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Abstract

Sparse ridge regression problems play a significant role across various domains.
To solve sparse ridge regression, [1] recently proposes an advanced algorithm,
Scalable Optimal K-Sparse Ridge Regression (OKRidge), which is both faster
and more accurate than existing approaches. However, the absence of theoretical
analysis on the error of OKRidge impedes its large-scale applications. In this
paper, we reframe the estimation error of OKRidge as a Primary Optimization (PO)
problem and employ the Convex Gaussian min-max theorem (CGMT) to simplify
the PO problem into an Auxiliary Optimization (AO) problem. Subsequently, we
provide a theoretical error analysis for OKRidge based on the AO problem. This
error analysis improves the theoretical reliability of OKRidge. We also conduct
experiments to verify our theorems and the results are in excellent agreement with
our theoretical findings.

1 Introduction

Sparse Ridge Regression (SRR) has achieved notable success across various machine learning
applications, including statistics [2], signal processing [3], dynamical systems [4, 5], and others. In
this paper, we are interested in addressing the following k-sparse linear regression problem with
additive noise:

yyy =XXXβββ∗ + ϵϵϵ with ∥βββ∗∥0 ≤ k, (1)

where βββ∗ ∈ Rd represents the “true" weight parameter, XXX = (xxx1,xxx2, · · · ,xxxn)⊤ ∈ Rn×d

is the input measurement matrix, yyy = (y1, y2, · · · , yn)⊤ ∈ Rn is the real output responses,
ϵϵϵ = (ϵ1, ϵ2, · · · , ϵn)⊤ ∈ Rn is the noise vector, k ∈ Z+ specifies the maximum number of nonzero
elements for the model, ∥ · ∥0 denotes the number of nonzero elements of the given vector. Moreover,
the entries ofXXX are drawn i.i.d. from N (0, 1); the entries of ϵϵϵ are drawn i.i.d. from N (0, σ2); and
we assume k

d is a constant and limd→∞
n(d)
d = δ ∈ (0, 1).

The formulation (1) represents a black box model where βββ∗ is fixed. GivenXXX and yyy, to determine
the target vector βββ∗, the most basic method is solving the following k-Sparse Ridge Regression
Optimization (k-SRO), as outlined by [1, 6, 7]:

min
βββ

∥yyy −XXXβββ∥22 + λ∥βββ∥22 s.t. ∥βββ∥0 ≤ k, (2)

where λ > 0 is a regularizer parameter, and ∥ · ∥2 denotes the Euclidean norm. Our paper focuses
on the worst-case scenario ∥βββ∗∥0 = k. This k-SRO is different from the traditional ridge regression
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due to the constraint of k-sparse structure for βββ. The k-SRO problem (2) is NP-hard, and is more
challenging in the presence of highly correlated features [8].

Two main types of algorithms are commonly employed for solving k-SRO problem (2): heuristic
algorithms [9, 10] and optimal algorithms [11]. However, heuristic algorithms lack the ability to
assess the solution quality, while the optimal algorithms are slow. In order to rapidly solve k-SRO
problem (2) while ensuring solution optimality, [1] introduces a highly efficient method called
OKRidge. Therefore, a complete algorithm of OKRidge, including how to choose hyper-parameters
can be seen in the original paper [1]. OKRidge substitutes k-SRO problem (2) with an unconstrained
optimization on a novel tight lower bound. The experiment results in [1] show that OKRidge is
superior to heuristic algorithms, optimal algorithms, and existing mixed-integer programming (MIP)
formulations solved by the commercial solver Gurobi. Nevertheless, the absence of theoretical error
analysis for OKRidge impedes its scalability in practical applications.

In this paper, we provide theoretical error analysis for OKRidge utilizing the framework of the
CGMT [12]. Specifically, we propose another novel tight lower bound LOKRidge(βββ) to replace k-SRO
problem (2):

LOKRidge(βββ) := ∥yyy −XXXβββ∥22 + λSumTopk(βββ ⊙ βββ), (3)
where ⊙ denotes Hadamard product, and SumTopk(·) represents the summation of the largest k
elements of a given vector. The tight lower bound (3) is equivalent to that proposed by [1]. Thus,
LOKRidge(βββ) can replace the objective function of OKRidge. It is noteworthy that our proposed
regularizer, defined as γ(βββ) = SumTopk(βββ ⊙ βββ), differs from any previously proposed instances by
[12]. Then, the optimal solution obtained by OKRidge is

β̂ββ = argmin
βββ

LOKRidge(βββ). (4)

[1] utilizes β̂ββ as the estimate of βββ∗ in problem (1). By combining formulations (1) and (3), the
estimation error of OKRidge can be obtained through the following normalized optimization problem:

min
www

1√
n

[
∥XXXwww − ϵϵϵ∥22 + λSumTopk

(
(www + βββ∗)⊙ (www + βββ∗)

)]
, (5)

wherewww := βββ − βββ∗ is a random variable with randomness from the random variablesXXX and ϵϵϵ, and
the estimation error can be measured by ∥www∥2. Subsequently, we transform the optimization (5) into a
PO problem about the error of OKRidge, using the Fenchel-Moreau theorem [13]. Then, we employ
the CGMT framework to substitute the complex PO problem with a simplified AO problem. Finally,
we present the theoretical error analysis of OKRidge based on the AO problem. Our theoretical
results focus on the Normalized Squared Error (NSE) of OKRidge and can be summarized as:

lim
d→∞

lim
σ→0

NSE P−→ ∆(λ̂), (6)

where NSE := ∥β̂ββ − βββ∗∥22
/
σ2, and ∆(λ̂) is a function of λ. These theoretical results indicate that if

the regularizer parameter λ used in OKRidge is constant, the NSE limit of OKRidge is also fixed.
Moreover, β̂ββ learned by OKRidge is reliable to estimate βββ∗, due to limd→∞ limσ→0 ∥β̂ββ−βββ∗∥2

P−→ 0.
The comprehensive experiments of OKRidge on real-world examples were conducted by the NeurIPS
2023 paper [1] (see Figure 3 and Appendix H in [1]), which demonstrates that the error of OKRidge
tends to zero. Our analysis explains the experimental phenomenon observed in [1], strengthens the
theoretical underpinnings of OKRidge, and provides theoretical reliability for its broad application.

We also conduct numerical experiments to validate our theorems. The findings demonstrate that
the NSE converges to a fixed constant determined by λ, aligning excellently with our theoretical
predictions.

1.1 Outline

The structure of the remaining sections in this paper is as follows. Section 2 provides a review of
related work. Section 3 offers background information on OKRidge, CGMT, and basic concepts.
Section 4 introduces an alternative tight lower bound for the objective function of OKRidge. In
Section 5, we convert the estimation error of OKRidge into a PO problem and simplify it into an
AO problem using CGMT. Subsequently, an estimation error analysis of OKRidge based on the
AO problem is conducted. Section 6 presents the experimental results. Finally, we conclude with a
summary in Section 7. Additionally, the limitaion and impact of our work are detailed in Appendix A
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2 Related work

2.1 Heuristic and Optimal Methods

Heuristic methods approximate solutions to optimization problems based on practical experience
[14], including ensemble methods [15], swapping features [16], greedy methods [17], etc. While
heuristic methods are fast, they often become trapped in local minima, and their solution quality
cannot be assessed due to the absence of a lower bound on performance. Optimal methods aim to
precisely solve sparse regression problems, such as the big-M method [18], the conditional-value-
at-risk (CVaR) approach [19], big-M free mixed integer second order conic (MISOC) method [19],
and so on. However, exact optimal methods are slow, particularly for large instances, to achieve
near-optimality [20, 21]. To address the limitations of heuristic and optimal methods, [1] proposes an
efficient approximation algorithm, OKRidge. Experimental results in [1] demonstrate that OKRidge
outperforms heuristic algorithms, optimal algorithms, and existing MIP formulations solved by the
commercial solver Gurobi.

2.2 Lower Bound Methods

Lower bound methods are capable of solving the NP-hard k-SRO problems. Several algorithms
utilize the lower bound method, such as SOS1 formulation [18], big-M formulation [18], Subset
Selection CIO method [22], and others. However, the SOS1 formulation lacks scalability in high
dimensions, the big-M formulation is sensitive to hyperparameters, and the Subset Selection CIO
method runs slowly. Recently, the perspective formulation [6, 23, 24] has been employed to induce a
convex relaxed lower bound that is easier to solve. Building upon the perspective formulation, [1]
proposes a novel lower bound used as the objective function for the OKRidge method.

2.3 Normalized Squared Error

NSE, defined as ∥β̂ββ − βββ∗∥22
/
σ2, serves as a natural measure of the estimation error. NSE is an

important indicator in signal-to-noise ratio scenes [25, 26]. Bounds on NSE have been derived by
[27, 28]. Additionally, [29] is the first to precisely formulate the limiting behavior of NSE. These
studies primarily consider a Gaussian sensing matrixXXX and utilize the Approximate Message Passing
(AMP) framework for analysis [30, 31]. These achievements motivate us to utilize NSE for evaluating
the estimation error of the OKRidge method.

3 Preliminary

3.1 Relaxed Transformation of k-SRO

According to [1], the k-SRO problem (2) can be reformulated as the following optimization problem:

min
βββ

Lridge(βββ), s.t.
{

(1− zj)βj = 0, j = 1, 2, · · · , d,∑d
j=1 zj ≤ k, zj ∈ {0, 1}, (7)

where zzz = (z1, z2, · · · , zn)⊤ ∈ Rd, and Lridge(βββ) := ∥yyy −XXXβββ∥22 + λ
∑d

j=1 β
2
j . This problem (7)

remains NP-hard under the sparsity constraint [32]. Existing methods such as SOS1, big-M, or the
perspective formulation do not leverage the k-sparse structure of the problem. [1] develops a novel
method, OKRidge, to preserve the special structure through the following relaxed transformation.

By employing the perspective formulation [33, 34] and the Fenchel conjugate [35], [1] transforms
the problem (7) to a new perspective optimization problem:

min
βββ,zzz

max
ccc

LFenchel
ridge (βββ,zzz, ccc), s.t.

d∑
j=1

zj ≤ k, zj ∈ {0, 1}. (8)

where ccc = (c1, c2, · · · , cn) ∈ Rd, and LFenchel
ridge (βββ,zzz, ccc) := ∥yyy −XXXβββ∥22 + λ

∑d
j=1(βjcj −

c2j
4 zj).

This transformation does not change the optimal solution of the problem (7) [1, 35], indicating that
problem (7) can be replaced by problem (8). To efficiently solve problem (8), [1] further relaxs
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the binary constraint {0, 1} to the interval [0, 1], ultimately yielding the following relaxed convex
optimization problem:

min
βββ,zzz

max
ccc

LFenchel
ridge (βββ,zzz, ccc), s.t.

d∑
j=1

zj ≤ k, zj ∈ [0, 1]. (9)

According to problem (7) , to preserve the special sparse structure of βββ, we always have βj = 0
if zj = 0. Directly solving the min-max problem (9) is computationally challenging. [1] utilizes
the relaxed problem (9) to obtain a tight lower bound for the problem (8), where the lower bound
corresponds to the objective function of OKRidge.

3.2 The Convex Gaussian Min-max Theorem

The CGMT framework, introduced by [28], has been utilized to analyze the performance of solutions
to non-smooth regularized convex optimization problems. It has achieved significant success in
various practical applications, including regularized logistic regression [36], max-margin classifiers
[37], adversarial training [38, 39] and others. These achievements inspire us to apply the CGMT
framework to analyze the NSE of the OKRidge method.

CGMT originates from Gordon’s Gaussian Min-max Theorem (GMT) [40], which provides prob-
abilistic bounds on the optimal cost of PO problem via a simpler AO problem. CGMT further
tightens the bounds under convexity assumptions. According to GMT, [41] introduces the following
asymptotic sequence and notation.

Definition 3.1 (GMT admissible sequence). The sequence
{
GGG(d), ggg(d),hhh(d),S(d)

www ,S(d)
uuu , ψ(d)

}
d∈N

indexed by d, with GGG(d) ∈ Rn×d, ggg(d) ∈ Rn, hhh(d) ∈ Rd, S(d)
www ⊂ Rd, S(d)

uuu ⊂ Rn, ψ(d) : S(d)
www ×

S(d)
uuu → R and n = n(d), is said to be admissible if, for each d ∈ N, S(d)

www and S(d)
uuu are compact sets

and ψ(d) is continuous on its domain. Onwards, we will drop the superscript (d) from GGG(d), ggg(d),
hhh(d).

A sequence
{
GGG(d), ggg(d),hhh(d),S(d)

www ,S(d)
uuu , ψ(d)

}
d∈N defines a sequence of min-max problems

Φ(d)(GGG) := min
www∈S(d)

www

max
uuu∈S(d)

uuu

uuu⊤GGGwww + ψ(d)(www,uuu), (10)

ϕ(d)(ggg,hhh) := min
www∈S(d)

www

max
uuu∈S(d)

uuu

∥www∥2ggg⊤uuu+ ∥uuu∥2hhh⊤www + ψ(d)(www,uuu). (11)

Importantly, the formulation (10) is called Primary Optimization (PO) and the formulation (11)
is called Auxiliary Optimization (AO). Additionally, let www(d)

Φ (GGG) denote the optimal minimizer
of PO problem (10), and www(d)

ϕ (ggg,hhh) denote the optimal minimizer of AO problem (11) . Define

υ(d) : S(d)
www → R as follows,

υ(d)(www;ggg,hhh) := max
uuu∈S(d)

uuu

∥www∥2ggg⊤uuu+ ∥uuu∥2hhh⊤www + ψ(d)(www,uuu). (12)

Clearly, ϕ(d)(ggg,hhh) := min
www∈S(d)

www
υ(d)(www;ggg,hhh). For a sequence of random variables {X (d)}d∈N and

a constant c ∈ R, X (d) P−→ c denotes convergence in probability, i.e. ∀ϵ > 0, limd→∞ P
(
|X (d) −

c| > ϵ
)
= 0. Based on the GMT admissible sequence and the notation introduced above, we present

the CGMT below.
Theorem 3.2 (CGMT [12]). Let

{
GGG(d), ggg(d),hhh(d),S(d)

www ,S(d)
uuu , ψ(d)

}
d∈N be a GMT admissible se-

quence as in Definition 3.1, for which additionally the entries ofGGG, ggg, hhh are drawn i.i.d. from N (0, 1).
Let Φ(d)(GGG), ϕ(d)(ggg,hhh) be the optimal costs, and, www(d)

Φ (GGG), www(d)
ϕ (ggg,hhh) the corresponding optimal

minimizers of the PO and AO problems in (10) and (11). The following three statements hold

(i) For any d ∈ N and c ∈ R,

P
(
Φ(d)(GGG) < c

)
≤ 2P

(
ϕ(d)(ggg,hhh) ≤ c

)
.
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(ii) For any d ∈ N. If S(d)
www , S(d)

uuu are convex, and, ψ(d)(·, ·) is convex-concave on S(d)
www × S(d)

uuu ,
then, for any µ ∈ R and t > 0,

P
(
|Φ(d)(GGG)− µ|) > t

)
≤ 2P

(
|ϕ(d)(ggg,hhh)− µ|) > t

)
.

(iii) Assume the conditions of (ii) hold for all d ∈ N. Let ∥ · ∥ denote some norm in Rd and recall
(12). If, there exist constants (independent of d) κ∗, α∗ and τ > 0 such that

(a) ϕ(d)(ggg,hhh) P−→ κ∗,

(b) ∥www(d)
ϕ (ggg,hhh)∥ P−→ α∗,

(c) with probability one in the limit d→ ∞{
υ(d)(www;ggg,hhh) ≥ ϕ(d)(ggg,hhh) + τ

(
∥www∥ −www

(d)
ϕ (ggg,hhh)

)2
,∀www ∈ S(d)

www

}
,

then,

∥www(d)
Φ (GGG)∥ P−→ α∗. (13)

Theorem 3.2 indicates that, if the optimal cost ϕ(ggg,hhh) of (11) concentrates to some value µ, the same
holds true for Φ(GGG) of (10). Furthermore, under appropriate additional assumptions, the optimal
solutions of the AO and PO problems are also closely related by ∥wwwΦ(GGG)∥ = ∥wwwϕ(ggg,hhh)∥, as n→ ∞.
This suggests that, within the CGMT framework, a challenging PO problem can be replaced with
a simplified AO problem, from which the optimal solution of the PO problem can be accurately
inferred [12]. Subsequently, we rewrite the lower bound of problem (9) in the form of PO problem
(10) and analyze the minimizer of the simplified AO problem instead.

3.3 Basic Concept

Suppose f : Rd → R and uuu,vvv ∈ Rd, the Fenchel conjugate of f is defined as f∗(uuu) = supvvvvvv
⊤uuu−

f(vvv). Additionally, f∗ is always convex and lower semi-continuous. According to the Fenchel-
Moreau theorem [13], if f is convex and continuous, we have f(vvv) = supuuuuuu

⊤vvv − f∗(uuu). In this
paper, we utilize the following conjugate pairs

f(vvv) = ∥vvv∥22 ↔ f∗(uuu) =
∥uuu∥22
4

. (14)

If γ(·) : Rd → R is a convex function of βββ, the subdifferential of γ(·) at βββ∗ is the set of vectors:
∂γ(βββ∗) = {sss ∈ Rd

∣∣γ(βββ∗ + uuu) ≥ γ(βββ∗) + sss⊤uuu}. According to [13], ∂γ(βββ∗) is nonempty, convex
and compact. Given hhh ∈ Rd, we define dist(hhh, ∂γ(βββ∗)) = min

sss∈∂γ(βββ∗)
∥hhh − sss∥2. Then, the Gaussian

squared distance corresponding to the scaled subdifferential is defined as D(τ) := D∂γ(βββ∗)(τ) :=

Ehhh

[
dist2(hhh, τ∂γ(βββ∗))

]
, where τ > 0. Suppose C(τ) = − τ

2
∂D(τ)
∂τ , limd→∞

n
d → δ ∈ (0, 1),

limd→∞
D(τ)
n → D̄(τ) ∈ (0, 1), limd→∞

C(τ)
n → C̄(τ). Based on the Gaussian squared distance,

we define a map function:

map(τ) :=
1− C̄(τ)− D̄(τ)√

1− D̄(τ)
, τ > 0. (15)

We denote λmap as the solution of map(τ)− λ/2 = 0. Since map(τ) depends on γ(·) and βββ∗, when
the form of γ(·) and the value of βββ∗ are determined, the λmap is fixed.

4 Tight Lower Bound in OKRidge

In this section, we utilize problem (9) to derive another novel lower bound for problem (8), serving
as used as the objective function of OKRidge. Our lower bound is equivalent to the tight lower bound
provided by [1]. Specifically, [1] eliminates the parameter ccc in problem (9) by setting the gradient
of βββ to 0, while we eliminate the parameter ccc by setting the gradient of ccc to 0. These two methods
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are equivalent due to the independence and convexity of ccc and βββ. Given any βββ and zzz, the optimality
condition for ccc in problem (9) is taking ∂LFenchel

ridge (βββ,zzz, ccc)/∂ccc = 000. Therefore, we have

∂LFenchel
ridge (βββ,zzz, ccc)

∂ccc
= βββ − diag(zzz)ccc

2
= 0, (16)

⇒ cj =

{
ρ ∈ R , if zj = 0,
2βj

zj
, if zj ̸= 0,

(17)

where diag(zzz) is a diagonal matrix with zzz on the diagonal. Inspired by this optimality condition, we
present the following theorem.

Theorem 4.1. If we define the parameter ccc as (16), the problem (9) is equivalent to the following
optimization problem:

min
βββ,zzz

Lsaddle
ridge (βββ,zzz), s.t.

d∑
j=1

zj ≤ k, zj ∈ [0, 1], (18)

where

Lsaddle
ridge (βββ,zzz) := ∥yyy −XXXβββ∥22 + λ

d∑
j=1,zj ̸=0

β2
j

zj
. (19)

The proof of Theorem 4.1 follows Theorem 3.1 of [1] and is included in Appendix B for completeness.
Following the approach by [1], we can approximately solve the problem (18) while still obtaining a
feasible lower bound. We define a new function L(βββ) as:

L(βββ) = min
zzz

Lsaddle
ridge (βββ,zzz), s.t.

d∑
j=1

zj ≤ k, zj ∈ [0, 1]. (20)

For any βββ, L(βββ) serves as a valid lower bound for problem (7). We should choose zzz such that this
lower bound L(βββ) is tight.

Theorem 4.2. The function L(βββ) defined in Equation (20) is lower bounded by

L(βββ) ≥ ∥yyy −XXXβββ∥22 + λSumTopk(βββ ⊙ βββ). (21)

where ⊙ is Hadamard product, and SumTopk(·) denotes the summation of the largest k elements of a
given vector.

The proof of Theorem 4.2 can be seen in Appendix C. Based on (9), (18) and (20), the tight lower
bound (21) is equivalent to the one provided by [1], as both are derived through equivalent processes.
OKRidge solves the original k-sparse problem (7) using this tight lower bound (21) as its objective
function. If we define

LOKRidge(βββ) := ∥yyy −XXXβββ∥22 + λSumTopk(βββ ⊙ βββ),

OKRidge solves k-SRO problem (2) with

min
βββ

LOKRidge(βββ), (22)

where we obtain LOKRidge of formulation (3). So far, we transform the constrained k-SRO problem
(2) into the unconstrained optimization problem (22). Let

β̂ββ = argminβββ LOKRidge(βββ),

OKRidge regards β̂ββ as the estimation of βββ∗ in problem (1). Next, we apply CGMT to analyze the
error ∥β̂ββ − βββ∗∥22 for OKRidge.

6



5 The Error Analysis for OKRidge

5.1 From PO to AO

As discussed in Section 4, the estimation error of OKRidge is characterized by ∥β̂ββ − βββ∗∥22. Taking
formulation (1) into the properly normalized objective (22), OKRidge (22) can be equivalently
transformed to the following optimization:

min
βββ

1√
n

[
∥XXX(βββ − βββ∗) + ϵϵϵ∥22 + λSumTopk(βββ ⊙ βββ)

]
. (23)

The crucial step is to convert (23) into a PO problem within the framework of CGMT. We introduce
the new variablewww := βββ − βββ∗ and apply the Fenchel-Moreau theorem (14) to formulation (23),

1√
n

[
∥XXXwww − ϵϵϵ∥22 + λSumTopk

(
(www + βββ∗)⊙ (www + βββ∗)

)]
=max

uuu

1√
n

[
uuu⊤XXXwww − uuu⊤ϵϵϵ− ∥uuu∥22

4
+ λSumTopk

(
(www + βββ∗)⊙ (www + βββ∗)

)]
, (24)

where www ∈ Rd,uuu ∈ Rn. Based on (10) and (24), the PO problem corresponding to the estimation
error of OKRidge is

ΦOKRidge(XXX) = min
www

max
uuu

1√
n

(
uuu⊤XXXwww + ψ(www,uuu)

)
, (25)

where

ψ(www,uuu) := −uuu⊤ϵϵϵ− ∥uuu∥22
4

+ λSumTopk
(
(www + βββ∗)⊙ (www + βββ∗)

)
. (26)

Since the entries of XXX are drawn i.i.d. from N (0, 1), to replace the challenging PO problem (25)
with a simplified AO problem through CGMT, ψ(www,uuu) should be a convex-concave function. The
following Lemma illustrates that the ψ(www,uuu) satisfies the conditions of Theorem 3.2.
Lemma 5.1. Suppose ψ(www,uuu) is defined as in formulation (26). Then, ψ(www,uuu) is convex-concave
function.

The proof of Lemma 5.1 can be seen in Appendix D. Define

γ(βββ) := SumTopk(βββ ⊙ βββ).

Because the PO problem (25) satisfies the assumptions of CGMT, we transform it to the following
AO problem:

ϕOKRidge(ggg,hhh) = min
www

max
uuu

1√
n

[
∥www∥2ggg⊤uuu+ ∥uuu∥2hhh⊤www − ϵϵϵ⊤uuu− ∥uuu∥22

4
+ λγ(βββ∗ +www)

]
= min

www
max
uuu

1√
n

[
(∥www∥2ggg − ϵϵϵ)⊤uuu+ ∥uuu∥2hhh⊤www − ∥uuu∥22

4
+ λγ(βββ∗ +www)

]
, (27)

where the entries ggg, hhh are drawn i.i.d. from N (0, 1), due to the property of XXX . Suppose wwwΦOKRidge

is the of optimal solutions of the PO problem (25), andwwwϕOKRidge is the optimal solutions of the AO
problem (27). According to Theorem 3.2, if ∥wwwϕOKRidge∥2

P−→ α∗, we have ∥wwwΦOKRidge∥2
P−→ α∗.

Thus, we can analyze the minimizer of AO problem (27) instead of PO problem (25).

5.2 Simplification for AO

In this chapter, we simplify the AO problem (27) into ones involving only scalar quantities. Since
γ(βββ) is a convex (see Lemma 5.1), ∂γ(βββ∗) is nonempty, convex and compact. According to [13,
Theorem 23.4], we have γ(βββ∗ + www) = γ(βββ∗) + maxsss∈∂γ(βββ∗) sss

⊤www + O(∥www∥22). The first-order
approximation of γ(βββ) around the vector of interest βββ∗ is

γ̂(βββ∗ +www) := γ(βββ∗) + max
sss∈∂γ(βββ∗)

sss⊤www. (28)
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where βββ = βββ∗ +www. Then, following the approach from [12], the AO problem (27) can be simplified
by the first-order approximation (28):

ϕ̂OKRidge(ggg,hhh) = min
www

max
uuu

1√
n

[
(∥www∥2ggg−ϵϵϵ)⊤uuu+∥uuu∥2hhh⊤www+λ

(
γ(βββ∗)+ max

sss∈∂γ(βββ∗)
sss⊤www

)
−∥uuu∥22

4

]
= min

www
max

∥uuu∥2≥0

sss∈∂γ(βββ∗)

1√
n

[
(∥www∥2ggg−ϵϵϵ)⊤uuu+(∥uuu∥2hhh+λsss)⊤www + λγ(βββ∗)−∥uuu∥22

4

]
. (29)

Suppose f(βββ) and f̂(βββ) denote the objective functions of the original and the approximated AO
problems (27) and (29), respectively,

f(βββ) =(∥www∥2ggg − ϵϵϵ)⊤uuu+ ∥uuu∥2hhh⊤www − ∥uuu∥22
4

+ λγ(βββ∗ +www),

f̂(βββ) =(∥www∥2ggg − ϵϵϵ)⊤uuu+ ∥uuu∥2hhh⊤www − ∥uuu∥22
4

+ λ
(
γ(βββ∗) + max

sss∈∂γ(βββ∗)
sss⊤www

)
.

Then, based on (28), we have

lim
∥βββ−βββ∗∥2→0

f̂(βββ) = f(βββ). (30)

Compared with AO problem (27), the approximated AO problem (29) is tight when ∥βββ − βββ∗∥2 → 0,
and we later demonstrate that this condition is satisfied as σ2 → 0, independent of the original AO
problem (27). This fact allows us to translate the analysis on the optimal solution wwwϕ̂OKRidge

of the
approximated AO problem (29) to the analysis on the optimal solutionwwwϕOKRidge of the corresponding
original AO problem (27). Because γ(βββ∗) is a constant, the approximated AO problem (29) is
equivalent to the following optimization problem:

min
www

max
∥uuu∥2≥0

sss∈∂γ(βββ∗)

1√
n

[
(∥www∥2ggg − ϵϵϵ)⊤uuu+ (∥uuu∥2hhh+ λsss)⊤www − ∥uuu∥22

4

]
, (31)

where we have approximated γ in the first order. Since ϵϵϵ ∼ N (0, σ2III), the term ∥www∥2ggg − ϵϵϵ above is
statistically identical to a random vector with entries drawn i.i.d. from N (0, ∥www∥22 + σ2), where III is
the unit matrix. Following the method used by [42], we substitute the first term in the objective (31)
with

√
∥www∥22 + σ2ggg⊤uuu. Then, we obtain:

min
www

max
∥uuu∥2≥0

sss∈∂γ(βββ∗)

1√
n

[√
∥www∥22 + σ2 · ggg⊤uuu+ (∥uuu∥2hhh+ λsss)⊤www − ∥uuu∥22

4

]
. (32)

Let η = ∥uuu∥2. Since max∥uuu∥2=η ggg
⊤uuu = ∥ggg∥2 · ∥uuu∥2 and hhh ∼ N (0, III), in term of mathematical

expectation, the optimization (32) can be equivalently expressed as:

min
www

max
η≥0

sss∈∂γ(βββ∗)

1√
n

[√
∥www∥22 + σ2∥ggg∥2η − η

(
hhh− λ

η
sss
)⊤
www − η2

4

]
. (33)

The objective (33) is strongly convex inwww and (jointly) concave in η, sss, and the constraint sets are
bounded. Therefore, we can reverse the order of min-max in problem (33) based on [13, Corollary
37.3.2]. Let α = ∥www∥2. Since min∥www∥2=α(−hhh + λ

ηsss)
⊤www = −α∥hhh − λ

ηsss∥2, the optimization (33)
can be equivalently reformulated as:

max
η≥0

sss∈∂γ(βββ∗)

min
α≥0

1√
n

(√
α2 + σ2 · ∥ggg∥2η − αη∥hhh− λ

η
sss∥2 −

η2

4

)
. (34)

Next, we further reverse the order of min-max, as the objective (34) exhibits the desired concave-
convex structure. Then, we proceed to maximize over sss ∈ ∂γ(βββ∗). Since minsss∈∂γ(βββ∗) ∥hhh− λ

ηsss∥2 =

dist
(
hhh, λη ∂γ(βββ

∗)
)
, the optimization problem (34) can alternatively be formulated as:

min
α≥0

max
η≥0

1√
n

(√
α2 + σ2 · ∥ggg∥2η − αη · dist

(
hhh,
λ

η
sss
)
− η2

4

)
. (35)
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Because both the random components ∥ggg∥2 and dist(hhh, ληsss) are Lipschitz, ∥ggg∥2 concentrates around
√
n and dist(hhh, ληsss) around

√
D(λη ) [43, Lemma B.2]. Suppose, as d→ ∞, D(τ)

n → D̄(τ) ∈ (0, 1),
C(τ)
n → C̄(τ), and Γ(η) := limn→∞

η2

4
√
n

. Then, the optimal minimizer of (35) converges to the
optimal minimizer of the following deterministic optimization in probability [44]:

max
η≥0

min
α≥0

η
√
α2 + σ2 − αη

√
D̄(

λ

η
)− Γ(η). (36)

Here, we complete the simplifications by reducing the AO problem (27) to an equivalent optimization
(36) that now only involves two scalar variables: α and η.

5.3 Error Analysis

Based on the analysis above, if the optimal solution of optimization (36) is α = α∗, we have
∥wwwϕ̂OKRidge

∥2
P−→ α∗ for approximated AO problem (29). If α∗ further tends to 0, according to

formulation (30) and CGMT, ∥wwwΦOKRidge∥2
P−→ α∗ holds for PO problem (25). Then, for the

estimation error of OKRidge produced by (22), we have ∥β̂ββ − βββ∗∥2
P−→ α∗. Therefore, it only

remains to obtain the optimal value of α in optimization (36) that plays the role of ∥www∥2. Following
[45], we conclude the estimation error of OKRidge with Theorem 5.2 below.

Theorem 5.2. Suppose βββ∗ is the true weight parameter of the problem (1), β̂ββ is the optimal solution
to the objective function (22) of OKRidge, D(τ)

n → D̄(τ) ∈ (0, 1), aNSE := limσ2→0 NSE =

limσ2→0 ∥β̂ββ − βββ∗∥22
/
σ2. Define λmap is the solution of map(τ) = 0 for τ > 0, then, the estimation

error of OKRidge is given by the following probability limit:

lim
d→0

aNSE P−→ ∆(λ̂), (37)

where ∆(λ̂) = D̄(λ̂)

1−D̄(λ̂)
, and λ̂ = λmap.

The proof of Theorem 5.2 can be seen in Appendix E.
Remark 5.3. In the objective (24) concerning estimation error of OKRidge, γ(βββ) = SumTopk(βββ⊙βββ)
and the value of βββ∗ is assumed to be known. Then, the analysis on map(·) in Section 3.3 reveals that
the form of map(·) and the value of λmap are fixed. Thus, ∆(λ̂) is a function of λ. In other words,
if the regularizer parameter λ of OKRidge is fixed, the NSE limit of OKRidge ∆(λ̂) is also fixed.
Additionally, Theorem 5.2 also indicates that limd→∞ limσ→0 ∥β̂ββ − βββ∗∥2

P−→ 0, which guarantees
the effectiveness of β̂ββ learned by OKRidge in accurately estimating βββ∗. These results substantiate the
theoretical reliability of OKRidge and promote its broad application in the real world.

6 Numerical Experiments

In this section, we conduct experiments to verify Theorem 5.2. The experiments contain two aspects:
(i) When λ is fixed, NSE tends to a fixed constant as σ → 0. (ii) When σ → 0, NSE is determined by
the weight λ of the regularizer. In other words, NSE is a function of λ.

In our experiments, βββ∗ is randomly generated with ∥βββ∗∥0 ≤ k. For i ∈ {1, 2, · · · , n}, xxxi is drawn
i.i.d. from N (0, III), and ϵi is drawn i.i.d. from N (0, σ2). According to the k-sparse linear regression
(1), yi = xxx⊤i βββ

∗ + ϵi, we get dataset (xxxi, yi) with i = 1, 2, · · · , n. Then, we appy OKRidge to get the
estimator β̂ββ and calculate the NSE by ∥β̂ββ − βββ∗∥22

/
σ2. The NSE is averaged over 10 trials to evaluate

the effectiveness of the OKRidge algorithm. In the main paper, we set n
d = 0.5, k

d = 0.1, d = 100.
The computer resources are detailed in Appendix F.1. More experiments with various settings about
n
d and k

d can be seen in Appendix F.2.
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Figure 1: The change of NSE with 1/σ for
OKRidge under different λ. The red curve at
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Figure 2: The change of NSE with λ for OKRidge
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to the real change of ∆(λ̂). Here, λbest is the
optimal weight of the regularizer.

6.1 The Change of NSE with σ

We investigate the change of NSE with 1/σ under λ = 1, 5, 10, λbest, · · · . The results are illustrated
in Figure 1. As depicted in Figure 1, when λ is constant, NSE converges to a fixed value as σ → 0.
This observation validates aspect (i) of Theorem 5.2.

6.2 The Change of NSE with λ

We analyze the change of NSE with λ under σ2 = 1, 0.1, 0.01, 0.001. The outcomes are depicted in
Figure 2. As shown in Figure 2, the curves converge towards the real blue curve as σ → 0, where the
blue curve relies on λ. This observation confirms aspect (ii) of Theorem 5.2.

7 Conclusion

In this paper, we present a theoretical high-dimensional error analysis of the OKRidge algorithm in
idealized settings using the CGMT framework. Specifically, when OKRidge tackles a k-sparse linear
model with xxx ∼ N (0, III), ϵ ∼ N (0, σ2), and limd→∞

n
d = δ ∈ (0, 1), we have

lim
d→∞

lim
σ2→0

∥β̂ββ − βββ∗∥22
σ2

P−→ ∆(λ̂), and lim
d→∞

lim
σ→0

∥β̂ββ − βββ∗∥2
P−→ 0.

where ∆(λ̂) depends on λ. This indicates that (i) the NSE limit of OKRidge remains constant when
λ is fixed; (ii) β̂ββ learned by OKRidge is effective in estimating βββ∗. Our experimental findings support
these theoretical assertions. This theoretical error analysis substantiates the reliability of OKRidge
and provides guidelines on the error analysis of other algorithms.
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The Reliability of OKRidge (Appendix)
A Limitaion and Impact

Limitaion: Our results rely on Gaussian input settings. For non-Gaussian settings, we can utilize
Fisher transformation, Box-Cox transformation, or inversion sampling to transform non-Gaussian
distribution to Gaussian distribution. In our future work, we will discuss the potential extensions of
our findings to non-Gaussian input settings, providing insights into the universality of the results.

Impact: Our work provides theoretical support for the broad application of OKRidge, which does
not require proprietary software or expensive licenses [1], unlike its main competitor. This can
significantly impact various regression applications.

B Proof of Theorem 4.1

Theorem 4.1. If we define the parameter ccc as (16), the problem (9) is equivalent to the following
saddle point optimization problem:

min
βββ,zzz

Lsaddle
ridge (βββ,zzz) s.t.

d∑
j=1

zj ≤ k, zj ∈ [0, 1], (38)

where

Lsaddle
ridge (βββ,zzz) := ∥yyy −XXXβββ∥22 + λ

d∑
j=1,zj ̸=0

β2
j

zj
. (39)

Proof. The problem (9) is

min
βββ,zzz

max
ccc

LFenchel
ridge (βββ,zzz, ccc),

s.t.
d∑

j=1

zj ≤ k, zj ∈ [0, 1],

where

LFenchel
ridge (βββ,zzz, ccc) := ∥yyy −XXXβββ∥22 + λ

d∑
j=1

(βjcj −
c2j
4
zj).

The parameter ccc in (16) is

cj =

{
ρ ∈ R , if zj = 0,
2βj

zj
, if zj ̸= 0.

Substitute parameter ccc of (16) into (9),

LFenchel
ridge (βββ,zzz, ccc) = ∥yyy −XXXβββ∥22 + λ

d∑
j=1

(βjcj −
c2j
4
zj)

= ∥yyy −XXXβββ∥22 + λ

d∑
j=1,zj ̸=0

[
βj ·

2βj
zj

− (
2βj
zj

)2
/
4 · zj

]

= ∥yyy −XXXβββ∥22 + λ

d∑
j=1,zj ̸=0

[2β2
j

zj
−
β2
j

zj

]

= ∥yyy −XXXβββ∥22 + λ

d∑
j=1,zj ̸=0

2β2
j

zj
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Define

Lsaddle
ridge (βββ,zzz) := ∥yyy −XXXβββ∥22 + λ

d∑
j=1,zj ̸=0

β2
j

zj
.

Then, the problem (9) can be equivalently written as

min
βββ,zzz

Lsaddle
ridge (βββ,zzz) s.t.

d∑
j=1

zj ≤ k, zj ∈ [0, 1],

which is our saddle point optimization (38).

C Proof of Theorem 4.2

Theorem 4.2. The function L(βββ) defined in Equation (20) is lower bounded by

L(βββ) ≥ ∥yyy −XXXβββ∥22 + λSumTopk(βββ ⊙ βββ). (40)
where ⊙ is Hadamard product, and SumTopk(·) denotes the summation of the largest k elements of a
given vector.

Proof. The Equation (20) is

L(βββ) = min
zzz

Lsaddle
ridge (βββ,zzz),

s.t.
d∑

j=1

zj ≤ k, zj ∈ [0, 1].

According to (20) and (39),

L(βββ) = min
zzz

Lsaddle
ridge (βββ,zzz) = min

zzz
∥yyy −XXXβββ∥22 + λ

d∑
j=1,zj ̸=0

β2
j

zj
(41)

Following the method of [1], if we minimize z in the optimization (41) under the constraints∑p
j=1 zj ≤ k and zj ∈ [0, 1] for ∀j, we have zj = 1 for the top k terms of β2

j and zj = 0 otherwise.
Then, we have

L(βββ) ≥ ∥yyy −XXXβββ∥22 + λ

d∑
j=1,zj ̸=0

β2
j

1
= ∥yyy −XXXβββ∥22 + λSumTopk(βββ ⊙ βββ).

D Proof of Lemma 5.1

Lemma 5.1. Suppose ψ(www,uuu) is defined as formulation (26). Then, ψ(www,uuu) is convex-concave on
Rd × Rn.

Proof. Obviously, ψ(www,uuu) is concave about uuu. Next, we indicate that ψ(www,uuu) is convex about www.
For any w̄ww, w̃ww ∈ Rd and ∀θ ∈ (0, 1),

[θw̄j + (1− θ)w̃j ]
2 ≤ θw̄2

j + (1− θ)w̃2
j .

Then, we have
SumTopk

(
[θw̄ww + (1− θ)w̃ww]⊙ [θw̄ww + (1− θ)w̃ww]

)
≤SumTopk

(
θw̄ww ⊙ w̄ww + (1− θ)w̃ww ⊙ w̃ww

)
≤SumTopk

(
θw̄ww ⊙ w̄ww

)
+ SumTopk

(
(1− θ)w̃ww ⊙ w̃ww

)
≤θSumTopk

(
w̄ww ⊙ w̄ww

)
+ (1− θ)SumTopk

(
w̃ww ⊙ w̃ww

)
.

SumTopk(·) is a convex operator. Therefore, ψ(www,uuu) is concave about uuu and convex aboutwww.
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E Proof of Theorem 5.2

Theorem 5.2. Suppose βββ∗ is the true weight parameter of the problem (1), β̂ββ is the optimal solution
to the objective function (22) of OKRidge, D(τ)

n → D̄(τ) ∈ (0, 1),

aNSE := lim
σ2→0

NSE = lim
σ2→0

∥β̂ββ − βββ∗∥22
/
σ2.

Define λmap is the solution of map(τ) = 0 for τ > 0, then, the estimation error of OKRidge is given
by the following probability limit:

lim
d→0

aNSE P−→ ∆(λ̂), (42)

where ∆(λ̂) = D̄(λ̂)

1−D̄(λ̂)
, and λ̂ = λmap.

Proof. Starting from the simplified AO problem (36), let’s define

κ(α, η) := η
√
α2 + σ2 − αη

√
D̄(

λ

η
)− Γ(η). (43)

Given that κ(α, η) is strongly convex in α and concave in η, we denote (α∗, η∗) as the Nash
equilibrium of κ(α, η). Then, α∗ is unique and we use duality to compute α∗. For any η,

∂κ(α, η)

∂α
=

αη√
α2 + σ2

− η

√
D̄(

λ

η
) = 0,⇒ α∗(η) = σ

√√√√ D̄(λη )

1− D̄(λη )
, (44)

which is well-defined, due to 1− D̄(λη ) > 0. Substituting α∗(η) back into (43) gives:

κ(α∗, η) = η
√
α∗2 + σ2 − α∗η

√
D̄(

λ

η
)− Γ(η)

= η

√√√√σ2
D̄(λη )

1− D̄(λη )
+ σ2 − ση

√√√√ D̄(λη )

1− D̄(λη )
·

√
D̄(

λ

η
)− Γ(η)

=
ησ√

1− D̄(λη )
−

ησD̄(λη )√
1− D̄(λη )

− Γ(η) = ησ

√
1− D̄(

λ

η
)− Γ(η).

Differentiating κ(α∗, η) with respect to η, we have

∂κ(α∗, η)

∂η
= σ

√
1− D̄(

λ

η
) +

1

2
ησ

C(λη )√
1− D̄(λη )

· λ
η2

− Γ′(η) = σ
1− C̄(λη )− D̄(λη )√

1− D̄(λη )
− Γ′(η)

= σmap(
λ

η
)− lim

n→∞

η

2
√
n
. (45)

Here, map(τ) = 0 when τ = λmap. Hence, η∗ = λ
λmap

is the optimal solution, due to

∂κ(α∗, η)

∂η

∣∣
η=η∗ = σmap(λmap)− lim

n→∞

λ

2λmap
√
n
= 0.

Because the form of γ(·) and the value of βββ∗ are determined, the form of map(·) and the value of
λmap are fixed. In other words, λmap is a function about λ. Therefore, we can take η∗ = λ

λmap
to

formulation (44),

α∗(η∗) = σ

√√√√ D̄( λ
η∗ )

1− D̄( λ
η∗ )

= σ

√
D̄(λmap)

1− D̄(λmap)
.
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Moreover κ(α∗, η∗) = λ
λmap

σ
√
1− D̄(λmap). Denote λ̂ = λmap,

α∗ = σ

√
D̄(λ̂)

1− D̄(λ̂)
. (46)

Based on the analysis above, if the optimal solution of optimization (36) is α = α∗, we have
∥wwwϕ̂OKRidge

∥2
P−→ α∗ for approximated AO problem (29). Furthermore, according to formulation (46),

limσ→0 α
∗ = 0 occurs for the approximated AO problem (29) and is independent of the original AO

problem (27). Thus, formulation (30) holds:

lim
∥βββ−βββ∗∥2→0

f̂(βββ) = f(βββ) ⇔ lim
d→∞

lim
σ→0

f̂(βββ) = f(βββ). (47)

In the case n → ∞ and σ → 0, formulation (47) allows us to translate the optimal error α∗ of the
approximated AO problem (29) to the optimal error of the original AO problem (27). Combining
formulations (46), (47), and CGMT, ∥wwwΦOKRidge∥2

P−→ α∗ holds for PO problem (25). Then, for the
estimation error of OKRidge produced by (22), we have

∥β̂ββ − βββ∗∥2
P−→ α∗.

Therefore, combining PO problem (25), AO problem (27), the relation (47), and the formulations
(23) and (46), according to CGMT, we obtain::

lim
d→∞

lim
σ→0

∥β̂ββ − βββ∗∥2/σ
P−→

√
D̄(λ̂)

1− D̄(λ̂)
⇒ lim

d→∞
lim
σ→0

∥β̂ββ − βββ∗∥22
/
σ2 P−→ D̄(λ̂)

1− D̄(λ̂)
.

To sum up,

lim
d→0

aNSE P−→ ∆(λ̂),

where ∆(λ̂) = D̄(λ̂)

1−D̄(λ̂)
, and λ̂ = λmap.

F Experiments Appendix

F.1 Computing Platform

All experiments were run on the 10x TensorEX TS2-673917-DPN Intel Xeon Gold 6226 Processor,
2.7Ghz. We set the memory limit to be 100GB.

F.2 More Experiments

Figures F1 ∼ F7 (a) demonstrate that when λ is fixed, NSE converges to a constant as σ → 0. In
Figures F1 ∼ F7 (b), the curves converge towards the real blue curve as σ → 0, with the real blue
curve representing ∆(λ̂). These observation validate Theorem 5.2.
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d = 0.4, k

d = 0.1, d = 1000

2 4 6 8 10
1/

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

N
SE

= 1
= 5
= 10
= 15
= best

= 25
= 30
= 35
= 40
= 45
= 50

(a) The change of NSE with 1/σ under different λ.

0 40 60 80 100

1

2

3

4

N
S
E

best

2 = 1.0
2 = 0.1
2 = 0.01
2 = 0.001

real

(b) The change of NSE with λ under different σ.

Figure F4: The change of NSE under n
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Figure F5: The change of NSE under the sparsity k
d = 0.10
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Figure F6: The change of NSE under the sparsity k
d = 0.15
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We highly summarize what we do in the abstract. The introduction clearly
introduces the concepts and issues that are related to our main results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Our paper explicitly acknowledges the dependency on Gaussian inputs as a
limitation, prompting further investigation into its applicability to non-Gaussian contexts.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide the assumptions of the theorems and all our theorems are followed
by their proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Our paper meticulously details all methodologies, parameters, and experimen-
tal conditions necessary for replication.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: We focus on the OKRidge algorithm in our paper. The codes of the OKRidge
algorithm are from [1], which is open.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our paper comprehensively details all training and testing protocols, including
data management, hyperparameter selection, and optimization techniques.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Our results are based on averaging the results from 10 trials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Our paper specifies the computing platform, processor details, and memory
constraints, ensuring accurate replication of the experimental setup and results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research strictly adheres to the NeurIPS Code of Ethics, focusing on
theoretical advancements without ethical concerns in implementation or application.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our paper assesses the broad accessibility and potential application impacts of
OKRidge, highlighting its advantages over costlier alternatives.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper focuses on theoretical aspects of the OKRidge algorithm and uses
synthetic data, mitigating risks associated with real-world data misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Our paper properly credits the original creators of the OKRidge algorithm and
adheres to the licensing terms of the cited open resources required by NeurIPS paper [1].

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We don’t introduce new assets in our paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] ,

Justification: Our paper is theoretical and includes numerical verification experiments. It
does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper is theoretical and includes numerical verification experiments. It
does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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