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ABSTRACT

In spite of the high performance and reliability of deep learning algorithms in
broad range everyday applications, many investigations tend to show that a lot
of models exhibit biases, discriminating some subgroups of the population. This
urges the practitioner to develop fair systems whose performances are uniform
among individuals. In this work, we introduce a post-processing method designed
to mitigate bias of state-of-the-art models. It consists in learning a shallow neu-
ral network, called the Ethical Module, which transforms the deep embeddings of
a pre-trained model to give more representation power to the discriminated sub-
groups. Its training is supervised by the von Mises-Fisher loss, whose hyperpa-
rameters allow to control the space allocated to each subgroup in the latent space.
Besides being very simple, the resulting methodology is more stable and faster
than most current methods of bias mitigation. In order to illustrate our idea in a
concrete use case, we focus here on gender bias in facial recognition and conduct
extensive numerical experiments on standard datasets.

1 INTRODUCTION

In the past few years, Face Recognition (FR) systems have reached extremely high levels of perfor-
mance, paving the way to a broader range of applications, where the reliability levels were previously
prohibitive to consider automation. This is mainly due to the adoption of deep learning techniques
in computer vision since the famous breakthrough of Krizhevsky et al. (2012). The increasing use
of deep FR systems has however raised concerns as any technological flaw could have strong soci-
etal impact. Besides recent punctual events' that received significant media coverage, the academic
community has studied bias of FR systems since many years (dating back at least to Phillips et al.
(2003) who investigated racial bias of non-deep FR algorithms). Abdurrahim et al. (2018) identify
three sources of biases: race (understood as biological attributes such as skin color), age Srinivas
et al. (2019) and gender Albiero et al. (2020). The National Institute of Standards and Technology
Grother et al. (2019) conducted a thorough analysis of the performances of several FR algorithms
in function of these attributes and revealed high disparities. For instance, some of the top state-
of-the-art algorithms in absolute performances have more than seven times false acceptances for
females than for males. In this paper, we introduce a methodology to mitigate gender bias for FR.
Though focusing on a single source of bias has obvious limitations regarding intersectional effects
Buolamwini & Gebru (2018), it is a first step to gain insights into the mechanisms at work, before
turning to more complex situations. Actually, the method promoted in this paper, much more gen-
eral than the application considered here, could possibly alleviate many other types of bias. This
will be the subject of a future work.

The topic corresponding to the study of different types of bias and to the elaboration of methods to
alleviate them is referred to as fairness in machine learning, which has received increasing attention
in recent years Mehrabi et al. (2019), Caton & Haas (2020), Du et al. (2020). Roughly speaking,
achieving fairness means learning an algorithm that does not mistreat some predefined subgroups,
while still exhibiting a good predictive performance on the overall population: in general, a trade-off
has to be found between fair treatment and pure accuracy’. In this regard, one needs to carefully

!'See for instance the study conducted by the American Civil Liberties Union.
2this dichotomy somewhat simplifies the problem since an increase in accuracy could also lead to a better
treatment of each subgroup of the population.


https://www.aclu.org/blog/privacy-technology/surveillance-technologies/amazons-face-recognition-falsely-matched-28
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define what will be the relevant fairness metric. From a theoretical viewpoint, several ones have
been introduced Castelnovo et al. (2021), Garg et al. (2020) depending on how the concept of equity
is understood. In practice, these very refined notions can be inadequate, as they ignore specific use
case issues, and one thus needs to adapt them carefully. This is particularly the case in FR, where
high security standards cannot be negotiated. One of the contributions of our work is to introduce
two new metrics that incorporate the needs for both security and fairness (see section 2.2). Once the
metric has been chosen, different strategies can be considered to alleviate bias of algorithms which
can be roughly grouped in three categories: pre-, in- and post-processsing methods Caton & Haas
(2020), depending on whether the practitioner “fairness” intervention occurs before, during or after
the training phase.

In this work, we introduce a novel post-processing method allowing to correct gender bias of FR
pre-trained models. It is based on the idea that state-of-the-art models Wang et al. (2018), Deng
et al. (2019a), Huang et al. (2020) offer already very good deep embeddings of face images, as
witnessed by their high performances on large scaled evaluation datasets (e.g. IJB-C Maze et al.
(2018)), although they could induce various bias. This indicates that the deep face embeddings
obtained by these models are quite relevant and can be considered as initialization points to be en-
hanced. As aresult, our methodology consists in learning a shallow Multi-Layers Perceptron (MLP)
in order to transform the deep embeddings of the pre-trained model and balance the representation
space used by the discriminated groups. The training of this shallow network is supervised by the
von Mises-Fisher loss which is particularly well-suited for our purpose. Indeed, it incorporates an
hyperparameter for females (resp. males), whose variation is directly linked with the area they cover
in the latent space. To emphasize on both the post-processing aspect and the sought fairness, we call
our methodology the Ethical Module.

Ethical Module

von Mises-Fisher
Loss

Figure 1: Illustration of the Ethical Module methodology. In gray: our experiment choices.

The Ethical Module enjoys several benefits we would like to highlight.

» Simplicity and interpretability. Though it is of great simplicity, the method exhibits good
performance. In addition, the von Mises-Fisher loss has a nice parametric interpretation
which eases the understanding of the debiasing mechanisms at work.

* Computational complexity and stability. The training of the shallow MLP is fast (few
hours) and avoids the re-training of a full large-scale model, which can be costly and time-
consuming. Moreover, the training process is stable and supports the reliability of the
method. This is in contrast with adversarial methods whose training losses tend to oscillate.
Finally, our method is flexible and we conjecture it could use small database to already
debias representation since the shallow MLP has only few parameters.

» Taking advantage of foundation models. In the recent survey Bommasani et al. (2021),
the authors judiciously point out a change of paradigm in deep learning: very efficient
pre-trained models with billions of parameters they call foundation models are at our dis-
posal such as BERT Devlin et al. (2018) in NLP or ArcFace Deng et al. (2019a) in FR.
Many works rely on these powerful models and fine tune them, inheriting from both their
strengths and weaknesses such as their biases. Hence the need to focus on methods to
investigate the fairness of foundation models: our method is in line with this approach.

* Compliance with the fairness through unawareness principle. If the Ethical Module
requires access to the sensitive label during its training phase, the latter only appears in
the von Mises-Fisher Loss. As a result, face images are the only argument of the learned
embedding function.
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Organization of the paper. Section 2.1 presents the widely spread usage of FR and its main chal-
lenges. It is followed by section 2.2 where we discuss different fairness metrics that arise in FR
and introduce two new ones we think are more relevant with regards to operational use cases. In
section 3, we present the von Mises-Fisher loss that is used for the training of the Ethical Module
and discuss its benefits. Finally, in section 4, we present at length our numerical experiments, which
consist in learning an Ethical Module on the ArcFace model, pre-trained on the MSIMV3 dataset
(Deng et al. (2019b)). Our results show that, remarkably, some specific choices of hyperparameters
provide high performance and low fairness metrics both at the same time.

Related works. The correction of bias in FR has been the subject of several recent papers. Liu
et al. (2019) and Wang & Deng (2020) use reinforcement learning to learn fair decision rules but
despite their mathematical relevance, such methods are computationally prohibitive. Another line of
research followed by Yin et al. (2019), Wang et al. (2019a) and Huang et al. (2019) assume that bias
come from the unbalanced nature of FR datasets and builds on imbalanced and transfer learning
methods. Unfortunately, these methods do dot completely remove bias and it has been recently
pointed out that balanced dataset are actually not enough to mitigate bias Wang et al. (2019b). Gong
etal. (2019), Alasadi et al. (2019) and Dhar et al. (2020; 2021) rely on adversarial methods that can
reduce bias but are also known to be unstable and computationally expensive. All of the previously
mentioned methods try to learn fair representations. In contrasts, some other works do not affect the
latent space but modify the decision rule instead: Terhorst et al. (2020) act on the score function
whereas Salvador et al. (2021) rely on calibration methods. Despite encouraging results, these
approaches do not solve the source of the problem which is the bias incurred by the embeddings
used.

2 ON FAIRNESS IN THE CONTEXT OF DEEP FACE RECOGNITION

In this section, we first briefly recall the main principles of deep face recognition and introduce
some notations. The interested reader may consult Masi et al. (2018) or Wang & Deng (2018) for a
detailed exposition. Then, we present the fairness metrics we adopt and argue of their relevance in
our framework.

2.1 A QUICK OVERVIEW OF FACE RECOGNITION

A typical FR dataset consists of NV images (;)1<;<n of faces that have been pre-processed and are
all of size (h,w,c). It is assumed that there are K identities among the images and we denote by
y; € {1,... K} the identity of «; fori = 1, ..., N. The goal of a FR algorithm is to learn a proper
d-dimensional representation of the face images, by means of a function f : RF*w>c 5 R? in
order to minimize the intra-identity distances and maximize the inter-identity distances. We denote
by z; = f(x;) the face embedding of x;. Since the advent of deep learning, the function f is usually
a deep Convolutional Neural Network (CNN) whose parameters are learned on a large FR dataset.

Test phase. There are generally two FR use cases: identification, which consists in finding the
specific identity of a probe face among several previously enrolled identities, and verification (which
we focus on throughout this article), which aims at deciding whether two face images correspond
to the same identity or not. To do so, the closeness between two embeddings is usually quantified
with the cosine similarity measure s(z;, z;) := 2] z;/(||zi|| - ||z;||), where || - || stands for the usual
Euclidean norm (the Euclidean metric ||z; — z;|| is also used in some early works e.g. Schroff et al.
(2015)). Therefore, an operating point t € [—1, 1] has to be chosen to classify a pair (2;, 2;) as
genuine (same identity) if s > ¢ and impostor (distinct identities) otherwise.

Training. For the training phase only, a fully-connected layer is added on top of the deep embed-
dings so that the output is a K -dimensional vector, predicting the identity of each image within the
training set. The full model (CNN + fully-connected layer) is trained as an identity classification
task. Until 2018, most of the popular FR loss functions were of the form:

ety Zi
E*ffZIOg <Zk wm), (1)

=1

where the p’s are the fully-connected layer’s parameters, x > 0 is the inverse temperature of the
softmax function used in brackets and n is the batch size. Early works (Taigman et al. (2014); Sun
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et al. (2014)) took k = 1 and used a bias term in the fully-connected layer but Wang et al. (2017)
showed that the bias term degrades the performance of the model. It was thus quickly discarded
in later work. Since the canonical similarity measure at the test stage is the cosine similarity, the
decision rule only depends on the angle between two embeddings, whereas it could depend on the
norms of py and z; during training. This has led Wang et al. (2017) and Hasnat et al. (2017) to
add a normalization step during training and take py, z; € S¢71 := {z € R? : ||2|| = 1} as well
as introducing the re-scaling parameter « in Eq. 1: these ideas significantly improved upon former
models and are now widely adopted. Denoting by 6; the angle between p,, and z;, the major
advance over the loss of Eq. 1 (with normalization of p, 2;) in recent years was to consider large-
margin losses which replace p] z; = cos(6;) by a function that reduces intra-class angle variation,
such as the cos(m#;) of Liu et al. (2017) or the cos(#;) —m of Wang et al. (2018). The most efficient
choice is cos(f; + m) and is due to Deng et al. (2019a) who called their model ArcFace, on which
we build our methodology.

A fine training should result in the alignment of each embedding z; with the vector pt,,. The aim
is to bring together embeddings with the same identity. Indeed, during the test phase, the learned
algorithm will have to decide whether two face images are related to the same, potentially unseen,
individual (one refers to an open set framework).

Evaluation metrics. Denoting by G the set of genuine pairs and by 7 the set of impostor pairs in a
given test set, we introduce the False Acceptance and False Rejection Rates, defined as follows:

FAR(t) = #{(zi,zj) €L : 5(2z,25) > t}7 FRR(f) #{(zi,2j) €G :s(zi,2) < t}.

#{(zi,z;) € I} #{(zi,2j) € G}
These quantities are crucial to evaluate a given algorithm in our context: face recognition is intrin-
sically linked to biometric applications, where the usual accuracy evaluation metric is not sufficient
to assess the quality of a learned decision rule. For instance, security automation in an airport re-
quires a very low FAR while keeping a reasonable FRR to ensure a pleasant user experience. As a
result, the most widely used metric consists in first fixing a threshold ¢ so that the FAR is equal to a
pre-defined value « € [0, 1], and then computing the FRR at this threshold. We use the canonical
FR notation to denote the resulting quantity:

FRRQ(FAR = o) := FRR(t) with ¢ such that FAR(t) = o. )

The FAR level o determines the operational point of the FR system and corresponds to the security
risk one is ready to take. According to the use case, it is typically set to 107" with ¢ € {1,...,6}.

2.2 FAIRNESS METRICS

While the FRRQFAR metric is the standard choice for measuring the performance of a FR algo-
rithm, it does not take into account its variability among different subgroups of the population. In
order to assess and correct for potential discriminatory biases, the practitioner must rely on suitable
fairness metrics. The first step is to define a finite set A of sensitive attributes against which we
wish to assess fairness. Since we focus here on gender bias, we take A = {0, 1} where 0 stands for
“male” and 1 for “female”. We extend the notions of FAR and FRR within the male (resp. female)
subgroups, considering same-gender pairs only, and denote by FAR(, FAR; and FRRg, FRR; the
resulting quantities.

Before specifying our choice for the fairness metric used here, let us review some existing ones
Cavazos et al. (2020) that derive from fairness in the context of binary classification (here, one
classifies pairs in two groups: genuines or impostors). The Demographic Parity criterion requires the
prediction to be independent of the sensitive attribute, which amounts to equalizing the likelihood
of being genuine conditional to « = 0 and a = 1. Besides heavily depending on the number
and quality of impostors and genuines pairs among subgroups, this criterion does not take into
account the FARs and FRRs, which are instrumental in FR as previously mentioned. An attempt to
incorporate those criteria could be to compare the intra-group performances: FRRo@(FARy = «)
v.s. FRR1@Q(FAR; = «). However, the operational points o and ¢; satisfying FAR((to) = « and
FAR;(t1) = « generically differ as pointed out by Krishnapriya et al. (2020). To fairly asses the
equity of an algorithm, one needs to compare intra-groups FARs and FRRs at a same threshold. Two
such criteria exist in the fairness literature: the Equal Opportunity fairness criterion which requires
FRRo(t) = FRR4(t) and the Equalized Odds criterion which additionally requires FAR((¢) =
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FAR;(t). Nevertheless, working at an arbitrary threshold does not really make sense since, as
previously mentioned, FR systems typically choose an operational point achieving a predefined FAR
level so as to limit security breaches. This is why most current papers consider a fixed operational
point ¢ such that the population False Acceptance Rate equals a fixed value «. For instance, Dhar
et al. (2020) computes

[FRR1(¢t) — FRRo(t)| with FAR(t) = «. 3)
However, we think the choice of a threshold achieving a global FAR is not entirely relevant for it
depends on the relative proportions of females and males of the considered dataset together with the
relative proportion of intra-groups impostors and genuines. For instance, at fixed images quality,
if females represent a small proportion of the dataset, the threshold ¢ of Eq. 3 is close to the male
threshold ¢ satisfying FAR((t9) = « and away from the female threshold ¢ satisfying FAR,(¢1) =
«. Such a variability among datasets could lead to incorrect conclusions.

In this paper, we go one step further and work at a threshold achieving max, FAR, = « instead of
FAR = a. This alleviates the previously proportions dependence. Besides, this allows to monitor
the risk one is willing to take among each subgroup: for a pre-definite rate v deemed acceptable,
one typically would like to compare the performance among subgroups for a threshold where each
subgroup satisfies FAR, < «. Our two resulting metrics are thus:

maxae{oyl} FRRa (t)

BFRR(q) := ith ¢ such that FAR, (1) = 4
) = nacqon) FRR(p) 0 suchthat max FAR,(f) =a (&)
and
o FARL(H)
BFAR(a) i= —rac{0.1) (1) ith ¢ such that max FAR,(t) = a. 5)
mingeqo,1y FARG(?) ac{0,1}

One can read the above acronyms “Bias in FRR/FAR”. In addition to being more security demand-
ing than previous metrics, BFRR and BFAR are more amenable to interpretation: the ratios of
FRRs or FARs corresponds to the number of times the algorithm makes more mistakes on the dis-
criminated subgroup. Those metrics generalizes well for more than 2 distinct values of the sensitive
attribute.

3 THE VON MISES-FISHER LOSS FOR BIAS MITIGATION

We now turn to a detailed description of the von Mises-Fisher (vMF in abbreviated form) loss which
supervises the training of our Ethical Module’s MLP. It stems from the vMF probability measure on
the hypersphere and was first introduced in Hasnat et al. (2017) as a new powerful way to discrimi-
nate different identities, before the advent of large-margin losses.

The von Mises-Fisher distribution. The vMF distribution in dimension d with mean direction
p € S1 and concentration parameter x > 0 is a probability measure defined on the hypersphere
S%1 by the following density:
] L K NT x . . /{%*1
Va(z; p, k) == Cyq(k)e with Cy(k) = ——F—,
(2m)%15 4 (r)

where [, stands for the modified Bessel function of the first kind at order v, whose logarithm can be
computed with high precision (Kim (2021)). Figure 2 illustrates the influence of the concentration
parameter x on the vMF distribution.

The vMF distribution corresponds to a Gaussian distribution in dimension d with mean g and
variance-covariance matrix (1/k)Ig, conditioned to live on the hypersphere. It makes it a very
natural directional law: for instance, it has maximal entropy among all probability measures on the
hypersphere with fixed variance.

A Fair von Mises-Fisher loss. The general form of the vMF Loss on the face embeddings is
1 — Cu(k _)enyiuin
Loe=—— ) log - ) (6)
n ; Yohy Calkiy)ereni=:

where a scalar ky, is affected to each identity k € {1,..., K}. Notice that there are two ways of
minimizing Lymg: either by aligning ground-truth p,,, with associated normalized face embeddings
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k=1 K =10 kK =20 K = 100

Figure 2: 500 samples from the vMF in dimension 3 with parameters x = [0.5, 0, v/0.75] and .

x; or by pushing back wrong g (with k& # y;) from x;. The vMF Loss was first introduced in
the context of FR by Hasnat et al. (2017), who took a unique value ~. In that case, the VMF loss
reduces to the classical loss £ of Eq. 1 (when z; and p; are normalized). This makes L\ a natural
generalization of cosine similarity-based losses which are at the basis of refined state-of-the-art
models that also incorporate margins.

Building on Ly, we consider gender-based hyperparameters. If ax, € {0, 1} denotes the gender of
identity k € {1,..., K}, the fair version of the vMF-loss we consider to train the Ethical Module

1S:
1 ¢ Ca(Fa,, ) it

Lre=—=Y 1 : 7

FvMF n Z 0og ( @)

— Zszl C’d(’iak)eﬁakl"'zzi

It depends on two hyper-parameters xg, k1 > 0, respectively corresponding to the concentration
parameters of male and female. By tuning x( and x1, one can modify the surfaces covered by the
male / female and therefore plays on their representative powers.

A maximum likelihood interpretation of the von Mises-Fisher loss. It is common knowledge
that, besides its high performances in many contexts, the Cross-Entropy (CE) loss is also attractive
because of its interpretation in terms of maximum likelihood estimation. Indeed, minimizing the CE
amounts to maximizing the likelihood with respects to the network parameters.

Interestingly, the vMF loss also enjoys this property if one places a
proper model on the face embeddings. Let us describe this model,
which is a mixture of vMF distributions. Recall that K > 1 is the
number of identities in the dataset. The model consists in assuming
that the dataset consists of i.i.d. realizations of a probability law
with density:

K
gd (15; {(71'1@’ Mk, ﬁk)}1§k§K> = ZT"ka(ﬂ?% Mk, filc)~
k=1

Let us discuss its parameters Oywr := { (7, 1i, ;) }1<i<k. Each
identity k € {1, ..., K} is represented by a vMF distribution with
mean p and concentration xy. In this vision, the mean g is an
abstraction of the identity and ~j takes into account its variability
(caused by lightening conditions, aging...). We also denote by
the proportion of identity k in the overall population. Figure 3 il-
lustrates this vMF mixture in the case K = 4 (the detail of the
parameters is given in the supplementary material). Under the vMF mixture model assumption, the
probability p;; that a face embedding z; belongs to identity k is given by

Figure 3: Illustration of a
vMF mixture model.

Va(zilpg, ) mCa(ky) e #i =

= K — T .
>kt Valzilmw, k) STK 1 k) efik Bk Zi

DPij
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Therefore, the negative log-likelihood of the model is given by

NLL(6, @) = i Ty, Ca(ky,) €
i—1 S Tk Ca(ky) e Hi =

At least at a heuristical level, both playing on the parameters 7 s and ks affects the surfaces covered
by the different classes. It is thus natural to restrict the scope to the case where the 7s are all equal
and only adjust the concentration parameters. In that case, the above NLL is in fact the vMF Loss
Ly previously introduced.

T
Ky p’ﬂi Zi

4 NUMERICAL EXPERIMENTS

Pre-trained model. We use the trained model ArcFace® whose CNN architecture is a ResNet100
(Han et al. (2017)). As emphasized before, it achieves state-of-the-art performances in FR. It has
been trained on the MS1M-RetinaFace dataset (also called MS1MV3), introduced by Deng et al.
(2019b) in the ICCV 2019 Lightweight Face Recognition Challenge. MSIMV3 is a cleaned ver-
sion of the MS-Celeb1M dataset (Guo et al. (2016)); all its face images have been pre-processed
by the Retina-Face detector of Deng et al. (2019c) and are of size 112 x 112 pixels. It contains
5.1M images of 93k identities. We also consider other pre-trained models* (AdaCos Zhang et al.
(2019), CosFace Wang et al. (2018), CurricularFace Huang et al. (2020)) whose backbone is a Mo-
bileFaceNet Chen et al. (2018) and trained on the MS-Celeb-1M-vlc-r dataset’. This dataset is
another cleaned version of the MS-Celeb1M dataset and it contains 3.28M images of 73k identities.
The images are also pre-processed by the Retina-Face detector and are of size 112 x 112 pixels.

Gender labels. For a fair comparison, we train our Ethical Module on the training set used to train
the pre-trained models (MS1MV3 for ArcFace, MS-Celeb-1M-vic-r for the models with Mobile-
FaceNet backbone). However, ground-truth gender labels for MS1MV3/MS-Celeb-1M-vlc-r are
not available. As the training of our Ethical Module needs the gender label of each face image
within the training set, we use a private gender classifier to get those gender labels. Current gender
classifiers achieve around 95% prediction accuracy on standard evaluation datasets and are widely
used in FR to get gender annotations (Acien et al. (2018); Gong et al. (2020)). Since some images
from the same identity might be assigned different gender predictions, it is common practice to use
a majority vote to decide the correct gender for each identity. We follow Albiero et al. (2020) and
only keep in our training sets the identities for which at least 75% of the same-identity face images
are assigned the same gender. Doing so, we discard 25k images and 835 identities for MS1MV3,
10k images and 500 identities for MS-Celeb-1M-v1c-r.

Ethical Module. The face embeddings output by the pre-trained models are of dimension 512.
Thus, the MLP within our Ethical Module has an input layer of 512 units. To emphasize the fact
that our gender bias mitigation solution is much less costly than current solutions such as Wang
& Deng (2020) and Dhar et al. (2020) , in terms of both training time and computation power
(see supplementary material A.1), we choose a shallow MLP of size (512, 1024, 512), the output
dimension being the same than for Arcface. This MLP is trained with the fair version Lg,\r of the
VMF loss introduced in Eq. 7. For each experiment, we train the Ethical Module during 50 epoch
with the Adam optimizer (Kingma & Ba (2014)). The batch size is set to 1024 and the learning rate
to 0.01. The training is efficient as we first compute the face embeddings of the pre-trained models
(on MS1MV3 for ArcFace, on MS-Celeb-1M-v1c-r for the models with MobileFaceNet backbone),
store them, and then train a shallow MLP on those embeddings. Using one single GPU (NVIDIA
RTX 3090), the computation of the embeddings takes 4 hours and each training takes 8 hours.

Reproducibility. We plan to release the code used to conduct our experiments.
4.1 GRID-SEARCH ON IJB-C AND FAIRNESS EVALUATION

In order to select relevant pairs of gender-hyperparameters (ko, k1), we perform a grid-search and
keep track of the canonical performance metric FRRQ(FAR = 10~?) together with our two fairness

*https://github.com/deepinsight/insightface/tree/master/recognition/

arcface_torch.
*nttps://github.com/JDAI-CV/FaceX-Zoo/blob/main/training_mode/README .md.
>See footnote 4.
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metrics BFRR(107?) and BFAR(1073) introduced in Eq. 4 and 5. To obtain reliable results, we
need to compute the latter metrics on a sufficiently large dataset containing gender labels. We
choose IIB-C (Maze et al. (2018)), which contains about 3,5k identities for a total number of about
31k images and 117k unconstrained video frames. The 1:1 verification protocol® is performed on
19k genuine pairs and 15M impostor pairs.

BFAR for fixed Ko and varying k; BFRR for fixed ko and varying k1 FRR@FAR for fixed ko and varying k;
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Figure 4: Ablation study of the considered metrics when one of the two hyperparameters is fixed.
The FAR level defining the threshold ¢ is set to 10~3; the pre-trained model is ArcFace with a
ResNet100 backbone.

A heatmap representation of the grid-search is provided in the supplementary material A.2. Several
interesting trends emerge from the ablation study of Figure 4, suggesting an underlying regularity
of the model with respect to the hyperparameters space. More precisely:

* when kg is fixed and k7 increases, BFAR tends to decrease, BFRR first increases and then
decreases and FRRQFAR tends to increase,

* when &1 is fixed and kg increases, BFAR first increases and then decreases, BFRR tends
to decrease and and FRR@QFAR increases.

A strength of our approach is that it lends itself well to a geometric interpretation. The latter al-
lows to derive two heuristic views on the problem, whose details are provided in the supplementary
material A.3. In a nutshell, we are able to (i) identify a pair of hyperparameters with a priori
good fairness properties, without relying on a grid-search study, and (ii) provide explanations for
the trends of Figure 4. A very promising route for future work would be to investigate a two-step
strategy for finding the best hyperparameters by selecting an initial point (xg, £1) with (i) and then
navigating the hyperparameter space with (ii).

Many (kg, 1) pairs could be considered as relevant and instead of defining an objective criterion, we
select three of them in order to illustrate the trade-off one needs to make between fairness metrics
and pure performance. The point (kg = 25,k; = 20) is quite relevant regarding BFRR and
performance (FRRQFAR), but is not adapted for BFAR. On the other hand, the point (15, 20)
is good when it comes to BFAR and performance. Finally, the point (45, 30) is interesting when
considering BFRR and BFAR. In Table 1, we summarize the different metrics evaluated for these
three points on the LFW dataset (Huang et al. (2008), see A.4) and compare them with the ArcFace
pre-trained baseline, at two FAR levels. We also conduct these experiments on different pre-trained
models with MobileFaceNet backbone. Additional results (using the IJB-C dataset for evaluation,
considering several types of ResNet backbones for ArcFace) can be found in the supplementary
material A.5.

Shttps://github.com/deepinsight/insightface/tree/master/recognition/_evaluation J/ijb.
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FAR level: 10~¢ 10~3
model FRRQFAR (%) BFRR BFAR | FRRQFAR (%) BFRR BFAR

original 0.063 10.76 3.98 0.052 2.23 1.81

ArcFace (15,20) 0.119 12.73 1.72 0.067 8.43 1.04
(25,20) 0.076 5.35 29.33 0.052 1.94 3.96

(45,30) 0.129 13.47 2.99 0.067 6.02 1.24

original 2.97 3.64 3.84 0.98 5.29 2.23

AdaCos (15,20) 4.56 4.42 1.41 1.33 6.34 1.01
(25,20) 3.12 2.71 8.37 0.91 4.23 3.71

(45,30) 4.05 4.51 1.57 1.26 7.28 1.08

original 1.73 5.89 2.51 0.58 8.18 1.74

CosFace (15,20) 3.69 5.76 1.13 1.05 8.41 1.02
(25,20) 241 3.03 9.66 0.67 5.09 4.75

(45,30) 2.60 4.30 3.69 0.82 6.81 1.87

original 2.52 3.67 2.92 0.81 4.88 1.91

Curricular (15,20) 3.86 5.26 1.16 1.17 6.35 1.10
(25,20) 2.82 2.58 9.10 0.82 3.89 4.28

(45,30) 3.61 3.40 2.30 1.02 5.63 1.27

Table 1: Evaluation on LFW for ArcFace with ResNet100 backbone and different pre-trained models
(AdaCos, CosFace, CurricularFace) with MobileFaceNet backbone. By “original” we mean no
Ethical Module is added to the pre-trained model. The tuples correspond to the choices of «q (first
argument) and x; (second argument). FRRQFAR is expressed as a percentage (%).

4.2 VERIFICATION EVALUATION ON IJB-B

We finally investigate  the

FRRQFAR metric ' (Table 2) Methods (%) ‘ 10-% 10-3
of the three selected points (xg, 1) —

on IJB-B (Whitelam et al. (2017)). original 5.38 3.78
In the verification setting, this (15,20) 6.79 4.1
dataset contains 10k genuine pairs (25,20) 6.00 3.84
and 8M impostor pairs. Notice (45,30) 7.03 481

that we do not lose too much in
performance with respect to the Table 2: FRRQ(FAR = «) on 1IB-B for ArcFace with
original model. ResNet100 backbone, for o« = 107", ¢ = 3, 4.

5 CONCLUSION

In this paper, we introduce a novel method, the Ethical Module, to mitigate gender bias of Face
Recognition state-of-the-art models. It consists in learning a shallow MLP on top of a frozen pre-
trained model, so as to correct the biases that could exist in the embedding space. To achieve
fairness, we rely on a fair version of the von Mises-Fisher loss that incorporates an hyperparameter
per gender, the variation of which allowing to monitor the space covered by males and females in
the latent space. Measuring the fairness of Face Recognition systems is a very challenging task and
we introduce two new metrics that both respond to the need for security and equity.

Besides being very simple, the resulting methodology is more stable and faster than most current
methods of bias mitigation. It both leverages the strong accuracy of pre-trained models while cor-
recting their bias. We illustrate the soundness of our methodology on several pre-trained models,
and strongly believe it could also be used to alleviate other types of bias. Our work opens several
lines of research: for instance, it would be interesting to extend our ideas to the context of mul-
ticlass sensitive attributes and of continuous sensitive attributes such as age. Another idea would
be to somehow incorporate our fairness criteria during the training of the Ethical Module. Finally,
we think that incorporating large-margin constraints into the loss used to train the Ethical Module
would be a promising attempt to go beyond the trade-off between fairness and performance.



Under review as a conference paper at ICLR 2022

REFERENCES

Salem Hamed Abdurrahim, Salina Abdul Samad, and Aqgilah Baseri Huddin. Review on the effects
of age, gender, and race demographics on automatic face recognition. The Visual Computer, 34
(11):1617-1630, 2018.

Alejandro Acien, Aythami Morales, Ruben Vera-Rodriguez, Ivan Bartolome, and Julian Fierrez.
Measuring the gender and ethnicity bias in deep models for face recognition. In Iberoamerican
Congress on Pattern Recognition, pp. 584-593. Springer, 2018.

Jamal Alasadi, Ahmed Al Hilli, and Vivek K Singh. Toward fairness in face matching algorithms.
In Proceedings of the Ist International Workshop on Fairness, Accountability, and Transparency
in MultiMedia, pp. 19-25, 2019.

Vitor Albiero, Kai Zhang, and Kevin W Bowyer. How does gender balance in training data affect
face recognition accuracy? arXiv preprint arXiv:2002.02934, 2020.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Joy Buolamwini and Timnit Gebru. Gender shades: Intersectional accuracy disparities in commer-
cial gender classification. In Conference on fairness, accountability and transparency, pp. 77-91,
2018.

Alessandro Castelnovo, Riccardo Crupi, Greta Greco, and Daniele Regoli. The zoo of fairness
metrics in machine learning. arXiv preprint arXiv:2106.00467, 2021.

Simon Caton and Christian Haas. Fairness in machine learning: A survey. arXiv preprint
arXiv:2010.04053, 2020.

Jacqueline G Cavazos, P Jonathon Phillips, Carlos D Castillo, and Alice J O’Toole. Accuracy
comparison across face recognition algorithms: Where are we on measuring race bias? I[EEE
Transactions on Biometrics, Behavior, and Identity Science, 2020.

Sheng Chen, Yang Liu, Xiang Gao, and Zhen Han. Mobilefacenets: Efficient cnns for accurate
real-time face verification on mobile devices, 2018.

Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin
loss for deep face recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4690—4699, 2019a.

Jiankang Deng, Jia Guo, Debing Zhang, Yafeng Deng, Xiangju Lu, and Song Shi. Lightweight
face recognition challenge. In 2019 IEEE/CVF International Conference on Computer Vision
Workshop (ICCVW), pp. 2638-2646, 2019b. doi: 10.1109/ICCVW.2019.00322.

Jiankang Deng, Jia Guo, Yuxiang Zhou, Jinke Yu, Irene Kotsia, and Stefanos Zafeiriou. Retinaface:
Single-stage dense face localisation in the wild. arXiv preprint arXiv:1905.00641, 2019c.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Prithviraj Dhar, Joshua Gleason, Hossein Souri, Carlos D. Castillo, and Rama Chellappa. Towards
gender-neutral face descriptors for mitigating bias in face recognition, 2020.

Prithviraj Dhar, Joshua Gleason, Aniket Roy, Carlos D Castillo, and Rama Chellappa. Pass:
Protected attribute suppression system for mitigating bias in face recognition. arXiv preprint
arXiv:2108.03764, 2021.

Mengnan Du, Fan Yang, Na Zou, and Xia Hu. Fairness in deep learning: A computational perspec-
tive. IEEE Intelligent Systems, 2020.

Pratyush Garg, John Villasenor, and Virginia Foggo. Fairness metrics: A comparative analysis. In
2020 IEEE International Conference on Big Data (Big Data), pp. 3662-3666. IEEE, 2020.

10



Under review as a conference paper at ICLR 2022

Sixue Gong, Xiaoming Liu, and Anil K Jain. Jointly de-biasing face recognition and demographic
attribute estimation. arXiv preprint arXiv:1911.08080, 2019.

Sixue Gong, Xiaoming Liu, and Anil K Jain. Mitigating face recognition bias via group adaptive
classifier. arXiv preprint arXiv:2006.07576, 2020.

P Grother, M Ngan, and K Hanaoka. Ongoing face recognition vendor test (frvt) part 3: Demo-
graphic effects. National Institute of Standards and Technology, Tech. Rep. NISTIR, 8280, 2019.

Yandong Guo, Lei Zhang, Yuxiao Hu, Xiaodong He, and Jianfeng Gao. Ms-celeb-1Im: A dataset
and benchmark for large-scale face recognition. In European conference on computer vision, pp.
87-102. Springer, 2016.

Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Jul 2017. doi: 10.1109/cvpr.
2017.668. URL http://dx.doi.org/10.1109/CVPR.2017.668.

Md Hasnat, Julien Bohné, Jonathan Milgram, Stéphane Gentric, Liming Chen, et al. von mises-
fisher mixture model-based deep learning: Application to face verification. arXiv preprint
arXiv:1706.04264, 2017.

Chen Huang, Yining Li, Chen Change Loy, and Xiaoou Tang. Deep imbalanced learning for face
recognition and attribute prediction. IEEE transactions on pattern analysis and machine intelli-
gence, 42(11):2781-2794, 2019.

Gary B Huang, Marwan Mattar, Tamara Berg, and Eric Learned-Miller. Labeled faces in the wild:
A database forstudying face recognition in unconstrained environments. 2008.

Yuge Huang, Yuhan Wang, Ying Tai, Xiaoming Liu, Pengcheng Shen, Shaoxin Li, Jilin Li, and
Feiyue Huang. Curricularface: adaptive curriculum learning loss for deep face recognition.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
5901-5910, 2020.

Fredrik Johansson et al. mpmath: a Python library for arbitrary-precision floating-point arithmetic
(version 1.2.0), February 2021. http://mpmath.org/.

Minyoung Kim. On pytorch implementation of density estimators for von mises-fisher and its mix-
ture. arXiv preprint arXiv:2102.05340, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

KS Krishnapriya, Vitor Albiero, Kushal Vangara, Michael C King, and Kevin W Bowyer. Issues
related to face recognition accuracy varying based on race and skin tone. IEEE Transactions on
Technology and Society, 1(1):8-20, 2020.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems, 25:1097-1105,
2012.

Bingyu Liu, Weihong Deng, Yaoyao Zhong, Mei Wang, Jiani Hu, Xunqgiang Tao, and Yaohai Huang.
Fair loss: margin-aware reinforcement learning for deep face recognition. In Proceedings of the
IEEE international conference on computer vision, pp. 10052-10061, 2019.

Weiyang Liu, Yandong Wen, Zhiding Yu, Ming Li, Bhiksha Raj, and Le Song. Sphereface: Deep
hypersphere embedding for face recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 212-220, 2017.

Iacopo Masi, Yue Wu, Tal Hassner, and Prem Natarajan. Deep face recognition: A survey. In 2018

31st SIBGRAPI conference on graphics, patterns and images (SIBGRAPI), pp. 471-478. 1EEE,
2018.

11


http://dx.doi.org/10.1109/CVPR.2017.668

Under review as a conference paper at ICLR 2022

Brianna Maze, Jocelyn Adams, James A Duncan, Nathan Kalka, Tim Miller, Charles Otto, Anil K
Jain, W Tyler Niggel, Janet Anderson, Jordan Cheney, et al. Iarpa janus benchmark-c: Face
dataset and protocol. In 2018 International Conference on Biometrics (ICB), pp. 158-165. IEEE,
2018.

Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram Galstyan. A survey
on bias and fairness in machine learning. arXiv preprint arXiv:1908.09635, 2019.

P Jonathon Phillips, Patrick Grother, Ross Micheals, Duane M Blackburn, Elham Tabassi, and Mike
Bone. Face recognition vendor test 2002. In 2003 IEEE International SOI Conference. Proceed-
ings (Cat. No. 03CH37443), pp. 44. 1IEEE, 2003.

Tiago Salvador, Stephanie Cairns, Vikram Voleti, Noah Marshall, and Adam Oberman. Bias miti-
gation of face recognition models through calibration. arXiv preprint arXiv:2106.03761, 2021.

Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified embedding for face
recognition and clustering. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 815-823, 2015.

Nisha Srinivas, Karl Ricanek, Dana Michalski, David S Bolme, and Michael King. Face recognition
algorithm bias: Performance differences on images of children and adults. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 0-0, 2019.

Yi Sun, Xiaogang Wang, and Xiaoou Tang. Deep learning face representation from predicting
10,000 classes. In Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 1891-1898, 2014.

Yaniv Taigman, Ming Yang, Marc’ Aurelio Ranzato, and Lior Wolf. Deepface: Closing the gap to
human-level performance in face verification. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 1701-1708, 2014.

Philipp Terhorst, Jan Niklas Kolf, Naser Damer, Florian Kirchbuchner, and Arjan Kuijper. Post-
comparison mitigation of demographic bias in face recognition using fair score normalization.
Pattern Recognition Letters, 140:332-338, 2020.

Feng Wang, Xiang Xiang, Jian Cheng, and Alan Loddon Yuille. Normface: L2 hypersphere embed-
ding for face verification. In Proceedings of the 25th ACM international conference on Multime-
dia, pp. 1041-1049, 2017.

Hao Wang, Yitong Wang, Zheng Zhou, Xing Ji, Dihong Gong, Jingchao Zhou, Zhifeng Li, and Wei
Liu. Cosface: Large margin cosine loss for deep face recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 5265-5274, 2018.

Mei Wang and Weihong Deng. Deep face recognition: A survey. arXiv preprint arXiv:1804.06655,
2018.

Mei Wang and Weihong Deng. Mitigating bias in face recognition using skewness-aware reinforce-
ment learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 9322-9331, 2020.

Mei Wang, Weihong Deng, Jiani Hu, Xunqgiang Tao, and Yaohai Huang. Racial faces in the wild:
Reducing racial bias by information maximization adaptation network. In Proceedings of the
IEEFE International Conference on Computer Vision, pp. 692-702, 2019a.

Tianlu Wang, Jieyu Zhao, Mark Yatskar, Kai-Wei Chang, and Vicente Ordonez. Balanced datasets
are not enough: Estimating and mitigating gender bias in deep image representations. In Pro-
ceedings of the IEEE International Conference on Computer Vision, pp. 5310-5319, 2019b.

Cameron Whitelam, Emma Taborsky, Austin Blanton, Brianna Maze, Jocelyn Adams, Tim Miller,
Nathan Kalka, Anil K Jain, James A Duncan, Kristen Allen, et al. Iarpa janus benchmark-b
face dataset. In proceedings of the IEEE conference on computer vision and pattern recognition
workshops, pp. 90-98, 2017.

12



Under review as a conference paper at ICLR 2022

Xi Yin, Xiang Yu, Kihyuk Sohn, Xiaoming Liu, and Manmohan Chandraker. Feature transfer learn-

ing for face recognition with under-represented data. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5704-5713, 2019.

Xiao Zhang, Rui Zhao, Yu Qiao, Xiaogang Wang, and Hongsheng Li. Adacos: Adaptively scal-

ing cosine logits for effectively learning deep face representations. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 10823-10832, 2019.

13



	Introduction
	On Fairness in the Context of Deep Face Recognition
	A Quick Overview of Face Recognition
	Fairness Metrics

	The Von Mises-Fisher Loss for Bias Mitigation
	Numerical Experiments
	Grid-Search on IJB-C and fairness evaluation
	Verification evaluation on IJB-B

	Conclusion

