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ABSTRACT

This paper revisits the overestimation bias of Q-learning from a new perspective,
i.e., the breaking bias propagation chains. We make five-fold contributions. First,
we analyze the estimation bias propagation chains of Q-learning, and find that the
bias propagated from previous steps dominates the maximum Q-value estimation
bias and slows the convergence speed, instead of the current bias. Second, we
propose a novel positive-negative bias alternating algorithm called Alternating Q-
learning (AQ). It breaks the unidirectional estimation bias propagation chains via
alternately executing Q-learning and Double Q-learning. We show theoretically
that there exist two suitable alternating parameters to eliminate the propagation
bias. Third, we design an adaptive alternating strategy for AQ, obtaining Adaptive
Alternating Q-learning (AdaAQ). It applies a softmax strategy with the absolute
value of TD error to choose Q-learning or Double Q-learning for each state-action
pair. Fourth, we extend AQ and AdaAQ to the large-scale settings with function
approximation, i.e., including both discrete- and continuous-action Deep Rein-
forcement Learning (DRL). Fifth, both discrete- and continuous-action DRL ex-
periments show that our method outperforms several baselines drastically; tabular
MDP experiments reveal fundamental insights into why our method can achieve
superior performance.

1 INTRODUCTION

As one of the most fundamental reinforcement learning algorithms, Q-learning Watkins et al.|(1989)
has been successfully applied to many real-world applications [Zong et al.[ (2025); |/Arvanitidis &
Alamaniotis| (2024)); \Gao| (2024) due to its simplicity and convergence guarantees under some mild
assumptions |[Kearns & Singh| (1998). However, Q-learning suffers from overestimation bias Thrun
& Schwartz|(1993), which can be exacerbated in DRL with nonlinear function approximation Mnih
et al.|(2015). This issue originates from the fact that the maximum Q-value is obtained by maximiz-
ing the stochastic estimations of Q-value. These stochastic estimations are caused by stochastic and
unknown reward and state transition functions. Notably, the deadly triad |Van Hasselt et al.| (2018);
Sutton et al.[ (2018) illustrates that the overestimation bias of Q-learning can be iteratively propa-
gated via bootstrapping. Although this bias propagation phenomenon is well-known, most works
Van Hasselt (2013)); |[Peer et al.| (2021)); |Schmitt-Forster & Sutter| (2024); [Tan et al.| (2024c) focus on
mitigating the overestimation bias instead of eliminating the bias propagation chains. For example,
Double Q-learning Hasselt| (2010) removes the overestimation bias via cross-validation, but may
lead to underestimation bias. However, this underestimation bias can cause a slower learning speed
and a larger performance penalty than the overestimation bias Ren et al.|(2021); L1 et al.| (2023)).

This paper provides a new perspective, i.e., the breaking bias propagation chains, to study the over-
estimation bias of Q-learning. In Section we first set the asynchronous Q-value of Bellman
optimality equation Silver| (2015)) as the ground truth. Then, we analyze the maximum Q-value esti-
mation bias of Q-learning as Theorem|[I] which consists of the current bias and the propagation bias.
Notably, Corollary |I| demonstrates that the propagation bias rather than the current bias dominates
the maximum Q-value estimation bias. That is to say, the propagation bias is the primary cause for
the slow convergence speed. Example in Section [3.3|further illustrates that the ratio of propagation
bias to current bias can be as high as 5 just after running Q-learning for four steps.
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Based on the above analysis, this paper proposes a novel algorithm to break the unidirectional es-
timation bias propagation chains, called Alternating Q-learning. The main idea is to alternate be-
tween positive bias algorithms, such as Q-learning, and negative bias algorithms, such as Double
Q-learning. Theorem [2]in Section 4.1] demonstrates that there exist two suitable alternating param-
eters to eliminate the propagation bias. To address the challenge in Alternating Q-learning, i.e., the
optimal alternating parameters are unknown in advance and dynamically for different state-action
pairs, we propose an adaptive alternating strategy, resulting in Adaptive Alternating Q-learning. It
applies a softmax strategy with the absolute value of TD error to determine whether Alternating
Q-learning should execute Q-learning or Double Q-learning for each state-action pair. Extensive
experiment results show that our method outperforms several baselines drastically in tabular MDP,
discrete-action DRL, and continuous-action DRL settings. In summary, this paper studies the over-
estimation bias of Q-learning from the breaking bias propagation chains perspective, and makes five
key contributions as outlined in the abstract.

2 RELATED WORK

2.1 UNDERESTIMATION BIAS METHODS

Double Q-learning |Hasselt| (2010); [Van Hasselt| (2013) is one notable algorithm, which uses cross-
validation to decouple the maximum Q-value estimation. This decoupling process is achieved by
maintaining two independent Q-tables: one Q-table is used to select the optimal action that attains
the maximum Q-value; the other Q-table is used to estimate the Q-value associated with the previ-
ously selected optimal action. As a result, Double Q-learning removes the overestimation bias of
Q-learning, but may lead to underestimation bias. EBQL [Peer et al.| (2021) is a natural extension
of Double Q-learning to ensembles, and the estimation bias of maximum Q-value is always nega-
tive. REDQ |Chen et al.| (2021) reduces the estimation bias via a minimum operation over multiple
random Q-tables, and the default size of random subset is two. But it still maintains a negative bias
throughout most rounds of learning.

2.2 CONTROL ESTIMATION BIAS METHODS

Weighted Double Q-learning Zhang et al.|(2017) is a weighted combination of Q-learning and Dou-
ble Q-learning, and controls the estimation bias through the weight parameter. Averaged Q-learning
Anschel et al.[(2017) averages multiple independent Q-tables to reduce the variance of Q-values, and
finds that the estimation bias is inversely proportional to the number of Q-tables. With a finite num-
ber of Q-tables, the estimation bias of Averaged Q-learning is always positive. Softmax Q-learning
Song et al.| (2019) demonstrates that the estimation bias is proportional to the hyperparameter of
softmax operation. Maxmin Q-learning [Lan et al.| (2020) uses a minimum operation over multi-
ple independent Q-tables, and finds that the estimation bias is inversely proportional to the number
of Q-tables. AdaEQ |Wang et al.|(2021) adjusts the ensemble size of Maxmin Q-learning with the
approximation Q-value error to control the estimation bias, note that this adjustment method relies
on the discounted MC return |Li (2023). Self-Correcting Q-learning Zhu & Rigotti| (2021) builds
a self-correcting estimator with the current and last Q-values, and controls the estimation bias via
dynamically adjusting the Pearson correlation coefficient between successive iterations. Balanced
Q-learning [Karimpanal et al.| (2023) computes the optimistic and pessimistic biases with the max-
imum and minimum operations, respectively, and balances them to control the estimation bias via
the balancing factor. AEQ |Gong et al.| (2023) uses the uncertainty of Q-values and the familiarity
of sampling trajectories to control the estimation bias. AdaOrder Q-learning Tan et al.|(2024c) uses
the order statistic of multiple independent Q-tables to control the estimation bias, which can satisfy
the fine-grained bias needs for different environments.

The maximum expected Q-value is impossible to compute without the underlying state transition
probabilities and reward distributions [Ishwaei D et al.|(1985)). Thus, there exist estimation bias and
its propagation via bootstrapping. However, existing methods focus on the current estimation bias,
instead of the propagation bias. Different from previous methods, this paper revisits the propagation
process of estimation bias in Section[3.2] and finds that even though previous estimation biases can
be diluted during propagation, the propagation bias still dominates the maximum Q-value estimation
bias and slows the convergence speed.
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3 PROBLEM ANALYSIS

3.1 OVERESTIMATION BIAS OF Q-LEARNING

We consider an infinite-horizon MDP |Chen et al.| (2022), where each decision step is indexed by
t € N. Let S and A denote the state space and the action space, respectively. Let P (s'|s,a)
denote the state transition probability under (s,a) € S x A, where s’ € S is the next state. Let
R (s, a) denote the reward associated with (s, a). Let s — 7 (s) denote the policy, where s € S and
7 (s) € A. Let Qr (s, a) denote the expected cumulative discounted reward with discounting factor
v €(0,1) as:

Qr (s,a) =E [R (St Ag) + YR (Si41, A1) + VR (Stqs Apya) + -+ |Se = 5, Ay = a] )

where S, is generated from P(S,|Sx—1,Ax-1) and A, = 7(Sk), V& > t + 1. Note that S,
and A, are the state random variable and the action random variable, respectively. The learning
objective is to find the optimal Q-value and the optimal policy. More specifically, the optimal Q-
value is Q* (s,a) = maxyen Qr (8, a), where II denotes a set of all policy; the optimal policy is
7 (8) = argmax,c 4 @* (s,a),V (s,a) € S x A

The optimal Q-value is unknown in advance for model-free reinforcement learning. Q-learning
maintains one Q-table Q); (s, a) in each time step ¢, and uses this Q-table to estimate the optimal
Q-value. More specifically, at each time step ¢, Q-learning uses e-greedy policy Rodrigues Gomes
& Kowalczyk| (2009) with arg max,c 4 Q¢ (s, a), i.e., € € (0,1), to interact with the environment,
obtains the sample data {s, a, R (s,a), s’} and updates the Q-table as:

Qt+1 (87 a’) = Qt (S,(l) +a R (87 a’) + ’yglgﬁ Qt (Slva/) - Qt (s,a) ) (1)

where o is the learning rate, Y; (s, a) = R (s,a)+ymaxy e a4 Q¢ (s, a’) is the target Q-value. Under
some mild conditions |Kearns & Singh| (1998)), the estimated Q-value of Q-learning is guaranteed to
converge to the optimal Q-value, i.e., lim; oo Qs (s,a) = Q* (s,a),V (s,a) € S x A.

We set the asynchronous Q-value, denoted by Qt (s,a), of Bellman optimality equation as the
ground truth |Silver| (2015)), which updates as:

Qi (5:0) = Q) 0 [B [R50 4y Q5 )] - @) . @

where Y; (s,a) = E [R (s,a) +ymaxgecq Q: (¢, a’)] is the unbiased target Q-value. We focus
on the maximum operation of Q-learning, which is the root cause of overestimation bias. Fol-
lowing [Thrun & Schwartz| (1993), although we assume that Q); (s’,a’) is an unbiased estimator
for Q; (s',a'),Va' € A, according to Jensen’s inequality Hansen & Pedersen (2003), we have:
E [maxg e Q (s, a')] > maxaea E[Qy (s, a))] = maxyea Qs (s, a'). Figurea) also verifies
that this overestimation bias can slow the convergence speed of Q-learning.

3.2 BIAS PROPAGATION CHAINS

For compactness, we write Q;, Y;, Q;, Y; instead of Q; (s,a),Y;(s,a), Q; (s,a), y; (s,a),V(s,a) €
S x A. Then, we expand Equation (I)) and Equation (2)) as:
t :
Qu1=01-a)"" Qo+ Yo al-a)7Y
) . Y o 3)
Qe =(1-a)"" Qo+ Zi:O a(l-a)Y.

We set Qg = Qo with the same initial Q-value; e; = Q; — Qi as the Q-value estimation error;
Z; =Y; —Y; as the target Q-value estimation bias. Then, we have:

t .
cri=y, all-a)"Z )

To analyze the overestimation bias propagation chains of Q-learning, following |[Thrun & Schwartz
(1993); ILan et al.| (2020), we first make a common assumption as:
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Assumption 1 The Q-value estimation error obeys a uniform distribution as:

et+1 ~ U (i1 — Sev1s a1 + Eet1) s
where Efe;11] = Si_oa(1—a) "E[Zi] = w41 > 0 due to the positive bias of Q-learning;
0 < & 41 < & due to the increasing number of samples and convergence guarantees. Note that
Ya € A, the Q-value estimation error e,y are independent and identically distributed (i.i.d.).

Following the target Q-value estimation bias, we have:

Zyy1 = R(s,a) —E[R(s,a)] +v <£n§f§ Qiy1 —E hngﬁ QtHD . )
Theorem 1 Based on Assumption[l] the expected maximum Q-value estimation bias is as:
Al
E[Z Ly (1—a)~E[Z)].
(Ziy1] = Y1 AT Z Y E[Z)
\q,_,/ :
cur-bias prop-bias

Theorem I]is a generalization of the first Lemma in [Thrun & Schwartz| (1993)); we provide the proof
in Appendix [A] Theorem [T]demonstrates that in Q-learning, the maximum Q-value estimation bias
consists of two components: the current bias (cur-bias) and the propagation bias (prop-bias).

Corollary 1 When the discount factor v > %, we have:
¥ e (l—a) "E[Z]

A1 =1
'th+1m

lim
t—+4oo

We prove Corollary |1| in Appendix [B| It illustrates that during Q-learning updates, the prop-bias
progressively dominates the maximum Q-value estimation bias composition, instead of the cur-bias.

3.3 EXAMPLE

Consider a simple multi-armed bandit setting [Zhang et al.|(2017), which includes one state .S with
ten identical actions, and each action returns a reward following A/(0, 1). Following previous works
Zhang et al.| (2017); |Tan et al.{(2024c)), we set v = 0.95, « = 0.5, ¢ = ﬁ Qo (S,a) ~ N (0,1)

for each action a, where n (5) is the visited number of state .S.

le—-1
m— Q-learning 151 == cur-bias
4 . [ prop-bias
© ©
gi (\ g 10 | \
S S
Be 21 B )
S € 51 S
> >~ -~
0 T y 0+ ¢ ¢
0 40 80 1 4
t(x100) t(x1)
(a) Overestimation bias (b) Cur- & Prop-bias

Figure 1: The discounted maximum Q-value of Q-learning.

Figure [I| shows the discounted maximum Q-value at state S, denoted by ~max, @Q; (S,a),
of Q-learning across steps t.  All results are averaged over 10,000 runs. Note that
the maximum expected Q-value is zero. According to Theorem we compute prop-
bias as y 3 Oa (1 — )" " "'max, Q; (S,a), and compute cur-bias as ~max, Q; (S,a) —
vy Zl 0 Ya(1— )" max, Q; (S, a). Figure a) shows that Q-learning has an overestimation
bias, which slows convergence speed. Figure EKb) shows that prop-bias accumulates the previous
positive bias, and progressively dominates the maximum Q-value estimation bias composition. More
specifically, the ratio of prop-bias to cur-bias is % ~batt=4.
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4 METHODS

4.1 ALTERNATING Q-LEARNING

Due to the overestimation bias of Q-learning, the prop-bias in Theorem [I] accumulates the unidi-
rectional positive bias. Even though previous positive biases can be diluted during propagation,
Corollary [T shows that the prop-bias still dominates the maximum Q-value estimation bias. Exam-
ple in Section[3.3]further illustrates that the prop-bias is the primary cause for the slow convergence
speed in Q-learning. Similarly, Double Q-learning tends to accumulate the unidirectional negative
bias, may lead to a slower convergence speed than Q-learning |Ren et al.[(2021)); Li et al.| (2023).

To break the above unidirectional estimation bias propagation chains and improve the convergence
speed, we propose a novel positive-negative bias alternating execution framework. More specif-
ically, this framework includes two hyperparameters (M, N), where M € N7 is the number of
alternating execution steps for the positive bias algorithms, such as Q-learning Watkins et al.| (1989)
and Averaged Q-learning|Anschel et al.|(2017); N € N is the corresponding steps for the negative
bias algorithms, such as Double Q-learning |Hasselt| (2010) and EBQL [Peer et al.|(2021)). Note that
we set Q-learning and Double Q-learning as a pair of positive-negative bias algorithms, obtaining
our Alternating Q-learning (AQ) as Algorithm

Algorithm 1 Alternating Q-learning
1: Parameter: M, N
2: Inmitialize: Q} (s,a), Q% (s,a),V (s,a) € S x A
3: Get the starting state s
4: fort =0,1,2,---do

Qi (s, a)+Qt (s,a)

5: Choose action a at state s by e-greedy policy with arg maXge A
6: Take action a, get reward R (s, a) and next state s’

7: Randomly select one Q-table & from {1, 2} to update

8: ift mod (M + N) < M then

9: Q1 (s,0) = QF (s,a) + a [R(s,a) + ymaxeca QF (s',d') — QF (s,a)]
10: else

11: QfH (5,a) = QF (s,a)+a [R (s,a) + va_k (s’, arg max, e 4 QF (s, a')) —QF (s, a)}
12: s+— s

AQ maintains two independent Q-tables Q} (s,a),Q? (s,a) in each time step t. When ¢t
mod (M + N) < M, AQ uses Q-learning to update, the target Q-value Y* = R(s,a) +
Y MmaxXy e A Qf; when t mod (M + N) > M, AQ uses Double Q-learning to update, the target
Q-value Y = R (s,a) +vQ; " (s, arg max,c 4 QF (s',a’)). To ensure fair comparison, we also
consider two Q-tables Qtl (s,a), Q? (s, a) for Bellman optimality equation as Equation , and the
unbiased target Q-value V¥ = E [R (5,a) + ymaxy e Qf} Following Section we set the

Q-value estimation error as: e} 1= = QF i Qt ' 15 set the target Q-value estimation bias as: ZF =
k_vk. Lok t—i 7k k k k k k

Y;" = Y;"; and have: e}, = 27, 0 a(l—a)" ZF whereef | ~ U (ufyq — &fpry b +E&8) -

Note that the sign of E [e,’f +1] = pk '\ 1 is unknown in advance due to the alternating mechanism.

Theorem 2 Under the above statement, the expected estimation bias of AQ is as follows.

* Whent mod (M + N) < M, wehave'

Al — i
E [Ztkﬂ] = 7§f+1 Al + 1 "’ 27 0 E [sz] :
cur-bias prop-bias
o Whent mod (M + N) > M, we have:
[A| t )
E [Zf+1] = ’YZE [Qfﬂ (Sl,a;) - Qf+1 (s', &I)} p (a;- = d/) +’YZOZ (1- O‘)tﬂE [sz] :
j=1 =0
cur-bias prop-bias
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Note that £F; > 0; a); = argmaxaea QF 1 (s',a'); & = argmaxgrea QF 4 (s, ).

We prove Theorem [2| in Appendix [C} It shows that when ¢ mod (M + N) < M, AQ selects
Q-learning to update, the cur-bias is positive, the prop-bias accumulates the positive bias; when
t mod (M + N) > M, AQ selects Double Q-learning to update, the cur-bias is negative, the
prop-bias accumulates the negative bias. Therefore, AQ breaks the unidirectional estimation bias
propagation chains via alternately executing Q-learning and Double Q-learning. More specifically,
the estimation bias is proportional to M and inversely proportional to N. When M — +oco and
N =1, AQ gets the upper bound, but is always smaller than Q-learning; when M = 1 and N —
400, AQ gets the lower bound, but is always larger than Double Q-learning. Due to that the cur-bias
can vary between positive and negative, the prop-bias can theoretically be eliminated by two suitable
parameters (M, N).

4.2 ADAPTIVE ALTERNATING Q-LEARNING

AQ alternately executes Q-learning and Double Q-learning via (M, N). However, the optimal
(M, N) are unknown in advance and dynamically for different state-action pairs. Therefore, we
need to design an adaptive alternating strategy for AQ.

Following Algorithm we first define the TD error [Zhang et al.[(2021) of Q-learning in each time
step ¢ as: td? (s,a) = R (s,a) +ymaxyeq QF (s',a’) — QF (s,a) ; the corresponding TD error of
Double Q-learning as: td;’? (s,a) = R (s,a) + Qi ¥ (s, argmax,ea QF (s',a')) — QF (s,a) .
Although the TD error has inherent uncertainty during updates, the convergence guarantees of al-
gorithms still support it as a reliable feedback signal for tracking the variation trend of maximum
Q-value estimation bias. More specifically, a large L‘dg2 (s, a) reflects significant positive bias of Q-
learning, and AQ should switch to Double Q-learning to suppress this bias and prevent its propaga-
tion from enlarging prop-bias. Similarly, when tdiD Q(s, a) is small, AQ should switch to Q-learning
to counteract the significant negative bias of Double Q-learning. Thus, we apply a softmax strategy
based on the absolute value of TD error to compute the alternating execution probabilities as:

7|tdP? (s,a)| [td2 (s,a)|
- B [DQ] = ‘ (©)

erltd? (s,0)] 4 erltd; 9 (s,a)]’

P(S’a) = )
t [Q] BT‘td?(&a)l + eTltdtDQ(Sva)‘

where 7 > 0 denotes the temperature parameter; P{**) [Q] and P{***) [DQ)] represent the alternating
probabilities to Q-learning and Double Q-learning, respectively.

Incorporating the above softmax strategy into AQ, we obtain Adaptive Alternating Q-learning
(AdaAQ) as Algorithm Note that at line 8, AQ selects Q-learning or Double Q-learning via
categorical sampling.

Algorithm 2 Adaptive Alternating Q-learning

1: Initialize: Q} (s,a), Q2 (s,a),V(s,a) € S x A
2: Get the starting state s
3: fort=0,1,2,---do

Choose action a at state s by e-greedy policy with arg max,e 4
Take action a, get reward R (s, a) and next state s’
Randomly select one Q-table & from {1, 2} to update

Compute Pgs’a) Q] ,Pg‘”) [DQ] as Equation (EI)
Select algorithm via categorical sampling: AQ ~ Cat ([Q, DQ)J, [Pis’a) Q] ,Pis’a) [DQ]D
9: if AQ == @ then

Qi (5,0)+Q7 (s,a)
2

® Xk

10 | Q1 (s,0) = QF (s,a) + a [R(s,a) + ymaxeeca QF (s',d') — QF (s,a)]

11: else

12: Qi]tc+1 (570') = Qi]f (Sa a)+a [R (Sa a) + ’YQ?_k (sla argmaXg e A Q? (Slaa/)) - Qf (S, a)}
13: s+— s
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4.3 EXTENSION TO DRL: DISCRETE- AND CONTINUOUS-ACTION SPACES

Following the previous DRL algorithms Silver et al.|(2014); Mnih et al.| (2015), we represent the Q-
function by a neural network for high-dimensional environments, and try to extend our methods to
DRL. More specifically, for the discrete-action DRL settings, such as Atari Bellemare et al.|(2013),
we set DQN [Mnih et al|(2015) and DDQN |Van Hasselt et al.| (2016)) as a pair of positive-negative
bias algorithms, and extend AQ and AdaAQ to Alternating DQN (ADQN) as Appendix @ and
Adaptive Alternating DQN (AdaADQN) as Appendix respectively; for the continuous-action
DRL settings, such as Mujoco Brockman et al.| (2016), we set DDPG |Silver et al.| (2014) and TD3
Fujimoto et al.| (2018)) as a pair of positive-negative bias algorithms, and extend AQ and AdaAQ to
Alternating DDPG (ADDPG) as Appendix and Adaptive Alternating DDPG (AdaADDPG) as
Appendix [E.2] respectively.

5 EXPERIMENTS

5.1 TABULAR MDP EXPERIMENTS

MDP environments: (1) Multi-armed bandit is shown in Section[3.3] (2) Roulette is adapted from
Lee & Powell (2019). Like Tan et al.| (2024b), we simplify Roulette to 13 actions: six 2 : 1 bets
on 12 numbers (win 0.3158); six 1 : 1 bets on 18 numbers (win 0.4737); one 1 : 1 bet on nothing
(win 0.5). (3) Gridworld 3 x 3 and 4 x 4 [Zhu & Rigottil (2021) have four cardinal actions for
each state, with start (southwest) and goal (northeast) positions. The agent resets to the start state
upon reaching the goal, while boundary-violating actions maintain the current state. Non-goal states
yield equiprobable stochastic rewards (—12 or 10), while goal-state yields equiprobable stochastic
rewards (—30 or 40).

Parameter settings: Following [Hasselt| (2010); |Pentaliotis & Wiering| (2021); Tan et al.| (2024a),

we set v = 0.95, ¢ = —L5 by default; « = ——-— for Multi-armed bandit and Roulette;

n(S)O.S n(s,a)o'g

o = n(slw for Gridworld, where n(s) and n(s,a) are the visited number of state s and state-

action pair (s, a), respectively. Note that all experiment results are averaged over 1, 000 runs.

Comparison baselines: We vary M = 1,2,4,8 16;N = 1,2,4,8,16 for our AQ; 7 =
1,2,5,10,100 for our AdaAQ, and set 7 = 1 by default. We consider eight comparison base-
lines as: Averaged Q-learning (AvgQ) |Anschel et al.| (2017)), Maxmin Q-learning (MQ) [Lan et al.
(2020), Self-Correcting Q-learning (SCQ) Zhu & Rigotti| (2021)), Softmax Q-learning (SoftQ)Song
et al.| (2019), Weighted Double Q-learning (WDQ) [Zhang et al.| (2017), REDQ |Chen et al.| (2021),
EBQL [Peer et al.[(2021), AdaEQ Wang et al.|(2021). For a fair comparison, we set the number of
Q-tables of AvgQ and MQ as 2; the temperature parameter of SoftQ as 1. For other baselines, we
set the self-correcting parameter of SCQ as 2; the adaptive adjustment parameter of WDQ as 1; the
number of Q-tables of REDQ, EBQL, AdaEQ as 10; which are recommended and fine-tuned.

Figure [2| shows the maximum Q-value, the probability of betting nothing denoted by Pr[leave],
and the average reward per step of our methods in tabular MDP environments. AQ: Figure [2[(a-b)
show that the maximum Q-value of AQ is proportional to M and inversely proportional to N, and it
always lies between that of Q-learning and Double Q-learning. This implies that AQ can effectively
break the unidirectional estimation bias propagation chains. AdaAQ: Figure [2(c-d) show that the
maximum Q-value curves of AdaAQ with different 7 overlap, and converge to zero faster than that of
AQ. This implies that AdaAQ is not sensitive to 7, and can provide an adaptive alternating strategy
for AQ. Comparison: Figure[2|e-h) show that AdaAQ can estimate the maximum expected Q-value
more accurately than the eight baselines, resulting in better policy and higher reward. Appendix [F]
provides the table of comparison results.

Table [I] shows the results of our AQ and AdaAQ with different parameters, where all values are
evaluated in the final round. From the maximum Q-value perspective, AdaAQ(1), i.e., 4.14 x 1073,
is one level improvement over AQ(4,8), i.e., —7.04 x 10~2, in Multi-armed bandit. From the

policy perspective, compared to AQ(4,4), AdaAQ(100) improves by 93.59% — 87.43% = 6.16%

in Roulette. From the reward perspective, AdaAQ(10) outperforms AQ(4,4) by W =

75.60% in Gridworld 3 x 3; AdaAQ(5) outperforms AQ(4,4) by —2AT0=20.T8) — 34 79% in
Gridworld 4 x 4. Appendix [F.2]provides the figure of our AQ and AdaAQ with different parameters.
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Figure 2: The performance of our AQ and AdaAQ in tabular MDP settings.
Table 1: The results of our AQ and AdaAQ with different parameters.
Maximum Q-value  Pr[leave] Average reward per step
Algorithm Multi-armed bandit  Roulette  Gridworld 3 x 3 Gridworld 4 x 4
Q-learning 3.35e0 40.83% -8.55¢-1 -941le-1
Double Q-learning -1.72e0 26.15% -6.65¢-1 -8.45¢e-1
AQ(1,4) -8.82¢e-1 49.88% -5.35¢-1 -7.76e-1
AQ2,4) -3.21e-1 83.73% -5.16e-1 -7.44e-1
AQ4.4) 4.72e-1 87.43% -4.92e-1 -7.30e-1
AQ(8,4) 1.56e0 77.83% -5.98e-1 -7.74e-1
AQ(16,4) 2.59e0 56.04% -7.33e-1 -8.63e-1
AQ4,1) 2.26e0 63.32% -5.81e-1 -7.97e-1
AQ4,2) 1.37¢0 82.70% -5.27e-1 -7.47e-1
AQ4,8) -7.04e-2 85.69% -5.80e-1 -7.89e-1
AQ(4,16) -3.50e-1 78.26% -5.98e-1 -8.28e-1
AdaAQ(1) 4.14e-3 92.00% -1.60e-1 -5.04e-1
AdaAQ(2) 5.01e-3 90.53% -1.57e-1 -4.97e-1
AdaAQ(5) 9.32¢-3 90.78% -1.25e-1 -4.76e-1
AdaAQ(10) 1.08e-2 91.24% -1.20e-1 -4.93e-1
AdaAQ(100) 1.61e-2 93.59 % -1.50e-1 -5.09e-1

5.2 DISCRETE-ACTION DRL EXPERIMENTS

We choose three discrete-action DRL experiment environments from PLE |[Urtans & Nikitenko
(2018) and MinAtar [Young & Tian| (2019): Pixelcopter, Breakout, Asterix. Appendix [G.I]provides
the experiment settings. Figure[3|shows the average score per episode of our AdaADQN in discrete-
action DRL settings, where the score is averaged over the last 100 episodes and the shaded area
represents one standard error. One can observe that the average score curves of AdaADQN lie at the
top, and are not sensitive to 7. Appendix [G.2] provides the table of comparison results between our
AdaADQN and ten baselines, where all values are evaluated in the final round. More specifically, our

: : : 37.89—30.13 _
AdaADQN improves the average score per episode over baselines by at least =-55=2=== = 25.76%,
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13891064 — 30.55%, and 1032211 — 65.10% in Pixelcopter, Breakout, and Asterix, respec-

tively. In addition, Appendix provides the results of our ADNQ and AdaADQN with different
parameters.
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Figure 3: The average score per episode of our AdaADQN in discrete-action DRL settings.

5.3 CONTINUOUS-ACTION DRL EXPERIMENTS

We choose three continuous-action DRL experiment environments from Mujoco |Brockman et al.
(2016): Hopper, Ant, and Walker2d. Appendix provides the experiment settings. Figure 4
shows the average return of our AdaADDPG in continuous-action DRL settings, where the aver-
age return is averaged over the last 10 episodes. One can observe that the average return curves
of AdaADDPG lie at the top, and are not sensitive to 7. Appendix provides the table of com-
parison results between our AdaADDPG and five baselines, where all values are evaluated in the

final round. More specifically, our AdaADDPG improves the average return over baselines by at

least 3296.380735360433.64 — 868%, 3321.29871g248418.44 — 1787%, 4786'4220478,40%448'04 — 1267% in Hopper,

Ant, Walker2d, respectively. In addition, Appendix [H.3] provides the results of our ADDPG and
AdaADDPG with different parameters.
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Figure 4: The average return of our AdaADDPG in continuous-action DRL settings.

6 CONCLUSION

In this paper, we analyze the overestimation bias propagation process of Q-learning, and find that
the prop-bias rather than the cur-bias dominates the maximum Q-value estimation bias. Then, we
propose AQ, which breaks the unidirectional estimation bias propagation chains via alternately ex-
ecuting positive-negative bias algorithms. Based on AQ, we design an adaptive alternating strategy,
leading to AdaAQ. More specifically, it applies a softmax strategy with the absolute value of TD
error to determine whether AQ should execute Q-learning or Double Q-learning. We also extend
AQ and AdaAQ to both discrete- and continuous-action DRL settings. Extensive experiment re-
sults show that our method outperforms several baselines drastically in tabular MDP, discrete-action
DRL, and continuous-action DRL settings. More specifically, our method improves the average
score or return over baselines by at least 65.10% in Asterix and 17.87% in Ant, respectively.



Under review as a conference paper at ICLR 2026

REFERENCES

Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-dqn: Variance reduction and stabilization
for deep reinforcement learning. In International conference on machine learning, pp. 176—-185.
PMLR, 2017.

Athanasios loannis Arvanitidis and Miltiadis Alamaniotis. Optimal economic dispatch scheduling in
competitive energy market utilizing a greedy g-learning algorithm. In 2024 IEEE PES Innovative
Smart Grid Technologies Europe (ISGT EUROPE), pp. 1-5. IEEE, 2024.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of artificial intelligence research, 47:
253-279, 2013.

G Brockman, V Cheung, L Pettersson, J Schneider, J Schulman, J Tang, and W Zaremba. Openai
gym: A toolkit for developing and comparing reinforcement learning algorithms, 2016.

Liyu Chen, Rahul Jain, and Haipeng Luo. Learning infinite-horizon average-reward markov decision
process with constraints. In International Conference on Machine Learning, pp. 3246-3270.
PMLR, 2022.

Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. Randomized ensembled double g-learning:
Learning fast without a model. arXiv preprint arXiv:2101.05982, 2021.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587-1596. PMLR, 2018.

Tianci Gao. Optimizing robotic arm control using deep g-learning and artificial neural networks
through demonstration-based methodologies: A case study of dynamic and static conditions.
Robotics and Autonomous systems, 181:104771, 2024.

Xiaoyu Gong, Shuai Lii, Jiayu Yu, Sheng Zhu, and Zongze Li. Adaptive estimation g-learning with
uncertainty and familiarity. In Proceedings of the Thirty-Second International Joint Conference
on Artificial Intelligence, pp. 3750-3758, 2023.

Frank Hansen and Gert K Pedersen. Jensen’s operator inequality. Bulletin of the London Mathemat-
ical Society, 35(4):553-564, 2003.

Hado Hasselt. Double g-learning. Advances in neural information processing systems, 23, 2010.

Bhaeiyal Ishwaei D, Divakar Shabma, and K Krishnamoorthy. Non-existence of unbiased estimators
of ordered parameters. Statistics: A Journal of Theoretical and Applied Statistics, 16(1):89-95,
1985.

Thommen George Karimpanal, Hung Le, Majid Abdolshah, Santu Rana, Sunil Gupta, Truyen Tran,
and Svetha Venkatesh. Balanced g-learning: Combining the influence of optimistic and pes-
simistic targets. Artificial Intelligence, 325:104021, 2023.

Michael Kearns and Satinder Singh. Finite-sample convergence rates for g-learning and indirect
algorithms. Advances in neural information processing systems, 11, 1998.

Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. Maxmin g-learning: Controlling the
estimation bias of g-learning. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=BkgOu3Etwr.

Donghun Lee and Warren B Powell. Bias-corrected g-learning with multistate extension. IEEE
Transactions on Automatic Control, 64(10):4011-4023, 2019.

Shengbo Eben Li. Model-free indirect rl: Monte carlo. In Reinforcement Learning for Sequential
Decision and Optimal Control, pp. 41-65. Springer, 2023.

Sicen Li, Qinyun Tang, Yiming Pang, Xinmeng Ma, and Gang Wang. Realistic actor-critic: A frame-
work for balance between value overestimation and underestimation. Frontiers in Neurorobotics,
16:1081242, 2023.

10


https://openreview.net/forum?id=Bkg0u3Etwr

Under review as a conference paper at ICLR 2026

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Oren Peer, Chen Tessler, Nadav Merlis, and Ron Meir. Ensemble bootstrapping for g-learning. In
International conference on machine learning, pp. 8454-8463. PMLR, 2021.

Andreas Pentaliotis and Marco A Wiering. Variation-resistant g-learning: Controlling and utilizing
estimation bias in reinforcement learning for better performance. In ICAART (2), pp. 17-28, 2021.

Zhizhou Ren, Guangxiang Zhu, Hao Hu, Beining Han, Jianglun Chen, and Chongjie Zhang. On the
estimation bias in double g-learning. Advances in Neural Information Processing Systems, 34:
10246-10259, 2021.

Eduardo Rodrigues Gomes and Ryszard Kowalczyk. Dynamic analysis of multiagent g-learning
with e-greedy exploration. In Proceedings of the 26th annual international conference on machine
learning, pp. 369-376, 2009.

Peter Schmitt-Forster and Tobias Sutter. Regularized g-learning through robust averaging. In Pro-
ceedings of the 41st International Conference on Machine Learning, pp. 43742-43764, Vienna,
Austria, 2024. ICML.

David Silver. Lecture 3: Planning by dynamic programming. UCL Course on RL, 2015.

David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning, pp.
387-395. Pmlr, 2014.

Zhao Song, Ron Parr, and Lawrence Carin. Revisiting the softmax bellman operator: New benefits
and new perspective. In International conference on machine learning, pp. 5916-5925. PMLR,
2019.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 2018.

Tao Tan, Hong Xie, and Liang Feng. Q-learning with heterogeneous update strategy. Information
Sciences, 656:119902, 2024a.

Tao Tan, Hong Xie, and Liang Feng. Q-learning with heterogeneous update strategy. Information
Sciences, 656:119902, 2024b.

Tao Tan, Hong Xie, and Defu Lian. Adaptive order g-learning. In Proceedings of the Thirty-Third
International Joint Conference on Artificial Intelligence, pp. 4946—4954, 2024c.

Sebastian Thrun and Anton Schwartz. Issues in using function approximation for reinforcement
learning. In Proceedings of the 1993 connectionist models summer school, pp. 255-263. Psychol-
ogy Press, 1993.

Evalds Urtans and Agris Nikitenko. Survey of deep g-network variants in pygame learning environ-
ment. In Proceedings of the 2018 2nd international conference on deep learning technologies,
pp. 27-36, 2018.

Hado Van Hasselt. Estimating the maximum expected value: an analysis of (nested) cross validation
and the maximum sample average. arXiv preprint arXiv:1302.7175, 2013.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph Mo-
dayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648, 2018.

Hang Wang, Sen Lin, and Junshan Zhang. Adaptive ensemble g-learning: Minimizing estimation
bias via error feedback. Advances in neural information processing systems, 34:24778-24790,
2021.

11



Under review as a conference paper at ICLR 2026

Christopher John Cornish Hellaby Watkins et al. Learning from delayed rewards. 1989.

Kenny Young and Tian Tian. Minatar: An atari-inspired testbed for more efficient reinforcement
learning experiments. arXiv preprint arXiv:1903.03176, 59:60, 2019.

Sheng Zhang, Zhe Zhang, and Siva Theja Maguluri. Finite sample analysis of average-reward td
learning and g-learning. Advances in Neural Information Processing Systems, 34:1230-1242,
2021.

Zongzhang Zhang, Zhiyuan Pan, and Mykel J Kochenderfer. Weighted double g-learning. In IJCAI,
pp- 3455-3461, 2017.

Rong Zhu and Mattia Rigotti. Self-correcting g-learning. In Proceedings of the AAAI conference on
artificial intelligence, volume 35, pp. 11185-11192, 2021.

Zefang Zong, Tao Feng, Jingwei Wang, Tong Xia, and Yong Li. Deep reinforcement learning for
demand-driven services in logistics and transportation systems: A survey. ACM Transactions on
Knowledge Discovery from Data, 19(4):1-42, 2025.

12



	Introduction
	Related work
	Underestimation bias methods
	Control estimation bias methods

	Problem analysis
	Overestimation bias of Q-learning
	Bias propagation chains
	Example

	Methods
	Alternating Q-learning
	Adaptive Alternating Q-learning
	Extension to DRL: discrete- and continuous-action spaces

	Experiments
	Tabular MDP experiments
	Discrete-action DRL experiments
	Continuous-action DRL experiments

	Conclusion
	Proof to Theorem 1
	Proof to Corollary 1
	Proof to Theorem 2
	Extension to DRL: discrete-action spaces
	Alternating DQN
	Adaptive Alternating DQN

	Extension to DRL: continuous-action spaces
	Alternating DDPG
	Adaptive Alternating DDPG

	Additional tabular MDP experiments
	Comparison with ten baselines
	AQ and AdaAQ with different parameters

	Additional discrete-action DRL experiments
	Discrete-action DRL experiment settings
	Comparison with ten baselines
	ADQN and AdaADQN with different parameters

	Additional continuous-action DRL experiments
	Continuous-action DRL experiment settings
	Comparison with five baselines
	ADDPG and AdaADDPG with different parameters




