
Under review as submission to TMLR

M4GN: Micro–Meso–Macro Mesh-based Graph Network
for Dynamic Simulations

Anonymous authors
Paper under double-blind review

Abstract

Dynamic systems often exhibit intricate interactions that span from localized, fine-scale
processes to broad, global effects. Accurately modeling these systems therefore demands
methods that account for both localized dynamics and extended global dependencies while
remaining computationally tractable. However, existing surrogate models often struggle
to balance precision and scalability, especially for large datasets, complex mesh topologies,
and long-range effects. In this paper, we introduce M4GN, a physics-informed hierarchical
model designed to address the aforementioned challenges by aligning its framework with the
inherent behaviors in dynamic simulations. M4GN comprises three stages: a micro-level
stage for fine-grained local dynamics, a macro-level stage for far-reaching global interactions,
and a meso-level stage that facilitates effective information exchange between these levels by
aligning mesh hierarchy with physical properties. Experimental results show that M4GN
achieves superior accuracy, excels at modeling long-range interactions, and maintains high
computational efficiency. Moreover, M4GN generalizes well to larger physical domains,
making it particularly suitable for complex, large-scale dynamic simulations. All code and
data will be released upon acceptance.

1 Introduction

Figure 1: Visualization of multi-scale dynam-
ics—encompassing micro-, meso-, and macro-level in-
teractions—during a solid mechanics simulation from
time t to t + 1. In this scenario, a rigid object is in-
teracting with a hyperelastic beam that is anchored to
the ground, resulting in deformation.

Numerically solving partial differential equations
(PDEs) to model dynamic systems is fundamental in
science and engineering but is often computationally
intensive, especially in time-sensitive applications re-
quiring rapid inference. This has prompted increased
attention across various scientific disciplines, rang-
ing from solid mechanics (Haghighat et al., 2021) to
quantum physics (Sellier et al., 2019), towards the
adoption of learning-based surrogate models (Sun
et al., 2020). These models aim to expedite numerical
simulations, addressing the computational challenges
associated with traditional solvers.

Among these surrogate models, mesh-based Graph
Neural Networks (GNNs) (Belbute-Peres et al., 2020;
Pfaff et al., 2020) have shown promising results in
simulating dynamic systems on unstructured meshes
but often struggle with accuracy and efficiency on
large or complex datasets. Their reliance on deep
message-passing can lead to over-smoothing (Chen et al., 2020; Yang et al., 2020) and increased computational
costs (Fortunato et al., 2022; Cao et al., 2023). To address these issues, recent techniques propose constructing
coarser subgraphs via spatial proximity (Liu et al., 2021; Janny et al., 2023), coarsening (Fortunato et al.,
2022; Cao et al., 2023), or random pooling (Li et al., 2020). However, these approaches present significant
drawbacks: they may discard essential mesh structures, causing distorted local connectivity and diminished

1

Under review as submission to TMLR

mesh quality; neglect crucial physical properties, resulting in physically inconsistent outcomes; or demand
extensive manual intervention, which reduces scalability. These limitations highlight the need for a surrogate
model that not only mitigates over-smoothing and high computational overhead but also preserves mesh and
physical properties by accounting for behaviors of real-world dynamic systems.

Dynamic systems naturally unfold across multiple scales, progressing from localized (micro-level) interactions
through transitional (meso-level) processes to emergent (macro-level) behavior (see Figure 1). Examples
span ocean waves (Booij & Holthuijsen, 1987), atmospheric convection (Emanuel, 1994), structural vibrations
(Fahy, 2007), and seismic waves (Kennett, 2009), all of which illustrate how fine-scale dynamics ultimately
shape large-scale phenomena. At the micro-level, small-scale elements—such as currents within fluid flows or
microstructural defects in materials—generate localized correlations that can significantly influence broader
patterns (Li et al., 2009; Cubuk et al., 2017; Wiewel et al., 2019). As these localized effects propagate
and synchronize at the meso-level, clusters or segments of interacting components form intermediate-scale
structures that link fine-grained details to overarching system trends (Svedin et al., 2005). Over time,
these meso-level interactions coalesce into cohesive, system-wide dynamics at the macro-level, reflecting
robust emergent properties (O’Connor, 2020). Motivated by these hierarchical dynamics, we introduce the
Micro–Meso–Macro Mesh-based Graph Network (M4GN), an innovative framework designed to capture
multi-scale behaviors in dynamic simulations. By aligning with the intrinsic architecture of real-world systems,
M4GN outperforms state-of-the-art methods across multiple evaluation metrics on both solid and fluid
datasets. Main contributions of this paper are summarized as follows:

• We propose a novel hierarchical framework that incorporates a micro-level stage for fine-grained
local dynamics, a macro-level stage for far-reaching global interactions, and a meso-level stage that
enables effective information exchange between these levels by aligning mesh hierarchy with physical
properties.

• We demonstrate that M4GN achieves high prediction accuracy and superior mesh quality while
maintaining computational efficiency, effectively addressing the common trade-off present in existing
methods.

• We present the DeformingBeam dataset and its scaled-up version, providing a comprehensive
framework for evaluating mesh-based simulation models; using this dataset, we show that M4GN
demonstrates strong scalability to larger and more complex domains.

2 Related Works

2.1 GNNs for Dynamic System Simulation

The application of Graph Neural Networks (GNN) for dynamic system prediction is an emerging research area
in scientific machine learning due to their versatility and effectiveness (Mrowca et al., 2018; Belbute-Peres
et al., 2020; Rubanova et al., 2021). Unlike image-based learning methods such as Convolutional Neural
Networks (CNNs) (Um et al., 2018; Ummenhofer et al., 2019), GNNs can directly handle unstructured
simulation meshes, making them well-suited for simulating systems with complex domain boundaries while
ensuring spatial invariance and locality (Battaglia et al., 2018; Wu et al., 2020). The initial application of
GNNs to physics-based simulations focused on deformable solids and fluids, with MeshGraphNets (MGN)
being a pioneering work in this area (Pfaff et al., 2020). Building on this foundation, various MGN variants
have been proposed: integrating GNNs with Physics-Informed Neural Networks (PINNs) (Gao et al., 2022),
enabling long-term predictions by combining GraphAutoEncoder (GAE) and Transformer models (Han et al.,
2022), and directly predicting steady states through multi-layer readouts (Harsch & Riedelbauch, 2021).

2.2 Hierarchical Models in GNNs for Long-range Dynamic Propagation

To mitigate the over-smoothing issue (Li et al., 2018) in GNNs when applied to large or complex datasets,
several hierarchical models have been introduced recently. These hierarchical models can be categorized into
two types. The first type includes dual-level structures. For instance, GMR-GMUS (Han et al., 2022) utilizes

2

Under review as submission to TMLR

a pooling method to select pivotal nodes through uniform sampling. Similarly, the EAGLE (Janny et al.,
2023) employs a clustering-based pooling method along with transformer mechanism, showing promising
performance in fluid dynamics. MS-MGN (Fortunato et al., 2022) proposes a dual-layer framework that
passes messages at both fine and coarse resolutions for mesh-based simulation learning. The second type
encompasses multi-level structures. One such model, BSMS-GNN (Cao et al., 2023), analyzes limitations of
existing pooling strategies and introduces a bi-stride pooling method using breadth-first search (BFS) to
select nodes. (Yu et al., 2023) propose a similar hierarchical structure as (Cao et al., 2023) but with two
different transformers to enable long-range interactions.

Figure 2: Micro-Meso-Macro Mesh-based Graph Network (M4GN)

3 Methodology

This section introduces the M4GN framework (see Figure 2), beginning with a concise formulation of the
problem (Section 3.1). The framework itself is divided into three key stages. First, Micro-level Information
Exchange (Section 3.2) focuses on fine-grained local dynamics and how individual nodes interact within the
mesh. Next, Meso-level Information Alignment (Section 3.3) explains the process of synchronizing mesh
structures with the underlying physical properties. Finally, Macro-level Information Exchange (Section 3.4)
addresses large-scale global interactions that dictate emergent system behaviors.

3.1 Problem Definition

Let G = (V, E) be a mesh graph with V being the set of nodes and E being the set of edges. The graph has
N = |V| nodes and E = |E| edges, with adjacency matrix A ∈ RN×N represents graph connectivity. The
dynamic system simulation task is to learn a forward model of the dynamic quantities of the mesh graph at
next time step Ĝt+1 given the current mesh graph Gt and (optionally) a history of previous mesh graphs
{Gt−1, . . . , Gt−h}. Finally, the rollout trajectory can be generated through the simulator iteratively based
on the previous prediction: Gt, Ĝt+1, . . . , Ĝt+T , where T is the total simulation steps. In this paper, the
proposed model (M4GN) can simulate both Eulerian and Lagrangian systems (Bontempi & Faravelli, 1998).
In Eulerian systems, which model the evolution of continuous fields like velocity over a fixed mesh, the graph
E includes only mesh-related edges EM . Conversely, in Lagrangian systems, where the mesh represents a

3

Under review as submission to TMLR

moving and deforming surface or volume, additional world edges EW are incorporated into the graph. These
edges enable the model to learn external dynamics such as collision and contact. The node features of node i
are denoted by xi, while the features for an edge between node i and j are indicated by eij .

3.2 Micro-level Information Exchange

In the micro-level information exchange stage, each node engages in the exchange of information with its
neighboring nodes. This process holds particular significance in dynamic systems, where the behavior of
adjacent nodes is closely intertwined (Booij & Holthuijsen, 1987; Emanuel, 1994; Fahy, 2007; Kennett, 2009).
Furthermore, the micro-level exchange module serves a crucial role in addressing discontinuities that may
arise at the boundaries of adjacent mesh segments (Lai et al., 2009). By prioritizing micro-level information
exchange, we effectively mitigate discontinuities introduced by subsequent macro-level operations.

We adopt the Encoder-Process-Decoder (EPD) (Pfaff et al., 2020) network structure for our micro-level
information exchange as it has shown superior performance in dealing with mesh-based graphs. For a given
graph Gt at time t, the model begins with extracting node and edge features through two separate Multi-Layer
Perceptrons (MLPs):

h0
i,t = fn(xi,t), hM,0

ij,t = fM
e (eM

ij,t), hW,0
ij,t = fW

e (eW
ij,t), (1)

where xi,t, eM
ij,t ∈ EM , and eW

ij,t ∈ EW denote node feature, mesh edge feature, and world edge feature vector
at time t, respectively. For Lagrangian systems, world edges are created by spatial proximity, where for a
fixed radius rW , a world edge is added between nodes i and j when |xi − xj | < rW , excluding node pairs
already connected in the mesh. The outputs of two MLPs (i.e. fn and fe) for node and edge are denoted
as h0

i,t and h0
ij,t, respectively. Then, a L-step message passing (MP) is performed such that each node can

receive and aggregate information from neighboring nodes within L steps of edge traversing. For each MP
from 1 to L, the node and edge representations are updated as:

hl
i,t = f l

n(hl−1
i,t ,

∑
j∈Adj(i)

hM,l−1
ij,t ,

∑
j∈Adj(i)

hW,l−1
ij,t), (2)

hM,l
ij,t = f l

e(hM,l−1
ij,t , hl−1

i,t , hl−1
j,t), (3)

hW,l
ij,t = f l

e(hW,l−1
ij,t , hl−1

i,t , hl−1
j,t), (4)

where Adj(i) denotes all adjacent nodes of node i. Up until this point, the node and edge information of the
graph Gt are updated. Additionally, we implement a technique from (Godwin et al., 2021), which involves
corrupting the input graph with noise and adding a noise-correcting node-level loss. We evaluate the impact
of varying the number of message passing steps during micro-level information exchange step, where details
can be found in Appendix D.1.

3.3 Meso-level Information Alignment

In the meso-level information alignment stage, the model facilitates interactions among clusters of nodes,
capturing intermediate-scale structures that bridge local and global dynamics. This level is crucial for
representing transitional processes where groups of interacting components form coherent substructures
within the mesh.

3.3.1 Mathematical Notation

We define the segmentation policy π(G) = fs(G, I), where the segmentation function fs takes the input graph
G and prior physical information I (e.g., boundary conditions, material properties), and outputs a set of
graph segments {S0

1 , S0
2 . . . , S0

K}. The superscript 0 denotes non-overlapping segmentation. For each segment
Sk = (VSk

, ESk
), the set of nodes VSk

⊆ V and ESk
⊆ E are subsets of the original graph G. The union of all

segments reconstructs the original graph, such that V = ∪V0
Sk

and E = ∪E0
Sk

.

In some cases, it may be beneficial to allow for overlapping segments, where nodes in V can belong to
more than one segment. This overlap helps create smoother transitions between segments and reduces

4

Under review as submission to TMLR

discontinuities at segment boundaries. We define the overlap amount by δ ∈ N, with δ = 0 representing
no overlap. For δ > 0, the node set Vδ

Sk
is defined recursively as as Vδ

Sk
= Vδ−1

Sk
∪ {Adj(i) | i ∈ Vδ−1

Sk
}. To

simplify the presentation, we disregard the superscript δ in the remainder of this paper. The effect of adding
overlapping segments is discussed in our ablation study, as shown in Table 4.

3.3.2 Modal Decomposition

Modal decomposition is a fundamental technique for extracting dominant spatiotemporal patterns, or modes,
from complex physical systems (Fu & He, 2001; Schmid et al., 2011; Taira et al., 2017). Each mode encapsulates
coherent behavior—such as a characteristic deformation shape or flow structure—allowing a reduced but
meaningful representation of the underlying dynamics. In complex physical simulations, these dominant
modes can effectively guide downstream tasks such as mesh segmentation, where the domain is subdivided
based on physical coherence (Yang et al., 2016; Huang et al., 2009). In this work, we employ two different
modal decomposition approaches to address solid and fluid problems separately, given their distinct physical
behaviors (Bathe, 2001). The pseudo code of the modal decomposition module can be found in Algorithm 1.

Structural Modal Analysis: For solids, the decomposition naturally arises from the mass–stiffness
relationship in elastodynamics, capturing genuine dynamic displacements (Andersen, 2006). Let K be the
global stiffness matrix and M the global mass matrix arising from finite element assembly. The free vibration
modes of a structure are obtained by solving the generalized eigenvalue problem:

K ϕ = λ M ϕ , (5)

where λ represents the square of the natural frequency, and ϕ = (ϕ1, ϕ2, . . . , ϕdim) is the corresponding
structural modes, whose dimension (dim) matches the number of displacement components (e.g., 2D or 3D).
Physically, each mode shape indicates a fundamental deformation pattern under vibrational motion (Fu &
He, 2001; Wilson, 2002), which tied to the solid’s geometry, boundary conditions, and material parameters.
In practice, it is typical to selects the first m modes (λ1 ≤ λ2 ≤ · · · ≤ λm) to construct an m-dimensional
feature at each mesh node i: fmd

i =
(
ϕ1(i), ϕ2(i), . . . , ϕm(i)

)
.

Laplacian Eigenfunctions: In fluid contexts, particularly when lacking multiple snapshots or a steady
base flow (Wang et al., 2024), Laplacian eigenfunctions (Grebenkov & Nguyen, 2013) are used to capture
geometry- and boundary-driven harmonic modes by solving:

−∇2ϕ = λ ϕ, subject to boundary constraints, (6)

yielding harmonic modes ϕ1, . . . , ϕm. These modes serve as a practical proxy for flow-related structures,
providing a minimal but informative decomposition that respects the domain shape and boundary conditions
(De Witt et al., 2012; Taira et al., 2017). Similar to the solid case, each node i in the fluid mesh is associated
with a feature vector:fmd

i =
(
ϕ1(i), ϕ2(i), . . . , ϕm(i)

)
.

3.3.3 Hybrid Segmentation

As discussed in Section 1, to avoid the uninterpretable and potentially erroneous dynamics that coarsened
graphs or added edges might introduce, we propose preserving the original mesh structure and facilitating
long-range information exchange through communication between segmented mesh graphs. By leveraging
dominant modes identified in the modal decomposition module (Section 3.3.2), we ensure these segments
remain physically coherent and well-structured for effective communication. Grouping elements with similar
physical properties enhances model convergence by minimizing discontinuities within each segment (Diao
et al., 2023), while grouping nodes with similar behaviors streamlines learning and ensures uniform handling
of similar interactions (Dolean et al., 2015).

Overview: Traditional graph segmentation methods (Alpert & Yao, 1995; Delingette, 1999) often prioritize
geometric properties and computational efficiency over underlying physical attributes. Conversely, superpixel
approaches (Veksler et al., 2010; Achanta et al., 2012) group pixels based on user-defined similarity measures
but rely on careful cluster-center initialization to maintain segmentation quality. To merge the strengths of
both, we apply a graph-based method (fgb) for initial mesh segmentation and refine it using a superpixel-based

5

Under review as submission to TMLR

method (fsb), guided by modal decomposition features. This hybrid approach offers efficient geometric
partitioning alongside adaptive, feature-based refinement, producing high-quality mesh segments adaptable
to diverse dynamic systems.

Detailed Methodology: In the hybrid segmentation module, we first use METIS (Karypis & Kumar,
1998) for initial mesh segmentation due to its great balance of partition quality and speed. Formally,
given a graph G, the partition function fgb will split it into K non-overlapped mesh-segment graphs:
{S1, . . . , SK | Si ∩Sj = ∅,∀i ̸= j} = fgb(G). Then, we apply SLIC (Achanta et al., 2012), the state-of-the-art
superpixel-based clustering methods, to these mesh segments to iteratively update the segmentation centroids
{C1, . . . , CK} and corresponding node assignments using information obtained from modal decomposition. It
is worth to note that standard modal decomposition does not account for external obstacles (Fu & He, 2001).
Therefore, in models with moving rigid objects, these information will need to be incorporated separately.

For node i in graph G, we represent it by its spatial coordinates xi, features related to rigid object or obstacle
fobs

i , and features obtained from modal decomposition fmd
i . For a given mesh segment Sk containing |VSk

|
nodes, we define its centroid Ck as its mean value along the features:

Ck = [xCk
, fobs

Ck
, fmd

Ck
]T = 1

|VSk
|

∑
i∈VSk

[xi, fobs
i , fmd

i]T . (7)

Within each iteration, we improve the mesh segmentation by minimizing a distance measure that considers
both physical similarity and spatial proximity. The distance measure d(i, Ck) between a node i ∈ V and a
segment’s centroid Ck is defined as:

d(i, Ck) = ∥fobs
i − fobs

Ck
∥+ ∥fmd

i − fmd
Ck
∥+ τ∥xi − xCk

∥, (8)

where τ is used to control the compactness of a mesh segment.

The pseudo code of the hybrid segmentation module can be found in Algorithm 2. In Appendix B.4, we
present a comprehensive comparison of various segmentation methods and their variants based on different
distance measures. Additionally, we evaluate the impact of varying the number of mesh segments on model
performance in Appendix D.3 and Appendix E.2. We also introduce several metrics to measure quality of
different mesh segmentation, specifically to understand the intra-segment and inter-segment characteristics,
which can be found in Appendix C.3

3.4 Macro-level Information Exchange

At the macro-level information exchange stage, the model captures long-range dependencies and global
interactions that govern the emergent behavior of the entire system. This stage is essential for understanding
large-scale trends and patterns that arise from the collective dynamics of the system’s components (Svedin
et al., 2005). The macro-level module aggregates information from the meso-level, allowing the model to
synthesize comprehensive system-wide insights and make predictions that reflect the overall state of the
dynamic system.

3.4.1 Mesh Segment Feature Extraction

Segment Encoding (SE) – In order to extract a global feature for each mesh segment, we perform average
pooling on all node vectors in Sk and apply a MLP (fs) to get the fixed-sized segment embedding:

hSk,t = fs(1
|VSk
|

∑
i∈VSk

hL
i,t). (9)

Position Encoding (PE) – As dynamic effect propagates continuously over mesh domains, knowing relative
location among segments could provide extra information for next-step macro-level information exchange and
increase expressivity of the network. Mathematically, for each pair of mesh segment graph, {Si, Sj}, their

6

Under review as submission to TMLR

relative positional information can be obtained through segment-level adjacency matrix AK ∈ RK×K :

AK
SiSj

= |VSi
∩ VSj

| = Cut(VSi
,VSj

) =
∑

m∈VSi

∑
n∈VSj

Amn, (10)

where Cut(·) is a graph operator that counts the number of connection edges between node clusters in mesh
segment graph Si and Sj . We follow the strategy in (Rampášek et al., 2022) that uses random-walk structural
encoding (RWSE) (Dwivedi et al., 2021) for PE calculation. Then the PE for the k-th segment, denoted as
pSk,t, is processed through an MLP layer (fsp) and then added to update the SE from Eq (9) as follows:
hSk,t ← hSk,t + fsp(pSk,t).

We can further enhance the network’s expressivity by adding absolute PE to the graph nodes. We use an
MLP (fnp) to process each node’s PE (pi,t), calculated with a similar approach as segment level, and add
it to the input node feature. Thus, Eq (1) becomes h0

i,t = fn(xi,t + fnp(pi,t)). By incorporating node PE
directly into the input features, these features participate in the micro-level information exchange described
in Section 3.2, potentially improving the continuity of the extracted mesh segment features. Table 5 presents
ablation studies show how adding or omitting PE affects prediction results.

3.4.2 Mesh Segment Transformer

We construct a fully connected mesh segment graph, where the i-th mesh segment feature is represented by
hSi

. Note that since the transformer operates on mesh segments rather than individual mesh nodes, and the
total number of mesh segments (K) is significantly smaller than the total number of mesh nodes (N), the
computational cost of our transformer is substantially reduced compared to a traditional graph transformer
that operates on graph nodes (i.e. O(K2)≪ O(N2)). The l-th block of the mesh segment transformer layer
is defined as follows:

ak,l
SiSj

= softmaxSj

(Qk,l
h LN(hl

Si
) ·Kk,l

h LN(hl
Sj

)
√

dh

)
, (11)

h̄l
Si

=∥H
k=1

K∑
j=1

ak,l
SiSj

(Vk,l
h LN(hl

Sj
)), (12)

hl+1
Si

= hl
Si

+ Ol
hh̄l

Si
+ FFNl

h(LN(hl
Si

+ Ol
hh̄l

Si
)), (13)

where ak,l
SiSj

is self-attention weight between Si and Sj . Qk,l
h , Kk,l

h , Vk,l
h ∈ Rdh×d are trainable parameters,

and Ol
h ∈ Rd×d is the learned output project matrix. k = 1 to H denotes the number of attention heads,

and ∥ denotes concatenation. dh is the dimension of mesh segment feature for each head, and d is the input
and output dimension. We adopt a Pre-Layer Norm architecture (Xiong et al., 2020), which is denoted as
LN(·), and the point-wise Feed Forward Network is represented as FFN(·). The mesh segment transformer
module facilitates information exchange among all mesh segments, updating the feature of each segment hSi

after passing through LS mesh segment transformer blocks.

3.4.3 Mesh Segment Feature Dispatch and Training

The mesh segment feature dispatch module (as shown in Figure 2) integrates information obtained from both
macro-level and micro-level exchanges. Specifically, the final feature for node i at time step t is updated as
hi,t ← [hi,t, hSi,t] where i ∈ VSi

. This ensures that each node incorporates information from both neighboring
mesh nodes and spatially distant, yet correlated regions. Finally, we train our dynamics model by supervising
on the per-node output features x̂i,t+1, produced by feeding hi,t into a MLP-based decoder, using a L2 loss
between x̂i,t+1 and the corresponding ground truth values xi,t+1.

7

Under review as submission to TMLR

MGN

BSMS

EAGLE

M4GN
(ours)

(b)(a)
t = 20 t = 200 t = 600 t = 20 t = 100 t = 200 t = 300

High ErrorLow Error
0 0.1 0.2

High ErrorLow Error
8e-44e-40

t = 50 t = 100 t = 300

EAGLE

EAGLE

M4GN
(ours)

M4GN
(ours)

Low Error High Error

Figure 3: (a) Comparison of prediction results across different models, with each node in the plots color-coded
according to its RMSE error over t-step rollouts. Result shows that M4GN achieves notably lower RMSE
errors in areas where other methods struggle, particularly at later time steps and in regions further from the
inlet or contact point; (b) Visualization of how segmentation aligns with system dynamics, where meshes
are colored based on the average prediction error within each segment. Our approach consistently produces
uniform segment colors across time steps, demonstrating that nodes within each segment exhibit similar
dynamic behaviors and that the segments maintain high continuity.

Table 1: Comparison of results with state-of-the-art methods across three datasets, where each model is
trained independently for each dataset. Prediction accuracy is evaluated using Root Mean Square Error
(RMSE), with the output being the 2D velocity field for CylinderFlow and the 3D position for DeformingBeam
and DeformingPlate. Errors are reported for 1-step rollout, 50-step rollouts, and the entire trajectory. Mesh
quality is assessed using four different metrics. Results are averaged over three experiments with different
random seeds and presented as mean and standard deviation.

Mesh Quality Metrics ↓ Prediction Error Metrics ↓

Dataset Model GFh

(×10−3)
GFc

(×10−6)
MC

(×10−3)
AR

(×10−3)
RMSE-1
(×10−5)

RMSE-50
(×10−4)

RMSE-all
(×10−4)

Cylinder
Flow

GCN - - - - 764 ± 32 425 ± 82 1887 ± 358
g-U-Net - - - - 423 ± 4 199 ± 37 843 ± 141
MGN - - - - 274 ± 15 64.4 ± 3.4 481 ± 53
BSMS-GNN - - - - 202 ± 24 280 ± 9 1373 ± 90
EAGLE - - - - 507 ± 25 71.5 ± 3.2 583± 29
M4GN (Ours) - - - - 320 ± 29 63.6 ± 2.6 372 ± 27

Deforming
Plate

GCN 24.0 ± 0.6 323 ± 4 11.0 ± 0.3 9.33 ± 0.57 34.8 ± 0.6 26.1 ± 0.1 169 ± 1
g-U-Net 36.1 ± 8.5 452± 125 20.1 ± 0.5 12.4 ± 4.3 41.2 ± 0.2 30.4 ± 0.8 179 ± 7
MGN 12.7 ± 0.9 248 ± 12 9.25 ± 0.39 5.34 ±0.26 22.8 ± 0.2 20.0 ± 0.4 147 ± 3
BSMS-GNN 23.8 ± 2.6 170 ± 13 18.3 ± 4.4 15.4 ± 5.9 30.3 ± 5.6 23.7 ± 3.5 118 ± 4
EAGLE 6.75 ± 0.8 41.1 ± 2.6 5.56 ± 0.12 3.31 ± 0.04 36.4 ± 5.2 5.63 ± 1.7 38.7 ± 1.8
M4GN (Ours) 4.29 ± 0.07 7.05 ± 1.05 4.82 ± 0.06 2.67 ± 0.06 26.7 ± 0.5 3.03 ± 0.16 26.5 ± 2.4

Deforming
Beam

GCN 4.91 ± 0.36 3.53 ± 0.51 54.8 ± 8.2 69.5 ± 3.8 7.25 ± 0.12 5.08 ± 0.11 30.7 ± 4.1
g-U-Net 4.91 ± 0.50 3.55 ± 0.73 34.7 ± 1.8 31.5 ± 1.2 7.28 ± 0.39 5.09 ± 0.23 31.7 ± 4.0
MGN 0.82 ± 0.04 0.12 ± 0.01 16.9 ± 0.1 7.43 ± 0.10 4.43± 0.08 2.41 ± 0.16 4.72 ± 0.27
BSMS-GNN 0.99 ± 0.03 0.21 ± 0.04 32.5 ± 0.5 16.1 ± 0.3 6.86 ± 0.09 1.95 ± 0.22 4.98 ± 0.71
EAGLE 0.64 ± 0.04 0.17 ± 0.01 5.98 ± 0.43 5.17 ± 0.37 1.51 ± 0.04 0.67 ± 0.12 4.22 ± 0.30
M4GN (Ours) 0.31 ± 0.01 0.05 ± 0.00 5.26 ± 0.04 3.08 ± 0.06 1.17 ± 0.01 0.34 ± 0.02 1.87 ± 0.12

4 Experiment

4.1 Experiment Setup

Datasets – We use two public datasets from (Pfaff et al., 2020): CylinderFlow (fluid flows around a cylinder)
and DeformingPlate (elastic plate deformed by an actuator). We also create a new dataset, DeformingBeam,
featuring a hyperelastic beam deformed by an actuator in a 3D mesh. Details of the datasets can be found
in the appendix A. We create DeformingBeam dataset for three major reasons: (1) This dataset exhibits
long-range interactions, with the largest graph diameter compared to the other two datasets (Table 2). (2)
The inclusion of diverse mesh structures significantly increases the complexity of the underlying physics,
making the task more challenging. (3) The dataset allows for the generation of directly scaled-up versions,
enabling comprehensive generalization tests.

M4GN and Baselines – As a default configuration for our M4GN model, we use 7 message passing steps
in the mesh graph network. The mesh segment transformer adopts 4 self-attention layers with 8 heads. We

8

Under review as submission to TMLR

compare our method to five baseline models: 1) GCN (Kipf & Welling, 2016; Belbute-Peres et al., 2020), a
basic GNN structure widely used for simulating fluid dynamics; 2) g-U-Nets (Gao & Ji, 2019; Alsentzer et al.,
2020), a representative method that incorporates graph pooling modules to enhance long-range interactions;
3) MeshGraphNets (MGNs) (Pfaff et al., 2020), a single-level GNN architecture that achieves exceptional
performance and generalizability across various dynamic systems; 4) BSMS-GNN (Cao et al., 2023), a recent
work featuring a multi-level hierarchical GNN architecture that aims to enhance computational efficiency in
simulating physical systems; and 5) EAGLE(Janny et al., 2023), a recent work presenting a clustering-based
pooling method along with transformer to enhance performance on large-scale turbulent fluid dynamics.
Detailed descriptions of the these models and training procedures can be found in Appendix B.

Metrics – In addition to traditional accuracy metrics, we introduce mesh quality metrics to assess the
integrity of the predicted mesh in Lagrangian systems, where the mesh moves with the material. Maintaining
mesh quality is crucial in these systems because changes in mesh elements over time can lead to numerical
errors and misrepresentation of dynamic behaviors. Conversely, in Eulerian systems with a fixed mesh, mesh
quality is less critical since the mesh remains static. To achieve holistic assessment of the predicted meshes,
four mesh quality metrics are used: Hausdorff distance and Chamfer distance based Geometric Fidelity
(GF), Mesh Continuity (MC), and Aspect Ratio (AR). Details description of these metrics can be found in
Appendix C.2.

(a)

(b) (c)

CylinderFlow DeformingPlate DeformingBeam

Figure 4: (a) Radar charts comparing the performance of difference models across different metrics under
three datasets. For each metric, values are normalized to a 0.2–1.0 scale, where 1.0 represents the best
performance. The concentric circles show normalized values from 0.2 (innermost) to 1.0 (outermost). Larger
filled areas indicate better overall performance; (b) Illustration of how varying graph diameter impacts
prediction accuracy across different models on the DeformingPlate dataset. RMSE-all is averaged over
selected cases within a given graph diameter range and across all time steps; (c) Illustration of how each
model’s prediction accuracy (Normalized RMSE) and mesh quality (MC) change when generalizing from
DeformingBeam to its scaled-up version, DeformingBeam (large).

9

Under review as submission to TMLR

4.2 Results and Discussion

4.2.1 Outstanding Performance of M4GN Across Multiple Datasets

The results in Table 1 and Figure 3 demonstrate the superior performance of our M4GN model compared
to other baselines across various evaluation metrics. Specifically, for the CylinderFlow dataset, M4GN
achieves a remarkable 36% reduction in test RMSE-all compared to the second-best performing model,
EAGLE. This improvement is even more pronounced for the DeformingPlate dataset, where M4GN reduces
the test RMSE-all by 42%. Similarly, for DeformingBeam dataset, M4GN demonstrates a 51% reduction
in test RMSE-all. Such exceptional performance in 50-step and longer-step predictions underscores its
enhanced capability for long-term predictions. In addition to achieving superior prediction accuracy, M4GN
demonstrates excellent mesh quality, with up to a 48% reduction in GF and a 14% reduction in MC compared
to the second-best model across both Lagrangian system datasets.

4.2.2 Achieving a Balance Between Accuracy and Efficiency

According to Figure 4(a), the MGN model performs well on small-diameter datasets like CylinderFlow,
effectively capturing short-range effects. However, its performance drops on larger datasets like DeformingPlate
and DeformingBeam due to oversmoothing and slow inference caused by excessive message passing and
world-edges, reducing overall efficiency. The BSMS model excels in memory efficiency due to its bi-stride
pooling, but this comes at the expense of mesh quality and accuracy, as the pooling introduces spatially
insignificant edges. It also has slower inference times due to the complexity of reconstructing fine-grained
details and managing long-range dynamics. The EAGLE model performs adequately but struggles with
long-range effects due to its graph clustering and pooling methods, which lack physics-informed guidance.
While it shows reasonable efficiency in DeformingPlate and DeformingBeam, its computational performance
declines dramatically on CylinderFlow due to the increased amount of clusters needed under dense meshes.
M4GN achieves the largest filled areas across all three datasets, demonstrating high prediction accuracy,
superior mesh quality, and strong computational efficiency. More comprehensive evaluation results can be
found in Table 7.

4.2.3 Effective Long-Range Dynamics and Scalability to Large Datasets

M4GN’s remarkable performance stems from its ability to effectively handle long-range dynamic effects.
In Figure 4(b), the relationship between graph diameter and RMSE-all for the DeformingPlate dataset is
shown. While other models experience a significant rise in prediction error as the problem diameter increases,
M4GN only shows a slight increase, demonstrating its superior performance on larger graphs and long-range
interactions. Figure 4(c) further illustrates how each model’s prediction accuracy (Normalized RMSE)
and mesh quality change when generalizing from DeformingBeam to its scaled-up version, DeformingBeam
(large). M4GN consistently achieves the lowest prediction error and mesh continuity error when tested on the
larger-scale dataset with a model trained on the smaller scale. This highlights M4GN’s robust generalization
capabilities, making it well-suited for complex, large-scale dynamic systems. Detailed generalization results
are presented in Table 6.

4.3 Additional Studies

We conducted additional studies to comprehensively evaluate model performance, hyperparameter selection,
and the impact of key architectural designs, with detailed results and discussions provided in the appendices.
Metrics for mesh quality and evaluations are presented in Appendix C.2, while segmentation quality metrics
and related evaluations are detailed in Appendix C.3. Visualization and discussion of segmentation alignment
with system dynamics are included in Appendix C.4. Ablation studies of our approach are discussed in
Appendix D, covering the effect of different message-passing steps at the micro-level stage (Appendix D.1);
the influence of segment extraction methods and segment count at the meso-level stage (Appendix D.2); and
the impact of positional encoding and segment overlap at the macro-level stage (Appendix D.3). Additionally,
a comprehensive analysis of generalization performance is provided in Appendix E, and further insights into
computational efficiency are included in Appendix F.

10

Under review as submission to TMLR

5 Conclusion

In this paper, we introduced the Micro-Meso-Macro Mesh-based Graph Network (M4GN), a novel approach
that enhances dynamic system simulations through a hierarchical pipeline. Our extensive evaluations
demonstrate that M4GN outperforms traditional models, offering significant improvements in accuracy and
computational efficiency, particularly in scenarios involving long-range dynamics and larger physical domains.
The adaptability of M4GN to large-scale graphs underscores its potential for real-world applications in
complex physical systems. However, the method has limitations, including the absence of hard constraints on
contact meshes, which can result in overlapping meshes, and it has no guarantees on physical consistency at
segmentation interfaces. These are important areas for future work to improve the robustness and applicability
of the model.

Broader Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning for Physics, Surrogate
Modeling, and Dynamic System Simulation. There are many potential societal consequences of our work,
none of which we feel must be specifically highlighted here.

References
Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Süsstrunk. Slic

superpixels compared to state-of-the-art superpixel methods. IEEE transactions on pattern analysis and
machine intelligence, 34(11):2274–2282, 2012.

Charles J Alpert and So-Zen Yao. Spectral partitioning: The more eigenvectors, the better. In Proceedings of
the 32nd annual ACM/IEEE design automation conference, pp. 195–200, 1995.

Emily Alsentzer, Samuel Finlayson, Michelle Li, and Marinka Zitnik. Subgraph neural networks. Advances in
Neural Information Processing Systems, 33:8017–8029, 2020.

Lars Andersen. Linear elastodynamic analysis. 2006.

Klaus-Jürgen Bathe. Computational fluid and solid mechanics. Elsevier, 2001.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive
biases, deep learning, and graph networks. arxiv 2018. arXiv preprint arXiv:1806.01261, 2018.

Filipe De Avila Belbute-Peres, Thomas Economon, and Zico Kolter. Combining differentiable pde solvers
and graph neural networks for fluid flow prediction. In international conference on machine learning, pp.
2402–2411. PMLR, 2020.

Franco Bontempi and Lucia Faravelli. Lagrangian/eulerian description of dynamic system. Journal of
Engineering Mechanics, 124(8):901–911, 1998.

Nico Booij and Leo H Holthuijsen. Propagation of ocean waves in discrete spectral wave models. Journal of
Computational Physics, 68(2):307–326, 1987.

Yadi Cao, Menglei Chai, Minchen Li, and Chenfanfu Jiang. Efficient learning of mesh-based physical
simulation with bi-stride multi-scale graph neural network. In International Conference on Machine
Learning, pp. 3541–3558. PMLR, 2023.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-smoothing
problem for graph neural networks from the topological view. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 3438–3445, 2020.

Ekin Dogus Cubuk, RJS Ivancic, Samuel S Schoenholz, DJ Strickland, Anindita Basu, ZS Davidson, Julien
Fontaine, Jyo Lyn Hor, Y-R Huang, Y Jiang, et al. Structure-property relationships from universal
signatures of plasticity in disordered solids. Science, 358(6366):1033–1037, 2017.

11

Under review as submission to TMLR

Tyler De Witt, Christian Lessig, and Eugene Fiume. Fluid simulation using laplacian eigenfunctions. ACM
Transactions on Graphics (TOG), 31(1):1–11, 2012.

Hervé Delingette. General object reconstruction based on simplex meshes. International journal of computer
vision, 32:111–146, 1999.

Yu Diao, Jianchuan Yang, Ying Zhang, Dawei Zhang, and Yiming Du. Solving multi-material problems
in solid mechanics using physics-informed neural networks based on domain decomposition technology.
Computer Methods in Applied Mechanics and Engineering, 413:116120, 2023.

Victorita Dolean, Pierre Jolivet, and Frédéric Nataf. An introduction to domain decomposition methods:
algorithms, theory, and parallel implementation. SIAM, 2015.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Graph neural
networks with learnable structural and positional representations. arXiv preprint arXiv:2110.07875, 2021.

Kerry A Emanuel. Atmospheric convection. Oxford University Press, USA, 1994.

Frank J Fahy. Sound and structural vibration: radiation, transmission and response. Elsevier, 2007.

Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, Alexander Pritzel, and Peter Battaglia. Multiscale
meshgraphnets. In ICML 2022 2nd AI for Science Workshop, 2022.

Zhi-Fang Fu and Jimin He. Modal analysis. Elsevier, 2001.

Han Gao, Matthew J Zahr, and Jian-Xun Wang. Physics-informed graph neural galerkin networks: A unified
framework for solving pde-governed forward and inverse problems. Computer Methods in Applied Mechanics
and Engineering, 390:114502, 2022.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning, pp.
2083–2092. PMLR, 2019.

Jonathan Godwin, Michael Schaarschmidt, Alexander Gaunt, Alvaro Sanchez-Gonzalez, Yulia Rubanova,
Petar Veličković, James Kirkpatrick, and Peter Battaglia. Simple gnn regularisation for 3d molecular
property prediction & beyond. arXiv preprint arXiv:2106.07971, 2021.

Denis S Grebenkov and B-T Nguyen. Geometrical structure of laplacian eigenfunctions. siam REVIEW, 55
(4):601–667, 2013.

Ehsan Haghighat, Maziar Raissi, Adrian Moure, Hector Gomez, and Ruben Juanes. A physics-informed deep
learning framework for inversion and surrogate modeling in solid mechanics. Computer Methods in Applied
Mechanics and Engineering, 379:113741, 2021.

Xu Han, Han Gao, Tobias Pfaff, Jian-Xun Wang, and Li-Ping Liu. Predicting physics in mesh-reduced space
with temporal attention. arXiv preprint arXiv:2201.09113, 2022.

Lukas Harsch and Stefan Riedelbauch. Direct prediction of steady-state flow fields in meshed domain with
graph networks. arXiv preprint arXiv:2105.02575, 2021.

Qi-Xing Huang, Martin Wicke, Bart Adams, and Leonidas Guibas. Shape decomposition using modal analysis.
In Computer Graphics Forum, volume 28, pp. 407–416. Wiley Online Library, 2009.

Daniel P Huttenlocher, Gregory A. Klanderman, and William J Rucklidge. Comparing images using the
hausdorff distance. IEEE Transactions on pattern analysis and machine intelligence, 15(9):850–863, 1993.

Steeven Janny, Aurélien Beneteau, Madiha Nadri, Julie Digne, Nicolas Thome, and Christian Wolf. Eagle:
Large-scale learning of turbulent fluid dynamics with mesh transformers. arXiv preprint arXiv:2302.10803,
2023.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM Journal on scientific Computing, 20(1):359–392, 1998.

12

Under review as submission to TMLR

Brian Kennett. Seismic wave propagation in stratified media. ANU Press, 2009.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

W Michael Lai, David Rubin, and Erhard Krempl. Introduction to continuum mechanics. Butterworth-
Heinemann, 2009.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-
supervised learning. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018.

X Li, HS Yu, and XS Li. Macro–micro relations in granular mechanics. International Journal of Solids and
Structures, 46(25-26):4331–4341, 2009.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik Bhattacharya,
and Anima Anandkumar. Multipole graph neural operator for parametric partial differential equations.
Advances in Neural Information Processing Systems, 33:6755–6766, 2020.

Wenzhuo Liu, Mouadh Yagoubi, and Marc Schoenauer. Multi-resolution graph neural networks for pde
approximation. In Artificial Neural Networks and Machine Learning–ICANN 2021: 30th International
Conference on Artificial Neural Networks, Bratislava, Slovakia, September 14–17, 2021, Proceedings, Part
III 30, pp. 151–163. Springer, 2021.

Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li F Fei-Fei, Josh Tenenbaum, and Daniel L
Yamins. Flexible neural representation for physics prediction. Advances in neural information processing
systems, 31, 2018.

Timothy O’Connor. Emergent properties. 2020.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-based
simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique
Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural Information
Processing Systems, 35:14501–14515, 2022.

Yulia Rubanova, Alvaro Sanchez-Gonzalez, Tobias Pfaff, and Peter Battaglia. Constraint-based graph network
simulator. arXiv preprint arXiv:2112.09161, 2021.

Peter J Schmid, Larry Li, Matthew P Juniper, and Oliver Pust. Applications of the dynamic mode
decomposition. Theoretical and computational fluid dynamics, 25:249–259, 2011.

Jean Michel Sellier, Gaétan Marceau Caron, and Jacob Leygonie. Signed particles and neural networks,
towards efficient simulations of quantum systems. Journal of Computational Physics, 387:154–162, 2019.

Luning Sun, Han Gao, Shaowu Pan, and Jian-Xun Wang. Surrogate modeling for fluid flows based on
physics-constrained deep learning without simulation data. Computer Methods in Applied Mechanics and
Engineering, 361:112732, 2020.

Uno Svedin et al. Micro, meso, macro: Addressing complex systems couplings. World Scientific, 2005.

Kunihiko Taira, Steven L Brunton, Scott TM Dawson, Clarence W Rowley, Tim Colonius, Beverley J McKeon,
Oliver T Schmidt, Stanislav Gordeyev, Vassilios Theofilis, and Lawrence S Ukeiley. Modal analysis of fluid
flows: An overview. Aiaa Journal, 55(12):4013–4041, 2017.

Kiwon Um, Xiangyu Hu, and Nils Thuerey. Liquid splash modeling with neural networks. In Computer
Graphics Forum, volume 37, pp. 171–182. Wiley Online Library, 2018.

Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid simulation with
continuous convolutions. In International Conference on Learning Representations, 2019.

13

Under review as submission to TMLR

Olga Veksler, Yuri Boykov, and Paria Mehrani. Superpixels and supervoxels in an energy optimization
framework. In Computer Vision–ECCV 2010: 11th European Conference on Computer Vision, Heraklion,
Crete, Greece, September 5-11, 2010, Proceedings, Part V 11, pp. 211–224. Springer, 2010.

Haixin Wang, Yadi Cao, Zijie Huang, Yuxuan Liu, Peiyan Hu, Xiao Luo, Zezheng Song, Wanjia Zhao, Jilin
Liu, Jinan Sun, et al. Recent advances on machine learning for computational fluid dynamics: A survey.
arXiv preprint arXiv:2408.12171, 2024.

Steffen Wiewel, Moritz Becher, and Nils Thuerey. Latent space physics: Towards learning the temporal
evolution of fluid flow. In Computer graphics forum, volume 38, pp. 71–82. Wiley Online Library, 2019.

Edward L Wilson. Three-dimensional static and dynamic analysis of structures. Computers and structures,
Inc, 1, 2002.

Tong Wu, Liang Pan, Junzhe Zhang, Tai Wang, Ziwei Liu, and Dahua Lin. Balanced chamfer distance as a
comprehensive metric for point cloud completion. Advances in Neural Information Processing Systems, 34:
29088–29100, 2021.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A comprehensive
survey on graph neural networks. IEEE transactions on neural networks and learning systems, 32(1):4–24,
2020.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan,
Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture. In International
Conference on Machine Learning, pp. 10524–10533. PMLR, 2020.

Chaoqi Yang, Ruijie Wang, Shuochao Yao, Shengzhong Liu, and Tarek Abdelzaher. Revisiting over-smoothing
in deep gcns. arXiv preprint arXiv:2003.13663, 2020.

Chen Yang, Shuai Li, Yu Lan, Lili Wang, Aimin Hao, and Hong Qin. Coupling time-varying modal analysis
and fem for real-time cutting simulation of objects with multi-material sub-domains. Computer Aided
Geometric Design, 43:53–67, 2016.

Youn-Yeol Yu, Jeongwhan Choi, Woojin Cho, Kookjin Lee, Nayong Kim, Kiseok Chang, ChangSeung Woo,
Ilho Kim, SeokWoo Lee, Joon Young Yang, et al. Learning flexible body collision dynamics with hierarchical
contact mesh transformer. arXiv preprint arXiv:2312.12467, 2023.

Olek C Zienkiewicz and Robert L Taylor. The finite element method set. Elsevier, 2005.

14

Under review as submission to TMLR

Appendix: Table of Contents

A Datasets 16

A.1 Datasets for Unstructured Mesh-based Simulations . 16

A.2 Datasets Details . 16

B Model Details 17

B.1 Overall Information . 17

B.2 Baselines . 17

B.3 Training Details . 17

B.4 Hybrid Mesh Segmentation Details . 18

B.4.1 Mesh Segment Hyperparameter Selection . 19

C Additional Evaluation Metrics and Results 21

C.1 Overall Results . 21

C.2 Metrics for Mesh Quality Measure . 21

C.3 Segmentation Quality Metrics . 22

C.4 Visualization of Segmentation Alignment with System Dynamics 23

D Ablation Studies 24

D.1 Micro-level Information Exchange . 24

D.2 Meso-level Information Alignment . 24

D.3 Macro-level Information Exchange . 26

E Generalization Studies 29

E.1 Performance on Larger-Scale Datasets . 29

E.2 Effect of Mesh Segment Count on Generalization . 29

F Computational Efficiency Analysis 29

F.1 Performance Comparision . 29

F.2 Compelxity Analysis . 31

G Qualitative Results 31

15

Under review as submission to TMLR

A Datasets

A.1 Datasets for Unstructured Mesh-based Simulations

Mesh-based dynamics simulation datasets have been developed as benchmarks to evaluate the performance of
proposed models. As a cornerstone in the field, MeshGraphNets Pfaff et al. (2020) introduced a collection of
datasets, encompassing cloth simulation, materials deformation and fluid flow, showcasing the versatility of
GNNs in various problems involving unstructured mesh simulations. These datasets have been extensively
adopted as benchmarks for developing new models. As the field shifts towards tackling more complex and
large-scale systems, EAGLE Janny et al. (2023) presented a large-scale fluid dynamics dataset capturing
unsteady and turbulent airflows. Similarly, BSMS-GNN Cao et al. (2023) provides the InflatingFont dataset,
which focuses on the quasi-static inflation of enclosed elastic surfaces.

To demonstrate our model’s generality across diverse dynamics and mesh configurations, we employed the
CylinderFlow and DeformingPlate datasets in this study. These widely-used datasets from MeshGraphNets
encompass both Eulerian and Lagrangian systems, providing a comprehensive evaluation of our model’s
performance across different simulation paradigms. Additionally, we developed the DeformingBeam dataset,
which features meshes with a large graph diameter and complex long-range interactions spanning distant
regions of the mesh. Existing datasets often lack this level of complexity, limiting their effectiveness in
testing advanced models. We also generated a scaled-up version of the DeformingBeam dataset, enabling the
evaluation of generalization performance from small-scale to large-scale scenarios, an important consideration
for industrial-level simulations. The details of the investigated datasets are desbribed below and in Table 2.

A.2 Datasets Details

CylinderFlow – This public dataset includes simulations of transient incompressible flow around a cylinder,
with varying diameters and locations, on a fixed 2D Eulerian mesh. In all fluid domains, the node type
distinguishes fluid nodes, wall nodes and inflow/outflow boundary nodes. The inlet boundary conditions
are given by a prescribed parabolic profile, uin = u0[1− 4(y/H)] where u0 and H are the centerline velocity
and the distance between the sidewalls, respectively. The dataset contains 1000 training simulations, 100
validation simulations and 100 test simulations.

DeformingPlate – This public dataset includes simulations of hyperelastic plates deformed by a moving
obstacle, with variations in plate design and obstacle design. The node types are plate nodes, handle nodes
that are fixed and obstacle nodes. This dataset contains 1200 training simulations, 100 validation simulations
and 100 test simulations.

DeformingBeam – This dataset is generated using solids4foam which a toolbox for performing solid
mechanics and fluid-solid interaction simulations in OpenFOAM and foam-extend. A nearly incompressible
neo-Hookean model is used where the material properties are density ρ0 = 1000 kg/m3, Youngs’s modulus E
= 1 MPa and Poisson’s ratio ν = 0.4. The beam comes in different geometries with various initial conditions
and boundary conditions. The node types are plate nodes, handle nodes that are fixed and obstacle nodes.
This dataset contains 355 training simulations, 40 validation simulations and 60 test simulations.

DeformingBeam (large) – A large domain DeformingBeam dataset is created for generalization studies. The
physical domain size is doubled. The size of the mesh cell is kept consistent with the regular DeformingBeam
dataset. This generalization dataset has 112 simulations.

Table 2: Detailed information for each dataset.

Dataset Avg.
Nodes # Steps Mesh Type Graph

Diameter Node Feature Edge Feature Output

CylinderFlow 1885 600 Triangle, Eulerian, 2D 11 vi, ni mij , |mij | v̇i

DeformingPlate 1271 400 Tetrahedron, Lagrangian, 3D 16.9 ± 5.8 xi, ẋobs, ni xij , |xij |, mij , |mij | ẋi

DeformingBeam 1542 400 Prism, Lagrangian, 3D 41.3 ± 11.8 xi, ẋobs, ni xij , |xij |, mij , |mij | ẋi

DeformingBeam (large) 4540 400 Prism, Lagrangian, 3D 82.1 ± 23.0 xi, ẋobs, ni xij , |xij |, mij , |mij | ẋi

16

Under review as submission to TMLR

B Model Details

B.1 Overall Information

The GNN part of M4GN adopts the encoder and graph processor in the MGN model Pfaff et al. (2020).
The basic building block is Multi-Layer Perceptron (MLP). The MLP has 3 layers, a hidden dimension
of 128, ReLU activation and single layer of Layer Normalization at the end. The node encoder and edge
encoder(s) are 3-layer MLPs. By default, the M4GN has 7 message passing steps in the GNN. The mesh
segment transformer consists of 4 self-attention layers, each with 8 heads. The output decoder is a 3-layer
MLP without Layer Normalization. For DeformingPlate and DeformingBeam, M4GN only considers world
edges between contacting mesh objects. The world edge radius is set to 0.01 for DeformingPlate and 0.002
for DeformingBeam. As both the DeformingBeam and DeformingPlate datasets feature a rigid object with
quasi-static motion, we use only the first mode from our modal decomposition, which sufficiently captures
the largest-scale deformation pattern. For the CylinderFlow dataset, we employ 6 modes, determined by an
energy threshold criterion, ensuring a more comprehensive representation of the flow’s multi-scale dynamics.

B.2 Baselines

GCN – The GCN model consists of 15 GCN layers with a hidden dimension of 128. The GCN model does
not have edge input. Node input includes mesh position xi for CylinderFlow. The implementation is from
PyTorch Geometric.

g-U-Net – The g-U-Net model is a modified version from PyTorch Geometric. Instead of GCN layers, it is
built using the GNN layers similar to MGN. The level of scale is 7 for CylinderFlow, 6 for DeformingPlate
and 4 for DeformingBeam.

MGN – Our implementation of MGN follows the one described in Pfaff et al. (2020). The processor of MGN
contains 15 MP steps. World edges are constructed as specified in the paper, with a world edge radius of 0.03
for DeformingPlate and 0.003 for DeformingBeam.

BSMS-GNN – We followed the BSMS-GNN implementation Cao et al. (2023) from https://github.com/
Eydcao/BSMS-GNN. We introduced a modification to the original code by incorporating output normalization,
which we observed to enhance the model’s performance. For CylinderFlow and DeformingPlate, we used the
same number of multi-scale levels as specified in the BSMS-GNN paper, at 7 and 6 levels, respectively. The
number of multi-scale levels for DeformingBeam is set at 4 as an optimal configuration.

EAGLE – The implementation of EAGLE follows the paper Janny et al. (2023) and the code repository
https://github.com/eagle-dataset/EagleMeshTransformer. We set the number of nodes per cluster at
20, which offers a balanced performance and efficiency according to the paper. This results in 94 clusters
for CylinderFlow, 64 for DeformingPlate, and 38 for DeformingBeam. In addition, we add contacting world
edges in EAGLE implementation for DeformingPlate and DeformingBeam to improve the performance. The
world edges are added the same as in M4GN.

B.3 Training Details

During training, random Gaussian noise is added to the spatial node inputs, as described in Pfaff et al. (2020).
For CylinderFlow, all models use a noise scale of 0.02. For DeformingPlate, all models use a noise scale of
0.003. For DeformingBeam, EAGLE and M4GN use a noise scale of 1e-4 and other models use a noise scale
of 1e-3.

For GCN, g-U-Net, MGN, EAGLE and M4GN, we adopt the same training scheme: For CylinderFlow and
DeformingPlate, we trained the model for 2M steps. The learning rate starts at 1e-4 and exponentially decays
to 1e-6 from 1M to 2M steps. For DeformingBeam, we trained the model for 1M steps. The learning rate
starts at 1e-4 and exponentially decays to 1e-6 from 500K to 1M steps.

17

https://github.com/Eydcao/BSMS-GNN
https://github.com/Eydcao/BSMS-GNN
https://github.com/eagle-dataset/EagleMeshTransformer

Under review as submission to TMLR

For BSMS-GNN, we adopt the training scheme from the original implementation. Models for CylinderFlow
and DeformingPlate were trained for 50 epochs, corresponding to 3.75M and 3M training steps, respectively.
DeformingBeam model was trained for 100 epochs, corresponding to 1.775M training steps.

Across all models and datasets, we use a batch size of 8. Experiments were conducted using PyTorch
distributed training over two Nvidia Tesla P100 GPUs.

B.4 Hybrid Mesh Segmentation Details

In Figure 5, several cases are selected from each dataset to illustrate the difference of each mesh graph
segmentation methods. It’s worth to note that the graph will be partitioned only once during the training
and testing phase for each simulation, and this partitioning will remain consistent across all time steps. This
is because the segmentation is based solely on the system’s properties and initial conditions prior to the start
of the simulation.

METIS

SLIC-MD

SLIC-MDOD𝑙

SLIC-MDOD𝑒

(a) (b) (c) (d) (e)

Figure 5: Illustration of different segmentation methods under various cases: (a):CylinderFlow; (b)(c):
DeformingPlate; (d)(e): DeformingBeam. Mesh nodes are colored based on segment id and all boundary
nodes are colored in black.

The pseudo code of the hybrid segmentation module proposed in this work can be found in Algorithm 2.
Here, METIS (Karypis & Kumar, 1998) is a graph partitioning technique that efficiently divides meshes into
approximately equal-sized partitions. It leverages multilevel partitioning algorithms to minimize the edge-cut
or communication costs between the resulting partitions. We employ METIS due to its versatility in creating
a user-specified number of equal-sized mesh segments. SLIC (Achanta et al., 2012) is a clustering algorithm
employed for partitioning data. In our approach, we adapt SLIC to segment the mesh based on physics-
informed features. These features could guide SLIC to create a segmentation that captures the underlying
physics of the system. The consequent mesh segments can potentially enable efficient macro-level information
exchange tailored to the system’s dynamics. Concretely, for each node i, we incorporate physics-informed
feature fmd

i derived from modal decomposition. Additionally, we augment these features by concatenating a
measure of the shortest distance to obstacle nodes dobs

i . To ensure that this measure dominates when dobs
i is

small, we apply either an exponential or logarithmic transformation, defined as:

fexp(d) = exp(−d), flog(d) = log(d). (14)

Depending on the selection of features and the transformation function, we design 3 variants of SLIC:

18

Under review as submission to TMLR

Algorithm 1: Modal Decomposition
1: Case Type: solid or fluid
2: Input: Finite element mesh, boundary conditions, material properties for solid (e.g. E, ν, ρ), number of

modes m
3: Build Finite Element Basis:
4: Define shape functions on each element using the node connectivity
5: Enumerate degrees of freedom (DOFs) for each node/component
6: if Case Type = solid then
7: Structural Modal Analysis
8: Assemble stiffness matrix K (using elasticity)
9: Assemble mass matrix M (using density)

10: Apply boundary conditions to eliminate fixed DOFs
11: Solve Kϕ = λ Mϕ for the first m modes
12: Output: Eigenpairs {(λi, ϕi)}m

i=1 (structural modes)
13: else if Case Type = fluid then
14: Laplacian Eigenfunctions
15: Assemble Laplacian matrix
16: Assemble L2-type matrix
17: Apply Dirichlet constraints on boundary nodes
18: Solve −∇2ϕ = λ ϕ for the first m modes
19: Output: Eigenpairs {(λi, ϕi)}m

i=1 (harmonic modes)
20: end if
21: Return: m-dimensional feature vector fmd

i = (ϕ1(i), ϕ1(i), . . . ϕm(i)) at each mesh node i

• SLIC-MD: fi = fmd
i

• SLIC-MDODl: fi =
[
flog(dobs

i), fmd
i

]T

• SLIC-MDODe: fi =
[
fexp(dobs

i), fmd
i

]T

After we have the physics-informed feature, we can apply the SLIC algorithm to get the mesh node segments.

B.4.1 Mesh Segment Hyperparameter Selection

The compactness parameter τ in the SLIC algorithm controls the trade-off between physics-guided feature
similarity and spatial proximity. Our goal is to choose τ such that the resulting segmentation captures
both underlying physical patterns and spatial coherence (i.e., grouping nodes that are close to each other).
For CylinderFlow and DeformingPlate, we set τ = 1.0, which provides a balanced segmentation. For
DeformingBeam, we set a lower τ at 0.5 to promote a better alignment with physical features. The cluster size
S is determined such that the domain area satisfy: Domain Area = KS2, where K is the number of segments
and the domain area is given by (xmax − xmin)(ymax − ymin). The average cluster size S for CylinderFlow,
DeformingPlate and DeformingBeam is set to be

√
0.656/K,

√
0.125/K and

√
0.005/K, respectively.

Systematically choosing the optimal number of segments K requires both domain insight and practical
experimentation. In our experience, two main factors drive the choice of K: (1) the total mesh size (N) and
(2) local variations in mesh density. For instance, CylinderFlow is particularly dense near boundaries, which
benefits from a larger K, whereas DeformingBeam/DeformingPlate have more uniformly distributed nodes,
so a smaller K can suffice.

To make this selection concrete, we typically perform a short hyperparameter sweep over a small set of
candidate values for K. A simple heuristic is to pick K values on a roughly geometric or linear scale,
for instance: K ∈ {

√
N/2,

√
N, 2
√

N,} up to a point where adding more segments no longer improves
validation metrics (e.g., prediction accuracy, mesh quality). In practice, testing each candidate K on a subset
(e.g., 10%) of the training data is typically enough to identify a near-optimal configuration, and then we

19

Under review as submission to TMLR

Algorithm 2: Hybrid Mesh Segmentation
1: Input:
2: Initial mesh graph G = (V, E)
3: Perform modal decomposition and computed mesh node feature fi

4: Number of segments K, compactness parameter τ , average cluster size S
5: Output: Mesh node segmentation {VSk

}K
k=1

⇒ Graph-based Mesh Segment Initialization
6: Coarsening Phase:
7: Gcoarse ← G
8: while size of Gcoarse is larger than threshold do
9: Combine pairs of connected nodes in Gcoarse to form a coarser graph

10: Gcoarse ← coarsened graph
11: end while
12: Initial Partitioning:
13: Partition Gcoarse into K segments using a standard partitioning method (e.g., spectral partitioning)
14: Uncoarsening and Refinement Phase:
15: while Gcoarse ̸= G do
16: Expand Gcoarse to the next finer graph Gfine
17: Project partitions onto Gfine
18: Refine the partitioning on Gfine to improve quality
19: Gcoarse ← Gfine
20: end while
21: Obtain initial clusters {VSk

}K
k=1 from the final partitioning, which will be updated next

⇒ Superpixel-based Mesh Segment Refinement
22: repeat
23: for each mesh segment centroid Ck do
24: Update Ck by averaging over all mesh nodes assigned to it:

Ck = [xCk
, fCk

]T = 1
|VSk
|

∑
i∈VSk

[xi, fi]T

where VSk
is the set of mesh nodes assigned to segment Sk

25: end for
26: for each mesh node i ∈ V do
27: Compute the distance measure d(i, Ck) to each cluster center Ck using:

d(i, Ck) = ∥fi − fCk
∥+ τ∥xi − xCk

∥

where xi and xCk
are the spatial coordinates, fi and fCk

are the physics-guided features.
28: Assign mesh node i to the nearest segment centroid Ck if d(i, Ck) ≤ S
29: end for
30: until convergence or a maximum number of iterations is reached

20

Under review as submission to TMLR

finalize training with that K on the full dataset. This strategy is computationally manageable and provides a
principled way to tailor K to new domains.

C Additional Evaluation Metrics and Results

C.1 Overall Results

The results in Table 1 demonstrate the superior performance of our M4GN model compared to other baselines
across various evaluation metrics. Specifically, for the CylinderFlow dataset, M4GN achieves a remarkable
36% reduction in test RMSE-all compared to the second-best performing model, EAGLE. This improvement
is even more pronounced for the DeformingPlate dataset, where M4GN reduces the test RMSE-all by
42%. Similarly, for DeformingBeam dataset, M4GN demonstrates a 51% reduction in test RMSE-all. Such
exceptional performance in 50-step and longer-step predictions underscores its enhanced capability for long-
term predictions. In addition to achieving superior prediction accuracy, M4GN demonstrates excellent mesh
quality, with up to a 48% reduction in GF and a 14% reduction in MC compared to the second-best model
across both Lagrangian system datasets.

C.2 Metrics for Mesh Quality Measure

Hausdorff Distance – The Hausdorff Distance measures how well the mesh with the predicted node positions
conforms to the system’s true geometry. It is defined as:

GFh(V, V̂) = max
{

h(V, V̂), h(V̂,V)
}

, (15)

where h(V, V̂) = supx∈V inf x̂∈V̂ ∥x− x̂∥ is the directed Hausdorff distance (Huttenlocher et al., 1993) from
the ground-truth node set V to the predicted node set V̂.

Chamfer Distance – The Chamfer Distance (Wu et al., 2021) measures the average distance between
points on the predicted mesh and the true mesh, providing a balanced assessment of GFh. Unlike the
Hausdorff Distance, which focuses on the maximum deviation, the Chamfer Distance is sensitive to the overall
distribution of errors across the mesh surfaces. As both Chamfer and Hausdorff distance are measures for
GF, we name them as GFc and GFh for simplicity, respectively. The Chamfer distance is mathematically
defined as:

GFc(V, V̂) = 1
|V|

∑
x∈V

minx̂∈V̂∥x− x̂∥2 + 1
|V̂|

∑
x̂∈V̂

minx∈V∥x̂− x∥2, (16)

where V and V̂ are the set of vertices in the ground-truth and predict mesh, respectively. |V| and |V̂| denote
the number of vertices in each mesh.

Mesh Continuity – Mech Continuity evaluates the uniformity of predicted mesh cell sizes to ensure stability
and is defined as

MC = 1
C

C∑
i=1

maxcj∈Adj(ci) V (cj)
mincj∈Adj(ci) V (cj) , (17)

where Adj(ci) is the neighboring cells of cell ci, and V (ci) calculates the volumetric area for ci.

Aspect Ratio (error) – The Aspect Ratio (Zienkiewicz & Taylor, 2005) metric assesses the shape quality of
individual 2D or 3D mesh elements and is widely used in finite element method (FEM) literature to evaluate
how closely each element approaches the ideal shape, such as an equilateral triangle or a regular tetrahedron.
For example, for triangular meshes, the aspect ratio is defined as Lmax

2
√√

3A
, where Lmax is the longest edge

length, A is the area of the triangle. For tetrahedra mesh, it is defined as
√

6Lmax
V 1/3 , where V the volume of

the tetrahedron. High aspect ratios indicate elongated or distorted elements, which can cause numerical
instability and reduce simulation accuracy. By analyzing the aspect ratios across all elements, we can assess
the overall uniformity and regularity of the mesh. To evaluate the accuracy of the predicted mesh compared
to the ground truth, we calculate the aspect ratio for both the predicted and actual meshes. The Aspect

21

Under review as submission to TMLR

Ratio Error is then determined as the L1 distance between these two values. This error metric quantifies the
deviation in shape quality between the predicted and true meshes, providing a direct measure of how well
the prediction preserves the ideal element shapes. Incorporating the Aspect Ratio Error allows for a more
precise evaluation of mesh quality and prediction accuracy, ensuring that the segmented meshes maintain the
necessary geometric properties for reliable simulations.

C.3 Segmentation Quality Metrics

In order to rigorously evaluate the quality of our physics-informed mesh segmentation and its impact on
the prediction of system dynamics, it is essential to consider metrics that assess both inter-segment and
intra-segment characteristics. We introduce three such metrics —Conductance, Edge Cut Ratio, and Silhouette
Score — which provide a comprehensive assessment of segmentation quality by quantifying the cohesion
within segments and the separation between segments. The necessity of these metrics arises from the need
to ensure that segments are well-separated, minimizing unnecessary interactions between dissimilar regions
(inter-segment quality), and that nodes within the same segment share similar properties or behaviors
(intra-segment quality).

Moreover, in our hierarchical model architecture, the intra-segment quality pertains to the micro-level
information exchange stage. High intra-segment quality facilitates accurate modeling of local dynamics within
each segment by ensuring that nodes are cohesive and share similar dynamic behaviors. Conversely, the
inter-segment quality directly relates to the macro-level information exchange stage. High inter-segment
quality ensures efficient communication between segments by reducing redundant or irrelevant interactions,
which is crucial for capturing global dynamics across the entire mesh. Below are the details of three metrics
to measure segmentation quality.

Conductance – Conductance measures the fraction of total edge connections that cross between different
segments relative to the total connections of the segments. It assesses how well the segmentation minimizes
inter-segment connections while maintaining intra-segment cohesion. Let G = (V, E) as an undirected graph
representing the mesh, where V is the set of nodes and E is the set of edges. Let S be a segment and S̄ = G
\S be its complement. The conductance of segment S is defined as:

Conductance =
∣∣{(u, v) ∈ E | u ∈ S, v ∈ S̄}

∣∣
min

(
vol(S), vol(S̄)

) , (18)

where the numerator is the number of edges crossing between S and S̄. The volumn of segment S is given by
vol(S) =

∑
u∈S deg(u), where deg u is the degree of node u (the number of edges connected to u).

Edge Cut Ratio – The Edge Cut Ratio quantifies the proportion of edges that are cut by the segmentation
relative to the total number of edges in the mesh. It is defined as:

Edge Cut Ratio = |{(u, v) ∈ E | Seg(u) ̸= Seg(v)}|
E

, (19)

where the denominator is the number of edges that connect nodes in different segment. Seg(u) denotes the
segment to which node u belongs and E = |E| is the total number of edges.

Silhouette Score – For each node i, the Silhouette Score evaluates how similar i is to nodes in its own
segment compared to nodes in other segments. It is defined as:

Silhouette Score = 1
N

N∑
u=1

b(i)− a(i)
max{a(i), b(i)} , (20)

where N is the total number of nodes, a(i) is the average dissimilarity of node i with all other nodes in the
same segment and b(i) is the lowest average dissimilarity of node i to any other segment to which i does not
belong. To be more specific a(i) = 1

|Si|−1
∑

j∈Si

j ̸=i

d(i, j), b(i) = minS′ ̸=Si

(
1

|S′|
∑

j∈S′ d(i, j)
)

, where Si is the

segment containing node i and d(i, j) can be any appropriate distance metric, such as Euclidean distance
based on node features or positions.

22

Under review as submission to TMLR

By combining these metrics, we achieve a comprehensive evaluation of segmentation quality that covers both
the internal cohesion of segments and their external separation. Having these metrics, along with prediction
result metrics, can better help us understand the effect of segmentation on the predicted system dynamics.
These metrics can be used to help finding better physics-informed segment features and determining the
optimal segmentation number (results and discussion in Appendix D.3).

EAGLE

MMSGN

EAGLE

MMSGN

t=50 t=100 t=200 t=300

EAGLE

MMSGN

EAGLE

MMSGN

t=50 t=150 t=200 t=400

EAGLE

MMSGN

EAGLE

MMSGN

t=50 t=200 t=400 t=600

High Error

Low Error

EAGLE

Ours

EAGLE

MMSGN

EAGLE

MMSGN

t=50 t=150 t=200 t=400

t = 50 t = 150 t = 200 t = 400

EAGLE

MMSGN

EAGLE

MMSGN

t=50 t=100 t=200 t=300

t = 50 t = 100 t = 200 t = 300

High Error

High Error

Low Error

Low Error

t = 50 t = 200 t = 400 t = 600

EAGLE

Ours

EAGLE

Ours

(a)

(b)

(c)

Figure 6: Visualization of simulation rollouts over time for three datasets, comparing our segmentation
method with EAGLE. Nodes are colored based on the average prediction error within their segments. Our
method consistently produces uniform segment colors across time steps, indicating that nodes within each
segment share similar dynamic behaviors and that segments maintain high continuity. For example, in
(a), segmentation follows periodic wave patterns in fluid dynamics, while in (c), it reflects symmetrical
system dynamics with symmetric segment coloring. These visualizations demonstrate that our segmentation
effectively captures the temporal and spatial dynamics of the system, outperforming EAGLE.

C.4 Visualization of Segmentation Alignment with System Dynamics

To visualize the how predict mesh properties in each segment various through time for different method, we
include additional visualization results in Figure 6, where mesh nodes at each predicted time step are colored

23

Under review as submission to TMLR

based on the average prediction error within their segments. In all three datasets, our method produces
segments with uniform colors across time steps, indicating that nodes within the same segment share similar
dynamic behaviors and different segments have little discrepancies or maintain high continuity. This means
that our segmentation effectively groups regions with coherent dynamic interactions, ensuring consistent
modeling and accurate prediction of the system’s evolution over time. Such consistent segmentation enhances
the model’s ability to capture and represent the underlying physical properties, leading to more reliable and
stable simulation outcomes. Specifically, our methods is able to accurately capture dynamic patterns of
periodic wake formations shown in Figure 6(a). Also, in case with inherent symmetry, such as the Figure 6(c),
our method successfully generates symmetric segments that share similar dynamic properties.

Our segmentation method effectively aligns with system dynamics but could be sensitive to initial setup
parameters, potentially missing important physical dependencies in complex systems. To address this, future
work could incorporate adaptive clustering techniques based on system dynamics. This would improve the
physical relevance and robustness of our segmentation, making it more versatile for a wider range of dynamic
environments.

D Ablation Studies

D.1 Micro-level Information Exchange

According to Figure 7, with fewer message passing steps, each node updates only based on immediate
neighbors, resulting in higher prediction errors and mesh discontinuities. As more steps are introduced, nodes
gather information from a broader neighborhood, leading to more accurate predictions and smoother mesh
transitions. The early iterations of message passing yield the most noticeable improvements, as nodes rapidly
gather useful information from their surrounding environment. Later iterations primarily serve to fine-tune
the mesh continuity and reduce local errors, but the impact on overall accuracy diminishes. Interestingly,
increasing the number of message-passing steps beyond a certain point continues to improve mesh quality, but
prediction accuracy may degrade. This suggests the occurrence of oversmoothing, where the model excessively
homogenizes node features, or overfitting, where the model starts to memorize local information rather than
generalize. This phenomenon highlights the importance of carefully selecting the number of message-passing
steps during micro-level information exchange step to strike the right balance between improving prediction
accuracy and maintaining mesh quality.

Figure 7: Ablation study on the impact of varying message-passing steps in the micro-level information
exchange on prediction performance across three datasets.

D.2 Meso-level Information Alignment

Comparison of Different Segment Extraction Methods – As shown in Table 3, mesh segment method
can have a large impact on the result. By comparing SLIC and METIS results, we find a 16%, 27% and
7% improvement in RMSE-all for CylinderFLow, DeformingPlate and DeformingBeam. The best segment
method for all three datasets is SLIC-MDODe.

To thoroughly evaluate the different segmentation methods, we utilize the three metrics -Conductance,
Edge Cut Ratio, and Silhouette Score - introduced in Appendix C.3 to assess both inter-segment and
intra-segment qualities of mesh partitions, providing a comprehensive understanding of each method’s
effectiveness. We then analyzed the correlation between these segmentation metrics and overall dynamic

24

Under review as submission to TMLR

Table 3: Ablation study on different segment extraction methods over different dataset.
Segmentation Method Dataset GFh ↓ GFc ↓ MC ↓ Aspect Ratio ↓ RMSE-1 RMSE-all

METIS
Cylinder - - - - 3.44e-03 4.59e-02
Plate 5.32e-03 1.36e-05 5.33e-03 2.97e-03 2.67e-04 3.29e-03
Beam 3.88e-04 5.61e-08 5.18e-03 3.09e-03 1.15e-05 2.16e-04

SLIC-MD
Cylinder - - - - 3.16e-03 5.62e-02
Plate 5.10e-03 8.38e-6 4.67e-03 2.53e-03 2.74e-04 3.02e-03
Beam 3.81e-04 5.45e-08 5.32e-03 3.20e-03 1.17e-05 2.32e-04

SLIC-MDODl

Cylinder - - - - 4.16e-03 5.29e-02
Plate 4.84e-03 7.23e-06 4.56e-03 2.47e-03 2.68e-04 2.82e-03
Beam 3.53e-03 5.10e-08 5.29e-03 3.40e-03 1.22e-05 2.25e-04

SLIC-MDODe

Cylinder - - - - 3.09e-03 3.86e-02
Plate 4.26e-03 6.49e-06 4.73e-03 2.58e-03 2.71e-04 2.40e-03
Beam 3.02e-03 4.47e-08 5.31e-03 3.08e-03 1.17e-05 2.01e-04

system performance, including mesh quality and prediction error, as illustrated in Figure 9 (a-c). Our findings
indicate that segmentation methods incorporating physics-informed features, particularly those utilizing
obstacle distances with exponential transformations, generally enhance model performance across various
datasets. This improvement can be attributed to three key factors: (1) Alignment with Dynamics, where
segmentation reflecting physical influences enables more effective learning of the system’s dynamics; (2)
Enhanced Segment Quality, achieved through improved intra-segment cohesion and minimized inter-segment
interactions, facilitating better learning of localized patterns; and (3) Benefit to Learning, where emphasizing
critical regions via exponential transformations allows the model to focus on areas with significant dynamic
changes, thereby enhancing prediction accuracy. These results demonstrate that the choice of segmentation
method impacts the model’s ability to learn dynamic behaviors, and the introduction of additional metrics
reveals that physics-informed segmentation effectively aligns mesh partitions with the system’s inherent
physical properties, thereby benefiting the learning process.

Influence of Segment Count on Performance – Table 4 and Table 5 present the RMSE-1, RMSE-all,
and various mesh quality metrics as the total number of mesh segments is varied during training on three
different datasets. In general, M4GN maintains stable performance with relatively low variance, indicating
that results are not highly sensitive to segment count. This robustness ensures reliable accuracy across
different mesh granularities. However, increasing the number of segments—thereby reducing finite elements
per segment—can lead to slight decreases in accuracy and performance.

To comprehensively evaluate the effect of segment number and determine the optimal segmentation for
a given dataset, we analyzed prediction accuracy across a wide range of segment counts (from 3 to 51)
during training on the DeformingBeam dataset. The impact of varying the number of mesh segments on
prediction accuracy is illustrated in Figure 8 and Figure 9(d). According to the plots, we identify 19 segments
as the optimal number. At this segmentation level, the model achieves the lowest RMSE and Chamfer
Distance, indicating high prediction accuracy and precise shape representation. The Hausdorff Distance is
also minimized, reflecting excellent alignment between the predicted and true meshes. While the Silhouette
score peaks at 9 segments—suggesting well-defined and compact clusters—the slight decrease at 19 segments
is offset by significant gains in other performance metrics. Choosing a lower number of segments, such as 3 or
9, may result in higher Silhouette scores but can compromise mesh detail and prediction accuracy due to
insufficient spatial granularity. Conversely, selecting a higher number of segments beyond 19 shows diminishing
returns, with only marginal improvements or slight degradations in some metrics and a continued decline in
Silhouette scores, potentially indicating over-segmentation and unnecessary computational complexity.

In conclusion, when presented with a new dataset, the optimal number of segments can be determined by
first computing Silhouette scores for various segment counts to assess cluster cohesion and separation without
requiring model training. This provides initial guidance on meaningful segmentation levels. Subsequently,
training the model with different segment numbers and evaluating performance metrics like RMSE, Hausdorff
Distance, and Chamfer Distance will help identify the point where performance improvements plateau or
begin to reverse, indicating the optimal balance between segmentation detail and model efficacy.

25

Under review as submission to TMLR

D.3 Macro-level Information Exchange

Influence of Positional Encoding on Performance – Table 5 and Figure 10(a) shows the effect of adding
positional encoding for small and large number of segments across three datasets. According to the results,
we identified several key findings. Firstly, the effectiveness of PE depends on the number of segments: in the
CylinderFlow and Deforming Plate datasets, incorporating PE with fewer segments improves performance
across multiple metrics by reducing positional ambiguity. With low segment counts, each segment covers
larger, more diverse areas, limiting the model’s spatial detail and understanding of segment relationships.
PE provides explicit positional information, allowing the model to distinguish distinct regions within the
same segment and better comprehend their interactions. However, as the number of segments increases and
spatial resolution improves, the benefits of PE diminish and may even introduce unnecessary complexity
that hinders performance. Additionally, dataset-specific factors influence PE’s effectiveness; for example, the
DeformingBeam dataset, with its complex geometry and deformation, did not benefit from PE. This indicates
that PE’s success depends not only on segment count but also on how well the PE implementation aligns
with the dataset’s unique characteristics.

Consequently, tailored PE approaches that consider specific geometry and deformation patterns are necessary
for complex systems to achieve significant performance gains. In summary, while PE enhances the performance
of graph-based networks, further advancements are needed to develop optimal encoding strategies that
consistently improve performance across diverse dynamic systems.

Influence of Segment Overlap on Performance – Table 4 and Figure 10(b) illustrate the effect of
adding segment overlap for small and large number of segments across three datasets. According to the
results, the effectiveness of adding overlap between segments (δ > 0) depends on both the segment count and
the characteristics of the dataset, such as dimensionality, mesh type, and system dynamics. Overlapping
segments are more beneficial with higher segment counts where discontinuities are more prevalent. In Eulerian
systems, overlaps enhance the capture of complex interactions and smooth transitions on fixed meshes,
leading to improved representation of fluid dynamics. Conversely, in Lagrangian systems where meshes move
with the material, overlaps can create redundancy and complicate connectivity, with their impact on model
performance varying based on mesh structures and deformation behaviors. For example, in the Deforming
Beam dataset, which uses a prism mesh suited for directional deformation, overlapping segments improve
performance by facilitating smooth transitions along its mesh surface, especially with a higher number of
segments. In contrast, the Deforming Plate dataset employs a tetrahedral mesh with complex, isotropic
deformations, where overlaps introduce unnecessary complexity and redundancy, resulting in decreased
performance. Therefore, despite both being 3D Lagrangian systems, the different mesh types and deformation
patterns explain why overlapping segments benefit the Deforming Beam but not the Deforming Plate.

3 9 19 33 51
Num Mesh Segments (Train & Test)

1.00

1.05

1.10

1.15

RM
SE

-1

1e 5

3 9 19 33 51
Num Mesh Segments (Train & Test)

1.6
1.8
2.0
2.2
2.4
2.6
2.8

RM
SE

-a
ll

1e 4

3 9 19 33 51
Num Mesh Segments (Train & Test)

4.6

4.8

5.0

5.2

5.4

Co
nt

in
ui

ty
 E

rro
r

1e 3

Figure 8: Impact of varying mesh segment numbers during training on prediction accuracy under the
DeformingBeam dataset. The number of mesh segments remains consistent during both training and testing.
In general, M4GN maintains stable performance with relatively low variance, indicating that results are not
highly sensitive to segment count. This robustness ensures reliable accuracy across different mesh granularities.
However, increasing the number of segments—thereby reducing finite elements per segment—can lead to
slight decreases in accuracy and performance. More detailed analysis on the effect of segmentation numbers
to various metrics can be found in Figure 9(d).

26

Under review as submission to TMLR

(a) (b)

(c) (d)

Figure 9: (a-c) Evaluation of different segmentation methods under three datasets. The heatmap (left)
presents normalized Conductance, Edge Cut Ratio, and reversed Silhouette Score for EAGLE and four M4GN
variants. Metrics are scaled between 0 and 1, with Silhouette Scores reversed to ensure consistent evaluation
criteria, where lower values indicate better segmentation quality. The sidebar plot (right) depicts normalized
Prediction Error and Mesh Quality, with a minimum value of 0.05 applied to avoid invisible bars. These
figures evaluate segmentation quality across multiple metrics and demonstrate how different segmentation
methods influence model accuracy and mesh quality, emphasizing the advantages of our physics-informed
segmentation strategies; (d) Dependence of various performance metrics on the number of segments in
M4GN under Deforming Beam dataset. The plot illustrates how the normalized values of several performance
metrics vary with the number of segments. Each metric is represented by a distinct curve, demonstrating the
relationship between segment number and overall performance. This figure evaluates the effect of segment
number and guides the selection of the optimal number of segments for balanced performance across all
metrics.

27

Under review as submission to TMLR

Table 4: Ablation study of number of segments, and effect of adding segment overlap.
Dataset Nseg δ > 0 GFh ↓ GFc ↓ MC ↓ Aspect Ratio ↓ RMSE-1 RMSE-all

Cylinder
16 - - - - 3.16e-03 5.03e-02
16 - - - - 3.19e-03 5.35e-02
36 - - - - 3.41e-03 4.42e-02
36 - - - - 3.09e-03 3.86e-02

Plate
9 4.98e-03 9.58e-06 5.01e-03 2.83e-03 2.77e-04 3.88e-03
9 5.32e-03 9.87e-06 5.24e-03 2.95e-03 2.83e-04 2.98e-03
19 4.51e-03 6.91e-06 4.73e-03 2.58e-03 2.71e-04 2.40e-03
19 4.76e-03 7.01e-06 4.81e-03 2.85e-03 2.77e-04 3.59e-03

Beam
9 3.46e-04 5.23e-08 5.17e-03 3.31e-03 1.14e-05 2.39e-04
9 3.38e-04 5.07e-08 5.31e-03 3.30e-03 1.15e-05 2.40e-04
19 3.57e-04 4.92e-08 5.24e-03 3.29e-03 1.18e-05 2.28e-04
19 3.19e-04 4.73e-08 5.31e-03 3.08e-03 1.17e-05 2.01e-04

Table 5: Ablation study of number of segments and whether to add PE or not.
Dataset Nseg PE GFh ↓ GFc ↓ MC ↓ Aspect Ratio ↓ RMSE-1 RMSE-all

Cylinder
16 - - - - 3.19e-03 5.35e-02
16 - - - - 3.34e-03 4.76e-02
36 - - - - 3.09e-03 3.86e-02
36 - - - - 3.00e-03 3.80e-02

Plate
9 4.81e-03 9.33e-06 5.01e-03 2.83e-03 2.77e-04 3.88e-03
9 4.24e-03 6.72e-06 5.04e-03 2.81e-03 2.84e-04 2.72e-03
19 5.10e-03 6.51e-06 4.73e-03 2.58e-03 2.71e-04 2.40e-03
19 5.13e-03 6.78e-06 4.74e-03 2.64e-03 2.68e-04 2.91e-03

Beam
9 3.75e-04 5.89e-08 5.31e-03 3.30e-03 1.15e-05 2.40e-04
9 3.51e-04 5.33e-08 5.18e-03 3.31e-03 1.17e-05 2.56e-04
19 3.22e-04 4.86e-08 5.31e-03 3.08e-03 1.17e-05 2.01e-04
19 3.19e-04 4.84e-08 5.27e-03 3.18e-03 1.15e-05 2.21e-04

(a) (b)

Figure 10: Ablation study on the effects of position encoding and segment overlap across datasets with
varying segment numbers. The figure presents the performance metrics for models both with and without the
position encoder (a), and with and without considering segment overlap (b) across three distinct datasets,
each characterized by a different number of segments. By comparing these conditions, the study highlights
how the inclusion of position encoding and the handling of segment overlap influence overall performance,
thereby informing the selection of optimal model configurations.

28

Under review as submission to TMLR

E Generalization Studies

To evaluate the generalizability of our M4GN model, we created a larger-scale DeformingBeam dataset,
detailed in Appendix A.

E.1 Performance on Larger-Scale Datasets

Table 6 summarizes the generalization performance of various models trained on the DeformingBeam dataset
and directly applied to DeformingBeam(large), a scaled-up version. The results demonstrate that M4GN
consistently outperforms all other models across all metrics. In terms of mesh quality, M4GN achieves a
53% improvement over both EAGLE and BSMS for Geometric Fidelity (GF). Similarly, for Mesh Continuity
(MC), M4GN achieves the best performance with a value of 1.08e-02, representing a 45% improvement over
EAGLE, the next-best model. For the RMSE metrics, M4GN delivers the lowest RMSE-1, RMSE-50, and
RMSE-all. Notably, M4GN’s RMSE-all is 46% lower than EAGLE. These findings suggest that M4GN
not only preserves prediction accuracy but also enhances mesh quality when generalizing to larger-scale
data, significantly surpassing state-of-the-art models in both accuracy and mesh quality. This demonstrates
M4GN’s robust generalization ability, making it highly suitable for complex, large-scale dynamic systems.

Table 6: Generalization performance of our method and five baseline models on the scaled-up DeformingBeam
dataset. M4GN demonstrates superior accuracy and mesh quality when generalizing to an unseen dataset
with a denser mesh and more extensive long-range dynamic effects.

Method GFh ↓ GFc ↓ MC ↓ Aspect Ratio ↓ RMSE-1 RMSE-50 RMSE-all

GCN 2.18e-02 3.28e-05 1.21e-01 1.69e-01 2.57e-04 1.95e-03 1.11e-02
g-U-Net 1.94e-02 2.80e-05 4.56e-02 7.01e-02 1.60e-04 1.87e-03 1.01e-02
MGN 2.32e-02 1.43e-05 2.00e-02 2.57e-02 1.34e-04 1.43e-03 6.42e-03
BSMS 1.72e-02 3.34e-05 1.35e-01 1.17e-01 4.47e-04 3.19e-03 1.03e-02
EAGLE 1.69e-02 2.20e-05 1.98e-02 5.15e-02 8.42e-05 1.45e-03 8.37e-03
M4GN 7.96e-03 5.35e-06 1.08e-02 2.24e-02 5.47e-05 9.20e-04 4.58e-03

E.2 Effect of Mesh Segment Count on Generalization

Generalization with Varying Segment Counts During Testing – Across three datasets, we perform
generalization studies where the model is tested using a varying number of segments. The results in Figure 11
illustrate the generalization performance. Pink columns are the references for regular testing and the others
are generalization to different number of segments from training. Overall, the M4GN model can generalize
very well to different number of segments during testing.

Impact of Segment Count During Training and Testing – Equipped with message passing and trans-
former mechanisms, M4GN can handle an arbitrary number of segments. Figure 12 shows the generalization
performance of our M4GN model to larger domain as heatmaps, where models trained with a specific number
of segment under deformingBeam dataset are tested with varying number of segments under deformingBeam
(large). We observe that better results are seen when the number of nodes per segment during training is
less than or equal to that in the generalizing domain, or when the number of segments is greater. Overall,
we demonstrate M4GN’s robustness and adaptability in generalizing to larger domains with varying mesh
segments, making it highly suitable for real-world applications involving large and diverse mesh graphs.

F Computational Efficiency Analysis

F.1 Performance Comparision

Table 7 listed the training time, test time and number of parameters for four models MGN, BSMS-GNN,
EAGLE and M4GN across three datasets. The RMSE-all is also listed as performance reference. Our M4GN
model has comparable or better efficiency compared with other models. Notebly, the M4GN model has
exceptional efficiency with RMSE-all better than other baselines.

29

Under review as submission to TMLR

Figure 11: Generalization performance of our method under varying segment counts during testing over three
datasets. (a) CylinderFlow: effect of number of segments for test set on different metrics, where model is
trained under 36 segments (colored in pink); (b) DeformingPlate: effect of number of segments for test set on
different metrics, where model is trained under 19 segments (colored in pink); (c) DeformingBeam: effect
of number of segments for test set on different metrics, where model is trained under 19 segments (colored
in pink). This figure illustrates that our M4GN model, despite being trained with a fixed number of mesh
segments, maintains strong accuracy and mesh quality when tested with varying numbers of mesh segments.

high

low

high

low

Figure 12: Generalization performance of our method on larger domains under different number of mesh
segmentation during training and testing. The subscript of each mesh segment indicating the average number
of nodes per segment. M4GN demonstrates robustness and adaptability in handling larger domains with
varying mesh segments, making it well-suited for real-world applications involving large and complex mesh
structures.

30

Under review as submission to TMLR

Table 7: Comprehensive evaluation of our method alongside MGN, BSMS, and EAGLE under three datasets.
M4GN consistently delivers stable, competitive efficiency while maintaining high accuracy and superior mesh
quality.

Dataset Model RMSE-all MC ↓ Train Time
per step [ms] ↓

Train
Memory [MB] ↓

Test Time
per step [ms] ↓

Test
Memory [MB] ↓

Train Time
total [h] ↓

Cylinder

MGN 4.81e-02 - 66.7 698.5 20.2 67.2 37.1
BSMS 1.37e-01 - 54.7 430.3 23.8 57.9 30.4
EAGLE 5.83e-02 - 69.5 618.7 28.8 230.8 38.6
M4GN 3.80e-02 - 56.2 366.6 20.0 65.0 31.2

Plate

MGN 1.47e-02 9.25e-03 131.9 6021.5 36.2 445.5 73.3
BSMS 1.18e-02 1.83e-02 83.9 910.1 37.7 77.9 46.6
EAGLE 3.87e-03 5.56e-03 81.2 1090.8 32.4 362.7 45.1
M4GN 2.65e-03 4.82e-03 76.5 648.1 29.3 103.3 42.5

Beam

MGN 4.72e-04 1.69e-02 79.1 1074.4 28.6 83.8 22.0
BSMS 4.98e-04 3.25e-02 61.8 213.7 30.7 35.6 17.2
EAGLE 4.22e-04 5.98e-03 53.5 410.3 26.0 153.5 14.9
M4GN 1.87e-04 5.26e-03 53.4 234.5 24.2 47.1 14.8

F.2 Compelxity Analysis

M4GN is composed of four key components: an Encoder-Process-Decoder (EPD) network operating on mesh
graphs, modal decomposition, hybrid mesh segmentation, and a mesh segment transformer. Since modal
decomposition and mesh segmentation are performed only once at the initial time step, their computational
cost is excluded from our analysis. We focus instead on the computational complexity of the EPD and mesh
segment transformer components. The complexity of the EPD is: O(L1|V|d2 + L1|E|d2), where L1 is the
number of message passing layer, d is the feature dimension, |V| is the number of mesh nodes and |E| is the
number of mesh edges. The complexity of mesh segment transformer is O(L2K2d + L2Kd2), where L2 is the
number of multi-head attention layers, K is the number of segments, and d is the feature dimension. The
overall time complexity is O(L1|V|d2 + L1|E|d2 + L2K2d + L2Kd2).

G Qualitative Results

Figure 13, 14, 15, and 16 illustrate selected rollout results for all three datasets under different models.

31

Under review as submission to TMLR

Figure 13: Additional simulation results for different models under DeformingPlate dataset.

Figure 14: Additional simulation results for different models under DeformingPlate dataset.

32

Under review as submission to TMLR

Figure 15: Additional simulation results for different models under DeformingBeam dataset

Figure 16: Additional simulation results for different models under CylinderFlow dataset

33

	Datasets
	Datasets for Unstructured Mesh-based Simulations
	Datasets Details

	Model Details
	Overall Information
	Baselines
	Training Details
	Hybrid Mesh Segmentation Details
	Mesh Segment Hyperparameter Selection

	Additional Evaluation Metrics and Results
	Overall Results
	Metrics for Mesh Quality Measure
	Segmentation Quality Metrics
	Visualization of Segmentation Alignment with System Dynamics

	Ablation Studies
	Micro-level Information Exchange
	Meso-level Information Alignment
	Macro-level Information Exchange

	Generalization Studies
	Performance on Larger-Scale Datasets
	Effect of Mesh Segment Count on Generalization

	Computational Efficiency Analysis
	Performance Comparision
	Compelxity Analysis

	Qualitative Results

