
Proceedings of Machine Learning Research 260:-, 2024 ACML 2024

Counterfactual Fairness for Graph Neural Networks with
Limited and Privacy Protected Sensitive Attributes

Xuemin Wang xueminwangbetter@163.com
Guangxi Key Laboratory of Trusted Software

Lei Wang 13028689617@163.com
Guangxi Key Laboratory of Trusted Software

Tianlong Gu ∗ gutianlong@jnu.edu.cn
Engineering Research Center of Trustworthy AI (Ministry of Education)

Xuguang Bao baoxuguang@guet.edu.cn

Guangxi Key Laboratory of Trusted Software

Editors: Vu Nguyen and Hsuan-Tien Lin

Abstract

Graph Neural Networks (GNNs) have shown outstanding performance in learning graph
representations, which increases their application in high-risk areas. However, GNNs may
inherit biases from the graph data and make unfair predictions towards the protected
sub-groups. To eliminate bias, a natural idea is to achieve counterfactual fairness from
a causal perspective. Concretely, counterfactual fairness requires sufficient sensitive at-
tributes as guidance, which is infeasible in the real world. The reason is that users with
various privacy preferences may selectively publish their sensitive attributes and only lim-
ited sensitive attributes can be collected. Besides, the users who publish sensitive attributes
still face privacy risks. In this paper, we first consider the situation in which the sensi-
tive attributes are limited and propose a framework called PCFGR (Partially observed
sensitive Attributes in Counterfactual Fair Graph Representation Learning) to learn fair
graph representation from limited sensitive attributes. The framework trains a sensitive
attribute estimator, which is applied to provide sufficient and accurate sensitive attributes.
With these sensitive attributes, it can generate counterfactuals and eliminate the bias ef-
ficiently. Secondly, we aim to protect the privacy of the sensitive attributes and further
propose PCFGR\D. Specifically, PCFGR\D first perturbs the sensitive attributes using
Local Differential Privacy (LDP). Then it employs forward correction loss to train an accu-
rate sensitive attributes estimator. We conduct extensive experiments and the experiment
results show that it outperforms other alternatives in balancing utility and fairness.

Keywords: fair graph neural network; counterfactual fairness; graph representation learn-
ing; privacy protection

1. Introduce

Graph Neural Networks (GNNs) learn low-dimensional representations of nodes, which
shows excellent performance on various downstream tasks such as node classification, link
prediction, and graph classification Wu et al. (2020). The outstanding performance of GNN
in graph representation learning increases their application in high-risk domains, such as
predicting protein-protein interactions Gainza et al. (2020), drug reuse Morselli Gysi et al.

∗ Corresponding author.

© 2024 X. Wang, L. Wang, T. Gu & X. Bao.

Wang Wang Gu Bao

(2021), crime prediction Jin et al. (2020), and news and product recommendations Ying
et al. (2018). However, GNNs can inherit biases from graph data, and the message aggre-
gation mechanism of the model can exacerbate these biases. For example, in graphs like
social networks, nodes with similar sensitive attributes (such as race or age) are likely to
be connected Agarwal et al. (2021). Since GNNs use message passing to aggregate repre-
sentations of neighboring nodes, nodes with similar sensitive attributes may share similar
representations. In downstream tasks, nodes with similar representations may receive simi-
lar predictions. Hence, the predictions are highly correlated with sensitive attributes, which
results in bias towards the protected groups. Therefore, there is a need to develop GNNs
that can learn fair graph representations.

Currently, numerous fairness metrics have been proposed for GNNs. Among them, sta-
tistical parity and equality of opportunity are widely applied. For these metrics, several
fair graph neural networks have been introduced. For instance, FairGNN Dai and Wang
(2021) employs a sensitive attribute estimator to impute missing sensitive attributes and
subsequently utilizes adversarial training to eliminate sensitive attribute information from
node representations. Moreover, existing research has begun to delve into counterfactual
fairness. NIFTY Agarwal et al. (2021) generates counterfactuals by perturbing the sensi-
tive attributes and edges of nodes, enabling the learning of counterfactually fair and robust
node representations. GEAR Ma et al. (2022) automatically generates counterfactuals cor-
responding to the perturbation of sensitive attributes for each node and its neighboring
nodes, thereby eliminating the causal relationship between node representations and sensi-
tive attributes. Although existing counterfactual graph representation learning techniques
have been relatively comprehensive, they have two limitations: 1) (Insufficient Sensitive
Attributes). They all assume they can have full access to the sensitive attributes. How-
ever, they ignore the situation that the sensitives are limited. This is due to the various
user’s privacy preferences. Since existing methods need to generate counterfactuals with
the guidance of sensitive attributes, the efficiency of fairness promotion is decreased without
sufficient counterfactuals. 2)(Sensitive Attributes Leaking).Although some users agree to
publish their sensitive attributes, privacy risks also exist. Hence, it is necessary to pro-
tect the privacy of sensitive attributes and promote counterfactual fairness on these private
sensitive attributes.

Firstly, we only consider situations where sensitive attributes are limited and propose a
framework named PCFGR. This framework includes a sensitive attribute estimator, fairness
module, and utility modules. The sensitive attribute estimator accurately predicts the
true sensitive attribute values of nodes with missing sensitive attributes using the feature
vectors of neighboring nodes with observed sensitive attributes and non-sensitive attributes.
The fairness module first computes important node pairs using the PageRank algorithm
Yao et al. (2019), generates subgraphs using a subgraph generator, obtains augmented
counterfactual subgraphs, learns graph representations using a Siamese neural network Zhao
et al. (2020), and finally updates the loss function through the utility module to achieve
the final counterfactual graph representation learning.

Secondly, we consider the privacy of partially observed sensitive attributes. We propose
a new framework PCFGR\D. Here, we leverage the random response to flip the sensitive
attribute values with equal probability using ε-local differential privacy protection. To ac-
quire accurate sensitive attributes, we train the classifier using forward correction loss Shui

PCFGR and PCFGR\D

et al. (2022). Training estimator with forward loss not only integrates well with differen-
tial privacy protection technique but also, without disclosing personal information, directly
measures the difference between the model’s predictions and the actual values, clarifying
the model training objective. The main contributions of this paper are as follows: 1) We
proposed a new framework (PCFGR) for learning counterfactual graph representations of
partially observed sensitive attributes; 2) The sensitive attribute estimator contributes to
learning counterfactually fair graph representations; 3) The new framework (PCFGR\D)
can learn counterfactually fair representations while protecting the privacy of sensitive at-
tributes; 4) We conducted comparative experiments to further demonstrate the effectiveness
of the proposed framework.

2. Preliminaries

Graph neural network. Current GNNs are neighborhood aggregation approaches Ying
et al. (2018), that update the representations of the nodes with the representations of
the neighborhood nodes. The representations after k layers’ aggregation would capture
the structural information of the k-hop network neighborhoods Wang et al. (2018). The

updating process of the k-th layer in GNN could be formulated as a
(k)
v = AGGREGATE(k−1)({

h
(k−1)
u : u ∈ N (v)

})
, h

(k)
v = COMBINE(k)

(
h
(k−1)
v , a(k)

)
where h

(k)
v is the representation

vector of the node v ∈ V at k-th layer and N(v) is a set of neighborhoods of v.
Counterfactual fairness. Counterfactual fairness Kusner et al. (2017) is derived from

causal structural models and is used to assess and ensure fairness in machine learning
algorithms. Causal models consist of causal graphs and structural equations. A causal graph
is a directed acyclic graph (DAG) where each node represents a variable Wu et al. (2019),
and each directed edge represents a causal relationship. Structural equations describe these
causal relationships between variables. For variables Y and S, the counterfactual value
asks the question: ”What would Y be if S were set to s′ ?” and is denoted as YS←s′

Chiappa (2019). Based on the given causal model, counterfactual fairness is achieved if
the following conditions hold for any feature X = x and sensitive attribute S = s: when
X = x and S = s, the predicted value Ŷ = f(X) satisfies the counterfactual condition:

P
(
ŶS←s = y | X = x, S = s

)
= P

(
ŶS←s′ = y | X = x, S = s

)
3. PCFGR

3.1. Overview

To learn counterfactual fair graph representations with limited sensitive attributes named
PCFGR. It consists of three key components: 1) Sensitive attribute estimator completes
missing sensitive attribute values; 2) Counterfactual fair graph representation learning en-
sures the counterfactual graph representation learning for nodes; and 3) A utility module
preserves the competitive accuracy of the module.

3.2. Sensitive Attribute Estimator

Bias in the graph data may be introduced into the graph representation and is amplified
by the message-passing mechanism. Subsequently, the bias can lead to discriminatory pre-

Wang Wang Gu Bao

Attribute Matrix

Subgraph

1 0 ... 0

1 1 ... 1

^ ^ ... 1
1 1 ... 1

1 1 ... 0

1 1 ... 1

Estimator

Attribute MatrixSensitive Attribute Estimator

Fair Representation Learning

Fairness Loss

Predicting Loss

^ ^^ ^ 1 01 0

Siamese

Network

Aggregate

Graph

Representation

Graph

Representation

Graph

Representation

1 0 ... 0

1 1 ... 1

1 0 ... 1
1 1 ... 1

1 1 ... 0

1 1 ... 1

1 0 ... 0

1 1 ... 1

1 0 ... 1
1 1 ... 1

1 1 ... 0

1 1 ... 1

Encoder

Encoder

Encoder

Encoder

Self

Perturbation

Neighbor

Perturbation

Neighbor

Perturbation

Original

Attribute Matrix

Subgraph

1 0 ... 0

1 1 ... 1

^ ^ ... 1
1 1 ... 1

1 1 ... 0

1 1 ... 1

Estimator

Attribute MatrixSensitive Attribute Estimator

Fair Representation Learning

Fairness Loss

Predicting Loss

^ ^ 1 0

Siamese

Network

Aggregate

Graph

Representation

Graph

Representation

Graph

Representation

1 0 ... 0

1 1 ... 1

1 0 ... 1
1 1 ... 1

1 1 ... 0

1 1 ... 1

Encoder

Encoder

Encoder

Encoder

Self

Perturbation

Neighbor

Perturbation

Neighbor

Perturbation

Original

Figure 1: Schematic diagram of the framework PCFGR, where ∧ indicates that there is no
record for the node here.

dictions in downstream tasks. To eliminate bias, the sensitive attributes are essential as
guidance to generate counterfactuals. Moreover, in real-world practice, users with various
privacy preferences publish their sensitive attributes selectively, which results in limited
sensitive attributes. Hence, this leads to insufficient sensitive attributes and makes it diffi-
cult to generate sufficient counterfactuals, which results in a poor improvement in fairness
promotion. Since the homomorphism of the graph, nodes with similar sensitive attributes
are likely to be connected Dai and Wang (2021); Hu et al. (2022). This makes it possible to
predict accurate sensitive attributes of nodes in V −VS using both G and VS . Therefore, we
design a sensitive attribute estimator using a graph neural network fE : G −→ S to predict
the sensitive attributes of nodes of private users. In our model, the sensitive attributes sv
are treated as binary variables, where sv ∈ {0, 1}. The objective loss function of fE is:

min
θE

LE = − 1

|VS |
∑
v∈VS .

[sv log ŝv + (1− sv) log (1− ŝv)] (1)

where ŝv is the predicted sensitive attribute of node v ∈ VS obtained through fE , and θE
is the parameter set of fE . We can predict the sensitive attribute ŝi for node vi ∈ V − VS

using fE . Each generated sensitive attribute ŝi is added into the existing set of the sensitive
attributes S to gain Ŝ.

3.3. Counterfactual graph representation learning

3.3.1. Subgraph generation

The true causal model of graph data is often challenging to fully capture, particularly for
large-scale graphs Jiao et al. (2020). Therefore, to reduce time complexity, we generate a
subgraph for each node that includes its top-k most important neighbors. This is because a
node’s representation is mainly influenced by its immediate neighbors Rahman et al. (2019).
Specifically, we use a subgraph generator Sub(·) to extract the contextual information of

PCFGR and PCFGR\D

the central node vi from graph G, generating a contextual subgraph G(i), which includes
the node features X(i) and adjacency matrix A(i) of node vi Hamilton et al. (2017) and
all its top-k hops within the neighborhood. Based on these contextual subgraphs, we can
obtain more sufficient information relative to the central node in terms of graph structure,
thereby achieving high-quality graph representation learning and subsequent counterfactual
augmentation.

To further determine which neighboring nodes are more important for the central node
vi, and to facilitate the TOP (·) operation Zhan et al. (2021), we calculate the importance
scores for each pair of nodes: R = α(I−(1−α)A). Where R is the importance score matrix,
Ri,j represents the importance of node j to node i, α is a parameter within the range [0, 1],
I is the identity matrix, and A = A × D−1 represents the column-normalized adjacency
matrix, where D is the diagonal matrix with Di,i =

∑
j Ai,j . In this way, we can select the

top-k important nodes V (i) for each central node vi based on the importance score matrix
R, and then obtain the contextual subgraph G(i) of the central node vi as follows:

G(i) =
{
V (i), E(i), X(i)

}
=
{
A(i), X(i)

}
, V (i) = TOP (Ri,:, k), A

(i) = Av(i),v(i) , X
(i) = Xv(i),:

(2)
where the symbol (:) denotes all indices. The subgraph generated by the above process is
defined as G(i) = Sub(i, G, k). The generated subgraphs are then input into the encoder
to learn representations of the central nodes. This process has a complexity of O(|V | · k),
where |V | is the number of nodes, and k is the size of the neighborhood. This approach
significantly reduces the computational burden compared to methods that operate on the
full graph.

3.3.2. Counterfactual amplification

With the generated subgraphs G(i), we generate the counterfactuals using two types of
perturbations: self-perturbation and neighbor-perturbation. Self-perturbation. In the
subgraph G(i), the sensitive attribute value of the central node si is flipped. The generated
subgraph serves as the corresponding counterfactual. A subgraph is represented as Ḡ(i) ={
G

(i)
Si←1−si

}
. Neighbor-perturbation. Similarly, in the subgraph G(i), the sensitive

attribute values of any node except the central node are randomly perturbed, i.e., the

nodes in the set V
(i)
¬i . With such perturbations, a set of counterfactuals is generated as

G(i) =

{
G

(i)

S
(i)
¬i←SMP

(
S
(i)
¬i

)
}

where SMP (·) randomly selects specific values of sensitive

attributes from the value space {0, 1}|V (i)|−1. The operation SMP (·) is conducted C times.

3.3.3. Fair representation learning

For fairness in graph counterfactuals, the goal is to learn the same representations for each
central node from these three kinds of subgraphs including G(i), Ḡ(i), G(i). Since siamese
neural network van Knippenberg et al. (2021) is designed to compare the different inputs
by learning their similarity in a shared latent space, we adopt a siamese neural network as
the encoder ϕ(·) to generate three representations zi, z̄i, zi for each node vi. respectively,
which is formulated as follows:

Wang Wang Gu Bao

zi =
(
ϕ
(
X(i),A(i)

))
i

(3)

zi = AGG
({(

ϕ
(
X

(i)
Si←1−si ,A

(i)
))

i

})
(4)

zi = AGG

({(
ϕ

(
X

(i)

S¬i←SMP
(
S
(i)
¬i

),A(i)

S¬i←SMP
(
S
(i)
¬i

)
))

i

})
(5)

where ϕ(·) : Rk×d × Rk×k −→ Rk×d′ takes each subgraph as input and embeds each node
on the input subgraph into a latent representation. Each central node i represented as zi
learned from the original data, and Z = {zi}n(i=1) is used for downstream tasks. For sampled

counterfactual subgraphs Ḡ(i) andG(i) an aggregator (e.g., mean aggregator) AGG(·) is used
to aggregate the representations of each central node, resulting in final representations z̄i and
zi. Then, the distance between the learned representations of central nodes from the original
and counterfactual subgraphs is minimized. The loss function for graph counterfactual
fairness is given by:

Lf =
1

|V|
∑
i∈V

(
(1− λs)d(zi, zi) + λsd

(
zi, zi

))
(6)

where d(·) is a distance metric, such as cosine distance. λs ∈ {0, 1} is a hyperparameter
controlling the weight of neighbor disturbance.

3.4. Utility module

The utility module is designed to preserve competitive accuracy while considering counter-
factual fairness. Taking node classification tasks as an example, the PCFGR framework can
naturally extend to other types of tasks on graph data, such as link prediction. The labels
are represented as Y = {y1, . . . , yn}. The prediction loss can be expressed as:

Lp =
1

n

∑
i∈[n]

l(f(zi), yi) (7)

where l(·) is a loss function measuring prediction error (e.g., cross-entropy), f(·) is used to
predict downstream tasks using the representations, i.e., ŷi = f(zi). Finally, the overall loss
function for fair representation learning is:

L = Lp + βLf + µ∥θ∥2 + LE (8)

where θ is the set of model parameters, β and µ are hyperparameters controlling the weights
of fairness constraints on graph counterfactuals.

3.5. Overall training algorithm for PCFGR

The algorithm for Counterfactual fair graph representation learning with limited sensitive
attributes is presented in Algorithm 1. First, the graph data G and learning parameters
λ and µ are fed into the model, and fE is updated using θE and Equation (4) (Line 1-
3). Prediction completion is performed to obtain the complete graph G, and the sensitive

PCFGR and PCFGR\D

attribute estimator fE is optimized using the updated loss function to obtain the completed
complete graph G (Lines 4). Subsequently, subgraphs G(i) are obtained using the subgraph
generation component (Line 5), and self-perturbation and neighbor perturbation are applied
to generate subgraphs Ḡ(i) and G(i) respectively (Line 6). Then, the corresponding original
(counterfactual) subgraphs are obtained respectively (Lines 7). Finally, the three types of
obtained subgraphs are input into the Siamese neural network to learn counterfactually fair
graph representations (Lines 8).

Algorithm 1 Counterfactual Fair Graph Representation Learning with Limited Sensitive
Attributes
1: Input: G = (V,E,X), β, µ, θE
2: Output: Counterfactual fair graph representation H of graph G after completing sen-

sitive attributes
3: Initialize fE using θE and Equation (1);
4: Obtain the graph G with completed sensitive attributes estimated by fE ;
5: Obtain subgraphs Gi = Subi(G, k) using Equations (2);
6: Obtain subgraphs Ḡ(i) and G(i) using Equations self-perturbation and neighbor-

perturbation;
7: Obtain zi, z̄i and zi using Equations (3-5) respectively;
8: Minimize the loss function L using Equation (8) to obtain the training parameters for

the optimal counterfactual fair graph representation H.

4. PCFGR\D

In this section, we further consider the privacy of the sensitive attributes and how to generate
the counterfactuals from privacy-preserving sensitive attributes. A novel framework named
PCFGR\D is further proposed, which adopts LDP to perturb the sensitive attributes and
leverages the forward correction loss to train a sensitive attribute estimator. The specific
training algorithm is shown in Figure 2, with detailed information as follows :

Cross

Entropy

1 0 ... 0

1 1 ... 1

^ ^ ... 1
1 1 ... 1

1 1 ... 0

1 1 ... 1

1 0 ... 0

1 1 ... 1

^ ^ ... 1
1 1 ... 1

1 1 ... 0

1 1 ... 1

EstimatorRR

0

1

^

^

^

...

1

1

^

^

^

...
RR

0

1

^

^

^

...

1

1

^

^

^

...
RR

0

1

^

^

^

...

1

1

^

^

^

...
RR

0

1

^

^

^

...

1

1

^

^

^

...

0

1

^

^

^

...

0

1

^

^

^

...

Figure 2: Schematic diagram of the sensitive attribute estimator training algorithm for
PCFGR\D, where RR denotes the random response mechanism.

We first apply a random response mechanism to perturb all sensitive attribute values,
achieving the goal of privacy protection. Specifically, on the binary sensitive attributes, we
flip them with a probability of ρ = 1

exp(ϵ)+1 , where ϵ denotes the privacy budget. The larger

Wang Wang Gu Bao

ϵ indicates the lowever privacy protection. If we directly use this graph data for counter-
factual fair graph representation learning, the sensitive attribute estimator fE deployed in
Section 3.2 learns the noise label and it is difficult to predict accurate sensitive attributes.
To provide sufficient and accurate sensitive attributes, it is necessary to improve the esti-
mator to learn with noisy sensitive attributes. Since the sensitive attributes are randomly
flipped using LDP, the obtained sensitive attributes only depend on the original values Si,
i.e.P (ŝi | si, X) = P (ŝi | si). To mitigate the influence of noise in the sensitive attribute
labels, the loss function is formulated as follows:

L (P (ŝi | X)) = − logP (ŝi | X) = − log
∑
j

P (ŝi | si = j)P (si = j | X) (9)

From equation (17), it can be observed that if the objective of the sensitive attribute
estimator fE is to estimate ŝi, then prediction correction based on P (ŝi | si) needs to
be performed before the cross-entropy loss. P (ŝi | si) can be represented using a noise
transition matrix T , where Tij = P (ŝi = i | si = j). Since ϵ is known, meaning the flipping
probability of sensitive attribute s ∈ {0, 1} is known, the noise transition matrix T can be
expressed as:

T =

[
1− ϵ ϵ
ϵ 1− ϵ

]
(10)

By incorporating the correction from equation (17) and the noise transition matrix T , the
objective function for optimizing the sensitive attribute estimator fE under the constraints
of limited and differentially private sensitive attributes can be formally expressed as:

min
θE

LE =
1

|S|
∑
si∈S

− log
∑
j

TsijfE (ŝi = j | X)

 (11)

where θE represents the learnable parameters of the sensitive attribute estimator fE , and
fE(Ŝi = j | X) denotes the probability predicted by fE that instance X belongs to sensitive
group i.

4.1. Overall training algorithm

The algorithm for Counterfactual fair graph representation learning with limited sensitive
attributes and differential privacy protection is presented in Algorithm 2.

First, differential privacy protection is uniformly applied to the sensitive attributes of the
graph data, simulating graph data that has been actually released after privacy protection
(line 3). Then, the graph data along with the learning parameters are fed into the model,
utilizing fE to predict completion and obtain the complete graph G, and optimize the
sensitive attribute estimator fE using the updated loss function (17) to obtain the completed
complete graph G (lines 4-5). Subsequently, utilizing the subgraph generation component,
subgraphs G(i) are obtained (line 6), and self-perturbation and neighbor perturbation are
applied to generate subgraphs Ḡ(i) and G(i) respectively (lines 7). Finally, the obtained
three types of subgraphs are input into the Siamese neural network to learn counterfactual
fair graph representations (lines 8-9).

PCFGR and PCFGR\D

Algorithm 2 Counterfactual Fair Graph Representation Learning with Limited Sensitive
Attributes and Differential Privacy Protection

1: Input: G = (V,E,X), λ, µ, θE
2: Output: Counterfactual fair graph representation H of graph G after completing sen-

sitive attributes and differential privacy protection
3: Perturb the sensitive attributes using LDP.
4: Initialize fE using θE and Equation (11);
5: Obtain the graph G with completed sensitive attributes estimated by fE ;
6: Obtain subgraphs Gi = Subi(G, k) using Equations (2);
7: Obtain subgraphs Ḡ(i) and G(i) using Equations self-perturbation and neighbor-

perturbation;
8: Obtain zi, z̄i and zi using Equations (3-5) respectively;
9: Minimize the loss function L using Equation (8) to obtain the training parameters for

the optimal counterfactual fair graph representation H.

5. Experiment

In this section, we conducted extensive experiments to verify the effectiveness of the pro-
posed method. Experiments were carried out on different datasets to answer the following
two questions: RQ1: ”How can counterfactually fair graph representation learning be
achieved with partially observed sensitive attributes ?” RQ2: ”How can counterfactually
fair graph representation learning be achieved with perturbed sensitive attributes ?”

5.1. Dataset

To demonstrate the efficiency of the proposed solution, we conduct experiments with two
datasets: 1)German Dataset: The German credit graph dataset consists of 1000 nodes,
where each node represents a customer of a bank in Germany. These customers are con-
nected based on the similarity of their credit accounts. The task involves using the gender
of the customers as a sensitive attribute and categorizing them into good and bad credit
categories. 2)Bail Dataset: This graph contains data on defendants released on bail in state
courts in the United States. In this graph, each node represents a defendant, and each edge
between a pair of nodes represents the similarity of their criminal records and demographic
data. The race of the defendant is used as the sensitive attribute. The task is to decide
whether to grant bail to the defendants (if released, they are not likely to commit violent
crimes) or not. 3)Credit Dataset: This graph contains information on people’s default pay-
ment behaviors. Each node represents a person, and each edge between a pair of nodes
represents the similarity of their consumption and payment patterns. Age is used as the
sensitive attribute. The task is to predict whether their default payment method is a credit
card.

5.2. Experimental setup

Metrics. The proposed framework is evaluated from two aspects: predictive performance
and fairness. To assess predictive performance, widely used node classification metrics are

Wang Wang Gu Bao

employed, including Accuracy, F1-Score, and AUROC. To measure the fairness of repre-
sentation, two commonly used metrics in statistical fairness, (∆SP) and (∆EO), as well as
(δCF) evaluating counterfactual fairness of the graph These metrics are provided in previous
work Ma et al. (2022).

To assess the counterfactual fairness of our proposed model, we manipulate the ratio of
sensitive attribute subgroups in each dataset by randomly altering node attributes. Specif-
ically, we randomly select 0%, 50%, or 100% of the nodes, setting their sensitive attribute
values to 1 and the rest to 0 . These perturbations generate counterfactual data based
on causal models across the entire graph, resulting in different proportions of sensitive at-
tribute subgroups. This process implicitly controls the distribution of sensitive attributes
in each node’s neighborhood. We estimate δCF by calculating the average rate at which

predicted labels flip due to these perturbations. Additionally, we compute R2
(
Ŷi, Ŝi

)
to

quantify how well Ŷi can be linearly predicted from a summary of the sensitive attributes
in node i ’s neighborhood. Here, Ŝi is derived from the sensitive attribute values of all
single-hop neighbors and the average value for node vi itself. The R2 measure thus reflects
the statistical dependency between Ŷi and Ŝi.

Implement details. Each dataset is randomly split into training (60%)/validation
(20%)/testing (20%) sets. Unless otherwise specified, hyperparameters are set as follows:
λ = 0.6, C = 2, λs = 0.4, β = 10, µ = 1e − 5, k = 20, B = 4. Learning rate l is set to
0.001, epochs are 1000, node representation dimension is 1024, and batch size is 100. The
experimental results are the average of ten repeated executions. Adam optimizer is used,
and the method is implemented using PyTorch.

Baseline. The proposed framework is compared with node representation learning
methods GCN without fairness constraints and state-of-the-art counterfactual fairness graph
representation learning method GEAR Ma et al. (2022), respectively, and the latest group
fairness graph neural network FairKGD Zhu et al. (2023). Besides, we also include a privacy-
preserving method LPGNNSajadmanesh and Gatica-Perez (2021).

5.3. Effectiveness of PCFGR

To answer RQ 1, we conducted comparative experiments between our proposed frame-
work PCFGR, and the current optimal counterfactual fair graph representation learning
framework based on graph data, GEAR. Their respective experimental results in terms of
predictive accuracy and fairness performance are shown in Table 1. In summary, the follow-
ing observations can be made: 1) The proposed PCFGR framework demonstrates prediction
performance comparable to state-of-the-art node representation learning methods and out-
performs GEAR in terms of prediction; 2) The PCFGR framework outperforms GEAR on
both fairness indicators δCF and R2. These two fairness metrics explicitly consider the
causal/statistical relationship between neighboring sensitive attributes and model predic-
tions, thus validating the effectiveness of PCFGR in mitigating neighbor bias. Additionally,
PCFGR performs well on other fairness metrics and aspects.

There are differences in the experimental results of PCFGR on the German dataset
at 10% and 90% sensitive attribute proportions. The main reasons are: a) the German
dataset is relatively small, so when only 10% of sensitive attributes are observable, there is
insufficient data for the sensitive attribute estimator, leading to differences in experimental

PCFGR and PCFGR\D

Table 1: Comparative experimental results under different sensitive attribute ratios in dif-
ferent datasets

Dataset Ratios Method Accuracy F1-score AUC Equality Parity δCF R2

Bail

10%
GEAR 80.30±4.81 74.45±4.76 86.54±3.64 2.70±1.62 2.85±1.64 1.95±0.40 3.41±0.90

PCFGR 80.92±3.38 75.27±3.06 87.33±1.99 3.19±2.14 2.71±2.34 1.84±0.33 3.24±0.48

30%
GEAR 80.85±5.20 74.91±5.24 87.13±4.01 2.49±2.02 4.35±2.35 1.97±0.45 4.34±1.35

PCFGR 82.13±6.27 76.59±7.08 87.28±5.09 3.14±1.22 2.62±2.51 1.39±0.51 3.69±1.00

50%
GEAR 79.85±6.52 74.23±7.25 85.98±4.92 3.17±2.77 2.67±2.75 2.10±0.63 3.59±1.20

PCFGR 81.30±4.45 75.90±4.25 87.42±2.29 2.77±0.60 2.64±2.16 1.12±0.16 3.44±1.16

70%
GEAR 81.18±5.02 75.47±5.66 87.10±4.20 2.43±3.19 2.99±2.31 1.51±0.36 3.77±1.04

PCFGR 82.45±3.75 76.55±3.50 87.99±1.89 3.60±1.88 3.30±3.19 1.33±0.38 3.61±1.24

90%
GEAR 82.13±4.54 76.46±4.87 88.02±3.38 2.86±2.24 3.48±2.54 1.37±0.28 3.96±1.37

PCFGR 83.08±4.76 77.78±5.02 89.54±3.26 3.51±2.57 3.46±2.81 1.20±0.21 3.81±1.06

German

10%
GEAR 66.27±4.25 76.98±4.76 62.66±4.08 11.46±6.79 8.55±5.98 2.31±0.83 1.77±1.38

PCFGR 66.13±4.06 75.93±4.72 63.66±3.23 8.54±2.59 8.30±0.70 2.49±1.31 1.42±0.34

30%
GEAR 65.47±5.63 75.01±6.47 63.84±2.58 13.02±10.52 12.69±10.59 4.98±1.75 3.41±3.23

PCFGR 68.68±4.71 78.99±4.96 63.45±4.17 9.99±4.63 10.14±6.01 3.24±0.72 2.29±0.89

50%
GEAR 60.67±2.49 68.33±2.55 63.68±3.22 15.82±7.85 19.98±11.05 2.27±1.32 5.56±5.00

PCFGR 61.47±2.62 68.97±1.77 63.74±2.77 15.64±8.26 20.50±4.72 2.13±1.73 5.09±2.46

70%
GEAR 61.07±1.05 68.71±1.44 64.90±2.41 16.94±10.26 13.22±9.66 2.31±1.72 6.26±4.11

PCFGR 61.07±2.07 68.79±1.68 64.25±3.35 14.64±8.61 19.95±9.05 1.64±0.28 5.58±4.19

90%
GEAR 62.27±1.86 69.59±1.74 65.79±2.52 17.96±9.83 24.63±9.82 2.62±1.09 7.24±5.32

PCFGR 61.20±1.82 68.69±0.91 64.77±3.63 18.35±9.78 23.86±9.96 2.44±0.13 7.27±5.72

Credit

10%
GEAR 81.32±0.41 75.55±3.46 87.23±2.67 3.28±1.92 2.85±1.84 1.59±0.32 3.85±1.78

PCFGR 81.62±2.38 76.37±3.26 87.45±2.54 3.44±2.34 2.91±2.14 1.44±0.26 3.74±1.38

30%
GEAR 82.35±3.20 75.93±2.44 87.34±2.88 3.49±1.89 3.35±2.24 1.34±0.38 3.86±1.25

PCFGR 83.43±3.17 76.59±3.81 87.98±3.19 3.57±1.59 3.13±2.73 1.16±0.39 3.59±1.07

50%
GEAR 82.95±3.52 77.13±2.35 87.56±2.78 3.57±2.47 3.26±2.75 1.10±0.63 3.57±1.19

PCFGR 83.50±2.45 77.90±2.15 88.42±1.19 3.68±1.98 3.19±2.35 0.92±0.21 3.44±1.16

70%
GEAR 83.58±3.02 77.93±2.65 88.37±2.50 3.73±2.24 3.39±2.13 0.98±0.26 3.46±1.18

PCFGR 84.45±3.75 78.95±3.25 89.69±1.47 3.85±1.68 3.42±2.41 0.89±0.34 3.35±1.15

90%
GEAR 84.31±3.45 78.32±2.47 91.67±2.58 3.86±2.44 3.73±2.24 0.87±0.28 3.34±1.09

PCFGR 85.18±2.66 80.78±3.12 92.34±2.16 3.98±2.34 3.61±2.31 0.71±0.31 3.11±0.95

results; b) Similarly, when 90% of sensitive attributes are observable, there is less missing
sensitive attributes, leading to overfitting of the sensitive attribute estimator, resulting in
differences in experimental results.

5.4. Effectiveness of PCFGR\D

To address RQ 2, we conducted comparative experiments involving GEAR, the node repre-
sentation learning method GCN without fairness constraints, the partially observed sensitive
attribute counterfactual fair graph representation learning method PCFGR, and the coun-
terfactual fair graph representation learning algorithm PCFGR\D with limited sensitive
attributes under differential privacy protection, and the latest research on group fairness
on graphs, FairGKD. The experimental results at a 70% sensitive attribute ratio and with
a fixed privacy budget are shown in Table 2, where the best results are highlighted in bold
and underlined.

The results in Table 2 show the most outstanding performance compared to other mod-
els, achieving the best results on the δCF metric. Although it slightly underperforms com-
pared to PCFGR in terms of the R2 metric, this also illustrates the bias introduced by
directly using sensitive attributes protected by differential privacy for graph representation
learning. The differential privacy adds noise to the original graph data, which affects the

Wang Wang Gu Bao

Table 2: Results of comparative experiment at 70% sensitive attribute ratio.
GCN FairGKD GEAR LPGNN PCFGR PCFGR\D

Accuracy 57.73±7.68 69.21±4.11 52.00±16.23 60.53±1.32 51.33±6.90 69.87±3.09

F1-score 63.35±13.00 70.53±3.46 50.32±31.49 68.18±0.48 49.95±13.33 80.21±3.29

auc roc 63.41±3.93 65.88±2.69 64.43±2.24 64.46±3.10 66.46±2.84 67.17±0.84

Equality 27.32±8.17 13.55±3.56 20.92±22.59 28.00±9.91 16.50±8.99 11.25±10.05

parity 30.72±8.82 21.33±2.79 22.53±23.48 31.89±9.87 19.70±9.70 19.04±10.46

δCF 64.00±14.99 Null 79.87±22.53 41.73±2.51 30.13±10.87 30.00±29.26

R2 10.75±5.95 Null 11.01±13.51 11.00±6.98 5.17±3.27 8.42±4.72

causal relationship between sensitive attributes and prediction outcomes, resulting in a de-
crease in R2. However, this does not necessarily imply that there is an absence of a causal
relationship between them.

5.5. Ablation Experiment

To demonstrate the importance of each part of the proposed framework, we specifically
conducted ablation studies for verification. In the ablation experiments, we removed two
major components from PCFGR\D and compared them with node representation learning
methods, GCN without fairness constraints, under the same parameter settings. We named
the versions without the sensitive attribute estimator and the denoised sensitive attribute
estimator as PCFGR w/o E and PCFGR w/o D, respectively. The other experiment setting
is the same as that of section 5.4. The experimental results are shown in Figure 3.

Figure 3: Results of ablation experiment at 70% sensitive attribute ratio.

From Figure 3, we find that PCFGR\D outperforms other models on most metrics.
This is because PCFGR\D restores the sensitive attributes that have been processed by
differential privacy protection, which leads to an increased correlation between its prediction
results and the sensitive attributes, i.e., an increase in R2. Additionally, the removal of
the sensitive attribute estimator or the denoised sensitive attribute estimator impacts the
learning effect of PCFGR\D.

PCFGR and PCFGR\D

5.6. Parameter sensitivity analysis

Figure 4: Parameter sensitivity analysis on German dataset.

To evaluate the model performance and stability changes of PCFGR under different
parameters, We conducted a parameter sensitivity analysis experiment on the following
hyperparameters, such as k, lambda, C, ϵ. The experimental results of different parameter
settings on the German dataset are shown in Figure 4.

As the privacy budget (ϵ) increases, the strength of privacy protection gradually de-
creases, allowing the estimator to better estimate sensitive attributes to guide bias removal.
When 0 ≤ ϵ < 1, both the δCF and R2 metrics gradually decrease, indicating an enhance-
ment in counterfactual fairness and a weakening causal relationship between prediction
results and sensitive attributes. When ϵ = 1, the experimental results achieve optimal
performance, as local differential privacy protection algorithms generally perform best at
ϵ = 1. When ϵ > 1, although increasing the recovery of sensitive attributes leads to an
improvement in counterfactual fairness, the algorithm considers scenarios under high pri-
vacy strength, resulting in an overall decrease in fairness despite the fairness improvement
operations.

Unlike ϵ, as λ increases, the general trend for both δCF and R2 is a gradual decrease.
What differs between them is that the decrease in δCF is initially rapid and then gradually
slows down; the trend for R2 is in contrast to that of δCF , with R2 decreasing slowly at
first and then speeding up. As other parameters (C, k) increase, the trends for δCF and R2

are roughly similar, with δCF gradually becoming smaller and R2 gradually increasing.

Wang Wang Gu Bao

6. Related Work

FairAGG Zhu et al. (2024) promotes group fairness by limiting the influence of sensitive
attributes during the aggregation. SRGNN Zhang et al. (2024) mitigates biases by rebal-
ancing the graph structure before learning. However, they focus on group fairness rather
than counterfactual fairness. NIFTY Agarwal et al. (2021) generates counterfactuals by
perturbing nodes’ sensitive attributes and edges. It ensures the learned representations
from these counterfactuals closely resemble those from the original graph, thereby learning
fair and robust node representations. GEAR Ma et al. (2022) attains graph counterfactual
fairness using counterfactual data augmentation. It generates counterfactuals by perturbing
the sensitive attributes of each node and its neighbors. It eliminates the causal influence of
sensitive attributes by minimizing the difference between node representations learned from
the original graph and those from the counterfactuals. CAP Guo et al. (2023) selects coun-
terfactuals directly from the training data. By utilizing these authentic counterfactuals, it
learns fair node representations for node classification tasks.

However, these counterfactually fair graph neural network methods assume that sensitive
attributes are fully observable, which is not the case in reality. Besides, they overlook the
privacy of sensitive attributes.

7. Conclusion

In this paper, we propose a framework named PCFGR which can promote counterfac-
tual fairness while the sensitive attributes are limited. Specifically, in PCFGR, the sen-
sitive attribute estimator is first used to predict the missing sensitive attributes based on
the observed partial sensitive attributes and non-sensitive attributes. Subsequently, coun-
terfactual fair graph representation learning for partially observed sensitive attributes is
achieved. To protect the privacy of sensitive attributes, we further propose a framework
called PCFGR\D. PCFGR\D employs differential privacy protection to perturb the sen-
sitive attributes and train the estimator using forward correction loss to predict accurate
sensitive attributes. With sufficient and accurate sensitive attributes, we learn the repre-
sentation that aligns with counterfactual fairness.

Acknowledgments

This paper is supported by the National Natural Science Foundation of China (Grant
No. U22A2099, 62336003) and the Guangxi Natural Science Foundation under Grant
2021GXNSFBA196054.

References

Chirag Agarwal, Himabindu Lakkaraju, and Marinka Zitnik. Towards a unified framework
for fair and stable graph representation learning. In Uncertainty in Artificial Intelligence,
pages 2114–2124. PMLR, 2021.

Silvia Chiappa. Path-specific counterfactual fairness. In Proceedings of the AAAI conference
on artificial intelligence, volume 33, pages 7801–7808, 2019.

PCFGR and PCFGR\D

Enyan Dai and Suhang Wang. Say no to the discrimination: Learning fair graph neural
networks with limited sensitive attribute information. In Proceedings of the 14th ACM
International Conference on Web Search and Data Mining, pages 680–688, 2021.

Pablo Gainza, Freyr Sverrisson, Frederico Monti, Emanuele Rodola, D Boscaini, Michael M
Bronstein, and Bruno E Correia. Deciphering interaction fingerprints from protein molec-
ular surfaces using geometric deep learning. Nature Methods, 17(2):184–192, 2020.

Zhimeng Guo, Jialiang Li, Teng Xiao, Yao Ma, and Suhang Wang. Towards fair graph
neural networks via graph counterfactual. In Proceedings of the 32nd ACM International
Conference on Information and Knowledge Management, pages 669–678. ACM, 2023.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

Hui Hu, Lu Cheng, Jayden Parker Vap, and Mike Borowczak. Learning privacy-preserving
graph convolutional network with partially observed sensitive attributes. In Proceedings
of the ACM Web Conference, pages 3552–3561. ACM, 2022.

Yizhu Jiao, Yun Xiong, Jiawei Zhang, Yao Zhang, Tianqi Zhang, and Yangyong Zhu. Sub-
graph contrast for scalable self-supervised graph representation learning. In 2020 IEEE
international conference on data mining (ICDM), pages 222–231. IEEE, 2020.

Guangyin Jin, Qi Wang, Cunchao Zhu, Yanghe Feng, Jincai Huang, and Jiangping Zhou.
Addressing crime situation forecasting task with temporal graph convolutional neural
network approach. In 2020 12th International Conference on Measuring Technology and
Mechatronics Automation (ICMTMA), pages 474–478. IEEE, 2020.

Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness.
Advances in neural information processing systems, 30, 2017.

Jing Ma, Ruocheng Guo, Mengting Wan, Longqi Yang, Aidong Zhang, and Jundong Li.
Learning fair node representations with graph counterfactual fairness. In Proceedings
of the Fifteenth ACM International Conference on Web Search and Data Mining, pages
695–703, 2022.

Deisy Morselli Gysi, Ítalo Do Valle, Marinka Zitnik, Asher Ameli, Xiao Gan, Onur Varol,
Susan Dina Ghiassian, JJ Patten, Robert A Davey, Joseph Loscalzo, et al. Network
medicine framework for identifying drug-repurposing opportunities for covid-19. Proceed-
ings of the National Academy of Sciences, 118(19):e2025581118, 2021.

Tahleen Rahman, Bartlomiej Surma, Michael Backes, and Yang Zhang. Fairwalk: Towards
fair graph embedding. 2019.

Sina Sajadmanesh and Daniel Gatica-Perez. Locally private graph neural networks. In
Yongdae Kim, Jong Kim, Giovanni Vigna, and Elaine Shi, editors, CCS ’21: 2021
ACM SIGSAC Conference on Computer and Communications Security, pages 2130–2145.
ACM, 2021.

Wang Wang Gu Bao

Changjian Shui, Boyu Wang, and Christian Gagné. On the benefits of representation
regularization in invariance based domain generalization. Machine Learning, 111(3):895–
915, 2022.

Marijn van Knippenberg, Mike Holenderski, and Vlado Menkovski. Time-constrained multi-
agent path finding in non-lattice graphs with deep reinforcement learning. In Asian
Conference on Machine Learning, pages 1317–1332. PMLR, 2021.

Zhichun Wang, Qingsong Lv, Xiaohan Lan, and Yu Zhang. Cross-lingual knowledge graph
alignment via graph convolutional networks. In Proceedings of the 2018 conference on
empirical methods in natural language processing, pages 349–357, 2018.

Yongkai Wu, Lu Zhang, and Xintao Wu. Counterfactual fairness: Unidentification, bound
and algorithm. In Proceedings of the twenty-eighth international joint conference on
Artificial Intelligence, 2019.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip.
A comprehensive survey on graph neural networks. IEEE transactions on neural networks
and learning systems, 32(1):4–24, 2020.

Liang Yao, Chengsheng Mao, and Yuan Luo. Graph convolutional networks for text clas-
sification. In Proceedings of the AAAI conference on artificial intelligence, volume 33,
pages 7370–7377, 2019.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In
Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery
& data mining, pages 974–983, 2018.

Huixin Zhan, Kun Zhang, Chenyi Hu, and Victor Sheng. k̂2-gnn: Multiple users’ com-
ments integration with probabilistic k-hop knowledge graph neural networks. In Asian
conference on machine learning, pages 1477–1492. PMLR, 2021.

Guixian Zhang, Debo Cheng, Guan Yuan, and Shichao Zhang. Learning fair representations
via rebalancing graph structure. Inf. Process. Manag., 61(1):103570, 2024. doi: 10.1016/
J.IPM.2023.103570. URL https://doi.org/10.1016/j.ipm.2023.103570.

Tianxiang Zhao, Xianfeng Tang, Xiang Zhang, and Suhang Wang. Semi-supervised graph-
to-graph translation. In Proceedings of the 29th ACM International Conference on In-
formation & Knowledge Management, pages 1863–1872, 2020.

Yuchang Zhu, Jintang Li, Liang Chen, and Zibin Zheng. The devil is in the data:
Learning fair graph neural networks via partial knowledge distillation. arXiv preprint
arXiv:2311.17373, 2023.

Yuchang Zhu, Jintang Li, Liang Chen, and Zibin Zheng. Fairagg: Toward fair graph neural
networks via fair aggregation. IEEE Transactions on Computational Social Systems,
pages 1–12, 2024. doi: 10.1109/TCSS.2024.3385539.

https://doi.org/10.1016/j.ipm.2023.103570

	Introduce
	Preliminaries
	PCFGR
	Overview
	Sensitive Attribute Estimator
	Counterfactual graph representation learning
	Subgraph generation
	Counterfactual amplification
	Fair representation learning

	Utility module
	Overall training algorithm for PCFGR

	PCFGRD
	Overall training algorithm

	Experiment
	Dataset
	Experimental setup
	Effectiveness of PCFGR
	Effectiveness of PCFGR\D
	Ablation Experiment
	Parameter sensitivity analysis

	Related Work
	Conclusion

