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Figure 1: Applications of the proposed method. The proposed algorithm takes only the per-frame
processed videos with severe temporal flicker (bottom-left) and produces temporally consistent re-
sults (top-right). The proposed method is agnostic to the image processing operations used to pro-
cess videos, and it does not require the availability of raw/unprocessed videos. The figure presented
above contains animated content and is best viewed on a computer screen with Adobe PDF reader.

ABSTRACT

In many video restoration/translation tasks, image processing operations are
naively extended to the video domain by processing each frame independently.
This disregard for the temporal connection in video processing often leads to
severe temporal inconsistencies. State-of-the-art techniques that address these
inconsistencies rely on the availability of unprocessed videos to siphon consis-
tent video dynamics to restore the temporal consistency of frame-wise processed
videos. We propose a novel general framework for this task that learns to in-
fer consistent motion dynamics from inconsistent videos to mitigate the temporal
flicker while preserving the perceptual quality for both the temporally neighboring
and relatively distant frames. The proposed framework produces state-of-the-art
results on two benchmark datasets, DAVIS and videvo.net, processed by numer-
ous image processing applications in a frame-wise processing manner. The code
and the trained models will be released upon acceptance.

1 INTRODUCTION

Video sharing social media platforms like Snapchat and TikTok have introduced the common pop-
ulace to a plethora of computer vision applications such as Style Transfer (Gatys et al., 2015),
Colorization (Zhang et al., 2016b), Denoising (Zhang et al., 2017), and Dehazing (Yan et al., 2016).
With the wide-scale integration of classic computer vision applications in such platforms, various
image processing operations are naively extended to videos due to scarcity of annotated video dataset
and their computational complexity. This naive extension of static image processing methodologies
to videos disregards the temporal connection of the video progression and introduces severe tem-
poral flickering in the videos. This temporal flicker can appear for various reasons; for instance,
these image processing methods can produce drastically different results for temporally neighboring
frames due to slight changes in their global or local content statistics, or it could also happen due
to the multimodality of the application as there could exist a number of valid solutions for images
with similar content as highlighted in (Bonneel et al., 2015; Zhang et al., 2019). Therefore, the ex-
tension of these image-to-image translation tasks to the video domain is an active area of research in
computer vision, and these extensions generally require redesigning the whole algorithm with par-
ticular attention to the video dynamics as presented in (Chen et al., 2017; Lei & Chen, 2019; Liu &
Freeman, 2010; Liu et al., 2018). Re-formulating these video processing methods is a challenging
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task as there are only a handful of available datasets for video translation tasks. While adequate
for one task, these methodologies perform poorly in their applicability to other tasks. Therefore,
a method that can help extend a plethora of image processing applications with little to no knowl-
edge of the operations used to process videos is quite useful. In this work, we propose a novel task
agnostic framework capable of correcting the temporal consistency of the jagged videos produced
with image processing operations without requiring a raw/unprocessed version of the video at the
test stage.

There are several task-dependent temporal consistency correction approaches available such
as (Chen et al., 2017; Liu et al., 2021; Thimonier et al., 2021), but only a handful of approaches have
been proposed to tackle the problem of blind temporal consistency correction due to the complex
nature of this task. (Bonneel et al., 2015) defined the problem of temporal consistency correction
with gradient-domain minimization of per-frame processed video with the unprocessed video to
minimize the warping error between the frames. (Lai et al., 2018) extended the deterministic formu-
lation of (Bonneel et al., 2015) with the help of recurrent Convolutional Neural Networks (CNN) and
introduced a perceptual penalty in their formulation to restrict the deviation of perceptual content of
the restored video from the frame-wise processed video. Deep Video Prior (DVP) (Lei et al., 2020)
extended Deep Image Prior (DIP) (Ulyanov et al., 2018) to the temporal dimension and proposed
to formulate enforcing temporal consistency by training a CNN to generate processed video from
the unprocessed video without utilizing optical flow. All of these approaches rely on the availability
of unprocessed videos. To tackle the problem of blind video temporal consistency correction, we
first focus on the shortcomings of the naive image transformation extensions and then look at the
currently available approaches to see if the shortcomings have been addressed appropriately.

All the previously proposed approaches for the task of temporal consistency correction define it with
the help of unprocessed videos. This kind of definition helps the model in developing a sense of con-
sistent motion dynamics. This implicit definition, with the help of raw videos, limits the applicability
of the previously proposed approaches to only the videos for which their raw/unprocessed counter-
parts are available. In order to overcome this limitation, we propose to learn a motion representation
capable of generating consistent motion dynamics solely from inconsistent videos. This is achieved
by extending the conventional bi-frame motion estimation to a tri-frame strategy. This strategy to
evaluate consistent motion representation from inconsistent videos eliminates the requirement of
the unprocessed counterpart of the video, making it the first-ever truly task agnostic video temporal
consistency correction method. For the task of learning this motion representation, we fine-tune
conventional optical flow estimations networks like (Ilg et al., 2017; Sun et al., 2018) along with the
generative part of the network. Our model pipeline is illustrated in figure 2. The proposed model
achieves state-of-the-art qualitative and quantitative results. The proposed formulation also can deal
with the resolution mismatch problem in processed and raw videos and makes it possible to extend
the Single Image Super-Resolution (SISR) (Ledig et al., 2017) methods to Video Super-Resolution
(VSR) methods without any modification. The detailed description of our formulation is presented
in 3. We summarize our contributions as follows:

• A novel framework for task agnostic temporal consistency correction that overcomes the
need for siphoning motion dynamics from the raw videos.

• Propose a novel tri-frame extension for motion representation that generates a robust rep-
resentation for both temporally consistent and inconsistent videos to mitigate the flicker
introduced by naive extension of image processing operations to videos.

• Identify and propose tailored solutions for various challenges of naive extensions of image
processing applications to videos and produce state-of-the-art results for this task.

2 RELATED WORK

The literature is divided into two main streams to generate visually appealing videos through image
transformation models. The first stream tackles the task of mitigating temporal inconsistencies with
the reformulation of the task at hand with temporal information. The second stream focuses on
developing post-processing models that refine the frame-wise processed videos by penalizing the
temporal deviation of the processed video from its unprocessed counterpart. The second stream is
further divided into two sub-streams: task-specific and task-agnostic. The following subsections
describe the details of both of the above-mentioned streams, respectively.
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Reformulation stream (video-to-video translation): These approaches are generally termed
video-to-video translation of image-to-image transform applications. Generally, these approaches
either consider multiple frames as input and produce multiple output frames or generate a single
frame from multiple input frames in the form of frame recurrence such as (Chu et al., 2018; Liu
et al., 2021). There are also cases like video style transfer where content information is propagated
to the next time timestep with the help of optical flow to initiate the optimization of the next frame.
This frame-recurrent methodology has also been proven effective in applications like video super
resolution (Sajjadi et al., 2018). Designing these approaches for each task and training them from
scratch is a hectic task and data scarcity can make these approaches unfeasible. Therefore, such
models often do not adapt well to different tasks. Therefore, methods that can restore the tempo-
ral consistency of multiple frame-wise processed videos are highly valuable and are being actively
investigated.

Post-processing methods for temporal consistency correction: (Bonneel et al., 2015) initiated
the investigation of task agnostic temporal consistency correction using a gradient-based optimiza-
tion strategy in which temporally consistent (unprocessed) videos were used as restoration guides
for correcting the temporal inconsistency of frame-wise processed videos. Their formulation mo-
tivated various task-dependent and task-agnostic, and temporal consistency correction approaches
with slight variations from their original formulation. Despite the efficacy of their formulation, there
only exist a handful of approaches that address task-agnostic temporal consistency correction due
to the difficult nature of the task. (Yao et al., 2017) proposed a keyframe strategy that accounted
for the motion of different objects in those keyframes to handle occlusion as well as temporal con-
sistency. (Lai et al., 2018) proposed the first deep learning approach for this task by employing
ConvLSTM (Shi et al., 2015) and a perceptual loss (Johnson et al., 2016). (Lei et al., 2020) pro-
posed an extension of Deep Image Prior (Ulyanov et al., 2018) and demonstrated its capability to
mitigate the temporal flicker of per-frame processed videos. On the other hand, various task-specific
approaches have been proposed, such as (Chu et al., 2018; Liu et al., 2021; Thimonier et al., 2021).
Defining these task-specific approaches is relatively straightforward. These approaches define a
temporal extension around a backbone method and penalize the deviation of generated content with
the help of optical flow.

All of the previously proposed approaches rely on the availability of unprocessed videos for the
successful restoration of the temporal dynamics. In this work, we propose a novel formulation that
alleviates this problem by learning a consistent motion representation from the temporally inconsis-
tent videos. This learned motion representation is then processed with the content of unprocessed
videos in a branched network that ensures the natural dynamics in the generated videos. Our pro-
posed network also contains a recurrent module (Shi et al., 2015) that helps consistent propagation
of content throughout the video sequence and produces state-of-the-art qualitative and quantitative
results.

Conv + IN

(Instance Normalization)

Residual Block ConvLSTM

Motion branch

Flow Estimation Network

𝑃𝑡+1 𝑃𝑡 𝑂𝑡−1 𝑂𝑡

Content branch

× 10

Shared Weights

Figure 2: Model Architecture. An illustration of the proposed model architecture. The proposed
model consists of a two-branch architecture that separately processes motion and content. The
combined motion and content features are then passed through a succession of residual blocks and
a decoder to generate the restored frame. The optical flow estimation networks used in the motion
branch have shared weights.
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3 PROPOSED METHOD

In this section, we describe the details of the proposed method. Consider a raw (temporally consis-
tent) video {I0, I1, I2, ..., In} with n frames and its frame-wise processed temporally inconsistent
video {P0, P1, P2, ..., Pn} acquired by an image processing function h as {h(I0), h(I1), h(I2), ...
, h(In)}. The goal of this task is to restore the temporal consistency of the temporally inconsistent
video and to produce a temporally consistent version {O0, O1, O2, ..., On}. These notations are
chosen to be in line with the notations used in related literature (Bonneel et al., 2015; Lai et al.,
2018; Lei et al., 2020).

The proposed formulation draws inspiration from the disentanglement of a video into its base com-
ponents: content and motion representations to manipulate them separately to generate temporally
consistent frames as presented in (Lin et al., 2017) for short length video generation. Therefore, we
propose to learn and utilize a tangible motion representation that can be evaluated directly from a
collection of frames. Generally, the motion in videos is defined over a pair of similar frames with the
help of optical flow. In optical flow conventions, these individual frames are considered as content,
and the estimated optical flow is considered as the inter-frame motion. By following this convention,
we use It and oft⇒t−1 for content ant motion components, respectively. The estimated optical flow
can also be utilized to define the approximate content of future frames with the help of past frames
as follows:

It+1 ≈ w (It, oft+1⇒t) . (1)

In Eq. 1, It and oft+1⇒t denote content and motion components (optical flow) respectively, and w
denotes the warping operator. The warping function can approximate the content of a frame with the
help of estimated optical flow, provided that there exists a one-to-one correspondence for all pixels
in frame t, i.e., no occlusion and de-occlusion happens in between the frames It and It+1. This
equation also highlights the interdependence of both content and motion components of a video
and implies that in a frame recurrent setting, the change in either of the components can lead to
significantly different results in the subsequent frames.

(                          ) = (                          ) + (                          )       

𝑜𝑓 inconsistent 𝑜𝑓 consistent 𝑜𝑓noise

Figure 3: Noise in optical flow. An illustration of the decomposition of optical flow generated from
temporally inconsistent frames to consistent optical flow and inconsistent noise.

A shortcoming of employing conventional optical flow is the deterministic nature of the optical flow
and the accompanying warping operator. If the estimated optical flow cannot evaluate temporally
consistent correspondences from the input frames, the evaluated optical flow becomes inconsistent.
We observe that the evaluated optical flow from the per-frame processed video contains the consis-
tent optical flow along with some additive noise (presented in figure 3) as follows:

of inconsistent = of consistent + ofnoise. (2)

Here, ”of” denotes the optical flow. This additive noise is introduced due to the temporal in-
consistencies. Separating the consistent component from the estimated flow is challenging as
optical flow is defined over only two consecutive frames. Thus, the content of both the partic-
ipating frames is given equal importance, and the decision to separate consistent content from
the inconsistent content with conventional optical flow becomes impractical. Another observa-
tion that can be made from figure 3 is that the flicker in frame-wise processed frames generally
occurs near the motion boundaries. This impracticality of the conventional optical flow has hin-
dered a truly task-agnostic solution to this task because the methods that deal with this task rely
on the availability of the unprocessed counterparts of the per-frame processed videos to siphon
temporally coherent motion dynamics for inter-frame flicker removal. To solve this problem, we
propose deviating from the conventional bi-frame motion estimation methodologies by extend-
ing it to a tri-frame method to overcome the equal contribution of frames in motion estimation.
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Figure 4: Conventional and Modified Optical
flow. Comparison of original and Modified flow
evaluated from temporally consistent (left) and in-
consistent (right) frames. The modified flow eval-
uated from both the temporally consistent and in-
consistent frames is quite similar.

This tri-frame motion estimation strategy also
aids the network in developing a sense of rigid-
ity to distinguish consistent content from a set
of temporally inconsistent frames. To learn
the consistent motion representation, an opti-
cal flow network has been integrated into the
network as illustrated in figure 2. A similar in-
tegration of a small-scale optical flow estima-
tion network (SpyNet (Ranjan & Black, 2017))
is presented in (Xue et al., 2019) for the task
video denoising. We utilize a relatively larger
network (PWC-Net (Sun et al., 2018)) in our
method and provide an ablation study on dif-
ferent sized optical flow models in the accom-
panying supplementary text. The optical flow
network in the proposed methodology is fine-
tuned in an end-to-end manner without any special supervision. The objective functions used for the
optimization are described in detail in the next section.

The proposed model takes in three consecutive frames Pt−1, Pt and Pt+1 of the temporally in-
consistent video as input. These three frames are propagated through both the content and motion
branches. The proposed model consists of a UNet (Ronneberger et al., 2015) like structure with
multiple encoder streams and a single decoder stream. The decoder contains skip connections from
the content stream to encourage better reconstruction. The bottleneck part of the model contains a
recurrent ConvLSTM (Shi et al., 2015) to transmit information of the generated frames to temporally
distant frames. The motion branch comprises of two passes through a PWCNet (Sun et al., 2018)
with shared weights followed by a conventional encoder-like architecture. The detailed architecture
of the proposed model is presented in figure 2. This two-pass strategy in the motion branch is along
with the attached encoder, and it extends the conventional bi-frame motion estimation strategy to a
tri-frame motion estimation strategy.

Figure 4 highlights the learned motion representation generated by the finetuned PWC-Net (Sun
et al., 2018). It is evident from figure 4 that the network learns to regress similar motion represen-
tations from both temporally consistent and inconsistent frames. This disentangled representation
allows the users to further improve the level of restored temporal consistency with the help of an
iterative arrangement; please refer to the supplemental for the results generated with an iterative
arrangement.

4 OBJECTIVE FUNCTIONS

This section provides the details of the learning objectives used in the training phase of the proposed
network. These objectives can be classified into two categories, short-term and long-term objectives.
Both of these optimization categories are presented below.

4.1 LOCAL NEIGHBORHOOD LOSSES

In this work, we aim to find a general solution for correcting the temporal consistency of frame-wise
processed videos. Due to the diversity of the applications addressed, a simplistic spatial content
matching reconstruction loss cannot justify the generation of temporally consistent frames, as the
content can vary greatly in applications like style transfer (Gatys et al., 2015) and image adjust-
ment (Yan et al., 2016). This discrepancy in the image space of processed and raw videos hinders a
straightforward definition of a feasible loss function for this task. Due to the challenging nature of
this task, we define a flow gradient loss that provides a supervision signal for the reconstruction with
the help of optical flow acquired through the raw videos. We further extend this loss to only compare
the gradients of the optical flow acquired through the synthesized and raw frames. This comparison
encapsulates the spatio-temporal information necessary to synthesize temporally consistent videos.
This spatio-temporal loss is defined as follows:
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Lfg =

T∑
t=2

∥∇ (of (Ot, Ot−1)) ,∇ (of (It, It−1))∥1 . (3)

Here, Lfg and of represents flow gradient loss and the optical flow estimation network (Ilg et al.,
2017) respectively. The ∇ operator denotes the spatial gradient of the estimated optical flow. This
optical flow based loss abstracts the objective of flow denoising as introduced in Eq. 2 by providing a
supervision signal for the motion boundaries where most of the spatio-temporal noise is introduced
in per-frame processing. A similar loss in optical flow domain has been proposed in (Li et al., 2022)
where the raw optical flow of the generated video was compared with that of the ground truth video.
Although effective for the task of video inpainting, the raw optical flow matching approach fails in
applications like style transfer in which the entire content of the generated video and the raw video
differ greatly, i.e., contains excessive spatio-temporal noise. In our experiments, the models trained
with raw optical flow performed poorly, whereas the model trained with flow gradients converged in
a relatively shorter time and reduced the warp error significantly.

This spatio-temporal loss by itself is not sufficient for faithfully correcting the temporal consistency
as there could exist multiple solutions for optical flow equation, e.g., it does not take into account
the perceptual information of the synthesized and raw frames. In order to address this issue and to
guide the network for the generation of perceptually credible frames, a non-local optical flow based
loss in the image space is employed as presented below:

Lreconstruction =

T∑
t=2

Mt⇒t−1 ∥Ot − w(Ot−1, of(It, It−1))∥1 , (4)

Here T represents the total number of frames in a sequence. The working of this loss function can
be summarized as the propagation of content from succeeding frames to the subsequent frames in
image domain to ensure that the generated frames contain similar content to the previous frames
and the inter-frame motion dynamics of the synthesized frames are similar to that of the temporally
consistent counterpart. By unrolling Eq. 4 it can be seen that this loss provides supervision that
is directly proportional to the optical flow of the consistent video hence further supporting the hy-
pothesis presented in Eq. 2. This non-local optical flow based loss function takes into account the
occlusion problem of the Eq. 1 by masking the occluded and de-occluded content as defined below:

Mt⇒t−1 = exp
(
−α ∥It − w(It−1, of(It, It−1))∥22

)
. (5)

The value for α = 50 is chosen according to the previous work where a similar strategy is used for
evaluating occlusion (Ruder et al., 2016).

An additional short-term perceptual similarity loss (Johnson et al., 2016) was also introduced in
the training phase to minimize the deviation of the synthesized frames from the original processed
frames. This loss is defined as follows:

Lp =

T∑
t=2

∑
l

∥ϕl (Ot)− ϕl (Pt)∥1 , (6)

whHere ϕ(.) represents relu 4 3 layer of a pretrained VGG-16 network, trained on the ImageNet
dataset (Deng et al., 2009).

4.2 TEMPORAL CONSTANCY LOSS

The loss defined in Eq. 4 adequately defines the content propagation from the previous frame to
the current frame but lacks the ability to enforce it in temporally distant sequences. For instance,
consider the task of colorization where a car appears in a portion of the frames and is assigned some
random color, and it disappears and re-appears in a later instance. The frame-wise colorization
method can assign it a different color in each sequence, and the loss function defined in Eq. 4 will
be sufficient to enforce the color constancy of the car in each interval where the car is visible. This,
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however, does not ensure the constancy of the color assigned to the car in both intervals, i.e., the car
could be assigned a solid blue color in the first interval and a solid green color in the next interval.
To address this problem of temporally distant yet similar instances, a recurrent module is introduced
in the proposed model. To ensure that the recurrent module works as intended, a long term extension
of the short term loss is introduced in the training phase. This temporally distant extension of the
short term loss is termed as constancy loss and is presented below:

Lconstancy =

T−2∑
p=1

T∑
t=p+2

Mt⇒p ∥Ot − w(Op, of(It−1, Ip))∥1 . (7)

Here subscript p highlights that the preceding distant images are compared with all the subsequent
frames. The final loss for each training sequence is given by,

Ltotal = λaLfg + λbLreconstruction + λcLp + λdLconstancy. (8)

The λ(s) in the equation above define the contribution of each loss in the optimization phase. The
details of these hyperparameters are provided in the supplementary text.

5 EXPERIMENTS AND RESULTS

During our experimentation phase, we tested various optical flow estimation networks such as (Ilg
et al., 2017; Ranjan & Black, 2017; Sun et al., 2018). Flownet2.0 (Ilg et al., 2017) has approximately
162M trainable parameters, and it produced relatively better results in lesser training iterations as
compared to the other two variants. Having a vast number of parameters compromises both the
training and testing time. Therefore, we opted for a medium-sized optical flow estimation network
(PWC-Net (Sun et al., 2018)) and a higher number of training iterations. The results produced
by both variants are discussed in the supplementary text. We also experimented with an iterative
arrangement of the trained models where restored videos are again subjected to temporal consistency
correction models and evaluated that the proposed model architecture consistently reduces warp
error with every iteration (as presented in figure 5). This reduced warp error comes at the cost
of quality. Generally, the frames subjected to a high number of consistency correction iterations
lose the fine details. The generated results by various restoration iterations are provided in the
supplemental. Please note that the comparative results provided in this paper are generated through
a single restoration iteration.
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Figure 5: Temporal warp error vs. iterations.
Temporal warp error consistently decreases with
a higher number of restoration iterations.

The dataset for training the proposed model
contains videos from the DAVIS dataset for
video segmentation (Perazzi et al., 2016) and
videos gathered from Videovo.net by (Lai et al.,
2018). The dataset contained videos from a
diverse range of applications such as, Artis-
tic Style Transfer (Gatys et al., 2015; John-
son et al., 2016), Colorization (Waechter et al.,
2014; Zhang et al., 2016a), Image Enhance-
ment (Gharbi et al., 2017), Intrinsic Image De-
composition (Bell et al., 2014), and Image-to-
Image Translation tasks (Li et al., 2017; Zhang
et al., 2016a; Zhu et al., 2017). The qualitative
and quantitaive results are described below.

5.1 QUANTITATIVE RESULTS

The quantitative results are evaluated on the basis of temporal warp error. Tab. 1 shows the quan-
titative result produced by the methods proposed by (Bonneel et al., 2015), (Lai et al., 2018) and
our method. Due to the tedious and computationally expensive nature of DVP (Lei et al., 2020)
we compare some of their results in the accompanying supplemental for qualitative and quantita-
tive comparison. The lower temporal warp error represents better temporal consistency. The lowest
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Task Trained DAVIS VIDEVO
Bonneel Lai Ours Bonneel Lai Ours

WCT (Li et al., 2017)/antimono ✓ 0.0029 0.0031 0.0026 0.0015 0.0021 0.0015
WCT (Li et al., 2017)/asheville 0.0047 0.0059 0.0047 0.0032 0.0043 0.0039
WCT (Li et al., 2017)/candy ✓ 0.0034 0.0047 0.0035 0.0020 0.0032 0.0025
WCT (Li et al., 2017)/feathers 0.0040 0.0040 0.0027 0.0027 0.0030 0.0021
WCT (Li et al., 2017)/sketch ✓ 0.0036 0.0029 0.0021 0.0025 0.0022 0.0017
WCT (Li et al., 2017)/wave 0.0033 0.0035 0.0027 0.0023 0.0026 0.0021
Fast-neural-style (Johnson et al., 2016)/princess 0.0043 0.0063 0.0042 0.0035 0.0053 0.0042
Fast-neural-style (Johnson et al., 2016)/udnie 0.0021 0.0023 0.0022 0.0012 0.0014 0.0014
DBL (Gharbi et al., 2017)/expertA ✓ 0.0017 0.0011 0.0010 0.0014 0.0007 0.0006
DBL (Gharbi et al., 2017)/expertB 0.0016 0.0010 0.0008 0.0011 0.0006 0.0004
Intrinsic (Bell et al., 2014)/reflectance 0.0015 0.0008 0.0007 0.0011 0.0006 0.0006
Intrinsic (Bell et al., 2014)/shading ✓ 0.0014 0.0008 0.0008 0.0008 0.0004 0.0004
CycleGAN (Zhu et al., 2017)/photo2ukiyoe 0.0024 0.0019 0.0015 0.0017 0.0013 0.0010
CycleGAN (Zhu et al., 2017)/photo2vangogh 0.0026 0.0026 0.0019 0.0020 0.0020 0.0015
Colorization (Zhang et al., 2016b) ✓ 0.0016 0.0011 0.0008 0.0010 0.0006 0.0004
Colorization (Waechter et al., 2014) 0.0015 0.0009 0.0007 0.0010 0.0005 0.0003
Average 0.0027 0.0027 0.0021 0.0018 0.0019 0.0015

Table 1: Quantitative comparison of Temporal Warping Error.

temporal warp error is highlighted in red, and the second best is highlighted in blue. It is notewor-
thy that the temporal warp error does not take into account the perceptual quality of the produced
frames and assigns a lower value for videos that resemble raw/unprocessed videos (as produced
by (Bonneel et al., 2015)). It is evident from Tab. 1 that the proposed model produces state-of-the-
art consistency results. Please note that unlike the proposed method, both the compared methods
require the availability of raw/unprocessed videos for siphoning temporal dynamics.

Figure 6: User Study. This donut chart highlights
the user preferences collected through the user
study. A majority of the participants preferred the
results produced by the proposed method.

It is worth mentioning that some attempts to
judge the perceptual quality through metrics
like mean PSNR (performance degradation (Lei
et al., 2020)) have been proposed for this task.
We intentionally disregarded this metric and ar-
gue that this metric might be helpful to evaluate
the performance of successive iterations of their
prior-based methods where each iteration leads
to progressively better results, but it can be a
bit misleading in judging the overall perceptual
quality of restored videos. In order to under-
stand our arguments, let us assume a toy ex-
ample of three consecutive frames, the first and
the third frame are purely white, and the middle
frame is black. All of the proposed methods for
this task will treat the middle frame as an incon-
sistent frame and will try to correct it and produce a blended/blurred gray frame. If the models do not
restore the middle frame, this metric will indicate that the models have faithfully restored the middle
frame, whereas, in the case where the middle frame is corrected, the same metric will indicate that
the produced frame is of lower quality, despite better temporal coherence. A similar phenomenon
can be observed with other local perceptual metric such as LPIPS (Zhang et al., 2018). Therefore,
to properly evaluate the models on their perceptual quality, thorough user studies are necessary. The
findings of our conducted user studies are presented below and in the appended supplemental text.

5.1.1 USER STUDY

We conducted 2 user studies; a comprehensive and a factorized user study to properly evaluate
the performance of the proposed model. The first user study consisted of 36 participants with 130
different scenes processed through each of the proposed model. Each participant was asked to judge
5 videos processed through each of the proposed method for this task. The users were shown a
randomly sampled scene from the video pool processed through (Bonneel et al., 2015), (Lai et al.,
2018), (Lei et al., 2020) and this work, simultaneously. The participants were instructed to judge
the videos on the basis of naturalness, quality, consistency, content and style preservation. Figure
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6 presents the findings of the first user study. On average, 41% of the users preferred the videos
restored by the proposed method. More details about the environment of the user study and the
factorized study are presented in the appended supplemental.

5.2 QUALITATIVE RESULTS

Figure 7: Qualitative Results comparison. From Left to Right: Raw Videos, Processed videos,
videos generate by (Bonneel et al., 2015), (Lai et al., 2018) and the proposed method. The comparing
videos in the above presented figure can be played with Adobe PDF Reader on a computer screen.

Fig. 7 presents some of the results produced by the methods proposed by (Bonneel et al., 2015), (Lai
et al., 2018) and the proposed model. The results produced by (Bonneel et al., 2015) fail to retain
perceptual quality of the processed videos. In the first video, the method proposed by (Lai et al.,
2018) produces flicker and odd colors in the top part. In contrast, the proposed model produces
temporally consistent frames while retaining the perceptual quality of the processed video. Due to
the space limitation, further higher quality results, along with the results on super resolution (Ledig
et al., 2017), inpainting (Lee et al., 2021), multiple iterations and user studies are presented in the
supplemental.

6 LIMITATIONS AND FUTURE WORK

The proposed model has difficulties in restoring videos with very low frame rate and in the case of
style transferred videos, some finer inconsistencies like finer brush strokes are lost, which makes
the resulting video seem a little dull (this is to be expected from all the proposed approaches for
this task). A good direction for future work in this field can be the exploration of consistent flow
estimation models with deterministic warp operators. The developed consistent flow models can be
used for a number of video processing applications like denoising and dehazing.

7 CONCLUSION

We present a task agnostic temporal consistency correction framework that restores natural video
dynamics by learning consistent motion representations from the temporally inconsistent videos.
We address various aspects of temporal consistency correction of per-frame processed videos in
a task-agnostic manner. Unlike the previously proposed approaches for this task, the proposed
method does not rely on siphoning video dynamics from the unprocessed videos, hence mitigates
the requirement of unprocessed videos at inference time, and produces state-of-the-art qualitative
and quantitative results. Through extensive experimentation and user studies, we demonstrate that
the proposed method compares favorably to the pre-existing methods available for this task.
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Learning Task Agnostic
Temporal Consistency Correction

– Supplementary Material –

8 OVERVIEW

Due to the space limitation in the main manuscript, additional results, experiments, comparisons,
ablation, and user studies are presented in this supplemental. Specifically, we present the details of
the ablation study that highlights the choice of optical flow estimation network and the effects of
loss functions presented in the main paper. Then, this supplemental provides quantitative and qual-
itative comparisons of the proposed method alongside the results generated with Deep Video Prior
(DVP) (Lei et al., 2020). Lastly, we also include the results generated with iterative experiments,
Single Image Super-Resolution (SISR) (Ledig et al., 2017) and image inpainting (Lee et al., 2021).

9 ABLATION STUDY

In order to properly evaluate the contribution of each of the loss functions and modules presented
in the main manuscript, a thorough ablation study is presented in this section. We first define the
contribution of each loss function used and later present the variants of the proposed model trained
with the effective loss functions but different optical flow estimation modules.

9.1 EFFECTS OF VARIOUS LOSS FUNCTIONS
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Figure 8: Ablation of loss functions. The graph containing temporal warp error against the number
of epochs for each model trained with a different combination of losses. The warp error for the final
model is highlighted with a solid yellow line.

As presented in the main paper, training this model with a simplistic reconstruction loss is infeasi-
ble; therefore, a combination of various loss functions is used to address the task at hand properly.
figure 8 presents the graph containing temporal warp error against the number of epochs for each
model trained with a different combination of losses. We started our experiments with a simplistic
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Figure 9: The problems with raw optical flow loss. The variety of domain transfer applications
included in the dataset, optimizing the model based on raw optical flow becomes challenging, as
shown in this figure.

loss function which provided the means to compare videos having mainly the same motion profiles
but different content. This loss proved ineffective for the task, as the optical flow estimated from
style transfer videos can vary significantly while optical flow evaluated from applications like im-
age adjustment (Yan et al., 2016) can be very similar to the same evaluated from their unprocessed
counterparts. The graph presented in figure 9 highlights this variation for simplistic optical flow loss
for different batches containing various applications. This, however, can be effective for applica-
tions where the domain of the translated videos remains the same as presented by (Li et al., 2022).
We also observed that for the variety of applications addressed, most of the inconsistencies occur
near the motion boundaries; hence we extended this simplistic loss with the help of spatial gradients
of optical flow and obtained visually sharper and quantitatively smoother videos as highlighted in
figure 8. The model trained without the proposed flow gradient loss produced blurrier results near
the motion boundaries as highlighted with a gray line in figure 8. We observed that the inclusion of
the flow gradient loss helped overcome the blurriness near the motion boundaries. We also trained
a model without the proposed constancy loss and found that the model learned to regress locally
consistent frames and hence resulted in higher warp error. The introduction of the constancy loss
mitigated the problem of global consistency and resulted in lower overall warp errors. It can be
deduced from the figure that each of the losses presented in the main manuscript compliments each
other and plays significant roles in the production of the final results. Please note that a perceptual
loss (Johnson et al., 2016) was used with all the configurations presented in figure 8.
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Figure 10: Warp error for the two frame variant. This figure presents the temporal warp error for
the 2 frame variant of the proposed model.

Figure 10 presents the temporal warp error for the model that takes in two frames as input and tries
to synthesize the restored version of the second frame. It is evident from figures 8 and 10 that the
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two frame model fails to learn the gist of temporal stability, whereas, the models trained with three
frames learn the necessary reasoning to restore temporal coherence through added information that
is essential to develop a sense of rigidity without the need for siphoning motion dynamics from the
unprocessed videos.
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Figure 11: Ablation of optical flow estimation models. Temporal warp error vs. the number of
epochs graph for models containing various optical flow estimation networks.

FlowNet2.0 PWC-Net SpyNet

Figure 12: Optical flow quality comparison. This figure highlights the quality of optical
flow estimated with various optical flow estimation networks. The optical flow estimated with
FlowNet2.0 (Ilg et al., 2017) contains sharp boundaries with minimal noise. Whereas, the optical
flow estimated through PWC-Net (Sun et al., 2018) and SpyNet (Ranjan and Black, 2017) contains
a significant amount of noise.

9.2 CHOICE OF OPTICAL FLOW ESTIMATION NETWORK

After finalizing the objective functions, we repeated the experiments with various optical flow es-
timation models such as FlowNet2.0 (Ilg et al., 2017) and SpyNet (Ranjan and Black, 2017), and
finally settled for the model containing PWC-Net (Sun et al., 2018) due to its mediocre size. The
temporal warp error vs. the number of epochs graph for each of these models is presented in fig-
ure 11. FlowNet2.0 consists of nearly 162M trainable parameters and requires huge computational
resources for both training and inference. PWC-Net (Sun et al., 2018), on the other hand, consists
of nearly 17 times lesser parameters than FlowNet2.0 (Ilg et al., 2017) and produces comparative
results and is easier to train as well. SpyNet (Ranjan and Black, 2017) on the other hand, consists
of less than 1M trainable parameters; hence the model saturates very quickly. The results produced
by the model containing FlowNet2.0 (Ilg et al., 2017) are visually smoother as the optical flow es-
timated with FlowNet2.0 (Ilg et al., 2017) is quite clear and has well-defined boundaries, unlike the
other compared models (as presented in figure 12). This ”noise-free” optical flow estimation helps
the model converge faster as compared to the other variants but also makes it infeasible to train and
test on real-world videos; therefore, PWC-Net (Sun et al., 2018) is used in the final version of the
proposed model.
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9.3 HYPER-PARAMETERS

During the experimentation phase, it was observed that the hyper-parameters T (number of frames
in each training sequence) and the patch size played a significant role in minimizing the temporal
warp error. The models trained with a larger T and patch size achieved better warp error results
as compared to the models trained with lower T and patch size. All the models discussed above
were trained with a patch size of 256× 256 and a sequence length of 15 frames. As for the the loss
functions defined in the main paper, the weights for each loss term were selected in line with the
study proposed in (Lai et al., 2018) for short term and long term losses. For the final version of our
trained model, we chose λa = 10, λb = 100, λc = 10, λd = 100. The learning rate for all of the
proposed experiments was set to 1 × 10−4 with a decay factor of 0.5 after every 20000 optimization
iterations.

10 USER STUDY

As mentioned in the main manuscript, the evaluation metric (Temporal Warp Error) does not take
into account the various aspects of a video and can also suggests blurry videos as temporally con-
sistent videos. Due to this shortcoming of the metric, user studies are necessary to properly evaluate
any proposed method for this task. For both of the user studies, an application was developed
which randomly selected a scene from the pool of videos from the DAVIS (Perazzi et al., 2016) and
videvo.net dataset, and presented the results produced by the above-mentioned methods side-by-side
in random order.

10.1 FACTORIZED USER STUDY

Apart from the the comprehensive user study presented in the main paper, we also conducted a
secondary user study in-depth user study to know the reasoning of participants and their opinion on
their selections.

Style Transfer Intrinsic Image DecompositionCycleGAN

Ours DVP Lai Bonneel

Figure 13: Factorized user study. The user preference scores for the tasks of style transfer, Cycle-
GAN and intrinsic image decomposition (left to right respectively). Majority of the users preferred
the videos processed through the proposed method in each category of tasks.

In this user study, we limited the video sampling to specific tasks like style transfer, CycleGAN and
intrinsic image decomposition. Each user was instructed to judge 15 randomly selected videos (5
videos from each of the applications mentioned above) processed by each of the proposed models
for this task. The participants were also instructed to record the reasoning for their selection. Most of
the participants remarked that they chose the videos based on naturalness and lesser flickering. The
results of the second user study for each of the selected tasks are provided in figure 13. On average,
4̃7% of the users preferred the videos processed through the proposed model for these extremely
challenging tasks. The user study application and the code will be open-sourced upon acceptance.
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11 RUN-TIME COMPARISON

Method Time (s)
(Lai et al., 2018) 0.2146
DVP (Lei et al., 2020) 3.6365
Ours (FlowNet2.0 (Ilg et al., 2017)) 0.2538
Ours (PWC-Net (Sun et al., 2018)) 0.2236

Table 2: Time comparison Run-time comparison of methods proposed in (Lai et al., 2018),
DVP (Lei et al., 2020) and the variants of the proposed model with different optical flow estimation
networks in the motion branch.

Table 2 provides the average per-frame (910 × 480) generation time comparison of methods pro-
posed by (Lai et al., 2018), (Lei et al., 2020) and the variants of the proposed model containing
FlowNet2.0 (Ilg et al., 2017) and PWC-Net (Sun et al., 2018). As DVP (Lei et al., 2020) trains on
each video, the run-time was calculated by processing a video scene containing 68 frames with all
the above-mentioned methods. The time taken to process each video with DVP (Lei et al., 2020)
increases with the number of frames but remains constant for both the methods proposed by (Lai
et al., 2018) and this paper.

12 COMPARISON WITH DVP

Due to the tedious and resource-intensive nature of DVP (Lei et al., 2020), a large-scale comparative
study was impractical, thus we provide some of the comparative results generated with DVP (Lei
et al., 2020) in Fig. 14 – 15. Specifically, figure 14 presents the quantitative results (Temporal Warp
Errors) and figure 15 presents the qualitative results. DVP (Lei et al., 2020) trains on each video
and tries to generate a video that is similar to the per-frame processed video. This strategy, despite
its efficacy, has certain drawbacks, such as temporal artifacts on recurring patches, blur, and texture
loss. The videos generated with DVP (Lei et al., 2020) often resemble raw/unprocessed videos with
a mere color change. This bias towards the raw videos helps it achieve a lower warp error score.
Please note that the proposed method does not require the availability of raw videos in the inference
time and still generates highly competitive results in terms of warp errors while retaining rich texture
regions and better perceptual quality.
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Figure 14: Quantitative comparison with DVP (Lei et al., 2020) The bar chart illustrates the
temporal warp error on the videos generated with DVP (Lei et al., 2020) and the proposed method.

13 IMPLEMENTATION DETAILS

The proposed model was implemented with PyTorch on a system with Two RTX 8000 GPU. A
pretrained PWC-Net (Sun et al., 2018) was integrated into the network. The number of frames T
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Processed Video DVP Ours

Figure 15: Qualitative comparison with DVP (Lei et al., 2020) Recurring artifacts, loss of texture,
and blur produced by DVP (Lei et al., 2020). The highlighted frames are taken from per-frame
processed videos, DVP (Lei et al., 2020) and the proposed method (left to right). The proposed
method faithfully restores the temporal consistency of the processed video without compromising
the texture and quality.

for each training sequence was set to 15, and the patch size of the image input was 256 × 256.
We observed that the models trained with higher T and patch size performed better and converged
relatively quicker than the models trained with smaller patch size and T . Generally, all the mod-
els converged in around 70k training iterations. Due to the space limitation, we provide a detailed
ablation study regarding the choice of losses, optical flow estimation network, and various hyperpa-
rameters in the accompanied supplemental.

14 EXPERIMENTS

In order to show the efficacy of the proposed model, we present some of the experiments in the
following sections.

14.1 ITERATIVE RESTORATION

Generally, ”blind” restorative computer vision applications lack the ability to control the amount or
degree of restoration. In order to overcome this limitation (Ali et al., 2021), proposed an iterative
strategy for controlling the amount of stability in video stabilization dataset. Inspired by their itera-
tive strategy, we tested the proposed model in a similar arrangement. In our iterative arrangement,
the videos produced are subjected to further restoration iterations. Through our experiments, we ob-
served that the proposed model consistently improves the temporal consistency to an extent where
the foreground starts to disintegrate in places where it occludes the background. This gives the users
ability to restore the temporal consistency to their desired extent. Some of the iterative results are
presented in figure 16.

14.2 BONUS APPLICATIONS

figure 17 provides restored results generated with SISR (Ledig et al., 2017) and image inpaint-
ing (Lee et al., 2021). Due to the generative nature of these applications, the results produced
contain severe inconsistencies, and there do not exist temporally consistent counterparts of these
videos; hence restoration of these videos is impossible with the previously proposed methods. The
proposed method in this paper significantly improves the temporal consistency of these videos.
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Figure 16: Iterative results. Warp error vs. the number of restoration iterations graph is presented
on the left, and some iterative results are provided on the right side. This figure contains animation
and is best viewed on a computer screen with Adobe PDF reader.

15 ADDITIONAL QUALITATIVE RESULTS

Please refer to the accompanied supplementary videos for visualizing further results generated with
the proposed model. Please note that in the accompanied supplementary video, the bottom left of
each video contains the per-frame processed video, and the top right contains the videos restored by
the proposed model.
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Figure 17: SR and Inpainting results. The right column presents results produced with an image
super-resolution model, and the left side presents results generated with an image inpainting model.
The restored video contains consistent letters and numerals for which the boundaries are severely
affected by the super-resolution operation. The inpainted video contains high-frequency artifacts
on the inpainted location; the proposed model mitigates these high-frequency temporal artifacts and
produces smoother videos. This figure contains animation and is best viewed on a computer screen
with Adobe PDF reader.
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