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ABSTRACT

This paper revisits the overestimation bias of Q-learning from a new perspective,
i.e., the breaking bias propagation chains. We make five-fold contributions. First,
we analyze the estimation bias propagation chains of Q-learning, and find that the
bias propagated from previous steps dominates the maximum Q-value estimation
bias and slows the convergence speed, instead of the current bias. Second, we
propose a novel positive-negative bias alternating algorithm called Alternating Q-
learning (AQ). It breaks the unidirectional estimation bias propagation chains via
alternately executing Q-learning and Double Q-learning. We show theoretically
that there exist two suitable alternating parameters to eliminate the propagation
bias. Third, we design an adaptive alternating strategy for AQ, obtaining Adaptive
Alternating Q-learning (AdaAQ). It applies a softmax strategy with the absolute
value of TD error to choose Q-learning or Double Q-learning for each state-action
pair. Fourth, we extend AQ and AdaAQ to the large-scale settings with function
approximation, i.e., including both discrete- and continuous-action Deep Rein-
forcement Learning (DRL). Fifth, both discrete- and continuous-action DRL ex-
periments show that our method outperforms several baselines drastically; tabular
MDP experiments reveal fundamental insights into why our method can achieve
superior performance.

1 INTRODUCTION

As one of the most fundamental reinforcement learning algorithms, Q-learning Watkins et al. (1989)
has been successfully applied to many real-world applications Zong et al. (2025); Arvanitidis &
Alamaniotis (2024); Gao (2024) due to its simplicity and convergence guarantees under some mild
assumptions Kearns & Singh (1998). However, Q-learning suffers from overestimation bias Thrun
& Schwartz (1993), which can be exacerbated in DRL with nonlinear function approximation Mnih
et al. (2015). This issue originates from the fact that the maximum Q-value is obtained by maximiz-
ing the stochastic estimations of Q-value. These stochastic estimations are caused by stochastic and
unknown reward and state transition functions. Notably, the deadly triad Van Hasselt et al. (2018);
Sutton et al. (2018) illustrates that the overestimation bias of Q-learning can be iteratively propa-
gated via bootstrapping. Although this bias propagation phenomenon is well-known, most works
Van Hasselt (2013); Peer et al. (2021); Schmitt-Förster & Sutter (2024); Tan et al. (2024c) focus on
mitigating the overestimation bias instead of eliminating the bias propagation chains. For example,
Double Q-learning Hasselt (2010) removes the overestimation bias via cross-validation, but may
lead to underestimation bias. However, this underestimation bias can cause a slower learning speed
and a larger performance penalty than the overestimation bias Ren et al. (2021); Li et al. (2023).

This paper provides a new perspective, i.e., the breaking bias propagation chains, to study the over-
estimation bias of Q-learning. In Section 3.2, we first set the asynchronous Q-value of Bellman
optimality equation Silver (2015) as the ground truth. Then, we analyze the maximum Q-value esti-
mation bias of Q-learning as Theorem 1, which consists of the current bias and the propagation bias.
Notably, Corollary 1 demonstrates that the propagation bias rather than the current bias dominates
the maximum Q-value estimation bias. That is to say, the propagation bias is the primary cause for
the slow convergence speed. Example in Section 3.3 further illustrates that the ratio of propagation
bias to current bias can be as high as 5 just after running Q-learning for four steps.
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Based on the above analysis, this paper proposes a novel algorithm to break the unidirectional es-
timation bias propagation chains, called Alternating Q-learning. The main idea is to alternate be-
tween positive bias algorithms, such as Q-learning, and negative bias algorithms, such as Double
Q-learning. Theorem 2 in Section 4.1 demonstrates that there exist two suitable alternating param-
eters to eliminate the propagation bias. To address the challenge in Alternating Q-learning, i.e., the
optimal alternating parameters are unknown in advance and dynamically for different state-action
pairs, we propose an adaptive alternating strategy, resulting in Adaptive Alternating Q-learning. It
applies a softmax strategy with the absolute value of TD error to determine whether Alternating
Q-learning should execute Q-learning or Double Q-learning for each state-action pair. Extensive
experiment results show that our method outperforms several baselines drastically in tabular MDP,
discrete-action DRL, and continuous-action DRL settings. In summary, this paper studies the over-
estimation bias of Q-learning from the breaking bias propagation chains perspective, and makes five
key contributions as outlined in the abstract.

2 RELATED WORK

2.1 UNDERESTIMATION BIAS METHODS

Double Q-learning Hasselt (2010); Van Hasselt (2013) is one notable algorithm, which uses cross-
validation to decouple the maximum Q-value estimation. This decoupling process is achieved by
maintaining two independent Q-tables: one Q-table is used to select the optimal action that attains
the maximum Q-value; the other Q-table is used to estimate the Q-value associated with the previ-
ously selected optimal action. As a result, Double Q-learning removes the overestimation bias of
Q-learning, but may lead to underestimation bias. EBQL Peer et al. (2021) is a natural extension
of Double Q-learning to ensembles, and the estimation bias of maximum Q-value is always nega-
tive. REDQ Chen et al. (2021) reduces the estimation bias via a minimum operation over multiple
random Q-tables, and the default size of random subset is two. But it still maintains a negative bias
throughout most rounds of learning.

2.2 CONTROL ESTIMATION BIAS METHODS

Weighted Double Q-learning Zhang et al. (2017) is a weighted combination of Q-learning and Dou-
ble Q-learning, and controls the estimation bias through the weight parameter. Averaged Q-learning
Anschel et al. (2017) averages multiple independent Q-tables to reduce the variance of Q-values, and
finds that the estimation bias is inversely proportional to the number of Q-tables. With a finite num-
ber of Q-tables, the estimation bias of Averaged Q-learning is always positive. Softmax Q-learning
Song et al. (2019) demonstrates that the estimation bias is proportional to the hyperparameter of
softmax operation. Maxmin Q-learning Lan et al. (2020) uses a minimum operation over multi-
ple independent Q-tables, and finds that the estimation bias is inversely proportional to the number
of Q-tables. AdaEQ Wang et al. (2021) adjusts the ensemble size of Maxmin Q-learning with the
approximation Q-value error to control the estimation bias, note that this adjustment method relies
on the discounted MC return Li (2023). Self-Correcting Q-learning Zhu & Rigotti (2021) builds
a self-correcting estimator with the current and last Q-values, and controls the estimation bias via
dynamically adjusting the Pearson correlation coefficient between successive iterations. Balanced
Q-learning Karimpanal et al. (2023) computes the optimistic and pessimistic biases with the max-
imum and minimum operations, respectively, and balances them to control the estimation bias via
the balancing factor. AEQ Gong et al. (2023) uses the uncertainty of Q-values and the familiarity
of sampling trajectories to control the estimation bias. AdaOrder Q-learning Tan et al. (2024c) uses
the order statistic of multiple independent Q-tables to control the estimation bias, which can satisfy
the fine-grained bias needs for different environments.

The maximum expected Q-value is impossible to compute without the underlying state transition
probabilities and reward distributions Ishwaei D et al. (1985). Thus, there exist estimation bias and
its propagation via bootstrapping. However, existing methods focus on the current estimation bias,
instead of the propagation bias. Different from previous methods, this paper revisits the propagation
process of estimation bias in Section 3.2, and finds that even though previous estimation biases can
be diluted during propagation, the propagation bias still dominates the maximum Q-value estimation
bias and slows the convergence speed.
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3 PROBLEM ANALYSIS

3.1 OVERESTIMATION BIAS OF Q-LEARNING

We consider an infinite-horizon MDP Chen et al. (2022), where each decision step is indexed by
t ∈ N. Let S and A denote the state space and the action space, respectively. Let P (s′|s, a)
denote the state transition probability under (s, a) ∈ S × A, where s′ ∈ S is the next state. Let
R (s, a) denote the reward associated with (s, a). Let s 7→ π (s) denote the policy, where s ∈ S and
π (s) ∈ A. Let Qπ (s, a) denote the expected cumulative discounted reward with discounting factor
γ ∈ (0, 1) as:

Qπ (s, a) = E
[
R (St, At) + γR (St+1, At+1) + γ2R (St+2, At+2) + · · · |St = s,At = a

]
,

where Sκ is generated from P (Sκ|Sκ−1, Aκ−1) and Aκ = π(Sκ), ∀κ ≥ t + 1. Note that Sκ

and Aκ are the state random variable and the action random variable, respectively. The learning
objective is to find the optimal Q-value and the optimal policy. More specifically, the optimal Q-
value is Q∗ (s, a) = maxπ∈Π Qπ (s, a), where Π denotes a set of all policy; the optimal policy is
π∗ (s) = argmaxa∈A Q∗ (s, a) ,∀ (s, a) ∈ S ×A.

The optimal Q-value is unknown in advance for model-free reinforcement learning. Q-learning
maintains one Q-table Qt (s, a) in each time step t, and uses this Q-table to estimate the optimal
Q-value. More specifically, at each time step t, Q-learning uses ε-greedy policy Rodrigues Gomes
& Kowalczyk (2009) with argmaxa∈A Qt (s, a), i.e., ε ∈ (0, 1), to interact with the environment,
obtains the sample data {s, a,R (s, a) , s′} and updates the Q-table as:

Qt+1 (s, a) = Qt (s, a) + α

[
R (s, a) + γmax

a′∈A
Qt (s

′, a′)−Qt (s, a)

]
, (1)

where α is the learning rate, Yt (s, a) = R (s, a)+γmaxa′∈A Qt (s
′, a′) is the target Q-value. Under

some mild conditions Kearns & Singh (1998), the estimated Q-value of Q-learning is guaranteed to
converge to the optimal Q-value, i.e., limt→+∞ Qt (s, a) = Q∗ (s, a) ,∀ (s, a) ∈ S ×A.

We set the asynchronous Q-value, denoted by Q̂t (s, a), of Bellman optimality equation as the
ground truth Silver (2015), which updates as:

Q̂t+1 (s, a) = Q̂t (s, a) + α

[
E
[
R (s, a) + γmax

a′∈A
Q̂t (s

′, a′)

]
− Q̂t (s, a)

]
, (2)

where Ŷt (s, a) = E
[
R (s, a) + γmaxa′∈A Q̂t (s

′, a′)
]

is the unbiased target Q-value. We focus
on the maximum operation of Q-learning, which is the root cause of overestimation bias. Fol-
lowing Thrun & Schwartz (1993), although we assume that Qt (s

′, a′) is an unbiased estimator
for Q̂t (s

′, a′) ,∀a′ ∈ A, according to Jensen’s inequality Hansen & Pedersen (2003), we have:
E [maxa′∈A Qt (s

′, a′)] ≥ maxa′∈A E [Qt (s
′, a′)] = maxa′∈A Q̂t (s

′, a′) . Figure 1(a) also verifies
that this overestimation bias can slow the convergence speed of Q-learning.

3.2 BIAS PROPAGATION CHAINS

For compactness, we write Qi, Yi, Q̂i, Ŷi instead of Qi (s, a) , Yi (s, a) , Q̂i (s, a) , Ŷi (s, a) ,∀ (s, a) ∈
S ×A. Then, we expand Equation (1) and Equation (2) as:

Qt+1 = (1− α)
t+1

Q0 +
∑t

i=0
α (1− α)

t−i
Yi,

Q̂t+1 = (1− α)
t+1

Q̂0 +
∑t

i=0
α (1− α)

t−i
Ŷi.

(3)

We set Q0 = Q̂0 with the same initial Q-value; ei = Qi − Q̂i as the Q-value estimation error;
Zi = Yi − Ŷi as the target Q-value estimation bias. Then, we have:

et+1 =
∑t

i=0
α (1− α)

t−i
Zi. (4)

To analyze the overestimation bias propagation chains of Q-learning, following Thrun & Schwartz
(1993); Lan et al. (2020), we first make a common assumption as:
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Assumption 1 The Q-value estimation error obeys a uniform distribution as:
et+1 ∼ U (µt+1 − ξt+1, µt+1 + ξt+1) ,

where E [et+1] =
∑t

i=0 α (1− α)
t−i E [Zi] = µt+1 ≥ 0 due to the positive bias of Q-learning;

0 ≤ ξt+1 ≤ ξt due to the increasing number of samples and convergence guarantees. Note that
∀a ∈ A, the Q-value estimation error et+1 are independent and identically distributed (i.i.d.).

Following the target Q-value estimation bias, we have:

Zt+1 = R (s, a)− E [R (s, a)] + γ

(
max
a′∈A

Qt+1 − E
[
max
a′∈A

Q̂t+1

])
. (5)

Theorem 1 Based on Assumption 1, the expected maximum Q-value estimation bias is as:

E [Zt+1] = γξt+1
|A| − 1

|A|+ 1︸ ︷︷ ︸
cur-bias

+ γ
∑t

i=0
α (1− α)

t−i E [Zi]︸ ︷︷ ︸
prop-bias

.

Theorem 1 is a generalization of the first Lemma in Thrun & Schwartz (1993); we provide the proof
in Appendix A. Theorem 1 demonstrates that in Q-learning, the maximum Q-value estimation bias
consists of two components: the current bias (cur-bias) and the propagation bias (prop-bias).

Corollary 1 When the discount factor γ ≥ ξt+1

ξt
, we have:

lim
t→+∞

γ
∑t

i=0 α (1− α)
t−i E [Zi]

γξt+1
|A|−1
|A|+1

≥ 1.

We prove Corollary 1 in Appendix B. It illustrates that during Q-learning updates, the prop-bias
progressively dominates the maximum Q-value estimation bias composition, instead of the cur-bias.

3.3 EXAMPLE

Consider a simple multi-armed bandit setting Zhang et al. (2017), which includes one state S with
ten identical actions, and each action returns a reward followingN (0, 1). Following previous works
Zhang et al. (2017); Tan et al. (2024c), we set γ = 0.95, α = 0.5, ε = 1

n(S) , Q0 (S, a) ∼ N (0, 1)

for each action a, where n (S) is the visited number of state S.

0 40 80
t(x100)

0

2

4

m
ax a

Q
t(S

,a
)

(a) Overestimation bias

Q-learning

0 1 2 3 4
t(x1)

0

5

10

15

m
ax a

Q
t(S

,a
)

1e 1

(b) Cur- & Prop-bias

cur-bias
prop-bias

Figure 1: The discounted maximum Q-value of Q-learning.

Figure 1 shows the discounted maximum Q-value at state S, denoted by γmaxa Qt (S, a),
of Q-learning across steps t. All results are averaged over 10, 000 runs. Note that
the maximum expected Q-value is zero. According to Theorem 1, we compute prop-
bias as γ

∑t−1
i=0 α (1− α)

t−i−1
maxa Qi (S, a), and compute cur-bias as γmaxa Qt (S, a) −

γ
∑t−1

i=0 α (1− α)
t−i−1

maxa Qi (S, a). Figure 1(a) shows that Q-learning has an overestimation
bias, which slows convergence speed. Figure 1(b) shows that prop-bias accumulates the previous
positive bias, and progressively dominates the maximum Q-value estimation bias composition. More
specifically, the ratio of prop-bias to cur-bias is 1.06

1.28−1.06 ≈ 5 at t = 4.
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4 METHODS

4.1 ALTERNATING Q-LEARNING

Due to the overestimation bias of Q-learning, the prop-bias in Theorem 1 accumulates the unidi-
rectional positive bias. Even though previous positive biases can be diluted during propagation,
Corollary 1 shows that the prop-bias still dominates the maximum Q-value estimation bias. Exam-
ple in Section 3.3 further illustrates that the prop-bias is the primary cause for the slow convergence
speed in Q-learning. Similarly, Double Q-learning tends to accumulate the unidirectional negative
bias, may lead to a slower convergence speed than Q-learning Ren et al. (2021); Li et al. (2023).

To break the above unidirectional estimation bias propagation chains and improve the convergence
speed, we propose a novel positive-negative bias alternating execution framework. More specif-
ically, this framework includes two hyperparameters (M,N), where M ∈ N+ is the number of
alternating execution steps for the positive bias algorithms, such as Q-learning Watkins et al. (1989)
and Averaged Q-learning Anschel et al. (2017); N ∈ N+ is the corresponding steps for the negative
bias algorithms, such as Double Q-learning Hasselt (2010) and EBQL Peer et al. (2021). Note that
we set Q-learning and Double Q-learning as a pair of positive-negative bias algorithms, obtaining
our Alternating Q-learning (AQ) as Algorithm 1.

Algorithm 1 Alternating Q-learning
1: Parameter: M , N
2: Initialize: Q1

0 (s, a) , Q
2
0 (s, a) ,∀ (s, a) ∈ S ×A

3: Get the starting state s
4: for t = 0, 1, 2, · · · do
5: Choose action a at state s by ε-greedy policy with argmaxa∈A

Q1
t (s,a)+Q2

t (s,a)
2

6: Take action a, get reward R (s, a) and next state s′

7: Randomly select one Q-table k from {1, 2} to update
8: if t mod (M +N) < M then
9: Qk

t+1 (s, a) = Qk
t (s, a) + α

[
R (s, a) + γmaxa′∈A Qk

t (s
′, a′)−Qk

t (s, a)
]

10: else
11: Qk

t+1 (s, a) = Qk
t (s, a)+α

[
R (s, a) + γQ3−k

t

(
s′, argmaxa′∈A Qk

t (s
′, a′)

)
−Qk

t (s, a)
]

12: s←− s′

AQ maintains two independent Q-tables Q1
t (s, a) , Q

2
t (s, a) in each time step t. When t

mod (M +N) < M , AQ uses Q-learning to update, the target Q-value Y k
t = R (s, a) +

γmaxa′∈A Qk
t ; when t mod (M +N) ≥ M , AQ uses Double Q-learning to update, the target

Q-value Y k
t = R (s, a) + γQ3−k

t

(
s′, argmaxa′∈A Qk

t (s
′, a′)

)
. To ensure fair comparison, we also

consider two Q-tables Q̂1
t (s, a) , Q̂

2
t (s, a) for Bellman optimality equation as Equation (2), and the

unbiased target Q-value Ŷ k
t = E

[
R (s, a) + γmaxa′∈A Q̂k

t

]
. Following Section 3.2, we set the

Q-value estimation error as: ekt+1 = Qk
t+1 − Q̂k

t+1; set the target Q-value estimation bias as: Zk
i =

Y k
i − Ŷ k

i ; and have: ekt+1 =
∑t

i=0 α (1− α)
t−i

Zk
i , where ekt+1 ∼ U

(
µk
t+1 − ξkt+1, µ

k
t+1 + ξkt+1

)
.

Note that the sign of E
[
ekt+1

]
= µk

t+1 is unknown in advance due to the alternating mechanism.

Theorem 2 Under the above statement, the expected estimation bias of AQ is as follows.

• When t mod (M +N) < M , we have:

E
[
Zk
t+1

]
= γξkt+1

|A| − 1

|A|+ 1︸ ︷︷ ︸
cur-bias

+ γ
∑t

i=0
α (1− α)

t−i E
[
Zk
i

]︸ ︷︷ ︸
prop-bias

.

• When t mod (M +N) ≥M , we have:

E
[
Zk
t+1

]
= γ

|A|∑
j=1

E
[
Q̂k

t+1

(
s′, a′j

)
− Q̂k

t+1 (s
′, â′)

]
p
(
a′j = â′

)
︸ ︷︷ ︸

cur-bias

+ γ

t∑
i=0

α (1− α)
t−i E

[
Zk
i

]
︸ ︷︷ ︸

prop-bias

.
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Note that ξkt+1 ≥ 0; a′j = argmaxa′∈A Qk
t+1 (s

′, a′); â′ = argmaxa′∈A Q̂k
t+1 (s

′, a′).

We prove Theorem 2 in Appendix C. It shows that when t mod (M +N) < M , AQ selects
Q-learning to update, the cur-bias is positive, the prop-bias accumulates the positive bias; when
t mod (M +N) ≥ M , AQ selects Double Q-learning to update, the cur-bias is negative, the
prop-bias accumulates the negative bias. Therefore, AQ breaks the unidirectional estimation bias
propagation chains via alternately executing Q-learning and Double Q-learning. More specifically,
the estimation bias is proportional to M and inversely proportional to N . When M → +∞ and
N = 1, AQ gets the upper bound, but is always smaller than Q-learning; when M = 1 and N →
+∞, AQ gets the lower bound, but is always larger than Double Q-learning. Due to that the cur-bias
can vary between positive and negative, the prop-bias can theoretically be eliminated by two suitable
parameters (M,N).

4.2 ADAPTIVE ALTERNATING Q-LEARNING

AQ alternately executes Q-learning and Double Q-learning via (M,N). However, the optimal
(M,N) are unknown in advance and dynamically for different state-action pairs. Therefore, we
need to design an adaptive alternating strategy for AQ.

Following Algorithm 1, we first define the TD error Zhang et al. (2021) of Q-learning in each time
step t as: tdQt (s, a) = R (s, a)+ γmaxa′∈A Qk

t (s
′, a′)−Qk

t (s, a) ; the corresponding TD error of
Double Q-learning as: tdDQ

t (s, a) = R (s, a) + γQ3−k
t

(
s′, argmaxa′∈A Qk

t (s
′, a′)

)
−Qk

t (s, a) .
Although the TD error has inherent uncertainty during updates, the convergence guarantees of al-
gorithms still support it as a reliable feedback signal for tracking the variation trend of maximum
Q-value estimation bias. More specifically, a large tdQt (s, a) reflects significant positive bias of Q-
learning, and AQ should switch to Double Q-learning to suppress this bias and prevent its propaga-
tion from enlarging prop-bias. Similarly, when tdDQ

t (s, a) is small, AQ should switch to Q-learning
to counteract the significant negative bias of Double Q-learning. Thus, we apply a softmax strategy
based on the absolute value of TD error to compute the alternating execution probabilities as:

P(s,a)
t [Q] =

eτ |td
DQ
t (s,a)|

eτ |td
Q
t (s,a)| + eτ |td

DQ
t (s,a)|

,P(s,a)
t [DQ] =

eτ |td
Q
t (s,a)|

eτ |td
Q
t (s,a)| + eτ |td

DQ
t (s,a)|

, (6)

where τ ≥ 0 denotes the temperature parameter; P(s,a)
t [Q] and P(s,a)

t [DQ] represent the alternating
probabilities to Q-learning and Double Q-learning, respectively.

Incorporating the above softmax strategy into AQ, we obtain Adaptive Alternating Q-learning
(AdaAQ) as Algorithm 2. Note that at line 8, AQ selects Q-learning or Double Q-learning via
categorical sampling.

Algorithm 2 Adaptive Alternating Q-learning
1: Initialize: Q1

0 (s, a) , Q
2
0 (s, a) ,∀ (s, a) ∈ S ×A

2: Get the starting state s
3: for t = 0, 1, 2, · · · do
4: Choose action a at state s by ε-greedy policy with argmaxa∈A

Q1
t (s,a)+Q2

t (s,a)
2

5: Take action a, get reward R (s, a) and next state s′

6: Randomly select one Q-table k from {1, 2} to update
7: Compute P(s,a)

t [Q] ,P(s,a)
t [DQ] as Equation (6)

8: Select algorithm via categorical sampling: AQ ∼ Cat
(
[Q,DQ],

[
P(s,a)
t [Q] ,P(s,a)

t [DQ]
])

9: if AQ == Q then
10: Qk

t+1 (s, a) = Qk
t (s, a) + α

[
R (s, a) + γmaxa′∈A Qk

t (s
′, a′)−Qk

t (s, a)
]

11: else
12: Qk

t+1 (s, a) = Qk
t (s, a)+α

[
R (s, a) + γQ3−k

t

(
s′, argmaxa′∈A Qk

t (s
′, a′)

)
−Qk

t (s, a)
]

13: s←− s′

6
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4.3 EXTENSION TO DRL: DISCRETE- AND CONTINUOUS-ACTION SPACES

Following the previous DRL algorithms Silver et al. (2014); Mnih et al. (2015), we represent the Q-
function by a neural network for high-dimensional environments, and try to extend our methods to
DRL. More specifically, for the discrete-action DRL settings, such as Atari Bellemare et al. (2013),
we set DQN Mnih et al. (2015) and DDQN Van Hasselt et al. (2016) as a pair of positive-negative
bias algorithms, and extend AQ and AdaAQ to Alternating DQN (ADQN) as Appendix D.1 and
Adaptive Alternating DQN (AdaADQN) as Appendix D.2, respectively; for the continuous-action
DRL settings, such as Mujoco Brockman et al. (2016), we set DDPG Silver et al. (2014) and TD3
Fujimoto et al. (2018) as a pair of positive-negative bias algorithms, and extend AQ and AdaAQ to
Alternating DDPG (ADDPG) as Appendix E.1 and Adaptive Alternating DDPG (AdaADDPG) as
Appendix E.2, respectively.

5 EXPERIMENTS

5.1 TABULAR MDP EXPERIMENTS

MDP environments: (1) Multi-armed bandit is shown in Section 3.3. (2) Roulette is adapted from
Lee & Powell (2019). Like Tan et al. (2024b), we simplify Roulette to 13 actions: six 2 : 1 bets
on 12 numbers (win 0.3158); six 1 : 1 bets on 18 numbers (win 0.4737); one 1 : 1 bet on nothing
(win 0.5). (3) Gridworld 3 × 3 and 4 × 4 Zhu & Rigotti (2021) have four cardinal actions for
each state, with start (southwest) and goal (northeast) positions. The agent resets to the start state
upon reaching the goal, while boundary-violating actions maintain the current state. Non-goal states
yield equiprobable stochastic rewards (−12 or 10), while goal-state yields equiprobable stochastic
rewards (−30 or 40).

Parameter settings: Following Hasselt (2010); Pentaliotis & Wiering (2021); Tan et al. (2024a),
we set γ = 0.95, ε = 1

n(s)0.5
by default; α = 1

n(s,a)0.8
for Multi-armed bandit and Roulette;

α = 1
n(s,a)1.0

for Gridworld, where n(s) and n(s, a) are the visited number of state s and state-
action pair (s, a), respectively. Note that all experiment results are averaged over 1, 000 runs.

Comparison baselines: We vary M = 1, 2, 4, 8, 16;N = 1, 2, 4, 8, 16 for our AQ; τ =
1, 2, 5, 10, 100 for our AdaAQ, and set τ = 1 by default. We consider eight comparison base-
lines as: Averaged Q-learning (AvgQ) Anschel et al. (2017), Maxmin Q-learning (MQ) Lan et al.
(2020), Self-Correcting Q-learning (SCQ) Zhu & Rigotti (2021), Softmax Q-learning (SoftQ)Song
et al. (2019), Weighted Double Q-learning (WDQ) Zhang et al. (2017), REDQ Chen et al. (2021),
EBQL Peer et al. (2021), AdaEQ Wang et al. (2021). For a fair comparison, we set the number of
Q-tables of AvgQ and MQ as 2; the temperature parameter of SoftQ as 1. For other baselines, we
set the self-correcting parameter of SCQ as 2; the adaptive adjustment parameter of WDQ as 1; the
number of Q-tables of REDQ, EBQL, AdaEQ as 10; which are recommended and fine-tuned.

Figure 2 shows the maximum Q-value, the probability of betting nothing denoted by Pr[leave],
and the average reward per step of our methods in tabular MDP environments. AQ: Figure 2(a-b)
show that the maximum Q-value of AQ is proportional to M and inversely proportional to N , and it
always lies between that of Q-learning and Double Q-learning. This implies that AQ can effectively
break the unidirectional estimation bias propagation chains. AdaAQ: Figure 2(c-d) show that the
maximum Q-value curves of AdaAQ with different τ overlap, and converge to zero faster than that of
AQ. This implies that AdaAQ is not sensitive to τ , and can provide an adaptive alternating strategy
for AQ. Comparison: Figure 2(e-h) show that AdaAQ can estimate the maximum expected Q-value
more accurately than the eight baselines, resulting in better policy and higher reward. Appendix F.1
provides the table of comparison results.

Table 1 shows the results of our AQ and AdaAQ with different parameters, where all values are
evaluated in the final round. From the maximum Q-value perspective, AdaAQ(1), i.e., 4.14× 10−3,
is one level improvement over AQ(4, 8), i.e., −7.04 × 10−2, in Multi-armed bandit. From the
policy perspective, compared to AQ(4, 4), AdaAQ(100) improves by 93.59% − 87.43% = 6.16%

in Roulette. From the reward perspective, AdaAQ(10) outperforms AQ(4, 4) by −0.12−(−0.492)
0.492 =

75.60% in Gridworld 3 × 3; AdaAQ(5) outperforms AQ(4, 4) by −0.476−(−0.73)
0.73 = 34.79% in

Gridworld 4×4. Appendix F.2 provides the figure of our AQ and AdaAQ with different parameters.
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Figure 2: The performance of our AQ and AdaAQ in tabular MDP settings.

Table 1: The results of our AQ and AdaAQ with different parameters.

Algorithm
Maximum Q-value Pr[leave] Average reward per step

Multi-armed bandit Roulette Gridworld 3× 3 Gridworld 4× 4

Q-learning 3.35e0 40.83% -8.55e-1 -9.41e-1
Double Q-learning -1.72e0 26.15% -6.65e-1 -8.45e-1

AQ(1,4) -8.82e-1 49.88% -5.35e-1 -7.76e-1
AQ(2,4) -3.21e-1 83.73% -5.16e-1 -7.44e-1
AQ(4,4) 4.72e-1 87.43% -4.92e-1 -7.30e-1
AQ(8,4) 1.56e0 77.83% -5.98e-1 -7.74e-1

AQ(16,4) 2.59e0 56.04% -7.33e-1 -8.63e-1

AQ(4,1) 2.26e0 63.32% -5.81e-1 -7.97e-1
AQ(4,2) 1.37e0 82.70% -5.27e-1 -7.47e-1
AQ(4,8) -7.04e-2 85.69% -5.80e-1 -7.89e-1

AQ(4,16) -3.50e-1 78.26% -5.98e-1 -8.28e-1

AdaAQ(1) 4.14e-3 92.00% -1.60e-1 -5.04e-1
AdaAQ(2) 5.01e-3 90.53% -1.57e-1 -4.97e-1
AdaAQ(5) 9.32e-3 90.78% -1.25e-1 -4.76e-1
AdaAQ(10) 1.08e-2 91.24% -1.20e-1 -4.93e-1

AdaAQ(100) 1.61e-2 93.59% -1.50e-1 -5.09e-1

5.2 DISCRETE-ACTION DRL EXPERIMENTS

We choose three discrete-action DRL experiment environments from PLE Urtans & Nikitenko
(2018) and MinAtar Young & Tian (2019): Pixelcopter, Breakout, Asterix. Appendix G.1 provides
the experiment settings. Figure 3 shows the average score per episode of our AdaADQN in discrete-
action DRL settings, where the score is averaged over the last 100 episodes and the shaded area
represents one standard error. One can observe that the average score curves of AdaADQN lie at the
top, and are not sensitive to τ . Appendix G.2 provides the table of comparison results between our
AdaADQN and ten baselines, where all values are evaluated in the final round. More specifically, our
AdaADQN improves the average score per episode over baselines by at least 37.89−30.13

30.13 = 25.76%,
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13.89−10.64
10.64 = 30.55%, and 16.13−9.77

9.77 = 65.10% in Pixelcopter, Breakout, and Asterix, respec-
tively. In addition, Appendix G.3 provides the results of our ADNQ and AdaADQN with different
parameters.
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Figure 3: The average score per episode of our AdaADQN in discrete-action DRL settings.

5.3 CONTINUOUS-ACTION DRL EXPERIMENTS

We choose three continuous-action DRL experiment environments from Mujoco Brockman et al.
(2016): Hopper, Ant, and Walker2d. Appendix H.1 provides the experiment settings. Figure 4
shows the average return of our AdaADDPG in continuous-action DRL settings, where the aver-
age return is averaged over the last 10 episodes. One can observe that the average return curves
of AdaADDPG lie at the top, and are not sensitive to τ . Appendix H.2 provides the table of com-
parison results between our AdaADDPG and five baselines, where all values are evaluated in the
final round. More specifically, our AdaADDPG improves the average return over baselines by at
least 3296.87−3033.64

3033.64 = 8.68%, 3321.97−2818.44
2818.44 = 17.87%, 4786.20−4248.04

4248.04 = 12.67% in Hopper,
Ant, Walker2d, respectively. In addition, Appendix H.3 provides the results of our ADDPG and
AdaADDPG with different parameters.
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Figure 4: The average return of our AdaADDPG in continuous-action DRL settings.

6 CONCLUSION

In this paper, we analyze the overestimation bias propagation process of Q-learning, and find that
the prop-bias rather than the cur-bias dominates the maximum Q-value estimation bias. Then, we
propose AQ, which breaks the unidirectional estimation bias propagation chains via alternately ex-
ecuting positive-negative bias algorithms. Based on AQ, we design an adaptive alternating strategy,
leading to AdaAQ. More specifically, it applies a softmax strategy with the absolute value of TD
error to determine whether AQ should execute Q-learning or Double Q-learning. We also extend
AQ and AdaAQ to both discrete- and continuous-action DRL settings. Extensive experiment re-
sults show that our method outperforms several baselines drastically in tabular MDP, discrete-action
DRL, and continuous-action DRL settings. More specifically, our method improves the average
score or return over baselines by at least 65.10% in Asterix and 17.87% in Ant, respectively.
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