the transitions p(s′|s, a)217

and the reward function r(s, a) are learned via the logged data D using standard supervised learning218

techniques. The fitted transition and reward functions are then used to simulate trajectories using219

the behavior policy. The observed rewards of the simulated trajectories can then be used to calculate220

values for the behavior policy. These trajectories can be referred to as monte carlo rollouts.221

To estimate the Q-value using the fitted reward and transition models, we have that, where s′ ∼
p̂(s, a),

Q̂π
MB(s, a) =

∑N
t=0 r̂(s, a) + γV̂MB(s

′)), V π
MB(s) = Es′∼p̂(s,a),a∼πe

[∑N
t=1 γ

t−1r̂t|s
]
.

Related Work222

Many algorithms have been proposed to do offline evaluation of reinforcement learning agents,223

including importance sampling methods, doubly robust methods, fitted q-evaluation (FQE), and224

model-based evaluation [11, 13, 9, 3, 12]. FQE has been studied theoretically in a variety of literature225

[4, 6], including its dependence on theoretical assumptions of concentratability (coverage/sequential226

overlap) and Bellman completeness. In practice, FQE has found more empirical success compared227

to importance sampling and doubly robust methods due to the lower variance of the estimate and228

generalizability from function approximation. Recently, Zhang et al. [16] focused on FQE with229

general and differential function approximators using Z-estimation theory. Among other analysis,230

they show the FQE estimation error is asymptotically normal, justifying the bootstrap.231

FQE vs. model-based methods Computing value estimates using FQE does not rely on simu-232

lating entire rollouts unlike the model-based method, where errors can compound if the horizon is233

especially long. However, a downside to FQE is that is unclear how to tune the parameters and ar-234

chitecture of FQE if function approximation is used. The model-based method performs well when235

the environment transition and reward functions are simple and can be easily approximated through236

function approximation. It is typically easier to tune the hyperparameters of dynamics models, com-237

pared to tuning FQE models, since a validation loss based on the observed transitions and rewards238

can be computed on a hold-out set. A downside to the model-based method is that estimates derived239

from simulated trajectories may compound errors over time if the maximum horizon length is long.240

This is the case since values are calculated from rewards along trajectories which are simulated241

autoregressively for the model-based method. This is not the case for FQE, which directly output242

q-values.243

Model selection in offline RL A line of recent work investigates approaches for model selection244

with varying degrees of algorithmic complexity [17]. We empirically investigate weighting-based245

approaches that are algorithmically simple, based almost entirely on oracle function evaluation ac-246

cess to ensembles of candidate models. Our idea of combining estimators is inspired from previous247

work in weighted online learning, where past predictability is used to weight different online pre-248

dictors [2, 1]. Cesa-Bianchi et al. [2] weight online boolean predictors using exponential weighting249

computing using the number of mistakes made by each predictor in the past. Altieri et al. [1]250

propose the CLEP (combined linear and expoential predictors) algorithm for forecasting covid-19251

cases and deaths. CLEP weights each predictor based on recent predictive performance, where more252

accurate predictors are assigned higher weights. Unlike these works, we use the stability of ensem-253

bles conditioned on the state-space as a weighting mechanism instead of local or past predictive254

performance.255

PCS (Predictability, computatibility, and stability)256

The PCS (Predictability, computatibility, and stability) framework [15] outlines principles for a data257

science problem and an approach with an underlying aim of providing reliable, responsible, and258

transparent results in the data science life cycle. Many of the ideas outlined in the PCS framework259

are very applicable to this data-driven setting of reinforcement learning. For example, predictability260

is an important reality check when working with logged data. Before extrapolating results to the261

7

actual environment, reality checks on the logged data and trained policies or critics are required262

especially in high-stakes data problems that motivate offline reinforcement learning, such as clinical263

decision making, autonomous driving, and robotics.264

Stability is also an essential check as results should be reproducible to small perturbations to data265

and models. Stability is especially important in reinforcement learning where the performance of266

particular algorithms rely on careful tuning and tricks in practice. Our work is tied to the stabil-267

ity principle in PCS as the main notion underlying the methodology is inspired by the stability of268

models. We further apply this principle to test the robustness of our proposed methods to human269

judgement calls in our experiments which can potentially impact results and conclusions.270

Experimental details: 2D Gridworld environment271

In this section, we detail the simulator we created to benchmark the offline evaluation, the behavior272

policies, the evaluation policies, and the logged data generation process.273

Environment274

The environment is depicted in Figure 1. The agent observes its position relative to the x and y axes,275

its horizontal and vertical velocities, and the time step. Each episode has a maximum horizon of276

300 time steps and terminates when the time step reaches the maximum horizon or when the agent277

reaches the goal (upper right corner given by x ≥ 4 and y ≥ 4). Note that the agent’s x and y278

positions as well as the velocities are continuous values. The boundaries of the environment are279

given by the following lines: x = 0, y = 0, x = 5, y = 5. The agent is within the boundaries at all280

times. At each time step, the agent receives a negative reward conditioned on its x and y position281

outlined in Figure 5.3. If the agent successfully reaches the goal, the agent receives a completion282

reward of +10. At each step, the agent can choose from a set of 9 actions which correspond to283

moving to the left, right, up, down, and neutral as well as combinations of the horizontal and vertical284

moves.285

The transition dynamics of the environment is detailed as follows. The horizontal and vertical ve-
locities at time t are outlined by

velt = max(min(velt−1 + at ∗ f, 0.1),−0.1),

where f = 0.001, at ∈ {−1, 0, 1}. The velocities then affect the horizontal and vertical positioning
as follows:

post = max(min(post−1 + velt, 5), 0).

If the agent hits the horizontal or vertical boundaries of the environment, its corresponding direc-286

tional velocity is set to 0. Note that the transitions and rewards are deterministic. However, the287

starting state of the agent is stochastic. The agent’s x and y positions are uniformly sampled from288

[0, 5/6] at time step t = 1, while the horizontal and vertical velocities are set to 0.289

Policies290

Two behavior policies were constructed by training deep Q-networks on the 2D world environment291

in typical online fashion. A multi-layer perceptron (MLP) network with 2 hidden layers with a hid-292

den layer size of 50 were trained using the ADAM optimizer [8] with a learning rate of 0.001 and293

a batch size of 32 for both behavior policies with varying number of updates and initializations.294

Stochasticity was artificially embedded into the resulting Q-networks by adding a random probabil-295

ity of 0.25 where the agent performs a random action instead of the action given by its Q-network.296

The resulting behavior policies πb1 and πb2 had online value estimates of −79.4 and −83.4, respec-297

tively. The vertical and horizontal positions over time of each behavior policy are given by Figure298

5.4.299

Three evaluation policies were constructed in a similar fashion as the behavior policies with differing300

number of updates and initializations. Unlike the behavior policies, stochasticity was not embedded301

into the policy. The resulting evaluation policies πe1, πe2, and πe3 had online value estimates of302

−72.5, −85.0, and −92.0, respectively. The vertical and horizontal positions over time of each303

evaluation policy are given by Figure 5.5.304

8

Offline datasets305

Behavior policies πb1 and πb2 were used to generate two offline datasets from interacting with the306

actual environment. Datasets Db1 and Db2 were derived from running the corresppnding policy for307

1000 episodes in total. Summary statistics, such as the size of the datasets and proportions of each308

action taken, are shown in Table 5.1.309

Experimental details: offline evaluation training310

We pair up each evaluation policy with each behavior policy to produce 6 pairs of behavior and311

evaluation policies. We also include two pairs that consist of each behavior policy paired up with312

itself as the evaluation policy. The goal is to estimate the value of the evaluation policy using313

the logged data deriving from the corresponding behavior policy for each pair of behavior policy314

and evaluation policy. The two offline evaluation methods we consider are FQE and model-based315

evaluation outlined in the previous section.316

Fitted Q-evaluation317

We detail how we train a FQE model on the logged data D. A MLP with 2 residual blocks and a318

hidden layer size of 50 was initialized randomly. The neural network is trained on the tuples of D319

using the ADAM optimizer [8] with a learning rate of 0.001 using a batch size of 32. The FQE320

model was trained for a max number of iterations of 75000. At every 500 iterations, the temporal-321

difference error was computed on a validation set of 20 episodes from the logged data.322

Typically in the supervised learning case, model selection is used via computing the target metric on
a validation set. In this setting, we cannot compute the target metric on the validation set, because the
validation set contains trajectories by following actions derived from the behavior policy. Instead, we
can use the temporal difference error as a proxy for the target metric where the temporal difference
error is defined by

Qπe(s, a)− r(s, a)− γ ∗Qπe(s
′, a′),

where (s, a, r, s′, a′) denotes the state, action, reward, next state, and next action. Note that only
the true Q function of πe minimizes the temporal difference error. Early stopping was applied by
computing the absolute difference of the mean of the last 5 temporal difference error estimates and
the previous 5 starting at the previous index. Mathematically we denote the stopping condition as

|TDi−5,i − TDi−6,i−1| < 0.001.

Model-based evaluation323

We now detail how we train a model which learns the dynamics of the environment (reward and324

transition functions) to estimate values of offline agents. We first split the logged data D into a325

training set Dtrain and a validation set Dval. We then initialize two neural network models, one that326

learns the reward function r(s, a) and another that learns the transition function p(s, a). Both neural327

network models were initialized with a hidden layer size of 200, with 3 hidden layers, and a learning328

rate of 5e−4 using the ADAM optimizer [8].329

Both the reward and transition models are trained in a typical supervised learning fashion unlike330

FQE with the data being organized as {((s, a), r)} and {((s, a), s′)} for the rewards and dynamics331

model, respectively. The mean squared error was used as the loss function train both the rewards332

and transition model. Each model trained using a max number of iterations of 50000. Every 1000333

steps the loss was calculated on the validation data and early stopping was applied with a patience334

of 7.335

9

TABLES336

Table 4: Summary statistics for each offline dataset corresponding to behavior policies πb1 and πb2

on the 2DWorld environment
Statistic Dataset Db1 Dataset Db2

Dataset size 160,745 156,253
Mean steps per episode 159.7 155.3
Mean reward per episode -159.9 -177.7
Proportion of time collecting -1 rewards 0.97 0.83
Proportion of time collecting -2 rewards 0.02 0.14
Proportion of time collecting -4 rewards 0.0 0.02

Table 5: Errors for FQE and the model-based (MB) method on partition A (sampled tuples from
the evaluation policy where FQE outperforms the MB method) and partition B (sampled tuples
from the evaluation policy where the MB method outperforms FQE) using models trained on data
corresponding to the behavior policy πb1) and the 2DWorld environment

Evaluation policy FQE error on par-
tition A

Model-based
error on partition
A

FQE error on par-
tition B

Model-based
error on partition
B

πb1 3.7 6.5 9.3 3.4
πe1 NA NA 11.6 2.8
πe2 8.0 13.4 16.3 4.9
πe3 19.1 83.5 18.0 5.3

Table 6: Errors for FQE and the model-based (MB) method on partition A (sampled tuples from
the evaluation policy where FQE outperforms the MB method) and partition B (sampled tuples
from the evaluation policy where the MB method outperforms FQE) using models trained on data
corresponding to the behavior policy πb2) and the 2DWorld environment

Evaluation policy FQE error on par-
tition A

Model-based
error on partition
A

FQE error on par-
tition B

Model-based
error on partition
B

πb2 5.9 27.0 19.9 7.7
πe1 3.2 4.8 36.0 8.6
πe2 7.8 18.0 18.5 7.5
πe3 12.1 49.4 7.5 14.0

Table 7: Proportion of times method with the higher stability out of FQE and the model-based
method had the higher error across pairs of behavior and evaluation policies using the 2DWorld
environment

Behavior policy Evaluation policy Proportion
πb1 πe1 0.65
πb1 πe2 0.63
πb1 πe3 0.62
πb1 πe4 0.77
πb2 πe1 0.63
πb2 πe2 0.59
πb2 πe3 0.74
πb2 πe4 0.49

10

Table 8: Error summaries for conditional value estimates from (s, a, r, s′) tuples from monte carlo
rollouts of the evaluation policy on the 2DWorld environment for perturbations on adaptive stability
weighting methods and baseline methods.

Method Average absolute
error

SSW 9.2
SSW
0.15/0.85

9.3

SSW
0.25/0.75

9.6

SSWPR 9.2
SSWPR 5 9.1
SSWPR 7 8.9

Table 9: Mean absolute error for conditional value estimates from (s, a, r, s′) tuples from monte
carlo rollouts of the evaluation policy on the mountain car task for proposed adaptive stability
weighting methods and baseline methods)

Evaluation
policy

Behavior
policy

FQE Model-
based

FQE and
model-
based
average

Oracle
non-
adaptive
selection

SSW SSWPR

πb1 πb1 6.8 9.6 7.6 6.8 5.6 5.4
πb1 πe1 14.0 3.1 5.9 3.1 3.5 3.5
πb1 πe2 7.4 5.0 5.9 5.0 5.6 5.5
πb1 πe3 12.1 5.2 8.2 6.2 5.0 5.9
πb2 πb2 6.1 5.0 4.8 5.0 4.8 4.8
πb2 πe1 16.3 14.7 15.3 14.7 13.9 12.6
πb2 πe2 7.6 7.4 7.3 7.4 7.2 6.7
πb2 πe3 15.5 6.8 10.8 6.8 6.6 6.3

11

C Additional results337

C.1 Empirical evidence for leveraging model stability across an ensemble338

We first empirically show evidence that FQE and model-based evaluation can outperform one an-339

other conditioned on the state-space despite having been trained on the same logged data. We then340

show that stability from an ensemble of models initialized with different random seeds provides a341

positive signal for adaptive model weighting.342

First, we compare FQE and model-based estimates on (s, a, r, s′) tuples deriving from the evaluation343

policy. We first sample rollouts from the evaluation policy on the actual environment and sample344

500 (s, a, r, s′) tuples from the resulting dataset. For each sample tuple, we extract the q-value from345

the trained FQE and dynamics models and the online target estimate using the true environment346

via monte carlo rollouts. Figures 5.6 and 5.7 show the sample tuples and highlights which method347

outperforms the other on the conditioned state. We see that empirically success in extrapolation to348

states with lower coverage is dependent on the behavior policy and evaluation policy pair and the349

state itself. Tables 5 and 6 show that the difference in errors of each method on partitions where350

one outperforms the other is large. This suggests that weighting between FQE and the model-based351

approach may considerably improve value estimation averaged across samples across the state-space352

if we are able to determine which method is likely to outperform the other adaptive to the state the353

agent is on.354

Next, we show how stability via ensembling models is one viable avenue for extracting a positive355

signal for local predictiveness, which is related to weighted online learning. However unlike previ-356

ous work which uses local predictiveness as a weighting mechanism, we use the stability of models.357

First we train an ensemble of 5 FQE models and 5 pairs of reward and transition models using a358

random initialization of the network weights using the same procedure outlined above. For each359

tuple in the sampled tuples deriving from the evaluation policy, we then compute the stability from360

the ensemble, defined by the standard deviation across the ensemble predictions. We report the pro-361

portion of times the method with more instability had the higher error conditioned on the state and362

action pair from the sampled tuples from the evaluation policy in Table 5.4. The high proportions363

across evaluation and behavior policy pairs show the positive relation between model stability and364

the error of the model in this offline evaluation setting. Note that this signal, although close to 0.5 for365

some pairs, is powerful in this setting where it is not possible to estimate model errors on a hold-out366

set, and thus do any type of model selection or tuning.367

Ablation to algorithm hyperparameters: Stability of results on human decisions368

We additionally test the stability of the results of SSW and SSWPR against ad-hoc decisions for
the parameters. The first involves perturbing the soft weighting normalization outlined previously.
Note that the following equation contains a human decision of using the 0.2 and 0.8 quantiles of the
distribution of uncertainties stemming from the behavior dataset:

uFQE(s, a) =
σ̂FQE(s, a)− quantileDπb

(σ̂FQE , 0.2)

quantileDπb
(σ̂FQE , 0.8)− quantileDπb

(σ̂FQE , 0.2)
.

We check whether the results are robust across perturbations of the quantiles used. On this end we369

use two pairs of values (0.15, 0.85) and (0.25, 0.75) and rerun the SSW. Results are shown in table370

5.7 and summarized in table 5.8.371

We next check the stability of the SSWPR method against the decision of using max horizon length372

of 5 when creating partial rollouts. We use values of horizon lengths of 3 and 7 and rerun SSWPR.373

Results are shown in table 5.7 and summarized in table 5.8. Note that on average deviations from374

the original settings of SSW and SUPRW are small, suggesting that the two methods are robust to375

these parameters. We even see that, on average, both perturbations to SSWPR perform marginally376

than the original SSWPR (8.9/9.1 vs 9.2 average errors). Thus, the results in table 5.5 and 5.6 do not377

seem to rely on the particular choices of parameters used.378

12

C.2 Additional details for mountain car task379

Note that the set up and hyperparameters are kept the same mostly the same as the experiments on
the 2D world environment. One difference is the stopping condition for FQE was changed to be

|TDi−5,i − TDi−6,i−1| < 0.00025,

instead of using 0.001 like in 2DWorld. The behavior policies πb1 and πb2 were trained and achieve380

mean values of −82.5 and −82.8, respectively. The evaluation policies πe1 , πe2 , and πe3 achieved381

mean values of −95.1, −74.5, and −75.9, respectively.382

Similar to the 2DWorld task, we visualize individual predictions of SSW, SSWPR, FQE, and the383

model-based method against the target values for the mountain car task in figs. 22 to 25. We include384

histogram of absolute errors of SSW, SSWPR, FQE, and the model-based method in Figures 26385

to 29, 31 and 32 and appendix D. Like the results on the 2DWorld task, SSW and SSWPR tend to386

reduce the extremity of outlier estimates produced by the model-based method or FQE on average.387

We also include scatterplots comparing predictions between SSW and SSWPR for the mountain car388

task in figs. 33 and 34 which show that the predictions between the two methods are very similar.389

However, there are cases where moderate variation exist between two methods as shown in parts C390

and D in figs. 33 and 34 which imply one may outperform over the other.391

Discussion392

We have investigated using stability across an ensemble of neural networks with different initializa-393

tions as a weighting mechanism in the setting of offline evaluation of reinforcement learning agents394

and have proposed two methods, SSW and SSWPR, to incorporate stability for adaptively combin-395

ing conditional model estimates. Our methods provide a positive signal for when a particular method396

is suited given a local region of the state space. The guiding principle behind the two methods is that397

if a model’s prediction is unstable then its predictive estimate should not be trusted. This principle398

is powerful in the offline setting where it is unclear how to validate a model’s prediction and com-399

pare against other models. These methods are particularly valuable in the offline evaluation setting,400

because a variety of algorithms exist for providing value estimates while model selection is an open401

problem.402

We test our methods on three simulated environments across combinations of different behavior and403

evaluation policies. By leveraging stability values stemming from model ensembling, we are able to404

outperform one of FQE and the model-based method every time and both FQE and the model-based405

half the time. Our experiments suggest that using stability can provide improvements when used to406

combine estimates of different evaluation algorithms.407

SSW and SSWPR are related to the idea of CLEP ensembling [1] in weighted online learning. CLEP408

produces a weighted average of predictions from individual time series models where the weight of409

a model’s prediction given a set of features is based on the recent performance of the predictor410

on past data. Unlike the covid-19 forecasting setting, our offline evaluation models do not have411

comparable performance metrics due to the distributional shift between the behavior and evaluation412

policies. Thus, we rely on the stability of the model to extract a signal about local predictability.413

Our experiments show that stability is empirically correlated with the error of the model.414

We note that both SSW and SSWPR are related to the idea of perturbation intervals outlined in the415

PCS framework which quantify the stability of target estimates to perturbations [15]. In our setting,416

the perturbations are at the data and model level, where randomization of the model initialization417

is used as perturbations. The notion underlying both methods are that the resulting variability in418

estimates outline regions of the state space which models are stable and unstable. The key assump-419

tion is that stability to such perturbations can help to identify in which scenarios a certain model or420

method is more reliable than another.421

Our proposed methods SSW and SSWPR are also related to the pessimism principle studied in
offline reinforcement policy learning. The main notion of the pessimism principle leveraged in
these works is that areas of the state-space where the Q-function or dynamics model is uncertain or
unstable should be avoided due to insufficient coverage of the behavior policy. Kidambi et al. [7]

13

incorporate pessimism into model-based reinforcement learning and construct a pessimistic markov
decision process using an ensemble of learned dynamics models which partitions the state space into
known and unknown regions and artificially penalizes an agent with a negative reward for visiting
unknown regions. Kumar et al. [10] train policies by maximizing the most conservative estimate
from an ensemble of Q-functions as well constraining the policy to the support of the behavior policy

max
π∈

∏
ϵ

Ea∼π(.|s)

[
min

j=1...K
Q̂j(s, a)

]
,

where
∏

ϵ is the set of policies sharing the support of the behavior policy. We apply similar reasoning422

to the offline evaluation setting by using the stability of model ensembles to weight offline estimates.423

Our study has a few limitations that should be mentioned. First, we have only provided empirical424

evidence for using stability as a model weighting mechanism across a few simulated environments.425

Further experimentation and testing needs to be done to better understand the soft weighting mech-426

anism and under which cases the soft weighting is likely to lead to significant improvements in per-427

formance over baselines as well as benchmarking on more complex environments. Our experiments428

show that if the bias of FQE and the model-based method are in opposite directions, improvements429

over both FQE and the model-based method are likely. Additionally, our weighting methods outper-430

form a simple average of FQE and the model-based method, which show the utility in using stability431

as a weighting mechanism over naive averaging. A second limitation is that our methods are based432

on parameters including the weighting normalization for SSW and the partial horizon length for433

SSWPR which may require tuning based on the specific application. Although our experiments434

shows that SSW and SSWPR are robust to perturbations of the values for the parameters used in435

the environments we test on, more experimentation should be done. Lastly, we use perturbations on436

the model level via different randomization of neural network weights to evaluate stability. How-437

ever, other forms of perturbations can and should be experimented, including those at the data level,438

which can be challenging in the reinforcement learning setting. One future direction is to include439

bootstrapped data as an avenue of assessing stability.440

CONCLUSION441

Model selection and validation is a difficult problem in the offline reinforcement learning setting due442

to the lack of access to the environment for data collection. We propose using stability of evaluation443

functions as a weighting mechanism inspired by ideas from weighted online learning when typical444

validation is not possible. Our proposed methods SSW and SSWPR, which leverage stability via445

ensembling, have shown to improvement offline estimates from FQE and the model-based method,446

potentially increasing the viability of reinforcement learning to applications like healthcare where447

safety is paramount.448

14

D Experimental figures449

Figure 1: 2DWorld: positional depiction. Agent starts at a random position from [0, 5/6] in both
its x and y positions and receives a negative reward at each time step conditioned on the subgrid
the agent currently subsides. The agent receives a completion reward of +10 if the goal is reached
([25/6, 5] in both its x and y positions.)

Figure 2: Vertical and horizontal positions over time from episodes derived from behavior policies
πb1 (A) and πb2 (B) trained on the 2DWorld environment

15

Figure 3: Vertical and horizontal positions over time from episodes derived from evaluation policies
πe1 (A), πe2 (B), and πe3 (C) trained on the 2DWorld environment

Figure 4: Scatterplots of the x and y positions of sampled tuples on the 2DWorld environment
colored by the best performing method trained on the behavior dataset corresponding to πb1 . The
evaluation policies used include πb1 (A), πe1 (B), πe2 (C), πe3 (D).

16

Figure 5: A depiction of the SSWPR method with ensembles of size two for FQE and the model-
based method and a maximum partial horizon of 3 where std_dev represents the standard deviation,
median(V (st)) represents the median of all value estimates at time t, sij represents the simulated
state from dynamics model i at time step j, and rij represents the reward given from dynamics
model i at time step j.

Figure 7: Scatterplots of the predictions and target values for evaluating πe1 on the logged data
deriving from πb1 on the 2DWorld environment using the model-based method, FQE, SSW, and
SSWPR.

17

Figure 6: Scatterplots of the predictions and target values for evaluating πb1 on the logged data
deriving from πb1 on the 2DWorld environment using the model-based method, FQE, SSW, and
SSWPR.

Figure 8: Scatterplots of the predictions and target values for evaluating πe2 on the logged data
deriving from πb1 on the 2DWorld environment using the model-based method, FQE, SSW, and
SSWPR.

18

Figure 9: Scatterplots of the predictions and target values for evaluating πe3 on the logged data
deriving from πb1 on the 2DWorld environment using the model-based method, FQE, SSW, and
SSWPR.

19

Figure 10: Scatterplots of the predictions and target values for evaluating πb2 on the logged data
deriving from πb2 on the 2DWorld environment using the model-based method, FQE, SSW, and
SSWPR.

20

Figure 11: Scatterplots of the predictions and target values for evaluating πe1 on the logged data
deriving from πb2 on the 2DWorld environment using the model-based method, FQE, SSW, and
SSWPR.

21

Figure 12: Scatterplots of the predictions and target values for evaluating πe2 on the logged data
deriving from πb2 on the 2DWorld environment using the model-based method, FQE, SSW, and
SSWPR.

22

Figure 13: Scatterplots of the predictions and target values for evaluating πe3 on the logged data
deriving from πb2 on the 2DWorld environment using the model-based method, FQE, SSW, and
SSWPR.

23

Figure 14: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based method for
evaluating πb1 on the logged data deriving from πb1 on the 2DWorld environment

24

Figure 15: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based method for
evaluating πe1 on the logged data deriving from πb1 on the 2DWorld environment

25

Figure 16: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based method for
evaluating πe2 on the logged data deriving from πb1 on the 2DWorld environment

26

Figure 17: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based method for
evaluating πe3 on the logged data deriving from πb1 on the 2DWorld environment

27

Figure 18: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based method for
evaluating πb2 on the logged data deriving from πb2 on the 2DWorld environment

28

Figure 19: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based method for
evaluating πe1 on the logged data deriving from πb2 on the 2DWorld environment

29

Figure 20: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based method for
evaluating πe2 on the logged data deriving from πb2 on the 2DWorld environment

30

Figure 21: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based method for
evaluating πe3 on the logged data deriving from πb2 on the 2DWorld environment

31

Figure 22: Scatterplots of the predictions and target values for evaluating πb1 on the logged data
deriving from πb1 on the mountain car environment using the model-based method, FQE, SSW, and
SSWPR.

32

Figure 23: Scatterplots of the predictions and target values for evaluating πe1 on the logged data
deriving from πb1 on the mountain car environment using the model-based method, FQE, SSW, and
SSWPR.

33

Figure 24: Scatterplots of the predictions and target values for evaluating πe2 on the logged data
deriving from πb1 on the mountain car environment using the model-based method, FQE, SSW, and
SSWPR.

34

Figure 25: Scatterplots of the predictions and target values for evaluating πe3 on the logged data
deriving from πb1 on the mountain car environment using the model-based method, FQE, SSW, and
SSWPR.

35

Figure 26: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based method for
evaluating πb1 on the logged data deriving from πb1 on the mountain car environment

36

Figure 27: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based method for
evaluating πe1 on the logged data deriving from πb1 on the mountain car environment

37

38

Figure 28: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based method for
evaluating πe3 on the logged data deriving from πb1 on the mountain car environment

39

Figure 29: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based method for
evaluating πb2 on the logged data deriving from πb2 on the mountain car environment

40

Figure 30: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based method for
evaluating πe1 on the logged data deriving from πb2 on the mountain car environment

41

Figure 31: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based method for
evaluating πe2 on the logged data deriving from πb2 on the mountain car environment

42

Figure 32: Histogram of absolute errors of SSW, SSWPR, FQE, and the model-based method for
evaluating πe3 on the logged data deriving from πb2 on the mountain car environment

43

Figure 33: Scatterplots of the predictions of SSW vs SSWPR for evaluating A) πb1 , B) πe1 , C) πe2 ,
D) πe3 on the logged data deriving from πb1 on the mountain car environment

44

Figure 34: Scatterplots of the predictions of SSW vs SSWPR for evaluating A) πb2 , B) πe1 , C) πe2 ,
D) πe3 on the logged data deriving from πb2 on the mountain car environment

45

