Under review as submission to TMLR

MA4GN: Mesh-based Multi-segment Hierarchical Graph Net-
work for Dynamic Simulations

Anonymous authors
Paper under double-blind review

Abstract

Mesh-based Graph neural networks (GNNs) have become effective surrogates for PDE
simulations, yet their deep message passing incurs high cost and over-smoothing on large,
long-range meshes; hierarchical GNNs shorten propagation paths but still face two key
obstacles: (i) building coarse graphs that respect mesh topology, geometry, and physical
discontinuities, and (ii) maintaining fine-scale accuracy without sacrificing the speed gained
from coarsening. We tackle these challenges with M4GN-—a three-tier, segment-centric
hierarchical network. M4GN begins with a hybrid segmentation strategy that pairs a fast
graph partitioner with a superpixel-style refinement guided by modal-decomposition features,
producing contiguous segments of dynamically consistent nodes. These segments are encoded
by a permutation-invariant aggregator, avoiding the order sensitivity and quadratic cost of
aggregation approaches used in prior works. The resulting information bridge a micro-level
GNN-—which captures local dynamics—and a macro-level transformer that reasons efficiently
across segments, achieving a principled balance between accuracy and efficiency. Evaluated
on multiple representative benchmark datasets, MAGN improves prediction accuracy by up
to 56% while achieving up to 22% faster inference than state-of-the-art baselines. Code and
datasets will be released upon acceptance.

1 Introduction

Numerically solving partial differential equations (PDEs) to model dynamical systems is fundamental in science
and engineering but is often computationally intensive, especially in time-sensitive applications requiring rapid
inference. This has prompted increased attention of adopting learning-based surrogate models (Sun et al.|
to expedite numerical simulations, addressing the computational challenges associated with traditional
solvers. Among these methods, mesh-based Graph Neural Network (GNN) methods [Sanchez-Gonzalez et al.|
(2018); Belbute-Peres et al.| (2020)); [Pfaff et al.| (2020)); [Sanchez-Gonzalez et al| (2020); |Gao et al| (2022) have
proved highly effective for simulating dynamical systems discretized on unstructured meshes. Information is
propagated by stacking successive message-passing layers across mesh edges. When the mesh graph becomes
very large—or when the underlying physics couples spatially distant regions (e.g., vortex—vortex interactions
in fluids or boundary loads transmitted along an elastic beam)—a substantial number of message-passing
iterations is required for information to traverse the graph (Fortunato et al., 2022)). This growth in node
count and propagation depth inflates computational cost, while the deeper propagation over-smooths node
embeddings and erodes accuracy [Chen et al.| (2020); Yang et al.| (2020)); Keriven| (2022). To mitigate these
effects, recent work has introduced hierarchical GNNs that learn coarse graph representations and pass
messages across multiple resolutions, thereby shortening information-propagation paths and reducing the
depth required for expressive receptive fields (Gao & Ji, [2019; |Li et al., |2020; [Lino et al., [2022). Such models
have achieved state-of-the-art accuracy on challenging benchmarks and some of them have shown substantial
speed-ups over single-scale mesh-based GNNs. Nevertheless, two limitations persist, which we examine in
detail in the following subsections.

Under review as submission to TMLR

Table 1: Comparison of strategies used to construct coarse-level graphs in hierarchical GNN models for
physics-based simulations. Here are the definitions for each evaluation criteria: Heuristic: the method is
driven by a fixed, hand-crafted rule rather than by parameters learned from data; Contiguity: the method
produces coarse elements that remain internally connected and never bridge gaps, holes, or material interfaces;
Geometric Fidelity: the method maintains the original element shapes and sizes closely enough to avoid
severe geometric distortion; Physics-Aware: the method incorporates physical information—such as material
domains, boundary conditions, or regions of nearly uniform fields.

Method Heuristic Contiguity GFG;)(;:EE;IC IZI“};:;ZS
(a) Learnable pooling (Gao & Ji, [2019) X X X X
(b) Spatial proximity pooling (Lino et al.L |2022D v X v X
(¢) Bi-Stride pooling (Cao et al., [2023 v 4 X X
(d) Same size k-means (Janny et al] [2023) v X v X
(e) Hybrid mesh graph segmentation (Ours) v v 4 v

Fe W e &

((b) (© (d
(a) Learnable pooling can indiscriminately merge distance vertices, disrupting connectivity, and—because it lacks a fixed
heuristic—precludes offline sub-graph generation, shifting additional computation into the model runtime; (b) Spatial proximity
pooling and (d) Same size k-means clustering ignore holes or interfaces (shaded areas), connecting/grouping nodes across gaps;
(c) Bi-Stride keeps connectivity but its hop-count stripes warp geometry into elongated, jagged stripes with poor aspect ratios.

1.1 Challenge in sub-graph construction

One of the key elements of these hierarchical methods is to generate coarse-level graphs, yet existing strategies
each have different drawbacks (Table . For example, learnable or random pooling
can introduce artificial partitions in the sub-level graphs, which impedes information exchange
across partitions. Methods like spatial proximity pooling (Lino et al.| 2022)(Fortunato et al., 2022) can lead
to wrong connections across the boundaries at the coarser level. While Bi-Stride (Cao et al.| |2023) does
guarantee 2-hop connectivity and avoids cross-boundary edges, its hop-count frontiers can severely warp
the geometric metric. Alternatively, (Janny et all [2023) preserves the original mesh and utilizes same size
k-means to cluster mesh nodes by treating mesh graph as point clouds. However, it ignores edge topology
entirely: two nodes that are Euclidean-close yet separated by a crack, thin wall, or hole can be grouped
together. Because their physical states are incompatible, pooling them into a single ‘super-node’ yields
segment embeddings that misrepresent local physics; these distorted features propagate through the model
and ultimately amplify prediction error (Cao et al., 2023} |Chen et all [2020). Hence, the first challenge is to
design a graph-coarsening strategy that simultaneously preserves mesh topology and geometric fidelity while
respecting physical discontinuities.

1.2 Challenge in balancing accuracy and efficiency

Having an appropriate segmentation or pooling strategy addresses only part of the problem; the organization
of sub-level graphs into a multi-resolution hierarchy and the way information exchanges between levels are
equally decisive for speed and fidelity. Most pooling-based hierarchies (Gao & Ji, 2019; |Cao et al., [2023]))
adopt a U-Net-style encoder—decoder (Ronneberger et all [2015): a lightweight gating function scores vertices,
the top-k fraction is retained, and the rest are discarded. Each pooling step shrinks the graph rapidly, so
deeper levels operate on far fewer nodes and enjoy substantial computational savings. The downside is
that aggressive pooling or poorly designed coarsening levels act like an irreversible low-pass (and sometimes
aliasing) filter on the graph signal (Chen et al., 2020} |Li et al.| [2020), so the high-frequency physics “smears
or vanishes” when the prediction is mapped back to the fine mesh, resulting in accuracy reduction. By
contrast, segment-based approaches such as EAGLE (Janny et all [2023) keep the original mesh intact within

Under review as submission to TMLR

each segment, ensuring that no local geometric or physical detail is discarded. However, their reliance on
gated recurrent units (GRU) means that every node in every segment incurs three gating
operations per time step, so computational cost grows with both segment size and feature dimension. Beyond
the runtime and memory overhead on large meshes, long GRU chains also suffer from order sensitivity and
information dilution (Vinyals et al., 2015; Bengio et al., [1994)), which can erode predictive accuracy even
when enough compute is available. The second challenge, therefore, is to design a hierarchical architecture
that retains fine-grained geometric and physical cues like segment-based methods, yet extracts and propagates
segment representations through an aggregator that remains permutation-invariant, information-preserving,
and computationally light—thus achieving a principled balance between accuracy and efficiency.

1.3 Contributions

To overcome the challenges outlined above and to comprehensively evaluate different surrogates, we make
three primary contributions in this paper:

¢ Hybrid mesh—graph segmentation. We propose a two-stage mesh-graph segmentation strategy:
(i) a lightweight graph partitioner first produces a coarse segmentation, and (ii) each partition is
then adaptively refined by a superpixel-inspired algorithm guided by modal-decomposition features
encoding local physics. The resulting segments preserves contiguity and geometric fidelity while
encompassing nodes with coherent physical behavior.

¢ Multi-segment hierarchical graph network. We introduce M4GN, a three-tier, segment-centric
hierarchy inspired by EAGLE (Janny et al., 2023) but with two crucial innovations: (i) integration
of a hybrid mesh—graph segmentation scheme that yields segments of higher geometric and physical
fidelity, facilitating communication between adjacent hierarchy levels; and (ii) a permutation-invariant
max-pooling aggregator that is insensitivity to mesh node orders and computational efficient. As a
result, MAGN preserves fine-scale physics (micro-level), compress them into faithful segment tokens
(intermediate-level), and enable efficient inter-segment reasoning (macro-level), yielding an effective
balance between predictive accuracy and computational efficiency.

o Additional dataset and its scaled-up version. We contribute DeformingBeam and its scaled
counterpart DeformingBeam (large), the first public 3-D Lagrangian contact-deformation benchmark
that include a scale-up version. The meshes’ elongated geometry produces graph diameters several
times larger than those in previous solid-mechanics benchmarks, exposing explicit long-range interac-
tions. It enables rigorous testing of hierarchical surrogates and serves as a benchmark for probing
model scalability and cross-scale generalization.

2 Hybrid Mesh-graph Segmentation

This section is organized as follows. Section motivates the hybrid mesh—graph segmentation approach.
Section [2:2] introduces the mathematical notation, and Section [2.3] illustrates the modal-decomposition
technique. Section [2:4] presents the complete segmentation pipeline, which serves as the intermediate-level
module of the MAGN framework shown in Figure [I]

2.1 Motivation

To avoid the uninterpretable and potentially erroneous dynamics that coarsened graphs or added edges
might introduce, we propose preserving the original mesh structure and facilitating long-range information
exchange through communication between segmented mesh graphs. Traditional graph segmentation methods
(Alpert & Yao| [1995; Delingettel [1999)) often prioritize geometric properties and computational efficiency
over underlying physical attributes. Conversely, superpixel approaches (Veksler et al.| 2010; |Achanta et al.)
group pixels based on user-defined similarity measures but rely on careful cluster-center initialization
to maintain segmentation quality. To merge the strengths of both, we apply a graph-based method (fg) for
initial mesh segmentation and refine it using a superpizel-based method (fsp), guided by leveraging features
associated with dominant modes identified in the modal decomposition module (Section . In this way, we
ensure these segments remain physically coherent and well-structured for effective communication. Grouping

Under review as submission to TMLR

_—
Material Properties

¢ Density
¢ Youngs’ Modulus
 Poisson Ratio

Rigid object
mesh node

Boundary Conditions O Fixed boundary
free boundary mesh node i Mesh Segment E
7 O Free boundary | Feature Dispatch :
- mesh node ! I
: i
1 1
fixed boundary ‘ <> Mesh edge i i
\ ! !
—————————————————— 1) Position | !
— ; ; I 4— i |
Finite Element Mesh Hybrid Segmentation i neoder | Wncoding (PE) i |
i
;| Graph-based i Processor O > |
step 1| nitialization | | “N-zro--mmmm------ ‘

Mesh Segment
Feature Extraction

_ Mesh Segment
Superpixel-based Transformer

Refinement

Rigid Object

Segment
Overlap
()

Segment
Encoding
(SE)

v
s

N
<

&

Mesh Segment
Self-Attention

-
:
¥

>

=
=

* Input / Output I:(> Micro-level Process * Intermediate-level Process * Macro-level Process
Figure 1: Architecture of the proposed M4GN framework: Mesh-based Multi-Segment Hierarchical (Micro-
Macro) Graph Network. The framework operates on three modules: micro-level module to capture fine-scale
dynamic, intermediate-level module to generate mesh-based segmentation, and macro-level module to model
segment-level interactions. The colored arrows trace the data flow within each module.

elements with similar physical properties enhances model convergence by minimizing discontinuities within
each segment 2023), while grouping nodes with similar behaviors streamlines learning and ensures
uniform handling of similar interactions (Dolean et all [2015)). Eventually, this hybrid approach offers efficient
and reliable geometric partitioning alongside adaptive, feature-based refinement, producing high-quality mesh
segments adaptable to diverse dynamical systems.

2.2 Mathematical Notation

We define the segmentation policy 7(G) = f<(G,I), where the segmentation function fs takes the input
graph G and prior physical information I (e.g., boundary conditions, material properties), and outputs a
set of graph segments {59, 59 ...,5%}. The superscript 0 denotes non-overlapping segmentation. For each
segment Sy, = (Vs,,Es,), the set of nodes Vg, CV and g, C & are subsets of the original graph G. The
union of all segments reconstructs the original graph, such that V = Ung and £ = Ué’gk. In some cases, it
may be beneficial to allow for overlapping segments, where nodes in V can belong to more than one segment.
This overlap helps create smoother transitions between segments and reduces discontinuities at segment
boundaries. We define the overlap amount by § € N, with § = 0 representing no overlap. For § > 0, the
node set Vg, is defined recursively as as V§ = g;l U{Adj(i) | i € Vg;l}. To simplify the presentation, we
disregard the superscript § in the remainder of this paper and use § = 1 for all experiments with overlapping.
The effect of adding overlapping segments is discussed in our ablation study, as shown in Table [0]

2.3 Modal Decomposition

Modal decomposition is a fundamental technique for extracting dominant spatiotemporal patterns, or modes,
from complex physical systems (Fu & He},[2001; [Schmid et al.} 2011} Taira et al.,2017). Each mode encapsulates
coherent behavior—such as a characteristic deformation shape or flow structure—allowing a reduced but
meaningful representation of the underlying dynamics. In complex physical simulations, these dominant

Under review as submission to TMLR

modes can effectively guide downstream tasks such as mesh segmentation, where the domain is subdivided
based on physical coherence (Yang et al. 2016; [Huang et al.l |2009). In this work, we employ two different
modal decomposition approaches to address solid and fluid problems separately, given their distinct physical
behaviors (Bathe, [2001)). The pseudocodeof the modal decomposition module can be found in Algorithm

Structural Modal Analysis: For solids, the decomposition naturally arises from the mass—stiffness
relationship in elastodynamics, capturing genuine dynamic displacements (Andersen, [2006)). Let K be the
global stiffness matrix and M the global mass matrix arising from finite element assembly. The free vibration
modes of a structure are obtained by solving the generalized eigenvalue problem:

K¢ = \M¢, (1)

where A represents the square of the natural frequency, and ¢ = (¢1, @2, ..., Pdim) is the corresponding
structural modes, whose dimension (dim) matches the number of displacement components (e.g., 2D or 3D).
Physically, each mode shape indicates a fundamental deformation pattern under vibrational motion (Fu &
Hel |2001; [Wilson, [2002), which is tied to the solid’s geometry, boundary conditions, and material parameters.
In practice, it is typical to select the first m modes (A1 < Ao < --- < A,,) to construct an m-dimensional
feature at each mesh node i: f™* = (¢1(i), P2(i), ..., Pm (7).

Laplacian Eigenfunctions: In fluid contexts, particularly when lacking multiple snapshots or a steady
base flow (Wang et al.| 2024), Laplacian eigenfunctions (Grebenkov & Nguyen, |2013) are used to capture
geometry- and boundary-driven harmonic modes by solving:

—V2¢ =)¢, subject to boundary constraints, (2)

yielding harmonic modes ¢1,...,¢,. These modes serve as a practical proxy for flow-related structures,
providing a minimal but informative decomposition that respects the domain shape and boundary conditions
(De Witt et al., |2012; [Taira et al., |2017)). Similar to the solid case, each node 4 in the fluid mesh is associated
with a feature vector:f"® = (¢1(1), d2(i), ..., dm(i)).

2.4 Detailed Methodology

In the hybrid segmentation module, we first use METIS (Karypis & Kumar} 1998) for initial mesh segmentation
due to its great balance of partition quality and speed. Formally, given a graph G, the partition function fg
will split it into K non-overlapped mesh-segment graphs: {S1,..., Sk | S;NS; = @,Vi # j} = fg(G). Then,
we apply SLIC (Achanta et al., 2012)), the state-of-the-art superpixel-based clustering methods, to these mesh
segments to iteratively update the segmentation centroids {C1,...,Ck} and corresponding node assignments
using information obtained from modal decomposition (Section . It is worth noting that standard modal
decomposition does not account for external obstacles (Fu & He, [2001). Therefore, in models with moving
rigid objects, this information will need to be incorporated separately. For node i in graph G, we represent it
by its spatial coordinates x;, features related to rigid object or obstacle fi"bs, and features obtained from
modal decomposition f™?. For a given mesh segment S}, containing |Vs, | nodes, we define its centroid Cj, as
its mean value along the features:

oo0s m 1 o0s m
Cy = [XCM Cl;) de]T = W Z [Xiafib 7fi d]T° (3)
k iGVsk

Within each iteration, we improve the mesh segmentation by minimizing a distance measure that considers
both physical similarity and spatial proximity. The distance measure d(i, Cy) between a node i € V and a
segment’s centroid CY is defined as:

d(i, Cr) = I£7° = &N + 17 = FE2N + 7llxi — e, (4)

where 7 is used to control the compactness of a mesh segment. The pseudo code of the hybrid segmentation
module can be found in Algorithm 2] In Appendix [B.4] we present a comprehensive comparison of various
segmentation methods and their variants based on different distance measures. Additionally, we evaluate the
impact of varying the number of mesh segments on model performance in Appendix and Appendix
We also introduce several metrics to measure quality of different mesh segmentation, specifically to understand
the intra-segment and inter-segment characteristics, which can be found in Appendix [C.2]

Under review as submission to TMLR

3 MAGN: Multi-segment Hierarchical Graph Network

This section details our proposed hierarchical framework (Figure . After a formal problem statement
in Section we describe its three-level modules: (i) a micro-level module (Section that performs
message passing along mesh edges to capture fine-scale dynamics; (ii) an intermediate-level segment module
(Section [2)) that constructs mesh segments offline using our heuristic hybrid segmentation algorithm; and
(iii) a macro-level module (Section that aggregates segment features and exchanges information across
segments to model long-range interactions.

3.1 Problem Definition

Let G = (V,€) be a mesh graph with V being the set of nodes and £ being the set of edges. The graph
has N = |V| nodes and E = |€| edges, with adjacency matrix A € RV*¥N represents graph connectivity.
The dynamic simulation task is to learn a forward model of the dynamic quantities of the mesh graph at
next time step C?t“ given the current mesh graph G; and (optionally) a history of previous mesh graphs
{G¢_1,...,Gi—p}. Finally, the rollout trajectory can be generated through the simulator iteratively based
on the previous prediction: Gy, Gt+1, .. GH_T, where T is the total simulation steps. In this paper, the
proposed model (M4GN) can simulate both Eulerian and Lagrangian systems (Bontempi & Faravelli, [1998)).
For Eulerian systems examined in this paper, where continuous fields such as velocity evolve on a stationary
mesh, the graph & includes only mesh-related edges £M. Conversely, for Lagrangian systems considered in
this paper, where the mesh represents a moving and deforming surface or volume, additional world edges £"
are incorporated into the graph. These edges enable the model to learn external dynamics such as collision
and contact. The node features of node i are denoted by x;, while the features for an edge between node
and j are indicated by e;;.

3.2 Micro-level Module

Within the micro-level module, each node engages in the exchange of information with its neighboring nodes.
This process holds particular significance in dynamical systems, where the behavior of adjacent nodes is closely
intertwined (Booij & Holthuijsen! (1987; [Emanuell [1994; [Fahy, 2007} |Kennett} |2009). Furthermore, this module
serves a crucial role in addressing discontinuities that may arise at the boundaries of adjacent mesh segments
(Lai et al. 2009). By prioritizing micro-level information exchange, we effectively mitigate discontinuities
introduced by subsequent macro-level operations. We follow the Encoder-Process-Decoder (EPD)(Pfaff et al.|
2020)) architecture for our micro-level information exchange as it has shown great performance in dealing with
mesh-based graphs. Specifically, we use the encoder and processor blocks for micro-level message passing,
while the decoder head is detached and applied only after the macro-level module (Section . For a
given graph G at time ¢, the model begins with extracting node and edge features through two separate
Multi-Layer Perceptrons (MLPs):

h?,t = fn(xi,t)7 hi\fto = f(e]\/l(e%t)7 hzv;/to fgv(eyg[it)ﬂ (5)
where x;; € V, e}f, € M, and €}], € £V denote node feature, mesh edge feature, and world edge feature
vector at time ¢, respectlvely For Lagranglan systems, world edges are created by spatial proximity, where for
a fixed radius ry, a world edge is added between nodes i and j when |x; — x;| < ry, excluding node pairs
already connected in the mesh. The outputs of two MLPs (i.e. f, and f.) for node and edge are denoted
as h?’t and h?j’t, respectively. Then, a L-step message passing (MP) is performed such that each node can
receive and aggregate information from neighboring nodes within L steps of edge traversing. For each MP
from 1 to L, the node and edge representations are updated as:

hi, = (bl >0 hi Y nih, (6)
JEAd)(3) JEAH(7)
hi = fLhy T e, b = (e Rl), (7)

where Adj(i) denotes all adjacent nodes of node i. Up until this point, the node and edge information of the
graph G; are updated. Additionally, we implement a technique from (Godwin et al., [2021), which involves

Under review as submission to TMLR

corrupting the input graph with noise and adding a noise-correcting node-level loss. We evaluate the impact
of varying the number of message passing steps during micro-level information exchange step, where details
can be found in Appendix

3.3 Macro-level Module
3.3.1 Mesh Segment Feature Extraction

Segment Encoding (SE) — In order to extract a global feature for each mesh segment, we perform
average pooling on all node vectors in Sy and apply a MLP (fs) to get the fixed-sized segment embedding:
hs, + = fs(ﬁ Zievsk hi%t). We replace the GRU-based aggregator used in [Janny et al. (2023|) with a
permutation-invariant max pooling operation, which provides a more efficient and robust alternative for
segment-level representation. It sidesteps the order bias and gradient noise of sequence models, yielding
representations that remain stable across epochs and insensitive to mesh reordering (Vinyals et al., |2015)).
Moreover, max pooling circumvents the information-dilution problem inherent in long RNN chains (Bengio
et al} |1994), preserving salient local features from vanishing-gradient effects and thereby enhancing predictive
accuracy. Meanwhile, its computational burden is only O(Nd), compared with the O(Nd?) matrix operations
and lengthy back-propagation demanded by GRU pooling (Chung et al., [2014]). These properties make max
pooling a proper choice when accuracy and efficiency need to be balanced.

Position Encoding (PE) — As dynamic effect propagates continuously over mesh domains, knowing relative
location among segments could provide extra information for next-step macro-level information exchange
and increase expressivity of the network. Mathematically, for each pair of mesh segment graph, {S;,S;},
their relative positional information can be obtained through segment-level adjacency matrix A% € RE*X:
A? s, = Yo evs, Znevsj Apn. We follow the strategy in (Rampések et al., [2022)) that uses random-walk

structural encoding (RWSE) (Dwivedi et al.,2021) for PE calculation. Then the PE for the k-th segment,
denoted as pg, +, is processed through an MLP layer (f,,) and then added to update the SE as follows:
hg, + < hg, i + fsp(Ps,,t). We can further enhance the network’s expressivity by adding absolute PE to the
graph nodes. We use an MLP (f,,) to process each node’s PE (p;), calculated with a similar approach
as segment level, and add it to the input node feature. Thus, Eq becomes hat = fu(Xit + fup(Din))-
By incorporating node PE directly into the input features, these features participate in the micro-level
information exchange described in Section [3.2] potentially improving the continuity of the extracted mesh
segment features. Table [I0] presents ablation results illustrating the impact of including or excluding PE on
prediction performance.

3.3.2 Mesh Segment Transformer, Feature Dispatch, and Training

We construct a fully connected mesh segment graph, where the i-th mesh segment feature is represented by
hgs, . Note that since the transformer operates on mesh segments rather than individual mesh nodes, and the
total number of mesh segments (K) is significantly smaller than the total number of mesh nodes (N), the
computational cost of our transformer is substantially reduced compared to a traditional graph transformer
that operates on graph nodes (i.e. O(K?) < O(N?)). The I-th block of the mesh segment transformer layer
is defined as follows:

K
b, =[iL, > ag'y (Vi'LN(hk)), h§' = hl, + O}hl, + FFN (LN(hY, + O,hk,)), 8)
j=1

where agfilsj is self-attention weight between S; and Sj, Vﬁ’l € R X4 ig g trainable parameter matrix, and

0! € R¥*? is the learned output project matrix. k = 1 to H denotes the number of attention heads, and ||
denotes concatenation. dj is the dimension of mesh segment feature for each head, and d is the input and
output dimension. We adopt a Pre-Layer Norm architecture (Xiong et al., 2020), which is denoted as LN(-),
and the point-wise Feed Forward Network is represented as FFN(-). The mesh segment transformer module
facilitates information exchange among all mesh segments, updating the feature of each segment hg, after
passing through Lg mesh segment transformer blocks.

Under review as submission to TMLR

The mesh segment feature dispatch module (as shown in Figure [1]) integrates information obtained from both
macro-level and micro-level exchanges. Specifically, the final feature for node ¢ at time step t is updated as
h; ; < [h;, hg, ;] where i € Vg,. This ensures that each node incorporates information from both neighboring
mesh nodes and spatially distant, yet correlated regions. Finally, we train our dynamics model by supervising
on the per-node output features X; 11, produced by feeding h;; into an MLP-based decoder, using an Lo
loss between X; ;11 and the corresponding ground truth values x; ¢41.

4 Experiment

4.1 Experiment Setup

Datasets — We benchmark on four datasets that together capture the two principal application regimes for
mesh—based surrogates—FEulerian incompressible flow and Lagrangian hyper-elastic solids—while also probing
both short-range and long-range interactions, small and large graphs, and steady versus highly-transient
behavior. CylinderFlow and DeformingPlate are the widely-used public datasets of (Pfaff et al. [2020).
CylinderFlow varies cylinder diameter, position and inlet velocity, while DeformingPlate changes obstacle
trajectory, plate geometry, and boundary conditions. To challenge long-range coupling we introduce the
DeformingBeam, a 3-D hyper-elastic beam whose length, cross-section, and end loads vary, yielding the largest
graph diameter in the suite. Finally, DeformingBeam-Large doubles the physical span of that beam and the
total number of meshes to probe scalability. This mix exercises both short-range and long-range interactions,
small and large graphs, and steady versus highly-transient behavior. Because geometry, loading and obstacle
parameters all change from run to run, the sets jointly test a surrogate’s ability to generalize across shape,
boundary condition and scale variations, giving a balanced yet concise benchmark suite.

At each time step the network is provided with (i) nodal coordinates and edge vectors that describe the
local mesh geometry, (ii) the current physical state—velocity for the fluid case, displacement for the solid
cases—and (iii) categorical node masks identifying walls, inlets/outlets, or fixed/handle/obstacle regions.
For the modal-decomposition stage we further supply the material parameters and boundary conditions
already defined in the finite-element setup (density, Young’s modulus, Poisson’s ratio). The network outputs
the next-step field—velocity and pressure for CylinderFlow, displacement for the three solid-mechanics
datasets—which is recursively fed back as input to generate full rollouts. Comprehensive dataset specifications
are provided in Appendix [A]

M4GN and Baselines — As a default configuration for our MAGN model, we use 7 message passing steps
in the mesh graph network. The mesh segment transformer adopts 4 self-attention layers with 8 heads. We
compare our method to five baseline models: 1) GCN (Kipf & Welling, [2016; [Belbute-Peres et al., [2020), a
basic GNN structure widely used for simulating fluid dynamics; 2) g-U-Nets (Gao & Ji, |2019; |Alsentzer et al.|
, a representative method that incorporates graph pooling modules to enhance long-range interactions; 3)
MeshGraphNets (MGNs) (Pfaff et all [2020), a single-level GNN architecture that achieves great performance
and generalizability across various dynamical systems; 4) BSMS-GNN (Cao et al., [2023)), a recent work
featuring a multi-level hierarchical GNN architecture that aims to enhance computational efficiency in
simulating physical systems; and 5) EAGLE(Janny et al.| [2023)), a recent work presenting a clustering-based
pooling method along with transformer to enhance performance on large-scale turbulent fluid dynamics.
Detailed descriptions of the these models and training procedures can be found in Appendix [B]

Table 2: Compact summary of mesh—quality metrics for evaluating prediction results

Metric Geometric intuition What it catches Impact on simulation outcomes

Hausdorff (GF},) Max node-surface gap Isolated large outliers Drives worst-case error; signals local shape
failures.

Chamfer (GF.) Mean node—surface gap Uniform global drift Lowers overall fidelity; raises global error
norms.

Mesh Continuity (MC) Neighbour cell-volume ratio Abrupt size “cliffs” Introduces artificial discontinuities; noisy

spatial gradients.
Aspect-Ratio error (AR) Deviation from ideal element Slivers / stretched cells Injects anisotropic bias; hampers generaliza-
shape tion.

Under review as submission to TMLR

Table 3: Comparison of results with state-of-the-art methods across three datasets, where each model is
trained independently for each dataset. Prediction accuracy is evaluated using Root Mean Square Error
(RMSE), with the output being the 2D velocity and pressure field for CylinderFlow and the 3D position for
DeformingBeam and DeformingPlate. Errors are reported for 1-step rollout, 50-step rollouts, and the entire
trajectory. Each mesh quality metric is evaluated at every time step then averaged over time—by comparing
the predicted mesh to the ground-truth configuration. Results are averaged over three experiments with
different random seeds and presented as mean and standard deviation.

Mesh Quality Metrics | Prediction Error Metrics |
DATASET MobE GFp, GF. MC AR RMSE-1 RMSE-50 RMSE-all
ATASIET ODEL (x1072) (x107°) (x1072) (x1072) (x1073) (x10~%) (x10%)
GCN - - - 675 + 28 382 + 69 1702 + 310
g-U-NET - - - 401 + 3.7 179 + 32 758 + 88
CYLINDER MGN - - - 246 + 13 62.8 + 28 412 + 48
Frow BSMS-GNN - - - 181 + 22 252 £ 8.2 1218 + 83
EAGLE - - - 456 + 24 69.6 + 3.0 525+ 24
M4GN (OuRs) - - - 288 + 19 60.2 + 2.4 337 + 21
GCN 24.0 £ 06 323 +4 11.0 + 03 9.33 + 0.57 34.8 £ 06 26.1 + 01 169 +1
g-U-NET 36.1 £85 452+ 125 20.1 £ 05 12.4 + 43 41.2 £ 02 30.4 +os 179 £ 7
DEFORMING MGN 12.7 + 09 248 + 12 9.25 + 0.39 5.34 +0.26 22.8 + 0.2 20.0 + 04 147 +3
PLATE BSMS-GNN 23.8 £ 26 170 + 13 18.3 + 4.4 154 £59 30.3 £56 23.7 £35 118 +4
EAGLE 6.75 £ 08 41.1 £ 26 5.56 £ 0.12 3.31 +0.04 36.4 £ 5.2 5.63 £ 1.7 38.7 £ 18
M4GN (Ours) 4.29 + 0.07 7.05 + 1.05 4.82 + 0.06 2.67 + 0.06 26.7 £ 05 3.03 + o.16 26.5 + 2.4
GCN 4.91 £+ 0.36 3.53 £ 051 54.8 +£8.2 69.5 £ 338 7.25 £0.12 5.08 + 011 30.7 £ 41
g-U-NET 4.91 + 0.50 3.55 +0.73 34.7 £1.8 31.5 £1.2 7.28 4+ 0.39 5.09 + 023 31.7 £ 4.0
DEFORMING MGN 0.82 + 0.04 0.12 + 0.01 16.9 4+ 01 7.43 +0.10 4.434+ 0.08 2.41 + o016 4.72 £+ 027
BeaM BSMS-GNN 0.99 £ 0.03 0.21 + 0.04 32.5 +05 16.1 £ 0.3 6.86 + 0.09 1.95 £ 0.22 4.98 £ 0.71
EAGLE 0.64 £ 0.04 0.17 £ 0.01 5.98 +0.43 5.17 + 037 1.51 £ 0.04 0.67 £ 0.12 4.22 £+ 0.30

M4GN (Ours) 0.31 + 0.0o1 0.05 + 0.00 5.26 + 0.04 3.08 + 0.06 1.17 + o.o1 0.34 + 0.02 1.87 £ 0.12

Metrics — In addition to traditional accuracy metrics, we also report mesh-quality metrics (Table [2)) for the
Lagrangian cases, where the computational mesh deforms with the material and may accumulate distortion.
These evaluations are not required for the Eulerian dataset we used, because its meshes remain fixed in space
and therefore cannot experience element-quality degradation. Mesh-quality metrics serve objectives that
a nodal RMSE alone cannot address: (i) Many workflows feed the predicted mesh into inverse design or
topology-optimization loops (Han et al., [2012)); if elements are inverted or highly skewed, gradient-based
updates fail even when the nodal RMSE is low. (ii) Well-shaped, smoothly graded elements improve
the numerical conditioning of the surrogate, yielding higher predictive accuracy and better generalization
(Kamenski et al., 2014). Four mesh quality metrics are used with concise descriptions in Table [2] where each
metric targets a distinct failure mode, so a model may excel in one yet falter in another. For instance, a
mesh can align perfectly with the true geometry while still containing many sliver elements. Evaluating all
four metrics together thus offers a genuinely comprehensive view of the surrogate’s output quality. More
detailed descriptions and mathematical definitions of these metrics can be found in Appendix

4.2 Results and Discussion
4.2.1 Overall Performance Evaluation Across Multiple Datasets

The quantitative results in Table [3| show that M4GN outperforms all baselines across multiple evaluation
metrics. Specifically, for the CylinderFlow dataset, M4GN achieves a 36% reduction in test RMSE-all
compared to the second-best performing model, EAGLE. For the DeformingPlate dataset, MAGN reduces the
test RMSE-all by 32%. This improvement is even more pronounced for DeformingBeam dataset, where M4GN
demonstrates a 56% reduction in test RMSE-all. Such performance in 50-step and longer-step predictions
underscores its enhanced capability for long-term predictions. In addition to its high prediction accuracy,
M4GN demonstrates strong mesh quality, with up to a 48% reduction in GF and a 14% reduction in MC
compared to the second-best model across both Lagrangian system datasets.

4.2.2 Segmentation Quality and Its Impact on Performance Metrics

To rigorously assess the quality of our hybrid segmentation strategy and its influence on dynamics prediction,
we employ three metrics— Conductance, Edge-Cut Ratio, and Silhouette Score—that quantify intra-segment

Under review as submission to TMLR

(a) Cylinder (b) Plate
T 1.0 I 1.0
e - e
~038 -038
M4GN M4GN
“06 D)~ 022 0.017 _o

(MD) ~
-04 oo 0016 [MNOEE] -04

0.38 6

M4GN
(MDOD_) ~

M4GN 02 M4GN
(MDOD_e) (MDOD_e)
oo

-0.2

oo

) 00 os) 00 05 To y 00 05 1o
’sf%c, @GQ %5 %, @%Q‘ @QQ e, o% [0 Mesh Quality (1) '@»%c, "‘»GQ %y o% [0 Mesh Quality (4)
oY R0y g licti oY .7, g licti e, 9, g %, g i
S, S, e, © @l Prediction Error (4) S, S, S, © [Prediction Error (1) o S LN [Prediction Error (1)
%% o/?e% Y%, Qﬂo@{ @’%,,6 v, 0% o/%% s,

3 ~~ - -
i %ﬁ')’\ \ N (ours)

t=200 t =400 t=100 t=200 t =300 t=100 t=200 t =300

Low Error

High Error

Figure 2: (a-c) Evaluation of different segmentation methods under three datasets. The heatmap (left)
presents normalized Conductance, Edge Cut Ratio, and reversed Silhouette Score for EAGLE and three
M4GN variants. Metrics are scaled between 0 and 1, where lower values indicate better segmentation quality.
The sidebar plot (right) depicts normalized Prediction Error and Mesh Quality, with a minimum value of
0.05 applied to avoid invisible bars. (d-f) Visualization of simulation rollouts over time for three datasets,
comparing our segmentation method with EAGLE. Nodes are colored based on the average prediction error
within their segments.

cohesion and inter-segment separation. These metrics assess segment isolation and intra-segment homo-
geneity—properties that prevent feature dilution and lower prediction error. Formal definitions appear in
Appendix Figure afc) correlates segmentation scores with mesh quality and prediction error for
EAGLE’s node-based partitions and three variants of our hybrid scheme (see Appendix [B.4). The plots
confirm that segmentation choice matters: our hybrid method, which better aligns partitions with underlying
dynamic behaviors, consistently reduces error and improves mesh quality. Figure dff) color nodes by each
segment’s mean prediction error at successive time steps. Our segments stay nearly uniform in color across
all datasets, indicating coherent intra-segment dynamics. For example, in (d), segmentation follows periodic
wave patterns in fluid dynamics, while in (f), it reflects symmetrical system dynamics with symmetric segment
coloring. These visualizations demonstrate that our segmentation effectively captures the temporal and
spatial dynamics of the system, outperforming state-of-the-art method. Additional in-depth analysis can be

found in Appendix [D-2) and [D-3]

4.2.3 Accuracy-Efficiency Trade-off Analysis

Figure a) shows distinct trade-offs: MGN excels on the small-diameter CylinderFlow but loses accuracy
and speed on DeformingPlate and DeformingBeam, where deep message passing leads to over-smoothing and
higher latency; BSMS is memory-efficient thanks to bi-stride pooling, yet that pooling lowers mesh fidelity
and accuracy and slows inference when long-range details must be reconstructed; and EAGLE offers moderate
performance overall—its physics-agnostic clustering limits long-range capture, remaining efficient on the some
datasets but slowing sharply on CylinderFlow as dense meshes inflate the number of required clusters. By
contrast, MAGN maintains high accuracy and efficiency across all cases because its hybrid segmentation
groups physically coherent nodes and its three-level hierarchy offloads long-range reasoning to a lightweight
segment-level transformer, reducing both message-passing depth and token count. This design lets MAGN
preserve local fidelity while controlling computational cost, yielding the balanced performance seen in the
plots. Additional qualitative results are provided in Table [I2}

4.2.4 Performance Analysis Across Graph Diameter and Scale

One of the main goals of hierarchical GNNSs is to alleviate over-smoothing and capture long-range interactions.
Exploiting the wide diameter range in our DeformingBeam benchmark, we group test cases by graph diameter
and plot RMSE-all versus diameter in Figure b). Errors for the baseline models escalate rapidly with

10

Under review as submission to TMLR

(a) CylinderFlow DeformingPlate DeformingBeam

Training Training Predict Training Predict
Speed Speed Accuracy Speed — Accuracy

B Predict
"\ Accuracy

\| Mesh Inference|}
*| Quality Speed %

Mesh
/| Quality

Inference|
Speed

Inference|e
Speed ||

& ing Memory
./ Efficiency

Training Memory - festing Memory Training Memory —————-—Testing Memory
Efficiency Efficiency iciency iciency

Training Memo!
Efficiency

BN MGN mmm BSMS mEE EAGLE mEE M4GN

(b) (c)
le—2
3.0 Fe [MC-Beam
—e— GCN . -4 @ @ mc-Beam (large) 107 =
2.5 | =% g-U-Net ’ i H : 3
—=— MGN w : b i ® 2
1 1 H
— 2.0 [—— BSMS-GNN] ! 1 i i S
© = H h i i =}
A e EAGLE 4 ! mi 1 ; 2
0 15 [macN] : : ' 2
2 e e | 7 PlOE
1 |
1.0 = ® ® o " -
05 107 : £ 3
. S O NRMSE - Beam | i]
i
00 @ NRMSE - Beam (large) ul mo
10-12 13-17 18-25 26-35 MGN BSMS EAGLE MA4GN

Mesh Graph Diameter Models

Figure 3: (a) Radar charts summarizing model performance on three datasets. All metrics are min-max
normalized to the range [0.2,1.0]; "lower-is-better" metrics are first inverted, and values below 0.2 are clipped
to avoid visual collapse; larger filled areas reflect better overall performance.; (b) RMSE-all accuracy versus
graph diameter on the DeformingPlate dataset; (¢) Performance comparison of each model when generalizing
from DeformingBeam to DeformingBeam (large). Circles show normalized RMSE (left axis), and squares
show mesh continuity error (right axis). Dashed lines highlight performance shifts. Lower values indicate
better accuracy and mesh quality.

increasing diameter, whereas M4GN’s error increases only slightly, showing sustained accuracy on wide meshes
with long-range interactions. This robustness comes from M4GN’s hybrid segmentation, which clusters nodes
that share modal behavior, and its segment-level transformer, which achieves global information exchange
in one hop among segments; together, these mechanisms mitigate over-smoothing while preserving local
detail, sustaining performance as graph diameter grows. Moreover, we perform generalization tests to show
whether a surrogate trained on modest meshes stays reliable on larger domains. According to Figure (c),
all four surrogates deteriorate when directly generalize to larger mesh domain. The modest degradation
of MGN confirms that a flat model can generalize spatially if the growth factor is moderate, but only at
the expense of longer inference times and an elevated risk of over-smoothing as graph diameter continues
to rise. Hierarchical methods trim that cost, yet their performance hinges on how they coarsen the mesh
and whether cross-level communication remains efficient. Among them, M4GN’s smaller generalization
gap indicates that its hybrid segmentation and permutation-invariant aggregation alleviate—but do not
eliminate—this sensitivity, suggesting future work on adaptive segment counts or depth-aware micro-level
passes when extrapolating to substantially larger meshes.

4.3 Additional Studies

We conducted additional studies to comprehensively evaluate model performance, hyperparameter selection,
and the impact of key architectural designs, with detailed results and discussions provided in the appendices.
Results on additional datasets are reported in Appendix[C.3] and the segmentation-effectiveness study appears
in Appendix A systematic sensitivity study, detailing how each hyperparameter affects performance and
offering practical tuning guidelines, can be found in Appendix [D| Additionally, a comprehensive analysis of
generalization performance is provided in Appendix [E] and further insights into computational efficiency are
included in Appendix [F]

11

Under review as submission to TMLR

5 Related Works

5.1 Hierarchical GNN Models for Dynamical System Simulation

The application of Graph Neural Networks (GNN) for dynamic system prediction is an emerging research
area in scientific machine learning due to their versatility and effectiveness (Chang et al.l 2016; [Li et al.,
[2018b; Belbute-Peres et al., |2020). A notable milestone in this field is MeshGraphNets (Pfaff et al., 2020),
which enables the general scheme for learning mesh-based simulations. To mitigate the over-smoothing
issue typically occur in GNNs when applied to large or complex datasets with long-range
interactions, several hierarchical models have been introduced recently. For instance, GMR-GMUS
2022)) utilizes a pooling method to select pivotal nodes through uniform sampling. Similarly, the EAGLE
(Janny et all |2023) employs a clustering-based pooling method along with transformer mechanism, showing
promising performance in fluid dynamics. MS-MGN (Fortunato et alJ, [2022)) proposes a dual-layer framework
that passes messages at both fine and coarse resolutions for mesh-based simulation learning. BSMS-GNN
2023), analyzes limitations of existing pooling strategies and introduces a bi-stride pooling method
using breadth-first search (BFS) to select nodes. propose a similar hierarchical structure as

(Cao et all [2023)) but with two different transformers to enable long-range interactions.

5.2 Datasets for Unstructured Mesh-based Simulations

As a cornerstone in the field, MeshGraphNets introduces a collection of datasets, showcasing
the versatility of graph-based surrogates in various problems involving unstructured mesh simulations.
Moreover, EAGLE (Janny et all |2023)) presents a fluid dynamics dataset capturing unsteady and turbulent
airflows; BSMS-GNN provides the InflatingFont dataset, which focuses on the quasi-static
inflation of enclosed elastic surfaces. Despite recent progress, existing public datasets still leave two critical
gaps for assessing hierarchical surrogates: (1) Many benchmarks contain thousands of vertices, yet their
graph diameter—the maximum shortest-path length between any two mesh nodes—remains small, which
under-exercise long-range message passing. (2) Most datasets expose only one mesh density or size band,
preventing systematic studies of how a surrogate trained on small problems generalizes to larger ones. To
bridge these gaps we contribute DeformingBeam together with its enlarged variant DeformingBeam-Large.
This pair constitutes the first public 3-D Lagrangian contact-deformation benchmark that also provides a
scale-up case. The beam’s slender geometry yields graph diameters several times longer than existing solid-
mechanics datasets, exposing long-range interactions. Such dataset enables rigorous testing of hierarchical
surrogates and serves as a benchmark for probing model scalability and cross-scale generalization.

6 Conclusion

In this work we addressed two challenges in hierarchical mesh-GNN surrogates—physics-faithful graph
coarsening and the accuracy—efficiency imbalance—by introducing M4GN, a three-tier, segment-centric
framework built on two key innovations: a physics-aware, hybrid segmentation strategy that yields contiguous,
dynamically coherent segments, and a permutation-invariant and computational efficient mesh segment
aggregator. We systematically compared M4GN with leading baselines across multiple benchmarks using
both traditional error metrics and proposed mesh-quality metrics, and we quantified segmentation quality
through three different intra- and inter-segment scores to illuminate how our hybrid segmentation shapes
downstream accuracy. Additional studies assessed the accuracy-versus-speed trade-off and robustness across
graph diameter and scale. Across all tests, MAGN achieved the strongest overall balance of accuracy, efficiency,
and mesh fidelity, exhibited the smallest error growth on wide-diameter graphs, and maintained the smallest
generalization gap among all hierarchical models. Despite these advances, MAGN still exhibits limitations
that need further investigation. For example, the method currently imposes no hard constraints on contact
boundaries and it offers no formal guarantees of physical consistency across segment interfaces. In addition,
selecting segmentation hyper-parameters still requires modest empirical tuning despite the provided guidelines.
In summary, the findings in this paper underscore the value of coupling principled segmentation with balanced
hierarchical reasoning for scalable, high-fidelity mesh simulation.

12

Under review as submission to TMLR

Broader Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning for Physics, Surrogate
Modeling, and Dynamical System Simulation. There are many potential societal consequences of our work,
none of which we feel must be specifically highlighted here.

References

Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Siisstrunk. Slic
superpixels compared to state-of-the-art superpixel methods. IEEE transactions on pattern analysis and
machine intelligence, 34(11):2274-2282, 2012.

Charles J Alpert and So-Zen Yao. Spectral partitioning: The more eigenvectors, the better. In Proceedings of
the 32nd annual ACM/IEEE design automation conference, pp. 195-200, 1995.

Emily Alsentzer, Samuel Finlayson, Michelle Li, and Marinka Zitnik. Subgraph neural networks. Advances in
Neural Information Processing Systems, 33:8017-8029, 2020.

Lars Andersen. Linear elastodynamic analysis. 2006.
Klaus-Jirgen Bathe. Computational fluid and solid mechanics. Elsevier, 2001.

Filipe De Avila Belbute-Peres, Thomas Economon, and Zico Kolter. Combining differentiable pde solvers
and graph neural networks for fluid flow prediction. In international conference on machine learning, pp.
2402-2411. PMLR, 2020.

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient descent
is difficult. IEEE transactions on neural networks, 5(2):157-166, 1994.

Franco Bontempi and Lucia Faravelli. Lagrangian/eulerian description of dynamic system. Journal of
Engineering Mechanics, 124(8):901-911, 1998.

Nico Booij and Leo H Holthuijsen. Propagation of ocean waves in discrete spectral wave models. Journal of
Computational Physics, 68(2):307-326, 1987.

Yadi Cao, Menglei Chai, Minchen Li, and Chenfanfu Jiang. FEfficient learning of mesh-based physical
simulation with bi-stride multi-scale graph neural network. In International Conference on Machine
Learning, pp. 3541-3558. PMLR, 2023.

Michael B Chang, Tomer Ullman, Antonio Torralba, and Joshua B Tenenbaum. A compositional object-based
approach to learning physical dynamics. arXiv preprint arXiv:1612.00341, 2016.

Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving the over-smoothing
problem for graph neural networks from the topological view. In Proceedings of the AAAI conference on
artificial intelligence, volume 34, pp. 3438-3445, 2020.

Kyunghyun Cho, Bart Van Merriénboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. arXiv preprint arXiv:1406.1078, 2014.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evaluation of gated
recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

Tyler De Witt, Christian Lessig, and Eugene Fiume. Fluid simulation using laplacian eigenfunctions. ACM
Transactions on Graphics (TOG), 31(1):1-11, 2012.

Hervé Delingette. General object reconstruction based on simplex meshes. International journal of computer
vision, 32:111-146, 1999.

13

Under review as submission to TMLR

Yu Diao, Jianchuan Yang, Ying Zhang, Dawei Zhang, and Yiming Du. Solving multi-material problems
in solid mechanics using physics-informed neural networks based on domain decomposition technology.
Computer Methods in Applied Mechanics and Engineering, 413:116120, 2023.

Victorita Dolean, Pierre Jolivet, and Frédéric Nataf. An introduction to domain decomposition methods:
algorithms, theory, and parallel implementation. SIAM, 2015.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. Graph neural
networks with learnable structural and positional representations. arXiv preprint arXiv:2110.07875, 2021.

Kerry A Emanuel. Atmospheric convection. Oxford University Press, USA, 1994.
Frank J Fahy. Sound and structural vibration: radiation, transmission and response. Elsevier, 2007.

Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, Alexander Pritzel, and Peter Battaglia. Multiscale
meshgraphnets. In ICML 2022 2nd Al for Science Workshop, 2022.

Zhi-Fang Fu and Jimin He. Modal analysis. Elsevier, 2001.

Han Gao, Matthew J Zahr, and Jian-Xun Wang. Physics-informed graph neural galerkin networks: A unified
framework for solving pde-governed forward and inverse problems. Computer Methods in Applied Mechanics
and Engineering, 390:114502, 2022.

Hongyang Gao and Shuiwang Ji. Graph u-nets. In international conference on machine learning, pp.
2083-2092. PMLR, 2019.

Jonathan Godwin, Michael Schaarschmidt, Alexander Gaunt, Alvaro Sanchez-Gonzalez, Yulia Rubanova,
Petar Velickovi¢, James Kirkpatrick, and Peter Battaglia. Simple gnn regularisation for 3d molecular
property prediction & beyond. arXiv preprint arXiv:2106.07971, 2021.

Denis S Grebenkov and B-T Nguyen. Geometrical structure of laplacian eigenfunctions. siam REVIEW, 55
(4):601-667, 2013.

Xu Han, Han Gao, Tobias Pfaff, Jian-Xun Wang, and Li-Ping Liu. Predicting physics in mesh-reduced space
with temporal attention. arXiv preprint arXiv:2201.09113, 2022.

Zhong-Hua Han, Ke-Shi Zhang, et al. Surrogate-based optimization. Real-world applications of genetic
algorithms, 343:343-362, 2012.

Qi-Xing Huang, Martin Wicke, Bart Adams, and Leonidas Guibas. Shape decomposition using modal analysis.
In Computer Graphics Forum, volume 28, pp. 407-416. Wiley Online Library, 2009.

Daniel P Huttenlocher, Gregory A. Klanderman, and William J Rucklidge. Comparing images using the
hausdorff distance. IEEE Transactions on pattern analysis and machine intelligence, 15(9):850-863, 1993.

Steeven Janny, Aurélien Beneteau, Madiha Nadri, Julie Digne, Nicolas Thome, and Christian Wolf. Eagle:
Large-scale learning of turbulent fluid dynamics with mesh transformers. arXiv preprint arXiv:2302.10803,
2023.

Lennard Kamenski, Weizhang Huang, and Hongguo Xu. Conditioning of finite element equations with
arbitrary anisotropic meshes. Mathematics of computation, 83(289):2187-2211, 2014.

George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM Journal on scientific Computing, 20(1):359-392, 1998.

Brian Kennett. Seismic wave propagation in stratified media. ANU Press, 2009.

Nicolas Keriven. Not too little, not too much: a theoretical analysis of graph (over) smoothing. Advances in
Neural Information Processing Systems, 35:2268—-2281, 2022.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

14

Under review as submission to TMLR

Patrick Knupp. Remarks on mesh quality. Technical report, Sandia National Lab.(SNL-NM), Albuquerque,
NM (United States), 2007.

W Michael Lai, David Rubin, and Erhard Krempl. Introduction to continuum mechanics. Butterworth-
Heinemann, 2009.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-
supervised learning. In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018a.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B Tenenbaum, and Antonio Torralba. Learning particle
dynamics for manipulating rigid bodies, deformable objects, and fluids. arXiv preprint arXiv:1810.01566,
2018b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik Bhattacharya,
and Anima Anandkumar. Multipole graph neural operator for parametric partial differential equations.
Adwvances in Neural Information Processing Systems, 33:6755-6766, 2020.

Mario Lino, Stathi Fotiadis, Anil A Bharath, and Chris Cantwell. Towards fast simulation of environmental
fluid mechanics with multi-scale graph neural networks. arXiv preprint arXiv:2205.02637, 2022.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-based
simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

Ladislav Rampések, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Dominique
Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural Information
Processing Systems, 35:14501-14515, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image
segmentation. In Medical image computing and computer-assisted intervention-MICCAI 2015: 18th
international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, pp. 234-241.
Springer, 2015.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller, Raia
Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and control. In
International Conference on Machine Learning, pp. 4470-4479. PMLR, 2018.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter Battaglia.
Learning to simulate complex physics with graph networks. In International conference on machine learning,
pp- 8459-8468. PMLR, 2020.

Peter J Schmid, Larry Li, Matthew P Juniper, and Oliver Pust. Applications of the dynamic mode
decomposition. Theoretical and computational fluid dynamics, 25:249-259, 2011.

Luning Sun, Han Gao, Shaowu Pan, and Jian-Xun Wang. Surrogate modeling for fluid flows based on
physics-constrained deep learning without simulation data. Computer Methods in Applied Mechanics and
Engineering, 361:112732, 2020.

Kunihiko Taira, Steven L Brunton, Scott TM Dawson, Clarence W Rowley, Tim Colonius, Beverley J McKeon,
Oliver T Schmidt, Stanislav Gordeyev, Vassilios Theofilis, and Lawrence S Ukeiley. Modal analysis of fluid
flows: An overview. Aiaa Journal, 55(12):4013-4041, 2017.

Olga Veksler, Yuri Boykov, and Paria Mehrani. Superpixels and supervoxels in an energy optimization
framework. In Computer Vision—-ECCV 2010: 11th European Conference on Computer Vision, Heraklion,
Crete, Greece, September 5-11, 2010, Proceedings, Part V 11, pp. 211-224. Springer, 2010.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets. arXiv
preprint arXiv:1511.06591, 2015.

15

Under review as submission to TMLR

Haixin Wang, Yadi Cao, Zijie Huang, Yuxuan Liu, Peiyan Hu, Xiao Luo, Zezheng Song, Wanjia Zhao, Jilin
Liu, Jinan Sun, et al. Recent advances on machine learning for computational fluid dynamics: A survey.
arXiv preprint arXiw:2408.12171, 2024.

Edward L Wilson. Three-dimensional static and dynamic analysis of structures. Computers and structures,
Inc, 1, 2002.

Tong Wu, Liang Pan, Junzhe Zhang, Tai Wang, Ziwei Liu, and Dahua Lin. Balanced chamfer distance as a
comprehensive metric for point cloud completion. Advances in Neural Information Processing Systems, 34:

29088-29100, 2021.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan,
Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture. In International
Conference on Machine Learning, pp. 10524-10533. PMLR, 2020.

Chaoqi Yang, Ruijie Wang, Shuochao Yao, Shengzhong Liu, and Tarek Abdelzaher. Revisiting over-smoothing
in deep gens. arXiv preprint arXiv:2008.13663, 2020.

Chen Yang, Shuai Li, Yu Lan, Lili Wang, Aimin Hao, and Hong Qin. Coupling time-varying modal analysis
and fem for real-time cutting simulation of objects with multi-material sub-domains. Computer Aided
Geometric Design, 43:53-67, 2016.

Youn-Yeol Yu, Jeongwhan Choi, Woojin Cho, Kookjin Lee, Nayong Kim, Kiseok Chang, ChangSeung Woo,
Iho Kim, SeokWoo Lee, Joon Young Yang, et al. Learning flexible body collision dynamics with hierarchical
contact mesh transformer. arXiv preprint arXiv:2812.12467, 2023.

Olek C Zienkiewicz and Robert L Taylor. The finite element method set. Elsevier, 2005.

16

Under review as submission to TMLR

Appendix: Table of Contents

[A"Datasets]

IB.3 Training Details|. . .

IB.4 Hybrid Mesh Segmentation Details| L.

IB.4.1 Mesh Segment Hyperparameter Selection|

[C Additional Evaluation Meotn [Rosulis

IC.1 Metrics tor Mesh Quality Measure| o

IC.2° Segmentation Quality Metrics| oo

|C.3 Evaluation on Supplementary Datasets|. o oL,

|IC.4 Evaluation on the Eftectiveness of Segmentation Algorithm|

[ID Hyperparameter Sensitivity Analysis|

ID.1 Message Passing Steps in Micro-level Module]

ID.2 Variations of Hybrid Segmentation| o

ID.3 Number of Segmentation|. L L

ID.4 Influence of Positional Encodingl L

ID.5 Influence of Segment Overlap| o

EG lization Studies

[E.1 Performance on Larger-Scale Datasets| oL,

.2 Effect of Mesh Segment Count on Generalization|

[Computational Efficiency Analysis|

[F.1 Performance Comparision| L e

[F.2 Complexity Analysis|

|G Qualitative Results|

17

18
18

18
18
19
19
20
21

23
23
23
24
25

25
25
26
27
28
29

29
31
31

32
32
34

34

Under review as submission to TMLR

A Datasets

A.1 Datasets Details

CylinderFlow — This public dataset includes simulations of transient incompressible flow around a cylinder,
with varying diameters and locations, on a fixed 2D Eulerian mesh. In all fluid domains, the node type
distinguishes fluid nodes, wall nodes, and inflow/outflow boundary nodes. The inlet boundary conditions
are given by a prescribed parabolic profile, u;, = ug[l — 4(y/H)] where ug and H are the centerline velocity
and the distance between the sidewalls, respectively. The dataset contains 1000 training simulations, 100
validation simulations, and 100 test simulations.

EAGLE — This public dataset contains simulations of complex airflow generated by a 2D unmanned aerial
vehicle maneuvering in 2D scenes with varying floor profile. While the scene geometry varies, the UAV
trajectory is constant: the UAV starts in the center of the scene and navigates, hovering near the floor surface.
The node types are fluid nodes, wall nodes, and aerial vehicle nodes. The dataset contains 948 training
simulations, 118 validation simulations, and 118 test simulations.

FlagSimple — This public dataset includes simulations of a flag blowing in the wind and flag direction,
with variation in wind speed. The mesh is static and remains the same for all simulations. Node types are
flag nodes and handle nodes that are fixed. This dataset contains 1000 training simulations, 100 validation
simulations, and 100 test simulations.

DeformingPlate — This public dataset includes simulations of hyperelastic plates deformed by a moving
obstacle, with variations in plate design and obstacle design. The node types are plate nodes, handle nodes
that are fixed and obstacle nodes. This dataset contains 1000 training simulations, 100 validation simulations,
and 100 test simulations.

DeformingBeam — This dataset is generated using solidsjfoam which is a toolbox for performing solid
mechanics and fluid-solid interaction simulations in OpenFOAM and foam-extend. A nearly incompressible
neo-Hookean model is used where the material properties are density po = 1000 kg/m?, Youngs’s modulus E
= 1 MPa and Poisson’s ratio v = 0.4. The beam comes in different geometries with various initial conditions
and boundary conditions. The node types are plate nodes, handle nodes that are fixed, and obstacle nodes.
This dataset contains 355 training simulations, 40 validation simulations, and 60 test simulations.

DeformingBeam (large) — A large domain DeformingBeam dataset is created for generalization studies. The
physical domain size is doubled. The size of the mesh cell is kept consistent with the regular DeformingBeam
dataset. This generalization dataset has 112 simulations.

Table 4: Detailed information for each dataset.

o . AVG. . . . GRAPH - . ;
SYSTEM DATASET 4 NoDES # STEPS Mesu TYPE ‘ DIAMETER ‘ NoDE FEATURE EDGE FEATURE ‘ OurtpuT

CYLINDERFLOW 1885 600 TRIANGLE, EULERIAN, 2D 11 Vi, n; m;;, [mg;| Vi, Pi

FLuip EAGLE 3390 990 TRIANGLE, EULERIAN, 2D 29.5 £ 1.7 Vi, Pi, N m;;, [mg;| Vi, Pi
FLAGSIMPLE 1579 400 TRIANGLE, LAGRANGIAN, 3D 41 iy X4, Ny m;;, [mg;| X
DEFORMINGPLATE 1271 400 TETRAHEDRON, LAGRANGIAN, 3D 16.9 £ 5.8 Xi, Xopss i Xij, |Xij], myj, [mg | x;
SoLID DEFORMINGBEAM 1542 400 PRisM, LAGRANGIAN, 3D 41.3 + 11.8 X4, Xops, Nj Xij, |Xij|, myj, [mg| X
DEFORMINGBEAM (LARGE) 4540 400 PRISM, LAGRANGIAN, 3D 82.1 £ 23.0 Xi, Xops, Nj Xij, |Xij], Mg, [myj| X4

B Model Details

B.1 MA4GN Configurations

The GNN part of MAGN adopts the encoder and graph processor in the MGN model (Pfaff et al., [2020)).
The basic building block is Multi-Layer Perceptron (MLP). The MLP has 3 layers, a hidden dimension
of 128, ReLU activation and single layer of Layer Normalization at the end. The node encoder and edge
encoder(s) are 3-layer MLPs. By default, the MAGN has 7 message passing steps in the GNN. The mesh
segment transformer consists of 4 self-attention layers, each with 8 heads. The output decoder is a 3-layer
MLP without Layer Normalization. For DeformingPlate and DeformingBeam, M4GN only considers world

18

Under review as submission to TMLR

edges between contacting mesh objects. The world edge radius is set to 0.01 for DeformingPlate and 0.002
for DeformingBeam. As both the DeformingBeam and DeformingPlate datasets feature a rigid object with
quasi-static motion, we use only the first mode from our modal decomposition, which sufficiently captures
the largest-scale deformation pattern. For the CylinderFlow dataset, we employ 6 modes, determined by an
energy threshold criterion, ensuring a more comprehensive representation of the flow’s multi-scale dynamics.
For Table [3] every dataset uses SLIC-MDODe segmentation, but the hyper-parameters differ: For the
CylinderFlow dataset, 36 segments are used with compactness value 7 = 1.0, segment overlap and positional
encoding (PE) are both enabled. For DeformingPlate and DeformingBeam, 19 segments are used with the
former uses 7 = 1.0 with no overlap or PE, while the latter uses 7 = 0.5 with overlap but without PE.
Ablation studies are also conducted based on these configurations.

B.2 Baselines

GCN — The GCN model consists of 15 GCN layers with a hidden dimension of 128. The GCN model does
not have edge input. Node input includes mesh position x; for CylinderFlow. The implementation is from
PyTorch Geometric.

g-U-Net — The g-U-Net model is a modified version from PyTorch Geometric. Instead of GCN layers, it is
built using the GNN layers similar to MGN. The level of scale is 7 for CylinderFlow, 6 for DeformingPlate
and 4 for DeformingBeam.

MGN - Our implementation of MGN follows the one described in [Pfaff et al.| (2020]). The processor of MGN
contains 15 MP steps. World edges are constructed as specified in the paper, with a world edge radius of 0.03
for DeformingPlate and 0.003 for DeformingBeam.

BSMS-GNN - We followed the BSMS-GNN implementation |Cao et al[(2023) from https://github. com/
Eydcao/BSMS-GNN. We introduced a modification to the original code by incorporating output normalization,
which we observed to enhance the model’s performance. For CylinderFlow and DeformingPlate, we used the
same number of multi-scale levels as specified in the BSMS-GNN paper, at 7 and 6 levels, respectively. The
number of multi-scale levels for DeformingBeam is set at 4 as an optimal configuration.

EAGLE — The implementation of EAGLE follows the paper [Janny et al.| (2023) and the code repository
https://github.com/eagle-dataset/EagleMeshTransformer. We set the number of nodes per cluster at
20, which offers a balanced performance and efficiency according to the paper. This results in 94 clusters
for CylinderFlow, 64 for DeformingPlate, and 38 for DeformingBeam. In addition, we add contacting world
edges in EAGLE implementation for DeformingPlate and DeformingBeam to improve the performance. The
world edges are added the same as in M4GN.

B.3 Training Details

During training, random Gaussian noise is added to the spatial node inputs, as described in [Pfaff et al.| (2020)).
For CylinderFlow, all models use a noise scale of 0.02. For DeformingPlate, all models use a noise scale of
0.003. For DeformingBeam, EAGLE and M4GN use a noise scale of 1le-4 and other models use a noise scale
of le-3.

For GCN, g-U-Net, MGN, EAGLE and M4GN, we adopt the same training scheme: For CylinderFlow and
DeformingPlate, we trained the model for 2M steps. The learning rate starts at le-4 and exponentially decays
to le-6 from 1M to 2M steps. For DeformingBeam, we trained the model for 1M steps. The learning rate
starts at le-4 and exponentially decays to le-6 from 500K to 1M steps.

For BSMS-GNN, we adopt the training scheme from the original implementation. Models for CylinderFlow
and DeformingPlate were trained for 50 epochs, corresponding to 3.75M and 3M training steps, respectively.
DeformingBeam model was trained for 100 epochs, corresponding to 1.775M training steps.

Across all models and datasets, we use a batch size of 8. Experiments were conducted using PyTorch
distributed training over two Nvidia Tesla P100 GPUs.

19

https://github.com/Eydcao/BSMS-GNN
https://github.com/Eydcao/BSMS-GNN
https://github.com/eagle-dataset/EagleMeshTransformer

Under review as submission to TMLR

B.4 Hybrid Mesh Segmentation Details

In Figure [4] several cases are selected from each dataset to illustrate the difference of each mesh graph
segmentation methods. It’s worth to note that the graph will be partitioned only once during the training
and testing phase for each simulation, and this partitioning will remain consistent across all time steps. This
is because the segmentation is based solely on the system’s properties and initial conditions prior to the start
of the simulation.

METIS

SLIC-MD

SLIC-MDOD,

SLIC-MDOD,

(a)

Figure 4: Illustration of different segmentation methods under various cases: (a):CylinderFlow; (b)(c):
DeformingPlate; (d)(e): DeformingBeam. Mesh nodes are colored based on segment id and all boundary
nodes are colored in black.

The pseudo code of the hybrid segmentation module proposed in this work can be found in Algorithm [2]
Here, METIS (Karypis & Kumar| [1998) is a graph partitioning technique that efficiently divides meshes into
approximately equal-sized partitions. It leverages multilevel partitioning algorithms to minimize the edge-cut
or communication costs between the resulting partitions. We employ METIS due to its versatility in creating
a user-specified number of equal-sized mesh segments. SLIC (Achanta et al., 2012) is a clustering algorithm
employed for partitioning data. In our approach, we adapt SLIC to segment the mesh based on physics-
informed features. These features could guide SLIC to create a segmentation that captures the underlying
physics of the system. The consequent mesh segments can potentially enable efficient macro-level information
exchange tailored to the system’s dynamics. Concretely, for each node i, we incorporate physics-aware feature
fm4 derived from modal decomposition. Additionally, we augment these features by concatenating a measure
of the shortest distance to obstacle nodes d?°. To ensure that this measure dominates when d$** is small, we
apply either an exponential or logarithmic transformation, defined as:

Jfexp(d) = exp(=d), fiog(d) = log(d). (9)

Depending on the selection of features and the transformation function, we design 6 variants of SLIC:

e SLIC-OD: f; = d¢**
o SLIC-OD;: fi = fiog(d?™)
SLIC-ODe: fi = foxp(d$™)
e SLIC-MD: f; = fmd

?

20

Under review as submission to TMLR

Algorithm 1: Modal Decomposition

1: Case Type: solid or fluid
2: Input: Finite element mesh, boundary conditions, material properties for solid (e.g. E,v, p), number of
modes m
Build Finite Element Basis:
Define shape functions on each element using the node connectivity
Enumerate degrees of freedom (DOFs) for each node/component
if Case Type = solid then
Structural Modal Analysis
Assemble stiffness matrix K (using elasticity)
Assemble mass matrix M (using density)
10: Apply boundary conditions to eliminate fixed DOFs
11: Solve K¢ = A Mg for the first m modes
122 Output: Eigenpairs {()\;, ¢;)}, (structural modes)
13: else if Case Type = fluid then
14: Laplacian Eigenfunctions
15: Assemble Laplacian matrix
16: Assemble L2-type matrix
17: Apply Dirichlet constraints on boundary nodes
18: Solve — V2¢ = \ ¢ for the first m modes
19: Output: Eigenpairs {(\;, ¢:)}™; (harmonic modes)
20: end if
21: Return: m-dimensional feature vector ¢ = (¢1(i), $1(), ... ¢m(i)) at each mesh node i

© P NPT Rw

e SLIC-MDOD;: f; = [fiog(de?®), fm4]"
« SLIC-MDOD,: f; = [fexp(d?”s),ﬁ"d]T

After we have the physics-aware feature, we can apply the SLIC algorithm to get the mesh node segments.

B.4.1 Mesh Segment Hyperparameter Selection

The compactness parameter 7 in the SLIC algorithm controls the trade-off between physics-guided feature
similarity and spatial proximity. Our goal is to choose 7 such that the resulting segmentation captures
both underlying physical patterns and spatial coherence (i.e., grouping nodes that are close to each other).
For CylinderFlow and DeformingPlate, we set 7 = 1.0, which provides a balanced segmentation. For
DeformingBeam, we set a lower 7 at 0.5 to promote a better alignment with physical features. The cluster size
S is determined such that the domain area satisfies: Domain Area = KS?, where K is the number of segments
and the domain area is given by (Zmax — Tmin)(Ymax — Ymin). The average cluster size S for CylinderFlow,
DeformingPlate and DeformingBeam is set to be \/0.656/K, \/0.125/K and 4/0.005/ K, respectively.

Systematically choosing the optimal number of segments K requires both domain insight and practical
experimentation. In our experience, two main factors drive the choice of K: (1) the total mesh size (N) and
(2) local variations in mesh density. For instance, CylinderFlow is particularly dense near boundaries, which
benefits from a larger K, whereas DeformingBeam /DeformingPlate have more uniformly distributed nodes,
so a smaller K can suffice.

To make this selection concrete, we typically perform a short hyperparameter sweep over a small set of
candidate values for K. A simple heuristic is to pick K values on a roughly geometric or linear scale,
for instance: K € {\/N /2, V'N,2V/N,} up to a point where adding more segments no longer improves
validation metrics (e.g., prediction accuracy, mesh quality). In practice, testing each candidate K on a subset
(e.g., 10%) of the training data is typically enough to identify a near-optimal configuration, and then we
finalize training with that K on the full dataset. This strategy is computationally manageable and provides a
principled way to tailor K to new domains.

21

Under review as submission to TMLR

Algorithm 2: Hybrid Mesh Segmentation

1: Input:

2: Initial mesh graph G = (V,€)

3: Perform modal decomposition and computed mesh node feature f;

4 Number of segments K, compactness parameter 7, average cluster size S
5: Output: Mesh node segmentation {Vs, }X_ |

= Graph-based Mesh Segment Initialization

Coarsening Phase:

GCO&I‘SG % G

while size of Geoarse is larger than threshold do

Combine pairs of connected nodes in Geparse to form a coarser graph

10: Geoarse < coarsened graph

11: end while

12: Initial Partitioning:

13: Partition Geoarse into K segments using a standard partitioning method (e.g., spectral partitioning)

14: Uncoarsening and Refinement Phase:

15: while G oarse # G do

16: Expand Geoarse to the next finer graph Ggpe

17: Project partitions onto Ggpe

18: Refine the partitioning on Ggye by iteratively moving a vertex to neighboring segments iff the move
lowers the total number (or weight) of edges that cross between segments, provided each segment
remains roughly balanced in size.

19: Gcoarse — Gﬁne

20: end while

21: Obtain initial clusters {Vg, }_; from the final partitioning, which will be updated next

= Superpizel-based Mesh Segment Refinement

22: repeat
23: for each mesh segment centroid Cj do
24: Update Cy by averaging over all mesh nodes assigned to it:

Cr = [z, fo,]” ! Z [z, fi]"

IVSk| i€Vs,

where Vg, is the set of mesh nodes assigned to segment Sy
25: end for
26: for each mesh node i € V do
27: Compute the distance measure d(i, Cy) to each cluster center Cj, using:

(i, Cr) = |Ifi = foll + 7llwi — zey |

where x; and x¢, are the spatial coordinates, f; and fc, are the physics-guided features.
28: Assign mesh node i to the nearest segment centroid Cy, if d(i, Cy) < S
29: end for
30: until convergence or a maximum number of iterations is reached

22

Under review as submission to TMLR

C Additional Evaluation Metrics and Results

C.1 Metrics for Mesh Quality Measure

Hausdorff Distance — The Hausdorff Distance measures how well the mesh with the predicted node positions
conforms to the system’s true geometry. It is defined as:

GF,(V, V) = max{h(V, V), (D, V)}, (10)

where h(V, V) = supycy, inf, _y, ||x — %X|| is the directed Hausdorff distance (Huttenlocher et al.,|1993) from
the ground-truth node set V to the predicted node set V.

Chamfer Distance — The Chamfer Distance (Wu et al.l [2021)) measures the average distance between
points on the predicted mesh and the true mesh, providing a balanced assessment of GFj. Unlike the
Hausdorff Distance, which focuses on the maximum deviation, the Chamfer Distance is sensitive to the overall
distribution of errors across the mesh surfaces. As both Chamfer and Hausdorff distance are measures for
GF, we name them as GF. and GF}, for simplicity, respectively. The Chamfer distance is mathematically

defined as: 1
= m Z minﬁevﬂx —)A(||2 +
xeV

GF.(V,V)

1 . .
5 > mingey % — x|, (11)
xey

where V and V are the set of vertices in the ground-truth and predict mesh, respectively. |V| and DA/| denote
the number of vertices in each mesh.

Mesh Continuity — Mech Continuity (Knupp, 2007)) evaluates the uniformity of predicted mesh cell sizes to
ensure stability and is defined as

MC = EC: maXe, eadj(e) V(¢)) 12)
C = ming;eadj(c) Viej)’

where Adj(c;) is the neighboring cells of cell ¢;, and V(¢;) calculates the volumetric area for ¢;.

Aspect Ratio (error) — The Aspect Ratio (Zienkiewicz & Taylor, 2005) assesses the shape quality of
individual 2D or 3D mesh elements and is widely used in finite element method (FEM) literature to evaluate
how closely each element approaches the ideal shape, such as an equilateral triangle or a regular tetrahedron.
For example, for triangular meshes, the aspect ratio is defined as . \L/M, where L.y is the longest edge

V3A
length, A is the area of the triangle. For tetrahedra mesh, it is defined as ‘/ELI‘;‘;X, where V' the volume of

the tetrahedron. High aspect ratios indicate elongated or distorted elements, which can cause numerical
instability and reduce simulation accuracy. By analyzing the aspect ratios across all elements, we can assess
the overall uniformity and regularity of the mesh. To evaluate the accuracy of the predicted mesh compared
to the ground truth, we calculate the aspect ratio for both the predicted and actual meshes. The Aspect
Ratio Error is then determined as the L, distance between these two values. This error metric quantifies the
deviation in shape quality between the predicted and true meshes, providing a direct measure of how well
the prediction preserves the ideal element shapes. Incorporating the Aspect Ratio Error allows for a more
precise evaluation of mesh quality and prediction accuracy, ensuring that the segmented meshes maintain the
necessary geometric properties for reliable simulations.

C.2 Segmentation Quality Metrics

In order to rigorously evaluate the quality of our hybrid mesh segmentation and its impact on the prediction
of system dynamics, it is essential to consider metrics that assess both inter-segment and intra-segment
characteristics. We introduce three such metrics —Conductance, Edge Cut Ratio, and Silhouette Score
— which provide a comprehensive assessment of segmentation quality by quantifying the cohesion within
segments and the separation between segments. The necessity of these metrics arises from the need to
ensure that segments are well-separated, minimizing unnecessary interactions between dissimilar regions

23

Under review as submission to TMLR

inter-segment quality), an at nodes within the same segment share similar properties or behaviors
int t lit; d that nod ithin th t shi imil ti behavi
(intra-segment quality).

Moreover, in our hierarchical model architecture, the intra-segment quality pertains to the micro-level
information exchange stage. High intra-segment quality facilitates accurate modeling of local dynamics within
each segment by ensuring that nodes are cohesive and share similar dynamic behaviors. Conversely, the
inter-segment quality directly relates to the macro-level information exchange stage. High inter-segment
quality ensures efficient communication between segments by reducing redundant or irrelevant interactions,
which is crucial for capturing global dynamics across the entire mesh. Below are the details of three metrics
to measure segmentation quality.

Conductance — Conductance measures the fraction of total edge connections that cross between different
segments relative to the total connections of the segments. It assesses how well the segmentation minimizes
inter-segment connections while maintaining intra-segment cohesion. Let G = (V,) as an undirected graph
representing the mesh, where V is the set of nodes and £ is the set of edges. Let S be a segment and S = G
\\S be its complement. The conductance of segment S is defined as:

H{(u,v) €€ |ueS, v e 5'}|
min (vol(S), vol(S))

Conductance =) (13)

where the numerator is the number of edges crossing between S and S. The volumn of segment S is given by
vol(S) = >, cgdeg(u), where degu is the degree of node u (the number of edges connected to u).

Edge Cut Ratio — The Edge Cut Ratio quantifies the proportion of edges that are cut by the segmentation
relative to the total number of edges in the mesh. It is defined as:

[{(u,v) € €] Seg(u) # Seg(v)}|

Edge Cut Ratio =
ge Cut Ratio i ,

(14)
where the denominator is the number of edges that connect nodes in different segment. Seg(u) denotes the
segment to which node u belongs and E = |£] is the total number of edges.

Silhouette Score — For each node ¢, the Silhouette Score evaluates how similar ¢ is to nodes in its own
segment compared to nodes in other segments. It is defined as:

bi) — ali)
max{a(), b(i)}’

where N is the total number of nodes, a(i) is the average dissimilarity of node ¢ with all other nodes in the
same segment and b(i) is the lowest average dissimilarity of node i to any other segment to which ¢ does not

N

1
Silhouette S z—g 15
ilhouette Score N 2 (15)

belong. To be more specific a(i) = ﬁ Yojes, d(i,7), b(i) = ming/ g, (ﬁ djes d(i,j))7 where S; is the
: i

segment containing node i and d(, j) can be any appropriate distance metric, such as Euclidean distance
based on node features or positions.

By combining these metrics, we achieve a comprehensive evaluation of segmentation quality that covers both
the internal cohesion of segments and their external separation. Having these metrics, along with prediction
result metrics, can better help us understand the effect of segmentation on the predicted system dynamics.
These metrics can be used to help finding better physics-aware segment features and determining the optimal
segmentation number (results and discussion in Appendix .

C.3 Evaluation on Supplementary Datasets

To evaluate the robustness of our approach across distinct physical regimes, we retrained all models on two
additional datasets—EAGLE and FlagSimple—and compared the proposed M4GN architecture with the
strongest baselines identified earlier, MGN and the task-specific EAGLE solver. As summarized in Table
MA4GN attains the lowest prediction error on both datasets, lowering RMSE by 4% on EAGLE and by 40% on
FlagSimple comparing to the second best model. For FlagSimple, MAGN also yields the most faithful meshes,

24

Under review as submission to TMLR

Table 5: Comparison of results with state-of-the-art methods across two additional datasets, where each
model is trained independently for each dataset. Prediction accuracy is evaluated using Root Mean Square
Error (RMSE), with the output being the 2D velocity and pressure field for EAGLE and the 3D position for
FlagSimple. Results are averaged over three experiments with different random seeds and presented as mean
and standard deviation.

Mesh Quality Metrics | Prediction and Computation Metrics |
e . GFp, GF. MC AR , TRAIN TEsT TIME

Dataser MODEL (x1072) (x107%) (x1072) (x1072) RMSE-all yrovory [MB] pER step [Ms]
MGN - - - - 4.13 £0.05 10525 35.8
EAGLE EAGLE - - - - 4.24 £ 0.06 7254 35.2
M4GN (OURs) - - - - 3.95 + 0.05 5308 28.4
FLAG MGN 1.82 £ 0.08 5.01 + 0.34 6.02 + 0.59 4.16 £ 065 0.25+ 0.11 1060 36.5
SIMP,IF EAGLE 1.73 + 0.08 5.22 £ 050 6.71 £ 055 5.49 +£1.05 1.01 £ 1.14 1336 41.9
- M4GN (Ours) 0.98 + 0.05 2.23 £ 0.19 4.06 £ o0.40 3.11 + o.62 0.15 + o0.01 549 30.6

Table 6: Transfer-segmentation experiment on the DeformingBeam dataset. Replacing EAGLE’s native
segmentation with the proposed hybrid MAGN segmentation (second row) isolates the effect of segmentation
quality, while the full MAGN row (third row) shows the additional benefit of our modified hierarchical
architecture. Lower values indicate better performance.

Mesh Quality Metrics | Prediction Error Metrics |
DATASET MODEL SECMENTATION GFy, GF. MC AR RMSE-1 RMSE-50 RMSE-all
;) ’ (x1073) (x1079) (x1073) (x1073) (x107%) (x10™%) (x10™%)
DEFORMING EAGLE EAGLE 0.64 +0.04 0.17 £ 0.01 5.98 + 043 5.17 + 037 1.51 + 0.04 0.67 +o0.12 4.22 + 030
BEAM EAGLE M4GN 0.46 + 0.02 0.11 + 0.00 5.43 + 0.09 4.02 £ o010 1.28 + 0.01 0.57 + 0.04 3.27 £ 025
M4GN M4GN 0.31 + o.01 0.05 + 0.00 5.26 + 0.04 3.08 + 0.06 1.17 + o.01 0.34 + o.02 1.87 + 0.12

reducing geometric-quality defect metrics by 25-57% relative to both baselines. Moreover, it halves peak
training memory consumption and accelerates inference by up to 19%. Collectively, these results demonstrate
that M4GN sustains its performance advantages on the supplementary datasets, delivering higher predictive
accuracy, better mesh quality, and more efficient computation.

C.4 Evaluation on the Effectiveness of Segmentation Algorithm

To isolate the impact of the proposed hybrid segmentation algorithm, we replace EAGLE’s original segmen-
tation with those generated by our method while holding all other settings unchanged. Table [6] shows a
clear gain: mesh-quality metrics improve by 28%—-35% and prediction errors fall by 15%—23%. When the
same segmentation is paired with the full MAGN architecture, prediction errors are reduced even further and
every mesh-quality metric reaches its best value. These results indicate that (i) the proposed hybrid mesh
segmentation alone contributes a portion of the improvement, and (ii) the architectural changes in MAGN
provide an additional, complementary boost. Hence both components—better segmentation and the modified
model—are necessary for the overall performance gains.

D Hyperparameter Sensitivity Analysis

This section presents a systematic sensitivity study, detailing how each hyperparameter affects performance
and offering practical tuning guidelines. Importantly, the model already outperforms all baselines with default
or minimally adjusted settings; additional tuning only refines an existing advantage rather than creating it.
The following subsections analyze each hyperparameter in detail and Table [7] summarizes the key findings.

D.1 Message Passing Steps in Micro-level Module

According to Figure [p] with fewer message passing steps, each node updates only based on immediate
neighbors, resulting in higher prediction errors and mesh discontinuities. As more steps are introduced, nodes
gather information from a broader neighborhood, leading to more accurate predictions and smoother mesh
transitions. The early iterations of message passing yield the most noticeable improvements, as nodes rapidly

25

Under review as submission to TMLR

Hyper- Ranges/ Vari- Observed impact on performance Practical tuning guideline

parameter ants

Message—passing 1-8 Few steps — under-reach, large RMSE Start with 3-5 steps; increase

steps (nmp) and discontinuities; moderate steps — while RMSE drops, stop when
improve both RMSE and mesh quality; gains plateau or mesh quality
very high steps — over-smoothing and stalls.
slight accuracy decay.

Hybrid segmenta- METIS, SLIC SLIC variants outperform METIS; Use SLIC-MDOD,. by default;

tion flavour variants physics-aware features give 7-35% lower avoid single-cue variants unless
RMSE and better segment metrics; best domain knowledge shows other-
overall: SLIC-MDOD.. wise.

Number of seg- 3-51 Accuracy fairly stable; too few segments Compute Silhouette over candi-

ments (Nseg) — coarse resolution, RMSE rise; too date Neg, then train 3—4 values
many segments — diminishing returns near the peak; pick the point
followed by possible degradation and where RMSE/Chamfer stop im-
added overhead. proving.

Positional encod- off / on Improves RMSE when Ngee small and ge- Enable PE for coarse segmenta-

ing (PE) ometry simple; neutral or harmful when tions (Ngeg < 15) or 2-D flows;
segments already fine or geometry com- disable for high-resolution or
plex. highly deformable 3-D meshes.

Segment overlap 6 = 0 (none), Helps Eulerian or directional meshes at Use § = 1 for high Nseg and the

%) 0 =1 (one-ring) high Nseg (smoother transitions); can add mesh is fixed; keep § = 0 for low

redundancy and hurt Lagrangian cases. Ngeg.

Table 7: Summary of key hyperparameters, their tested ranges, performance effects, and tuning recommenda-
tions derived from the sensitivity study in Appendix E

gather useful information from their surrounding environment. Later iterations primarily serve to fine-tune
the mesh continuity and reduce local errors, but the impact on overall accuracy diminishes. Interestingly,
increasing the number of message-passing steps beyond a certain point continues to improve mesh quality, but
prediction accuracy may degrade. This suggests the occurrence of oversmoothing, where the model excessively
homogenizes node features, or overfitting, where the model starts to memorize local information rather than
generalize. This phenomenon highlights the importance of carefully selecting the number of message-passing
steps during micro-level information exchange step to strike the right balance between improving prediction
accuracy and maintaining mesh quality.

x10-1 Cylinder X104 Beam %102 x10-3 Plate x10-2
8] 357w o X o
—e— RMSE —=— RMSE 108 8 —+— RMSE ,9
03 7 =]
6 1 i - 1 H [
w w30 Continuity Error S ow, . Continuity Error =
n w0 08 C w0 \. c
= 4 = F =, \ 2z
o o 25 < 4 \ <
\ 06 m 4 m
27 3 13
2.0 _/\ L E} 3 ¥ JEE—
— 04 = e = =

5 1 2 7 8 1 5

2 3 4 3 4 5 6 2 3 4
Message Passing Steps Message Passing Steps Message Passing Steps

Figure 5: Ablation study on the impact of varying message-passing steps in the micro-level information
exchange on prediction performance across three datasets.

D.2 Variations of Hybrid Segmentation

As detailed in Appendix the hybrid segmentation admits six variants depending on the selected feature
set and transformation. Table |8 summarizes the resulting model performance. Compared with METIS alone,
SLIC-based variants lower RMSEy; by 16 %, 27 %, and 7% on CylinderFlow, DeformingPlate, and Deform-
ingBeam, respectively, with SLIC-MDOD, emerging as the best choice across all three datasets. In terms

26

Under review as submission to TMLR

of the impact of modal decomposition features in SLIC, for the two solid-mechanics cases (DeformingPlate
and DeformingBeam), modal-decomposition features enrich the descriptor space with physics-relevant mode
shapes, and every OD+MD variant—SLIC-MDOD; and SLIC-MDODe—beats its OD-only counterpart across
all metrics, delivering 24-35% lower RMSE and up to 25% better mesh-quality scores. These consistent gains
confirm that modal information and boundary-distance cues are complementary for solid mechanics. On
CylinderFlow, however, the flow is dominated by rapidly varying vortical patterns; the MD basis, derived
purely from geometry in this Eulerian setting, adds little new information and can perturb the SLIC clusters,
so SLIC-MD alone shows a slight RMSE rise. When MD is combined with the (exponentially weighted)
distance cue in SLIC-MDODe, the boundary-aware term stabilizes the segmentation while the modal vectors
still provide complementary detail, giving a net improvement over distance or modal information used in
isolation.

Moreover, refining the coarse METIS partitions with SLIC improves accuracy only when the added SLIC
features better align local cuts with the true physics; otherwise, the refinement can fragment physically
coherent regions and hurt performance. SLIC-OD, for example, uses only geometric distance to boundaries; on
DeformingPlate this over-weights proximity and splits mode-consistent areas, so RMSE increases relative to
the original METIS segmentation. Likewise, on DeformingBeam the distance-only (SLIC-OD) and modal-only
(SLIC-MD) variants either ignore contact boundaries or long-range bending modes, producing finer—but less
meaningful-—segments and therefore higher error than METIS. Only the combined SLIC-MDOD,, which
couples modal information with an exponentially weighted distance term, strikes the right balance between
global coherence and local adaptation.

To thoroughly evaluate the different segmentation methods, we utilize the three metrics -Conductance,
Edge Cut Ratio, and Silhouette Score - introduced in Appendix to assess both inter-segment and
intra-segment qualities of mesh partitions, providing a comprehensive understanding of each method’s
effectiveness. We then analyzed the correlation between these segmentation metrics and overall dynamic
system performance, including mesh quality and prediction error, as illustrated in Figure |7| (a~c). Our
findings indicate that segmentation methods incorporating physics-aware features, particularly those utilizing
obstacle distances with exponential transformations, generally enhance model performance across various
datasets. This improvement can be attributed to three key factors: (1) Alignment with Dynamics, where
segmentation reflecting physical influences enables more effective learning of the system’s dynamics; (2)
Enhanced Segment Quality, achieved through improved intra-segment cohesion and minimized inter-segment
interactions, facilitating better learning of localized patterns; and (3) Benefit to Learning, where emphasizing
critical regions via exponential transformations allows the model to focus on areas with significant dynamic
changes, thereby enhancing prediction accuracy. These results demonstrate that the choice of segmentation
method impacts the model’s ability to learn dynamic behaviors, and the introduction of additional metrics
reveals that physics-aware segmentation effectively aligns mesh partitions with the system’s inherent physical
properties, thereby benefiting the learning process.

D.3 Number of Segmentation

Table [9] and Table [10] present the RMSE-1, RMSE-all, and various mesh quality metrics as the total number
of mesh segments is varied during training on three different datasets. In general, MAGN maintains stable
performance with relatively low variance, indicating that results are not highly sensitive to segment count.
This robustness ensures reliable accuracy across different mesh granularities. However, increasing the number
of segments—thereby reducing finite elements per segment—can lead to slight decreases in accuracy and
performance.

To comprehensively evaluate the effect of segment number and determine the optimal segmentation for
a given dataset, we analyzed prediction accuracy across a wide range of segment counts (from 3 to 51)
during training on the DeformingBeam dataset. The impact of varying the number of mesh segments on
prediction accuracy is illustrated in Figure |§| and Figure El(d) According to the plots, we identify 19 segments
as the optimal number. At this segmentation level, the model achieves the lowest RMSE and Chamfer
Distance, indicating high prediction accuracy and precise shape representation. The Hausdorff Distance is
also minimized, reflecting excellent alignment between the predicted and true meshes. While the Silhouette
score peaks at 9 segments—suggesting well-defined and compact clusters—the slight decrease at 19 segments

27

Under review as submission to TMLR

Table 8: Ablation study on different segment extraction methods over different dataset.

SEGMENTATION METHOD DATASET GFy | GF. | MC | AspecT RATIO | RMSE-1 RMSE-ALL
CYLINDER - - - - 3.44E-03 4.59E-02
METIS PLATE 5.32E-03 1.36E-05 5.33E-03 2.97E-03 2.67E-04 3.29e-03
BEAM 3.886-04 5.61E-08 5.18E-03 3.09e-03 1.15E-05 2.16E-04
CYLINDER - - - - 3.28E-03 4.40E-02
SLIC-OD PrLATE 5.24E-03 1.50E-05 5.16E-03 3.04E-03 2.69E-04 3.70E-03
BEAM 3.78E-04 5.41E-08 5.39E-03 3.60E-03 1.21E-05 2.31E-04
CYLINDER - - - - 3.33E-03 4.37E-02
SLIC-OD; PLATE 5.11E-03 8.01E-06 5.09E-03 2.90E-03 2.81E-04 3.44E-03
BeAM 3.95E-04 5.44E-08 5.33e-03 3.30E-03 1.18e-05 2.68E-04
CYLINDER - - - - 3.21E-03 3.95E-02
SLIC-OD, PrLATE 5.27E-03 1.31E-05 4.58€E-03 2.54E-03 2.61E-04 3.51E-03
BEAM 3.81E-04 5.68E-08 5.40E-03 3.32E-03 1.20E-05 2.51E-04
CYLINDER - - - - 3.16E-03 5.62E-02
SLIC-MD PLATE 5.10E-03 8.38E-6 4.67E-03 2.53e-03 2.74E-04 3.02e-03
BeAM 3.81E-04 5.45E-08 5.32E-03 3.20E-03 1.17e-05 2.32E-04
CYLINDER - - - - 4.16E-03 5.29E-02
SLIC-MDOD, PrLATE 4.84E-03 7.23e-06 4.56E-03 2.478-03 2.68E-04 2.82E-03
BEAM 3.53E-03 5.10E-08 5.29e-03 3.40E-03 1.22E-05 2.25E-04
CYLINDER - - - - 3.09e-03 3.86E-02
SLIC-MDOD, PrLATE 4.26E-03 6.49E-06 4.73E-03 2.58E-03 2.71E-04 2.40E-03
BeaMm 3.026-03 4.47e-08 5.31E-03 3.08e-03 1.17e-05 2.01E-04

is offset by significant gains in other performance metrics. Choosing a lower number of segments, such as 3 or
9, may result in higher Silhouette scores but can compromise mesh detail and prediction accuracy due to
insufficient spatial granularity. Conversely, selecting a higher number of segments beyond 19 shows diminishing
returns, with only marginal improvements or slight degradations in some metrics and a continued decline in
Silhouette scores, potentially indicating over-segmentation and unnecessary computational complexity.

In conclusion, when presented with a new dataset, the optimal number of segments can be determined by
first computing Silhouette scores for various segment counts to assess cluster cohesion and separation without
requiring model training. This provides initial guidance on meaningful segmentation levels. Subsequently,
training the model with different segment numbers and evaluating performance metrics like RMSE, Hausdorff
Distance, and Chamfer Distance will help identify the point where performance improvements plateau or
begin to reverse, indicating the optimal balance between segmentation detail and model efficacy.

D.4 Influence of Positional Encoding

Table and Figure a) shows the effect of adding positional encoding for small and large numbers of segments
across three datasets. According to the results, we identified several key findings. Firstly, the effectiveness of
PE depends on the number of segments: in the CylinderFlow and Deforming Plate datasets, incorporating PE
with fewer segments improves performance across multiple metrics by reducing positional ambiguity. With
low segment counts, each segment covers larger, more diverse areas, limiting the model’s spatial detail and
understanding of segment relationships. PE provides explicit positional information, allowing the model to
distinguish distinct regions within the same segment and better comprehend their interactions. However, as
the number of segments increases and spatial resolution improves, the benefits of PE diminish and may even
introduce unnecessary complexity that hinders performance. Additionally, dataset-specific factors influence
PE’s effectiveness; for example, the DeformingBeam dataset, with its complex geometry and deformation,
did not benefit from PE. This indicates that PE’s success depends not only on segment count but also on
how well the PE implementation aligns with the dataset’s unique characteristics. Consequently, tailored PE
approaches that consider specific geometry and deformation patterns are necessary for complex systems to
achieve performance gains. In summary, while PE enhances the performance of graph-based networks, further
advancements are needed to develop optimal encoding strategies that consistently improve performance across
diverse dynamic systems.

28

Under review as submission to TMLR

Table 9: Ablation study of number of segments, and effect of adding segment overlap.

DATASET Ngpe OVERLAP GFp | GF. | MC | AspPECT RATIO | RMSE-1 RMSE-ALL
16 X - - - - 3.16E-03 5.03E-02
) 16 v - - - - 3.19-03 5.35E-02
CYLINDER 3¢ X - - - - 3.41E-03 4.428-02
36 v - - - - 3.09e-03 3.86E-02
9 X 4.98E-03 9.58E-06 5.01E-03 2.83E-03 2.77E-04 3.88E-03
PLATE 9 v 5.32E-03 9.87E-06 5.24E-03 2.95E-03 2.83E-04 2.98E-03
19 X 4.51E-03 6.91E-06 4.73E-03 2.58E-03 2.71E-04 2.40E-03
19 v 4.76E-03 7.01E-06 4.81E-03 2.85E-03 2.77e-04 3.59E-03
9 X 3.46E-04 5.23E-08 5.178-03 3.31E-03 1.14e-05 2.39e-04
BEAM 9 v 3.38E-04 5.07E-08 5.31E-03 3.30E-03 1.15E-05 2.40E-04
19 X 3.57E-04 4.92E-08 5.24E-03 3.296-03 1.18E-05 2.28E-04
19 v 3.19E-04 4.73E-08 5.31E-03 3.08E-03 1.17e-05 2.01E-04

D.5 Influence of Segment Overlap

Table |§| and Figure b) illustrate the effect of adding segment overlap for small and large number of segments
across three datasets. According to the results, the effectiveness of adding overlap between segments (6 =
1) depends on both the segment count and the characteristics of the dataset, such as dimensionality, mesh
type, and system dynamics. Overlapping segments are more beneficial with higher segment counts where
discontinuities are more prevalent. In Eulerian systems, overlaps enhance the capture of complex interactions
and smooth transitions on fixed meshes, leading to improved representation of fluid dynamics. Conversely, in
Lagrangian systems where meshes move with the material, overlaps can create redundancy and complicate
connectivity, with their impact on model performance varying based on mesh structures and deformation
behaviors. For example, in the Deforming Beam dataset, which uses a prism mesh suited for directional
deformation, overlapping segments improve performance by facilitating smooth transitions along its mesh
surface, especially with a higher number of segments. In contrast, the Deforming Plate dataset employs a
tetrahedral mesh with complex, isotropic deformations, where overlaps introduce unnecessary complexity
and redundancy, resulting in decreased performance. Therefore, despite both being 3D Lagrangian systems,
the different mesh types and deformation patterns explain why overlapping segments benefit the Deforming
Beam but not the Deforming Plate.

le—5 le—4 le-3

N
o

w

'S

1.15 2.6 5
£ 5.2
- =24 E
0 110 H22 50
E = c
=20 ?, 4.8
1.05 1.8 ©
16 4.6
1.00
3 9 19 33 51 3 9 19 33 51 3 9 19 33 51
Num Mesh Segments (Train & Test) Num Mesh Segments (Train & Test) Num Mesh Segments (Train & Test)

Figure 6: Impact of varying mesh segment numbers during training on prediction accuracy under the
DeformingBeam dataset. The number of mesh segments remains consistent during both training and testing.
In general, MAGN maintains stable performance with relatively low variance, indicating that results are not
highly sensitive to segment count. This robustness ensures reliable accuracy across different mesh granularities.
However, increasing the number of segments—thereby reducing finite elements per segment—can lead to
slight decreases in accuracy and performance. More detailed analysis on the effect of segmentation numbers
on various metrics can be found in Figure[7(d).

E Generalization Studies

To evaluate the generalizability of our M4GN model, we created a larger-scale DeformingBeam dataset,
detailed in Appendix [A]

29

Under review as submission to TMLR

Table 10: Ablation study of number of segments and whether to add PE or not.

DATASET Ngge PE GFy | GF. | MC | AspPECT RATIO | RMSE-1 RMSE-ALL
16 X - - - - 3.19e-03 5.35E-02
CYLINDER 16 v - - - - 3.34E-03 4.76E-02
36 X - - - - 3.09E-03 3.86E-02
36 v - - - - 3.00E-03 3.80E-02
9 X 4.81E-03 9.33E-06 5.01E-03 2.83E-03 2.77E-04 3.88E-03
PLATE 9 v 4.24E-03 6.72E-06 5.04E-03 2.81E-03 2.84E-04 2.72E-03
19 X 5.10E-03 6.51E-06 4.73E-03 2.58E-03 2.71E-04 2.40E-03
19 v 5.13E-03 6.78E-06 4.74E-03 2.64E-03 2.68E-04 2.91E-03
9 X 3.75E-04 5.89E-08 5.31E-03 3.30E-03 1.15e-05 2.40E-04
BEAM 9 v 3.51E-04 5.33E-08 5.18e-03 3.31E-03 1.17e-05 2.56E-04
19 X 3.22E-04 4.86E-08 5.31E-03 3.08E-03 1.17e-05 2.01E-04
19 v 3.19e-04 4.84E-08 5.27E-03 3.18E-03 1.158-05 2.21E-04
(a) Cylinder (b)
1.0
M4GN M4GN
(MD) (MD)
MAGN M4GN
(MDOD_I) ~ (MDOD_I) ~
M4GN M4GN
(MDOD _e) (MDOD_e)
Q. < Ky 0?0 0.5 1.0
) Lo)
”?(@f%q "’egf@Q /”%"o@(=1 Mesh Quality (4)
X 8. N [Prediction Error (1)
2% @0/%% R %, c
s (3
'4
(© (d)
EAGLE 1 109 _o— RMSE —#— Chamfer —+— Silhouette —*
3 Hausdorff Aspect Ratio
3084\ - L
M4GN | < /
(MD) : o6
gor
M4GN 2 04l e N
(MDOD_I) go \ / » -
©
£
LN
(MDOD_e)
0.0 e et

20 30
Number of Segments

0.5 1.0 10

[Mesh Quality (1)
= Prediction Error ({)

40 50

Figure 7: (a-c) Evaluation of different segmentation methods under three datasets. The heatmap (left)
presents normalized Conductance, Edge Cut Ratio, and reversed Silhouette Score for EAGLE and four MAGN
variants. Metrics are scaled between 0 and 1, with Silhouette Scores reversed to ensure consistent evaluation
criteria, where lower values indicate better segmentation quality. The sidebar plot (right) depicts normalized
Prediction Error and Mesh Quality, with a minimum value of 0.05 applied to avoid invisible bars. These
figures evaluate segmentation quality across multiple metrics and demonstrate how different segmentation
methods influence model accuracy and mesh quality, emphasizing the advantages of our hybrid segmentation
strategies; (d) Dependence of various performance metrics on the number of segments in M4GN under
Deforming Beam dataset. The plot illustrates how the normalized values of several performance metrics vary
with the number of segments. Each metric is represented by a distinct curve, demonstrating the relationship
between segment number and overall performance. This figure evaluates the effect of segment number and
guides the selection of the optimal number of segments for balanced performance across all metrics.

30

Under review as submission to TMLR

RMSE Hausdorff RMSE Hausdorff
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
N S 2 @ e & ¢\ e & @,
B8 € o E @e,"’:\@ X S @'zf"i\%\ EX L8 6 Lo L %&:@ X S Q,ef":%\ R
&P & ((\\é»@e &\&%@ OO @“Q\‘v“ &7@ OF O e L O ((&)@Q OF O &\&@e @%7@ O O
FPOFC L N R &€ & &C AR & &EC & & & &8
9 C $© & &8 & & & &8 @) 9 &° &0 éo‘ éé & &° &8 &
& & S < Ny IS & S Y B &
Chamfer x1073 Aspect Ratio Chamfer x1073 Aspect Ratio
i 33 i 105 i 33 i
i 3.2 ' ! 32 ;
103 i 31 i i 3.1 i
i 3 i 108 i 3 i
-6 2.9 2.9
10 i 2.8 i i 2.8 i
7 i 27 i 107 i 2.7 i
10 i 26 i ! 2.6 H
Q\g’q\ Q\"‘%b\ %efb@%\ Q,z?’(:ja‘ Q@@q\ Q\’%a\ %e’”@q\ %e@(iq\ Q\"’@Za\ q\’f’%b\ Q’e@&@ @7‘7’(:9\ Q\b@q\ Q\@fq\ %w,’b@%\ %ébi@\
O OO 5 S O SYEY & S 0. O & > Oe® O & S
SN < S 6(.\\@@ < é-\\c%e < S (@o & OF < ((-\\@@e/ < & <\°\° &) ((-\\(\Q'\(o) ((.\\(9\5@ (@\0 S &\\o o @'\‘(\Q(” . \Qq@ S
&°© © S S &° &°© & S &° 5© S S &° &°© S &
) 2 2 < S & 2 S & 2 kS < & «©
With PE Without PE EZZA 'With PE' better than 'Without PE' 5>0 5=0 PZA '6> 0 betterthan's = 0'
(a) (b)

Figure 8: Ablation study on the effects of position encoding and segment overlap across datasets with varying
segment numbers. The figure presents the performance metrics for models both with and without the position
encoder (a), and with and without considering segment overlap (b) across three distinct datasets, each
characterized by a different number of segments. By comparing these conditions, the study highlights how
the inclusion of position encoding and the handling of segment overlap influence overall performance, thereby
informing the selection of optimal model configurations.

E.1 Performance on Larger-Scale Datasets

Table [11] summarizes the generalization performance of various models trained on the DeformingBeam dataset
and directly applied to DeformingBeam(large), a scaled-up version. The results demonstrate that M4AGN
consistently outperforms all other models across all metrics. In terms of mesh quality, MAGN achieves a
53% improvement over both EAGLE and BSMS for Geometric Fidelity (GF). Similarly, for Mesh Continuity
(MC), M4GN achieves the best performance with a value of 1.08e-02, representing a 45% improvement over
EAGLE, the next-best model. For the RMSE metrics, M4GN delivers the lowest RMSE-1, RMSE-50, and
RMSE-all. Notably, M4GN’s RMSE-all is 46% lower than EAGLE. These findings suggest that M4GN
not only preserves prediction accuracy but also enhances mesh quality when generalizing to larger-scale
data, significantly surpassing state-of-the-art models in both accuracy and mesh quality. This demonstrates
M4GN’s robust generalization ability, making it highly suitable for complex, large-scale dynamical systems.
Figure |§| is a visualization of generalization results on DeformingBeam(large) dataset for different models.

Table 11: Generalization performance of our method and five baseline models on the scaled-up DeformingBeam
dataset. MAGN demonstrates great accuracy and mesh quality when generalizing to an unseen dataset with
a denser mesh and more extensive long-range dynamic effects.

METHOD GFp | GF. | MC | ASPECT RaATIO | RMSE-1 RMSE-50 RMSE-ALL
GCN 2.188-02 3.28E-05 1.21e-01 1.69E-01 2.57E-04 1.95e-03 1.11E-02
g-U-NET 1.94E-02 2.80E-05 4.56E-02 7.01E-02 1.60E-04 1.87E-03 1.01E-02
MGN 2.32E-02 1.43E-05 2.00E-02 2.57E-02 1.348-04 1.43E-03 6.42E-03
BSMS 1.72E-02 3.34E-05 1.35e-01 1.17E-01 4.47E-04 3.19e-03 1.03E-02
EAGLE 1.69E-02 2.20E-05 1.98E-02 5.15E-02 8.42E-05 1.458-03 8.37E-03
M4GN 7.96e-03 5.35e-06 1.08e-02 2.24e-02 5.47e-05 9.20e-04 4.58e-03

E.2 Effect of Mesh Segment Count on Generalization

Generalization with Varying Segment Counts During Testing — Across three datasets, we perform
generalization studies where the model is tested using a varying number of segments. The results in Figure [I0]

31

Under review as submission to TMLR

MGN | l ‘ ' ‘
BSMS {
High Error
EAGLE ' \ “
Ours " »
‘ Low Error
GT

t=50 t=150 t=200 t=400

Figure 9: Generalization results for different models under DeformingPlate (large) dataset.

illustrate the generalization performance. Pink columns are the references for regular testing and the others
are generalization to different number of segments from training. Overall, the M4GN model can generalize
very well to different number of segments during testing.

Impact of Segment Count During Training and Testing — Equipped with message passing and trans-
former mechanisms, MAGN can handle an arbitrary number of segments. Figure [I1] shows the generalization
performance of our M4AGN model to larger domain as heatmaps, where models trained with a specific number
of segment under deformingBeam dataset are tested with varying number of segments under deformingBeam
(large). We observe that better results are seen when the number of nodes per segment during training is
less than or equal to that in the generalizing domain, or when the number of segments is greater. Overall,
we demonstrate M4GN’s robustness and adaptability in generalizing to larger domains with varying mesh
segments, making it highly suitable for real-world applications involving large and diverse mesh graphs.

F Computational Efficiency Analysis

F.1 Performance Comparision

Table listed the training time, test time and and memory usage for four models MGN, BSMS-GNN,
EAGLE and M4GN across three datasets. The RMSE-all is also listed as performance reference. Our M4GN
model has comparable or better efficiency compared with other models. Notebly, the MAGN model has the
best efficiency with RMSE-all compare to other baselines. We also compare the per-step timing of our model
against ground-truth simulators across datasets in Table Since CylinderFlow and DeformingPlate are
datasets from MGN paper, we adopt their reported values for simulator timing ({gr). The time of our model
tours is computed by adding the time used for segmentation and inference on a single NVIDIA Tesla P100
GPU.

32

Under review as submission to TMLR

o =
$ha, w3e
2 = sSic
(7} g4
(a) 5282] £
o3 332
= 3
[e3 %} o
<0 < 0
16 36 64 100 16 36 64 100
Num Mesh Segments (Test) Num Mesh Segments (Test)
le—4 le-3 le-3
- Q =o4 59
=] © S <P+
we 5 Le Ew
o no wa 4
s o [=J >
(b) 5> 2<, 2
sE SE Z2E2
¢! 2 28
B B o9
0 0 g 00 g
19 33 51 73 9 19 33 51 73 9 19 33 51 73
Num Mesh Segments (Test) Num Mesh Segments (Test) Num Mesh Segments (Test)
le-5 le—4 le-2
~E3 SE 5E 10
W ® "o 7.5 £E®
2@, 0o & @
22 z 250 22,
(© =g, sE £t
25 3525 =5
=8 =8 c &
c% j9] oo [sR)
oo 0 0.0 Yo o0
9 19 33 51 73 9 19 33 51 73 9 19 33 51 73
Num Mesh Segments (Test) Num Mesh Segments (Test) Num Mesh Segments (Test)

Figure 10: Generalization performance of our method under varying segment counts during testing over three
datasets. (a) CylinderFlow: effect of number of segments for test set on different metrics, where model is
trained under 36 segments (colored in pink); (b) DeformingPlate: effect of number of segments for test set on
different metrics, where model is trained under 19 segments (colored in pink); (c) DeformingBeam: effect
of number of segments for test set on different metrics, where model is trained under 19 segments (colored
in pink). This figure illustrates that our M4GN model, despite being trained with a fixed number of mesh
segments, maintains strong accuracy and mesh quality when tested with varying numbers of mesh segments.

Rollout RMSE-all Continuity Error
DeformingBeam(Large) DeformingBeam(Large)

high high
- Fl N

Q\

L

Num Mesh Segments (Train)
%o
g,
Num Mesh Segments (Train)
%o
Sy

,,)")
NG NG
) L)
low low
& © PH R I L
o \9,@ o)o)(" <,>‘\r\ ol \9@ o’o)(" o,'\'\
Num Mesh Segments (Generalization) Num Mesh Segments (Generalization)

Figure 11: Generalization performance of our method on larger domains under different number of mesh
segmentation during training and testing. The subscript of each mesh segment indicating the average number
of nodes per segment. M4GN demonstrates robustness and adaptability in handling larger domains with
varying mesh segments, making it well-suited for real-world applications involving large and complex mesh
structures.

33

Under review as submission to TMLR

Table 12: Comprehensive evaluation of our method alongside MGN, BSMS, and EAGLE under three datasets.
MA4GN consistently delivers stable, competitive efficiency while maintaining high accuracy and mesh quality.

TRAIN TIME TRAIN TEST TIME TEST TRAIN TIME

Dataset Mozt RMSE-aLL MC 4 PER STEP [Ms] | MEMORY [MB] | PER STEP [Ms| | MEMORY [MB] | TOTAL [H] |

MGN 4.81E-02 - 66.7 698.5 20.2 67.2 37.1
CYLINDER BSMS 1.378-01 - 54.7 430.3 23.8 57.9 30.4
EAGLE 5.83E-02 - 69.5 618.7 28.8 230.8 38.6
M4GN 3.80E-02 - 56.2 366.6 20.0 65.0 31.2
MGN 1.47E-02 9.25E-03 131.9 6021.5 36.2 445.5 73.3
PLATE BSMS 1.18E-02 1.83E-02 83.9 910.1 37.7 77.9 46.6
EAGLE 3.87E-03 5.56E-03 81.2 1090.8 32.4 362.7 45.1
M4GN 2.658-03 4.82E-03 76.5 648.1 29.3 103.3 42.5
MGN 4.72E-04 1.69E-02 79.1 1074.4 28.6 83.8 22.0
BEAM BSMS 4.98E-04 3.25E-02 61.8 213.7 30.7 35.6 17.2
EAGLE 4.228-04 5.98E-03 53.5 410.3 26.0 153.5 14.9
M4GN 1.87E-04 5.26E-03 53.4 234.5 24.2 47.1 14.8

F.2 Complexity Analysis

M4GN is composed of four key components: an Encoder-Process-Decoder (EPD) network operating on
mesh graphs, modal decomposition, hybrid mesh segmentation, and a mesh segment transformer. For the
learnable part of the model, the computational complexity is mainly depends on the EPD and mesh segment
transformer components. The complexity of the EPD is: O(L1|V|d? + L1|€|d?), where L is the number of
message passing layer, d is the feature dimension, |V| is the number of mesh nodes and |£] is the number of
mesh edges. The complexity of mesh segment transformer is O(LoK?d + Ly Kd?), where Ly is the number of
multi-head attention layers, K is the number of segments, and d is the feature dimension. The overall time
complexity is O(L1|V|d? + L1|€|d? + Lo K?d + Lo Kd?).

Modal decomposition and mesh segmentation are performed only once at the initial time step. For modal
decomposition, with sparse finite—element matrices, the setup steps—basis construction, matrix assembly,
and application of boundary conditions—each require O(|V|) time. The dominant cost is extracting the first
m eigenmodes via a Lanczos/Arnoldi solver; because each Krylov iteration involves one sparse matrix—vector
product, the eigen-solve scales as O(m «|V|), with k£ = 10-100 iterations per converged mode and m the
number of modes requested. Hence, for a fixed number of modes, the overall algorithm is linear in mesh size.
Our hybrid segmentation approach consists of a graph-based method for initial mesh segmentation (METIS)
and a superpixel-based method guided by features for refinement (SLIC). In the case of Lagrangian systems
where segmentation vary with time, only the refinement part is needed since the initialization segmentation is
only based on connectivity and is invariant to feature and coordinates variations. SLIC is based on a local
search in k-means clustering, resulting in a time complexity of O(|V]).

Table 13: The per-step timing of our model against ground-truth simulators across datasets. Since Cylinder-
Flow and DeformingPlate are datasets from MGN paper, we adopt their reported values for simulator timing
(ter). The time of our model t,,-s is computed by adding the time used for segmentation and inference on a
single NVIDIA Tesla P100 GPU.

DATASET SOLVER tGT MS/STEP tours MS/STEP SPEEDUP
CYLINDERFLOW COMSOL 820 20.4 40.2
DEFORMINGPLATE COMSOL 2893 29.7 97.4
DEFORMINGBEAM OPENFOAM 3261 24.6 132.6

G Qualitative Results

Figure 12| [13] [[4] and [I7illustrate selected rollout results for all three datasets under different models.

34

Under review as submission to TMLR

MGN

BSMS

t=150 t=200 t=250 t=2300

MGN

BSMS

EAGLE

Low Error

GT

t=50 t=100 t=150 t=200 t=250

Figure 13: Additional simulation results for different models under DeformingPlate dataset.

35

Under review as submission to TMLR

BSMS

]

t=50 t=150 t=250 t =400

Figure 14: Additional simulation results for different models under DeformingBeam dataset

High Error
-
- ¥
L3

%
e

1 e
P

fe
S

Figure 15: Additional simulation results for different models under CylinderFlow dataset

36

	Datasets
	Datasets Details

	Model Details
	M4GN Configurations
	Baselines
	Training Details
	Hybrid Mesh Segmentation Details
	Mesh Segment Hyperparameter Selection

	Additional Evaluation Metrics and Results
	Metrics for Mesh Quality Measure
	Segmentation Quality Metrics
	Evaluation on Supplementary Datasets
	Evaluation on the Effectiveness of Segmentation Algorithm

	Hyperparameter Sensitivity Analysis
	Message Passing Steps in Micro-level Module
	Variations of Hybrid Segmentation
	Number of Segmentation
	Influence of Positional Encoding
	Influence of Segment Overlap

	Generalization Studies
	Performance on Larger-Scale Datasets
	Effect of Mesh Segment Count on Generalization

	Computational Efficiency Analysis
	Performance Comparision
	Complexity Analysis

	Qualitative Results

