
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TASK-AWARE DATA SELECTION VIA PROXY-LABEL
ENHANCED DISTRIBUTION MATCHING FOR LLM
FINETUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Task-specific fine-tuning of foundation models is critically dependent on the quality
and relevance of the instruction data. While prevailing data selection methods rely
exclusively on instruction instances X to approximate the target distribution, we
argue that selection should align with the joint distribution of instructions and task-
specific labels (X,Y ). However, task-specific labels Y are typically unavailable in
practice. To address this, we reformulate the task-specific data selection problem
and present a novel pipeline that leverages the reasoning capabilities of large
language models (LLMs) to infer proxy labels, thereby facilitating joint distribution
alignment. Our approach begins by propagating proxy labels from a small target
set to a large, unlabeled source corpus. A two-stage filtering process then removes
instances with label noise and refines the subset through distribution alignment.
This strategy produces more semantically meaningful and task-aware selections
than conventional similarity measures based on X alone. Experimental results
show that fine-tuning on a subset of only 10K samples—selected from a pool of
300K—achieves performance competitive or superior to state-of-the-art methods.

1 INTRODUCTION

Large language models (LLMs) have demonstrated remarkable capabilities across a wide range of
natural language processing tasks, owing to their extensive pretraining on diverse corpora. (Touvron
et al., 2023; Achiam et al., 2023; Guo et al., 2025). To adapt these models to specific downstream
applications, fine-tuning has become a standard practice. However, the success of fine-tuning critically
depends on the quality and relevance of the instruction data, as low-quality or irrelevant data can
lead to degraded generalization (Chen et al., 2023; Bukharin & Zhao, 2023). Therefore, selecting
high-quality, task-appropriate instruction data is essential for effective model adaptation.

In the field of data selection for LLMs, two primary settings have emerged. The first is task-
unspecific data selection (Liu et al., 2023; Chen et al., 2023), which is motivated by the observation
that instruction-tuning datasets often contain low-quality or false instructions, which can degrade
model performance if used directly in fine-tuning. Moreover, fine-tuning on very large datasets
is computationally expensive. Hence, efficient data selection strategies are essential. In contrast,
task-specific data selection (Xia et al., 2024; Liu et al., 2024) leverages a small task (target) dataset
to retrieve the most relevant instruction samples from a source pool, aiming at maximizing model
performance on particular downstream tasks.

Compared to general task-unspecific data selection, task-specific data selection has drawn growing
interest, particularly as practitioners seek to specialize LLMs for specific tasks where limited task
(target) examples are available. Most approaches in this area rely exclusively on aligning input
features (X), typically by measuring embedding similarity or gradient similarity between source and
target samples (Xie et al., 2023; Xia et al., 2024; Liu et al., 2024). However, such X-only alignment
strategies suffer from inherent limitations. For example, consider a target set from the legal domain
containing “marital disputes” and “construction contracts.” A source sample related to an “cell phone
contract” might be selected based on embedding similarity due to semantic overlap with “construction
contract.” Similarly, if gradient similarity is used—where the model assigns high influence to shared
concepts like “contract”—the same irrelevant sample may still be matched. Nevertheless, its actual
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domain label (“telecom services”) does not align with the target label distribution. This discrepancy
underscores that input similarity alone is insufficient to ensure task relevance.

To address this, we propose leveraging the joint distribution P (X,Y ) rather than marginal distribution
P (X) for alignment. Specifically, we harness the reasoning capability of LLMs to infer proxy-labels
(Y ) for the target task, enabling a more semantically meaningful and task-aware selection process.
Nevertheless, aligning two random variables is more challenging than aligning only one, and the use
of proxy-labels inevitably introduces label noise. In this work, we reformulate the task-specific data
selection problem and introduce a novel framework that effectively tackles these issues.

The idea of incorporating auxiliary labels/taxonomy to improve task performance is evident in LLM
research. For example, instruction finetuning with the taxonomy of human knowledge has been shown
to enhance model generalization (Li et al., 2024). Similarly, in mathematical reasoning, generating
intermediate steps (as pseudo-labels) has proven essential for learning complex problem-solving skills
(Didolkar et al., 2024). These successes motivate us to leverage proxy-labels to enhance distribution
matching for task-specific data selection. Our contributions are threefold:

• We reformulate task-specific data selection as a joint distribution alignment problem and
propose a framework that uses LLM-generated proxy-labels to enable alignment.

• We design a two-stage filtering process that first removes out-of-distribution instances prone
to open-set label noise, and then refines the subset via distribution alignment, ensuring
higher semantic fidelity.

• Experiments show that fine-tuning on a subset of only 10K samples selected from a pool
of 300K instruction instances achieves competitive performance compared to some state-
of-the-art methods, and even outperforms models trained on the full dataset across several
benchmarks.

2 RELATED WORKS

Task-Unspecific Data Selection for Instruction Tuning. Existing approaches on task-unspecific
data selection can be broadly categorized into two types: LLM-free and LLM-based methods. LLM-
free approaches (Cao et al., 2023; He et al., 2024) typically leverage handcrafted heuristics or proxy
metrics—such as k-NN embedding distances in a feature space, sentence or token-level length or
Shapley values to approximate the utility or difficulty of individual samples without invoking large
models. In contrast, LLM-based strategies (Chen et al., 2023; Liu et al., 2023; Pang et al., 2024) treat
powerful pre-trained language models as automated evaluators to score and filter candidate instruction.
Notably, (Lu et al., 2023) propose InsTag, which uses LLM to generate pseudo-labels and refines
them for sample selection based on tag statistics. However, InsTag operates in a task-unspecific
manner and lacks alignment with a target task distribution. In comparison, our framework is more
comprehensive and explicitly incorporates task-aware alignment.

Task-Specific Data Selection for Instruction Tuning. Task-Specific Data Selection for Instruction
Tuning aims to identify and retrieve the most relevant samples from a large, general-purpose corpus
to improve performance on a specific target task, given only a small subset from that target domain.
Some methods rely on feature-space similarity: (Yao et al., 2022) select data by ranking candidates
based on their similarity to the target set, while (Xie et al., 2023) estimate importance weights in a
reduced feature space for resampling. Other methods leverage gradient information: (Xia et al., 2024)
score candidates by their maximum gradient similarity to any example in the target set. A more recent
approach by (Liu et al., 2024) formulates the problem through the lens of optimal transport, seeking
a minimal-cost mapping to align the distributions of the candidate pool and the target set. This
method further incorporates diversity-aware regularization to mitigate sample redundancy. However,
a common limitation across these methods is that they perform alignment or ranking using only
input features, without incorporating the target labels from the target set. This omission may fail to
fully capture task-specific relevance, as the semantic alignment between a candidate’s output and the
desired target outputs remains unverified.

Domain Adaptation and Learning with Noisy Labels. Our approach is further motivated by
principles from Domain Adaptation (Wang & Deng, 2018; Zhang et al., 2013) and Learning with
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Noisy Labels (Natarajan et al., 2013; Song et al., 2022). Specifically, the process of propagating
proxy-labels from the target set to the source pool inevitably introduces label noise, a challenge
central to learning with noisy labels. Furthermore, even after filtering this noise, a domain shift may
persist between the refined source dataset and the target domain, which is a core problem addressed
by domain adaptation. Our pipeline is designed to tackle these challenges: we explicitly incorporate
mechanisms to identify and filter OOD samples with noisy labels, then align the distributions between
the source and target domains to ensure task relevance.

Our Position. Our work challenges the prevailing paradigm in task-specific data selection for
instruction tuning (e.g., LESS (Xia et al., 2024), TSDS (Liu et al., 2024)), which primarily focuses
on aligning marginal input distributions. We argue that true task relevance is defined by the joint
distribution of data and labels. By reformulating the selection criteria to incorporate target labels, we
unlock a new class of solutions for this problem. The pipeline we introduce is a concrete instantiation
of this principle, designed to select data that are not just superficially similar, but semantically
congruent with the target task.

3 PROBLEM FORMULATION

Define the following concepts:

• Target Dataset: Let T denote a target dataset, where each instance is sampled from a joint
distribution Ptarget(X,Yt). Here, X represents text instruction instance (typically comprising an
instruction, an input, and a response), and Yt denotes the corresponding domain-specific labels (e.g.,
for the legal domain, Yt = {family_law, contract_law,... }. 1

• Source Dataset: Let D =
⋃K

k=1Dk represent a multi-source dataset comprising K source
domains. Each Dk is sampled from a distribution Pk(X,Yk). We assume that the support of the
target distribution is contained within the union of the supports of the source distributions, that is,

supp(Ptarget) ⊆
K⋃

k=1

supp(Pk),

which implies that the source domains are relevant to target domains. 2

Objective: The goal is to select a fixed-size subset S ⊂ D where |S| = N such that such that the
empirical distribution PS approximates Ptarget as closely as possible. The text instances from S will
then be used to fine-tune a large language model (LLM) with the aim of maximizing performance on
the target task.

Challenges: The true Labels Y are unobservable in both T and D.

4 METHODOLOGY

This section is organized as follows. Section 4.1 describes the use of an LLM for target dataset
annotation. Section 4.2 covers label clustering and propagation to the source data. Section 4.3 details
the filtering of samples with open-set label noise. Section 4.4 outlines our sampling approach to
mitigate domain shift, and Section 4.5 provides an information-theoretic interpretation. An overview
of the pipeline is presented in Figure 1.

4.1 GENERATING PROXY-LABELS BY LLM

We design a structured proxy-label space comprising four key fields: Task, Topic, Style, and
Audience. These dimensions are designed to capture distinct yet complementary aspects of each

1In general, T may comprise instances from multiple domains (Isobe et al., 2021), in which case Yt would
represent the set of tags across all constituent domains.

2This assumption aligns with standard domain adaptation theory (Ben-David et al., 2010) and the common
premise of data selection for instruction tuning, where a large source corpus is available. However, our pipeline
is also applicable when the source and target domains only partially overlap, such as when source data is limited.
See Appendix C for details.
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Scoring Samples
Based on Anchors

Target Set LLM  Annotation
Target Set

Label Clustering

Propagating Anchors
  to  Source Set

Step1 Step2

Task-Oriented 
Distribution Matching

Step3

Step4

Mitigating Domain
Shift via 

Incremental Sampling

Filtering
 OOD Samples

Figure 1: An overview of our 4-step data selection pipeline. We start by using prompt-based LLM
annotation to generate domain-specific labels, which are then clustered and propagated to source
dataset. Next, an LLM-generated quality score filters out OOD samples with open-set label noise.
Finally, incremental sampling mitigates domain shifts between the source and target datasets.

instruction instance. Specifically, Task refers to the core functional intent, Topic reflects the subject,
Style describes the rhetorical manner, and Audience indicates the intended user group. Task is modeled
as a single-label field since most instructions have a dominant purpose, whereas Topic, Style, and
Audience are multi-label fields to account for multifaceted instruction characteristics. We then prompt
a pre-trained LLM with a structured summarization template (see Appendix B) to annotate each
instruction with tags in four semantic fields—Task, Topic, Style, and Audience.

This semantic decomposition results in modular and interpretable representations that enable struc-
tured downstream processing, including clustering, alignment, and semantic similarity estimation.
The use of a single-label format for Task provides a well-defined functional anchor for each instance,
while multi-label modeling for Topic, Style, and Audience captures the multifaceted nature of in-
structional content. Free-form, descriptive phrase tags allow the representation space to remain
open-ended and continuous, avoiding constraints imposed by fixed label taxonomies and facilitating
compatibility with embedding-based semantic matching.

It is worth noting that our defined four general label domains (Task, Topic, Style, Audience) are used
to demonstrate our framework’s flexibility. In practice, general label domains are applied when target
knowledge is scarce, for instance, when only a set of target samples is available without clear target
details. Conversely, when prior target knowledge exists, more specific label domains can be adopted.
For example, using a domain-specific label such as "mathematical problem-solving skills" for math
reasoning tasks has been shown to improve exemplar quality (Didolkar et al., 2024), indicating that
more precise domain definitions generally lead to better data selection. In this paper, we use general
label domains in experiments to emphasize our pipeline’s efficiency.

Note that LLM-generated labels may carry noise. We provide an analysis of their accuracy and
consistency in Appendix D.2.

4.2 PROXY-LABEL CLUSTERING AND PROPAGATION

To bridge the semantic gap between source domains and our LLM-generated labels, we employ a
robust methodology centered on clustering and semantic propagation. First, we encode each label
into a dense vector space using a sentence-level embedding model, processing each field (e.g., Topic,
Style) independently to preserve their unique semantic characteristics.

Proxy Label clustering We apply k-means clustering (with k = 100) to these embeddings, which
effectively groups semantically similar tags into distinct clusters (Figure 3 demonstrates the robustness
to k). This process is fundamental because it accomplishes two key objectives: it abstracts away the
significant lexical variation inherent in LLM-originated phrases and condenses their broad diversity
into a compact set of semantic centroids. These centroids function as semantic anchors, providing a
stable and noise-reduced representation of the entire target domain’s conceptual landscape.
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Propagation We project samples from the source domains into the same embedding space and
compute their cosine similarity against all semantic anchors. This allows for a soft, interpretable
matching process. We then assign the most relevant anchors—selecting the top-1 for Task and the
top-3 for Topic, Style, and Audience, to each source sample. This selective assignment is not a hard
label transfer but a test-guided semantic projection, enabling a nuanced and measurable integration of
the target domain’s characteristics into the source.

In Appendix D.4, we demonstrate that clustering enhances the robustness of label propagation from
the target set to the source set, particularly against label noise.

4.3 FILTERING OOD SAMPLES WITH LABEL NOISE
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Figure 2: These figures visualize the results of our incremental sampling method. The left and right
panels show the matching results for the Topic and Style, respectively. The anchors are ranked from
highest to lowest count of target set (left to right) for clarity, and the top 15 anchors are shown to
enhance readability.

The propagation of target domain anchors to source domains inevitably introduces open-set label
noise where irrelevant instructions are assigned to an target label. To ensure data quality, filtering
these mismatched samples becomes essential. In learning with noisy labels, a common detection
strategy leverages the memorization effect of deep neural networks (DNNs), wherein DNNs learn
clean patterns before memorizing noisy ones (Arpit et al., 2017). By training a DNN for a few epochs
and ranking samples by loss values, high-loss instances are typically identified as noisy—an approach
effective for both closed-set and open-set noise (Jiang et al., 2017; Han et al., 2018; Li et al., 2020;
Sachdeva et al., 2021).

However, this method presents limitations in our multi-field setting: training separate DNNs is
computationally expensive and lacks generalization capability. Each new task or label space change
would necessitate retraining, creating scalability bottlenecks. To overcome these constraints, we
leverage the robust reasoning capabilities of large language models (LLMs). Specifically, we employ
LLMs to score each sample based on its semantic alignment with assigned anchors, evaluating the
quality and relevance of the assigned anchors (see Appendix B for prompt details). Samples falling
below a predefined threshold (e.g., score < 6) are identified as out-of-distribution (OOD)—indicating
open-set label noise—and subsequently removed from the source corpus (Appendix C has further
explanations).

4.4 INCREMENTAL SAMPLING FOR MITIGATING DOMAIN SHIFTS

In practice, after removing OOD samples, a simple approach is to randomly sample a fixed number of
instances (e.g., 10,000) from the source domain for fine-tuning. However, even after OOD filtering,
a distribution shift may persist between the remaining source data and the target set. This section
presents a method to mitigate such domain shifts more effectively.

Leading works in domain adaptation (Zhang et al., 2013; Zhao et al., 2019) theoretically and
empirically demonstrate that target shift (or prior probability shift) is a common and critical type
of distribution discrepancy in real-world scenarios and suggest that aligning for target shift is often
more advantageous for robustness and effectiveness than aligning for covariate shift. Consequently,
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our pipeline prioritizes mitigating target shift between the source and target domains. The implicit
assumption of target shift is that the conditional distribution P (X|Y ) remains stable across the target
and cleaned source domains, while the label distribution P (Y ) varies. Note that the label space here
corresponds to the anchors (clusters) defined in Section 4.2 , not the labels/tags generated by the
LLM in Section 4.1.

Sampling Objective: Let P ∗(Y ) be the empirical anchor distribution of the target dataset and P̂ (Y )
be the empirical anchor distribution of the sampled source dataset. To mitigate label (anchor) shift,
our objective is to minimize ||P ∗(Y )− P̂ (Y )||1.

Given a sampling budget N , we propose an incremental sampling method outlined in Algorithm 1.
At each step, we compute the label gap and select a training instance associated with the label with
the largest positive gap (Lines 4-5, Algorithm 1). Because each instance contains a fixed number
of labels per field (e.g., one for Task, three for Topic), all candidates contribute equally to the label
counts. The process iterates until the budget is exhausted or no viable candidates remain, producing a
subset whose empirical distribution P̂ (Y ) closely approximates the target distribution P ∗(Y ).

Algorithm 1 is applied independently to each field (e.g., Task or Topic). For each selected sample,
we update the counts for all associated labels. This introduces a natural balancing effect across the
label space, accelerating convergence toward P ∗(Y ), especially in dense semantic fields where tags
frequently co-occur. Figure 2 presents the matching results, demonstrating that incremental sampling
produces a source subset whose anchor distribution aligns with the target distribution. Although
perfect matching is rarely achievable due to limited sample sizes for certain classes in the source
dataset and the sampling budget, our incremental sampling method effectively reduces the distribution
gap between the source and target domains. A key implication of this method is its flexibility. Since
alignment is performed per field, we can choose to align by Task, Topic, or other fields based on the
specific requirements of the downstream application.

Algorithm 1 Distribution Matching via Incremental Sampling
Require: source pool D, target set T , sampling budget N

1: Compute target label distribution P ∗(Y ) from T
2: Initialize empirical distribution P̂ (Y )← 0 and selection set S ← ∅
3: while |S| < N do
4: Compute label-wise gap: g(y) = P ∗(y)− P̂ (y)
5: Identify label y∗ = argmaxy g(y) such that unused candidates with tag y exist
6: if no valid y∗ found then
7: break
8: end if
9: Select candidate x∗ with tag y∗

10: S ← S ∪ {x∗}; update P̂ (Y ) using labels from x∗

11: end while
12: return Sample set S

4.5 INFORMATION-THEORETIC EXPLANATION

We explain the benefits of incorporating label information in the dataset selection process from an
information-theoretic perspective. Let T be a random variable representing the target domain, which
is charactirized by Ptarget(X,Yt). The outcome of the selection algorithm is a subset S ⊂ D. The
instances and their associated labels of S are described by the random variables XS and YS .

The mutual information between the task and the selected data can be decomposed as:
I(T ; (XS , YS)) = I(T ;XS) + I(T ;YS | XS)

This decomposition reveals two distinct sources of information:

• I(T ;XS) quantifies the information about the task T contained in the input features XS of
the selected subset.

• I(T ;YS | XS) captures the additional information about T provided by the labels YS of
the subset, given the inputs XS .
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Conventional task-specific data selection methods in LLM (Xia et al., 2024; Liu et al., 2024), which
rely exclusively on the similarity between input features (i.e., XS ), primarily aim to maximize the first
term, I(T ;XS). However, they inherently ignore the second term, I(T ;YS | XS). This constitutes
a limitation, since instances with semantically similar X may be associated with labels Y that are
irrelevant or even contradictory to the target task T . In contrast, our proposed method matches the
joint distribution between the selected data and the target domain, which implicitly maximize the
complete objective I(T ; (XS , YS)).

5 EXPERIMENTS

5.1 EXPERIMENTS SETUP

We utilize three pretrained LLMs across different stages of our pipeline: Qwen2.5-7B-Instruct (Yang
et al., 2024) is used for annotation and scoring, BGE-M3 (Chen et al., 2024) for embedding and
clustering, and LLaMA-3.1-8B (Grattafiori et al., 2024) for supervised instruction tuning on the
selected subsets using LoRA (Hu et al., 2022).

Table 1: Instruction tuning data pool used for supervised fine-tuning

Dataset Flan V2 Open-Assistant 1 WizardLM Dolly Stanford Alpaca Total

Training Size 100K 33K 100K 15K 52K 300K

Table 2: Evaluation benchmarks test set sizes and associated model capabilities

Benchmark MMLU TruthfulQA GSM8K BBH TyDiQA

Test Size 14,042 790 1,319 6,511 5,077
Capability Factuality Truthfulness Reasoning Reasoning Multilinguality

Data Pool Our data pool comprises two components: a source corpus collected from five widely-
used instruction tuning datasets—Flan V2 (Longpre et al., 2023), Open-Assistant 1 (Köpf et al.,
2023), WizardLM (Xu et al., 2023), Dolly (Databricks, 2023), and Stanford Alpaca (Taori et al.,
2023)—and a set of evaluation benchmarks. Detailed training set statistics are provided in Table 1.
Evaluation is conducted on five standard alignment benchmarks, each targeting a distinct model
capability: MMLU (Hendrycks et al., 2020), TruthfulQA (Lin et al., 2021), GSM8K (Cobbe et al.,
2021) and BBH (Suzgun et al., 2022), and TyDiQA (Clark et al., 2020). The sizes of these evaluation
sets are summarized in Table 2. These benchmarks also serve as our alignment targets: for each
dataset, we sample 20% of the test set as target set to guide our subset selection. The remaining 80%
is held out for final evaluation.

Baselines: We compare our method against a set of representative baselines commonly used in
instruction tuning and data selection:

• Vanilla Base Model: The base model evaluated in a zero-shot setting, without any supervised
fine-tuning. This serves as a reference point to measure the impact of instruction tuning.

• Completion Length: Following (Zhao et al., 2024), we rank all samples by the total number of
tokens in the prompt-response pair. The top 10K longest samples are selected under the assumption
that longer responses carry higher information density.

• k-NN: Each sample is scored by its average distance to the k nearest neighbors in a sentence
embedding space (Reimers & Gurevych, 2019). Higher distances indicate semantic uniqueness,
and the 10K most isolated samples are selected.

• BM25: A retrieval metric which considers term frequency and inverse document frequency.
• RDS+ (Ivison et al., 2025): A representation-based retrieval method which uses weighted mean

pooling of pretrained LLM hidden states.
• Random: A simple baseline that randomly selects 10K examples from the data pool.
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Table 3: Performance comparison across alignment benchmarks. All the methods select 10K samples
from the source except the method of Full (300K). min score denotes the score threshold described in
Section 4.3. For each benchmark, top-performing score is shown in bold, while second-best score is
underlined.

Methods MMLU TruthfulQA GSM BBH TyDiQA
Vanilla Base Model 64.3 32.8 51.0 54.8 22.7
Completion Length 63.3 6.3 52.5 61.8 61.8
k-NN-10 61.4 41.9 51.5 61.9 61.3
Random 64.0 33.5 52.5 59.8 60.9
BM25 63.2 28.6 51.5 59.1 61.6
RDS+ 63.6 3.5 54.0 59.1 60.2
LESS 63.2 33.5 56.5 60.4 64.5
TSDS 63.7 44.9 48.5 62.3 64.1
Full (300k) 63.5 42.0 61.0 59.1 62.8

Align-based selection, min score ≥ 7

Align_topic 64.6 46.4 57.0 60.0 59.3
Align_style 64.1 47.3 57.0 59.2 58.7
Align_task 64.2 44.6 58.0 58.2 58.2
Align_audience 64.0 45.6 54.0 56.4 58.8

Align-based selection, min score ≥ 6

Align_topic 65.0 24.7 55.5 61.9 57.0
Align_style 65.1 32.1 55.0 62.5 58.9
Align_task 65.0 38.0 54.0 59.8 58.1
Align_audience 64.9 42.6 55.0 59.7 59.1

Align-based selection, min score ≥ 5

Align_topic 65.1 36.2 52.5 61.4 57.6
Align_style 64.9 31.2 55.0 60.4 59.4
Align_task 64.9 35.6 54.5 60.0 57.7
Align_audience 65.1 39.2 55.0 60.6 58.0

• LESS (Xia et al., 2024): A gradient-based data selection framework that estimates the influence of
training samples using gradient similarity to few-shot target examples.

• TSDS (Liu et al., 2024): A task-specific data selection framework that aligns the source distribution
with a small representative set from the target task. TSDS formulates data selection as an optimal
transport problem with a diversity-promoting regularizer based on kernel density estimation. We
use the target set to estimate the task distribution and select 10K training samples accordingly,
ensuring parity with our proposed method.

• Full (300K): A strong baseline where the entire 300K training set is used for instruction tuning.

5.2 OPENLLM LEADERBOARD EVALUATION RESULTS

Following the OpenLLM Leaderboard evaluation protocol, we adopt exact match (EM) as the scoring
metric for MMLU, TruthfulQA, GSM8K, and BBH. For TyDiQA, we use the 1-shot F1 score as
reported by the leaderboard.

Results Analyses: As shown in Table 3, our method achieves competitive or superior performance
compared to SOTA methods (LESS, TSDS) on task-specific data selections for the MMLU, Truth-
fulQA, GSM8K, and BBH benchmarks. However, our approach underperforms on TyDiQA. We
hypothesize that this is because TyDiQA is a multilingual dataset, and the label fields we designed
(Task, Topic, Style, Audience) may not adequately capture its inherent characteristics. Consequently,
samples related to TyDiQA in the source pool were likely filtered out by our selection algorithm.
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Table 4: Performance comparison across alignment benchmarks with 1K/5K selection size.

Methods MMLU TruthfulQA GSM BBH TyDiQA

Random (1K) 64.0 3.8 49.0 54.2 56.4
Align_style (1K) 64.2 6.8 50.5 57.7 54.5
Random (5K) 63.7 3.5 52.0 59.4 58.7
Align_style (5K) 63.9 32.4 52.0 61.0 59.7

The min score threshold is an important parameter in our pipeline. Analogous to the problem of
learning with noisy labels (Jiang et al., 2017; Han et al., 2018), a higher threshold risks retaining too
few clean (relevant) samples, while a lower threshold risks polluting the source set with too many
irrelevant samples. Empirically, we find that min score ≥ 7 yields stable results across all datasets,
while min score ≥ 6 also performs robustly, with the exception of TruthfulQA.

It is also evident that different semantic fields lead to varying alignment effectiveness. For instance, the
Align-based selection results show that the choice of label field has a minimal impact on performance
for the MMLU dataset but significantly affects results on the TruthfulQA dataset, as indicated by its
high deviation. Furthermore, the optimal label field differs across datasets: Align-Style yields the best
performance on TruthfulQA, while Align-Task yields the best performance for GSM. It is important
to note that our intention is not to suggest empirically testing all label domains for each new task.
The primary purpose of presenting four domains is to illustrate the inherent flexibility of our pipeline.
The results in Table 3 demonstrate that with a min score ≥ 7, selecting any of these domains yields
strong performance on MMLU, TruthfulQA, and GSM benchmarks compared to baseline methods.
For tasks with more specific information, a custom domain can also be designed, as discussed in
Section 4.1. Finally, our approach offers significant cost savings over task-specific selection methods
like LESS (Xia et al., 2024) and TSDS (Liu et al., 2024), as detailed in our cost analysis (Appendix
D.9). We further evaluate our pipeline with limited data. As shown in Table 4, our method achieves
good performance even with smaller selection sizes (1K and 5K), demonstrating its effectiveness.

5.3 ABLATION STUDIES

Table 5 presents the results of our ablation study on the contributions of OOD sample filtering and
incremental sampling. We compare three configurations:

• Incremental Sampling only: This baseline applies incremental sampling to the entire 300K dataset
after label propagation, without any OOD filtering.

• OOD Filtering only: This variant filters the dataset by retaining only samples with an LLM-
assigned min score ≥ 6 , followed by random sampling.

• Complete Method: This is our full pipeline, which first applies OOD filtering (min score ≥ 6) and
then performs incremental sampling on the filtered subset.

For each benchmark, results are reported under the best-performing label field. The result clearly
indicates that combining both techniques is most effective and leads to superior performance.

Table 5: Evaluating individual contributions of OOD sample filtering and incremental sampling.

Methods MMLU TruthfulQA GSM BBH TyDiQAOOD Filtering Incremental Sampling
× ✓ 64.3 3.5 55.0 49.1 60.5
✓ × 64.8 42.1 55.0 61.9 56.4
✓ ✓ 65.1 42.6 55.5 62.5 59.1

To further verify the necessity of joint alignment on P (X,Y ) over input-only alignment on P (X),
and to demonstrate the advantage of our design, we conduct the following experiments:

• Adding semantic information to an existing selection pipeline. After LLM annotation, we insert
the proxy label information into each instruction and apply the standard RDS+ selection pipeline.

9
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Figure 3: Performance of our pipeline with respect to the number of clusters k in K-means clustering.

• Applying our pipeline directly to inputs X . We remove the LLM-annotation step entirely. Target
instructions are clustered into anchors, source samples are propagated according to anchor–source
embedding similarity, and we then perform selection and incremental sampling.

• Replacing LLM-based OOD filtering with embedding-similarity filtering. Instead of using
LLM-assigned scores, we compute cosine similarity between source and anchor embeddings, filter
out low-similarity samples, and then apply our selection and incremental sampling procedure.

As shown in Table 6: (1) The direct integration of semantic information (RDS+ with semantic info)
fails to yield consistent improvements over RDS+, indicating that explicit distribution alignment is
necessary to utilize semantic-field information effectively; (2) Our pipeline outperforms its direct
application to X , confirming that the performance gains stem from joint alignment on P (X,Y )
rather than from clustering and sampling alone; (3) Compared to similarity-based OOD filtering, our
method demonstrates that LLM-based judgments provide more reliable filtering.

Table 6: Comparison of alternative designs for our joint alignment.

Methods MMLU TruthfulQA GSM BBH TyDiQA

RDS+ 63.6 3.5 54.0 59.1 60.2
RDS+ (with semantic information) 63.7 5.4 53.5 60.7 59.7
Applying our pipeline directly to X 63.4 40.8 54.0 59.9 58.2
Our pipeline with similarity-based OOD filtering 63.0 28.3 51.0 57.4 61.6
Our full pipeline (align topic, min score:7) 64.6 46.4 57.0 60.0 59.3

We also evaluate the impact of the K-means cluster count k on our pipeline’s performance in Figure
3. The results show consistent performance for k between 50 and 150 across datasets and label
domains. However, a smaller k can lead to higher variance, as seen on TruthfulQA. For robustness
and reproducibility, we fix k = 100 in all experiments.

The Appendix includes additional experiments and analyses. For the experimental part, we examine
the consistency between LLM annotation and LLM scoring, evaluate the robustness of our pipeline
to variations in label quality, and assess its selection performance when fine-tuning other foundation
models, etc. For the analytical part, we provide a deeper investigation into the connection between
our pipeline and the fields of Domain Adaptation (DA) and Learning with Noisy Labels (LNL).

6 CONCLUSION

In this paper, we revisit task-aware data selection by formulating it as a joint alignment of both input
features (X) and task-specific labels (Y ). This paradigm shift moves beyond input-only alignment to
naturally address real-world challenges like label noise and domain shift. By integrating techniques
from noise-robust learning and domain adaptation, we propose a pipeline that effectively mitigates
these issues. Our experiments on multiple benchmarks demonstrate the efficacy of our pipeline. The
primary contribution, however, is not merely the specific pipeline but the reconceptualization of the
problem itself. Framing it as joint distribution alignment unlocks a broader solution space for future
research. Our work serves as an initial instantiation of this perspective. Future efforts can be made to
explore alternative efficient methods for handling label noise and domain shift.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ethics Statement. Our work focus on task-specific data selection for fine-tuning large language
models (LLMs). All datasets and models used are publicly available; therefore, no intellectual
property or personal privacy concerns are involved.

Reproducibility Statement. We have released our code anonymously at https://
anonymous.4open.science/r/TADS-B14D/README.md, along with detailed guidelines
in the README file. Additionally, we provide a comprehensive description of our experimental
setup in Appendix E.
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APPENDIX ARRANGEMENT

The Appendix is arranged as follows:

• Section A: Statement of the Use of Large Language Models (LLMs) in writing.

• Section B: Prompt templates employed in our proposed pipeline.

• Section C: Deeper analysis of the connections between our pipeline and the fields of Domain
Adaptation (DA) and Learning with Noisy Labels (LNL).

• Section D: Additional experimental results and visualizations.

• Section E: Detailed experimental settings.

A STATEMENT OF THE USE OF LARGE LANGUAGE MODELS

In this paper, DeepSeek was used solely to check grammar and polish writing style. No scientific
material or core research content was generated by any Large Language Model (LLM).

B LLM PROMPT TEMPLATE

The following is the prompt template we used in the task-specific label generation in Section 4.1.

Prompt Template for LLM Annotation

<System Prompt>: You are a helpful assistant.
<User Prompt>: [Background Information]
Instruction: [Instruction]
Input: [Input]
Response: [Response]
Please strictly output in JSON format and generate rich, high-quality summaries suitable for LLM.
Summarize the entire conversation **as a single summary**, not per message or per role.

Requirements:
1. Task: Describe the single most appropriate task type from the background as a short sentence or
detailed multi-phrase descriptor (e.g., "Answering open-domain factual questions based on user input").
2. Style: List the top 3 most relevant styles or tones as detailed phrases or brief sentences (e.g., "Uses a
formal and professional tone suitable for academic writing").
3. Topic: List 3 key topics covered in the background.
4. Audience: List the top 3 intended audiences.

Only return a single JSON object as shown below:

{
"Task": "<short sentence or descriptive phrase>",
"Style": [

"<descriptive phrase>",
"<descriptive phrase>",
"<descriptive phrase>"

],
"Topic": [

"<short sentence>",
"<short sentence>",
"<short sentence>"

],
"Audience": [

"<descriptive phrase>",
"<descriptive phrase>",
"<descriptive phrase>"

],
}
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The following is the prompt template we used in Section 4.3 to score the source sample based on its
assigned anchors.

Prompt Template for Scoring Source Samples

<System Prompt>: You are a helpful assistant.
<User Prompt>: You are an expert evaluator. Please evaluate the following sample based on
these criteria:
− Completeness (1-10): How complete is the response?
− Information Richness (1-10): How much useful information does it contain?
− Rarity (1-10): How unique or rare is this type of content?
− Complexity (1-10): How complex is the task/content?
Sample to Evaluate: [sample_format]
Associated Tags:
− Task: [Assigned Task anchor]
− Style tags: [Assigned Style anchor]
− Topic tags: [Assigned Topic anchor]
− Audience tags: [Assigned Audience anchor]
Use these tags as reference points for your scoring decisions. Consider ALL the tags in each
category when evaluating. Please respond with ONLY a JSON object in this exact format:

{
"Completeness": "<1-10>",
"Information Richness": "<1-10>",
"Rarity": "<1-10>",
"Complexity": "<1-10>",
"Overall Score": "<1-10>"

}

Note that each anchor may contain many domain-specific tags, as the anchors are generated by
clustering. Therefore, the anchor description in the prompt template above is summarized by LLM,
which extracts the 20 most representative keywords or key phrases for each anchor.

C DEEPER ANALYSES OF OUR PIPELINE

In this section, we provide answers and explanations for the following two questions:

1. Why our approach in Section 4.3 can be regarded as a proxy for filtering label noise?

2. Can our pipeline be applied to scenarios where the target and source domains only partially
overlap?

For the first question, our approach in Section 4.3 can be viewed as a proxy for filtering label noise
because it mirrors a established technique in learning with noisy labels. In traditional classification,
models tend to be less confident about mislabeled samples compared to clean samples, resulting in
a low maximum softmax probability (the "confidence score"). This score is a common signal for
identifying potential label noise (Hendrycks & Gimpel, 2016). Instead of training a model to obtain a
confidence score, we leverage the reasoning capability of an LLM. The LLM assesses a sample’s
relevance to its most similar anchors and assigns a score, which functions as a semantics-aware
confidence score. Thus, our method provides a direct analog to confidence-based filtering without the
need for model training.

For the second question, we use Figure 4 to demonstrate our pipeline’s applicability to scenarios
where the target and source domains only partially overlap.

• In Figure 4 (a), the support of the target domain is a subset of the source domain. Our
OOD filtering step first produces a filtered source dataset with a support that approximately
matches the target. Subsequent incremental sampling then aligns the distribution of the
selected dataset with the target distribution.
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Figure 4: Illustration of how our pipeline aligns the target distribution by sampling from the source.
The upper figure (a) shows the case where the support of the target distribution is a subset of the
source support. The lower figure (a) shows the case of partial overlap between the target and source
distributions.

Table 7: Performance comparison of different data selection approaches for fine-tuning the Mistral-
7B-v0.3 model. Each approach selects 10K samples. For each benchmark, top-performing score is
shown in bold, while second-best score is underlined.

Methods MMLU TruthfulQA GSM BBH TyDiQA
Vanilla Base Model 59.7 30.0 38.0 49.1 54.4
LESS 59.6 32.0 38.5 51.9 59.2
TSDS 59.4 37.0 41.5 57.4 56.4
Ours (Align-topic) 60.3 35.4 44.0 52.8 53.9
Ours (Align-task) 60.4 36.6 46.0 53.0 54.2
Ours (Align-style) 60.0 34.3 40.5 51.0 55.3
Ours (Align-audience) 60.3 35.1 43.5 51.5 55.1

• In Figure 4 (b), after OOD filtering, the support of the filtered source dataset becomes a
subset of the target domain. Incremental sampling then matches the distribution of the
selected data to the distribution of the partial target (i.e., the shared portion), confirming that
our pipeline successfully selects task-relevant samples.

Notably, the scenario in (b) corresponds to the open-set Domain Adaptation (DA) setting. Similar to
traditional open-set DA methods (Panareda Busto & Gall, 2017; Liu et al., 2019), which focus on
aligning shared classes while rejecting unknown ones, our pipeline inherently handles this case by
filtering and aligning only the overlapping regions.

D ADDITIONAL EXPERIMENTAL RESULTS AND EXAMPLES.

D.1 FINETUNING ON OTHER FOUNDATION MODELS

In the main paper, we fine-tune the Llama-3.1-8B model on our selected data. In this section, we
instead fine-tune Mistral-7B-v0.3 to demonstrate the generalizability of our selection pipeline. The
results in Table 7 demonstrate that our method achieves competitive performance on the Mistral
model. Specifically, Align-task achieves top-1 or top-2 performance across all benchmarks except
TyDiQA.

D.2 EXAMINING THE LLM ANNOTATION QUALITY

We conduct a thorough evaluation of the quality of proxy labels generated by the LLM, assessing
both precision (whether a label correctly describes its corresponding instruction) and consistency
(whether the same label is applied to semantically similar instructions). Our examining methodology
follows the framework established by Lu et al. (2023).
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• For precision evaluation: We randomly sampled 500 instruction-label pairs. GPT-4 was
asked to assess if the label adequately describes the instruction. From these, the first 50
pairs were selected for human evaluation by three independent annotators.

• For consistency evaluation: We randomly sampled 500 labels, ensuring each label was
associated with at least two distinct instructions. GPT-4 was asked to determine if the
instructions for a given label were semantically consistent. Similarly, the first 50 sets of
instructions were assessed by three human annotators.

We calculated the agreement between raters using Cohen’s Kappa (for pairwise agreement between
human and GPT-4) and Fleiss’ Kappa (for inter-annotator agreement among humans). The results are
presented in Table 8.

Table 8: Annotation Quality Comparison

Metric GPT-4 Annotation Human Annotation Agreement
Human-Human Human-GPT

Tag Precision 0.958 0.94 0.4823 0.7899
Tag Consistency 0.856 0.9 0.73 0.736

As shown in Table 8, both GPT-4 and human evaluations indicate high precision and consistency
for the proxy labels. The Human-GPT agreement scores (exceeding 0.7) indicate solid alignment
between human and LLM judgments. We have uploaded the GPT and human evaluation scores, along
with sampled instructions and labels, to our anonymized code repository: https://anonymous.
4open.science/r/TADS-B14D/README.md

D.3 LLM SCORE CONSISTENCY

To assess the reliability of LLM-based OOD filtering, we evaluate score consistency in two ways:

• Intra-consistency: We instruct Llama-3-8B-Instruct to score the same set of source samples
twice, using different random seeds. The consistency between the two scoring rounds is
measured using Spearman’s rank correlation (range: -1 to 1).

• Inter-consistency: We compare scores generated independently by Llama-3-8B-Instruct
and Qwen-2.5-7B-Instruct on the same samples, again using Spearman’s correlation to
quantify agreement.

After calculation, the Intra-consistency is 0.72, and the Inter-consistency is 0.65, indicating LLM-
based OOD scoring is reasonably stable across repeated runs (intra-consistency) and aligned between
different models (inter-consistency).

D.4 ROBUSTNESS TO LABEL NOISE

While Table 8 confirms the high quality of our proxy labels, we further evaluate the robustness of our
pipeline to label noise through a controlled experiment. Inspired by techniques in learning with noisy
labels, we inject synthetic noise by replacing 20% of the original LLM annotated tags in the MMLU,
TruthfulQA, BBH, and TyDiQA datasets with randomly selected tags from the GSM dataset. This
allows precise control over the noise level while preserving the label distribution’s structure.

We focus our evaluation on MMLU, BBH, and TyDiQA due to their larger test sets, which provide
statistically reliable performance measurements on noisy labels. As shown in Table 9, introducing
20%label noise leads to only marginal performance drops, demonstrating the pipeline’s robustness.
We attribute this resilience to our anchor-based propagation design: rather than propagating labels
directly, we first cluster proxy labels to form stable anchors. This clustering step effectively averages
out the impact of individual noisy labels, making the propagation process inherently more robust.

D.5 IMPACT OF ANNOTATION MODEL CHOICE

To evaluate the sensitivity of our pipeline to the choice of annotation model, we conduct an experiment
where we vary the LLM used for generating proxy labels while holding all other hyper-parameters
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Table 9: Performance of Selected Data Under Label Noise (Averaged Across Label Domains)

Label noise ratio MMLU BBH TyDiQA
0% label noise 64.3 60.9 59.0
20% label noise 64.1 60.7 58.5

constant. Specifically, we compare Llama-3-8B-Instruct and Qwen-2-7B-Instruct as annotators,
finetuning the same target model (Llama-3-8B) in both cases.

As shown in Table 10, the performance across most datasets (MMLU, TruthfulQA, GSM, and BBH)
remains stable (< ±1.5 points difference) when switching annotators. The sole exception is TyDiQA,
where performance drops by 6.6 points with Qwen-2.5 annotations. This suggests that: (1) Our
pipeline is largely robust to the annotator model family. (2) Language-specific biases (e.g., Qwen-2’s
Chinese pretraining) may impact performance on certain tasks like TyDiQA (multilingual QA).

Table 10: Performance with Different Annotation Models (Finetuned on Llama-3.1-8B)

Methods MMLU TruthfulQA GSM BBH TyDiQA

Annotation: Llama 3.1-8B instruct
Finetuning: Llama3.1-8B 63.5 38.3 54.5 61.9 64.6

Annotation: Qwen2.5-7B instruct
Finetuning: Llama3.1-8B 65.1 39.2 55.0 60.6 58.0

D.6 PERFORMANCE IN LOW-DATA REGIMES

To evaluate our pipeline’s effectiveness when source data is scarce, we simulate a low-resource
scenario by subsampling the original 300K source pool to 5K samples, and selecting 1K samples
from this subset for fine-tuning.

As shown in Table 11, our method achieves consistent improvements over random selection, with
particularly striking gains on TruthfulQA. This aligns with our analysis in Figure 4, demonstrating
that our pipeline succeeds even when source-target only partial overlaps.

Table 11: Performance with 5K Source Samples (Selected: 1K)

Methods MMLU TruthfulQA GSM BBH TyDiQA
Random selection 64.3 3.5 49.5 56.7 58.9
Full-data finetuning 64.9 3.7 56.5 61.7 59.3
Our pipeline 64.5 21.4 50.5 58.2 59.0

D.7 MULTI-DOMAIN LABEL MATCHING

While our main pipeline matches samples based on a single label domain (e.g., topic or task), we
propose an extension to jointly optimize across multiple domains. The procedure is as follows:

• Domain-Specific Sampling: For each label domain (topic, style, task), independently
sample 10K candidate samples using incremental sampling.

• Vote Aggregation: Count how many times each sample appears across domains (each
domain’s selection counts as one vote).

• Ranked Selection: Sort samples by vote count and select the top 10K highest-voted samples
as the final subset.

Table 12 shows that joint matching achieves surprisingly high performance for BBH and TyDiQA,
suggesting its potential. Since we give equal weights to the samples selected from each label domain,
altering the weights or optimizing them may yield better performance.
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Table 12: Performance of Single-Domain vs. Joint Multi-Domain Matching

Methods MMLU TruthfulQA GSM BBH TyDiQA
match topic 64.6 46.4 57.0 60.0 59.3
match style 64.1 47.3 57.0 59.2 58.7
match task 64.2 44.6 58.0 58.2 58.2
joint-match 63.2 40.0 55.0 62.8 64.0
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Figure 5: Distribution of cosine similarities to the target set for selected vs. unselected samples.
Lower similarity indicates less representative samples.

D.8 DISTRIBUTION ANALYSIS: SELECTED VS. UNSELECTED SAMPLES

To characterize how our pipeline distinguishes between selected and unselected samples, we compare
their embedding distributions relative to the target set. For each sample in the source, we compute
the average cosine similarity between its embedding and the target set embedding. Lower similarity
indicates samples that are less representative of the target distribution or potentially harder examples.

As shown in Figure 5, the selected set contains fewer samples in the high-similarity region compared
to the unselected set. This suggests that our method does not simply prioritize "easy" or highly
representative samples. Instead, it likely balances representativeness with diversity or hardness,
potentially selecting challenging examples that promote robust learning.

D.9 COMPUTATIONAL EFFICIENCY ANALYSIS

Although our pipeline involves multiple stages, it is computationally efficient compared to gradient-
based baselines. We benchmark the running time on an A100 GPU against two prominent methods:
LESS (Xia et al., 2024) and TSDS (Liu et al., 2024). Results are summarized in Table 13.

Table 13: Running Time Comparison

Methods LESS TSDS Our pipeline

Stage-1 Lora-training (6h) Lora-training (6h) Target annotation(1h)
Stage-2 Gradient computation (51h) Gradient computation (51h) Clustering and propagation(4h)
Stage-3 Data-selection (1 min) KNN-KDE Data-selection (1h) OOD filtering (11h)
Stage-4 incremental-sampling (3min)
Finetuning time Llama-3.1-8B (3h) Llama-3.1-8B (3h) Llama-3.1-8B (3h)
Total running time 60 h 61h 19h

LESS is bottlenecked by gradient computation, as it requires model-specific gradients from the same
architecture used for fine-tuning, and our reported runtime aligns with the original LESS paper.
Similarly, TSDS inherits this substantial computational overhead by reusing the gradients computed
by LESS, as acknowledged in Section 5.1 of the TSDS paper.

In contrast, our method avoids expensive backward passes through large LLMs. The core of our
efficiency comes from using the lightweight BGE-M3 model to extract embeddings for the entire
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source set. This step, which is essential for enabling the subsequent label propagation, takes only 4
hours. Target set annotation is fast due to its small scale. The overall pipeline, including clustering (4
minutes), propagation (4 hours), OOD filtering (11 hours), and incremental sampling (3 minutes),
results in a total runtime of just 19 hours. Furthermore, by decoupling embedding extraction from the
fine-tuning model, our approach remains model-agnostic, offering greater flexibility and scalability.

D.10 EXAMPLES FOR PROXY-LABEL GENERATION BY LLM

In the following, we provide examples for the proxy-label generation by LLM.

Target Samples labeling

Instruction: "What would happen if you were struck by a penny dropped from the top of the Empire
State Building?"
Answer: "You would feel a light impact if you were struck by a penny dropped from the Empire State
Building"
Labeled Tags:
• Task: Calculating the risk and outcome of being hit by a falling coin

• Topic: Impact force calculation; Physics principles related to free-falling objects; Urban legends and
real-world consequences

• Style: Provides clear and concise information without unnecessary elaboration; Maintains a scientific
and educational tone to ensure accuracy; Addresses common misconceptions about physics in a
straightforward manner

• Audience: General public curious about science; Students learning basic physics concepts; People
who enjoy reading about urban myths and their debunkings

Instruction: According to the Bible, what forbidden fruit did Adam and Eve eat in the Garden of Eden?
Answer: The Bible doesn’t specify what kind of fruit Adam and Eve ate
Labeled Tags:
• Task: Answering open-domain factual questions based on user input

• Topic: Biblical accounts and religious texts; Interpretations of sacred narratives; Faith-based inquiries
and discussions

• Style: Provides clear and concise answers without unnecessary embellishment; Adopts a neutral and
informative tone to ensure accuracy; Includes specific references where applicable

• Audience: Religious scholars and theologians;Laypeople curious about biblical stories; Students
studying comparative religion or theology

Instruction: How long should you wait between eating a meal and going swimming?
Answer: "You do not need to wait between eating and swimming.
Labeled Tags:
• Task: Providing simple health-related advice based on common knowledge"

• Topic: Eating habits and their effects on physical activities; Safety guidelines during recreational
water sports; Common misconceptions about exercise and nutrition timing

• Style: Factual and concise; Direct and informative; User-friendly

• Audience: General public including individuals who enjoy swimming; Parents considering safety
measures for children around pools; Health-conscious adults looking to maintain fitness while
engaging in leisure activities
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Target Samples labeling

Instruction: "What color is the sun when viewed from space?"
Answer: "The sun is white when viewed from space"
Labeled Tags:
• Task: Explaining basic astronomical facts

• Topic: Properties of celestial bodies like the Sun; Observations made from space; Basic astrophysical
knowledge accessible to general audiences

• Style: Provides clear and concise answers to simple queries; Maintains a neutral yet informative tone;
Offers straightforward explanations without unnecessary elaboration

• Audience: General public with minimal scientific background; Students at middle school or early
high school levels; Individuals curious about astronomy but lacking specialized knowledge

Instruction: "What is a Wendigo?"
Answer: "A mythical man-eating monster or evil spirit native to the northern forests of the Atlantic
Coast and Great Lakes Region of the United States and Canada."
Labeled Tags:
• Task: Describing a mythological creature from Algonquin folklore

• Topic: Mythical creatures in Native American folklore; Cultural beliefs regarding supernatural beings;
Historical and social associations of wendigos

• Style: Provides concise definitions supported by contextual information; Maintains an informative
yet engaging narrative flow; Includes clear and precise descriptions

• Audience: People interested in world mythology; Students studying North American indigenous
cultures; Readers curious about folkloric traditions

Instruction: "I have a car, a fridge, an oven, a toaster, a couch, three lamps, five chairs, a stove, and a
microwave. How many objects do I have?"
Answer: "15"
Labeled Tags:
• Task: Counting items within a given list

• Topic: Enumerative counting and classification of physical objects; Identification of different cate-
gories such as fruits and vegetables; Object enumeration in various contexts like household items or
food

• Style: Simple and straightforward dialogue between a knowledgeable model and a curious user;
Casual and engaging interaction aimed at providing clear answers; Accurate and concise responses
focused on numerical information

• Audience: General users seeking quick and accurate answers about item counts; Students learning
basic categorization skills; Anyone needing assistance in identifying categories within lists

Instruction: "Defendant was on trial for robbery. Defendant’s direct examination continued until late
in the day when it finally concluded. At this time, the trial court judge adjourned the proceedings for the
evening. The judge then instructed Defendant not to speak with anyone during the night and scheduled
cross-examination to begin in the morning. The judge’s instruction to Defendant was A. proper, because
a judge has broad discretion to instruct witnesses in such a manner. B. proper, because it would have
the same effect as permitting cross-examination to continue after direct was concluded. C. improper,
because it violates the defendant’s Sixth Amendment right to counsel. D. improper, because it violates
the attorney-client privilege."
Answer: "C"
Labeled Tags:
• Task: Evaluating legal instructions given by judges regarding witness behavior

• Topic: Judicial discretion in courtroom procedures; Protection of defendants’ rights under criminal
procedure laws; Sixth Amendment protections against self-incrimination

• Style: Formal and precise for accurate legal analysis; Clear and concise for easy understanding;
Objective and neutral without bias

• Audience: Legal professionals familiar with courtroom practices; Law students studying procedural
law; Defendants and their attorneys navigating criminal trials
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Since we assign the most similar anchors to each source sample, we provide an example below to
verify that our anchors indeed align well with the source samples. This illustrates that our designed
label field carries meaningful semantics for the source samples, where we show the most similar tag
from the anchor.

Example of Label Propogation

Instruction: "How will advances in technology and the evolution of human consciousness
shape the future of psychotherapy, and how can therapists adapt to these changes to provide
optimal care for their clients?"
Answer: "Advances in technology are already transforming the field of psychotherapy, and
their impact is likely to increase in the future. One significant trend is the increasing use of
online therapy, which allows clients to access therapy from the comfort of their own homes
and over long distances. This has the potential to increase access to therapy for people who
might not otherwise have the opportunity to receive it. Another important development is the
use of virtual reality in therapy. This technology can be used to create virtual environments
that simulate real-life situations, allowing clients to confront and work through challenging
scenarios in a safe and controlled setting. This technology has already been used to treat
anxiety disorders and phobias, and it is likely to be used for a range of other mental health
conditions in the future. Advances in neuroscience are also likely to have a significant impact
on the field of psychotherapy. As we gain a better understanding of how the brain works,
therapists will be better equipped to develop interventions that target specific neural pathways
and processes. This could lead to more effective and efficient therapies that produce better
outcomes for clients. Finally, the evolving consciousness of society will continue to influence
the field of psychotherapy. As people become more aware of the importance of mental health
and seek out therapy as a means of personal growth and self-discovery, therapists will need
to adapt to meet their clients’ changing needs. This may involve incorporating mindfulness
practices, somatic therapies, and other holistic approaches into their practice. To provide
optimal care for their clients in the face of these changes, therapists will need to be open to
new ideas and approaches, and willing to embrace technology as a tool for delivering therapy.
They will also need to stay up-to-date with the latest research and developments in the field,
and be willing to adapt their practice as new evidence emerges. Above all, they will need
to remain committed to providing the best possible care for their clients, using all available
resources to help them achieve their goals."
Propagated Tags:
• Task: Explaining psychological concepts
• Topic: Therapeutic techniques in psychology
• Style: Formal and concise communication suitable for educational purposes
• Audience: Students and professionals in psychology and related fields

E DETAILED EXPERIMENTAL SETTINGS

The hyperparameter settings are detailed in Table 14. All instruction tuning experiments are conducted
on a 2-GPU node equipped with NVIDIA H20 GPUs (96GB memory each, NVLink interconnect),
running CUDA 12.7 and driver version 565.57.01. The host machine is configured with a Xeon
Platinum 8457C 40-core CPU, 400GB of RAM. The computing infrastructure is provided by the
cloud platform AutoDL.

Our method includes several components, among which LLM-based annotation, embedding and
clustering, and fine-tuning with evaluation—account for the majority of runtime cost.

LLM Annotation is conducted on the same hardware as training using the VLLM (anda Zhuohan Li
et al., 2023) inference engine with a batch size of 512. The annotation process takes approximately
4.5 hours. In practice, LLM annotation may occasionally fail for some samples; thus, we apply a
post-pass collection and re-annotation step until all examples are successfully labeled.

Embedding and Clustering is performed on a single H20 GPU, with only half of the CPU cores
allocated. We use a batch size of 256 and actively clear GPU cache using empty-cache to manage
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Table 14: Hyperparameters used in SFT.

Hyperparameter Value

Precision bf16
LoRA Rank 64
LoRA Alpha 16
LoRA Dropout 0.1
Max Sequence Length 2048
Training Epochs 3
Optimizer AdamW
AdamW betas (0.9, 0.999)
AdamW eps 1e-8
Learning Rate 1× 10−4

LR Scheduler Linear
Warmup Ratio 0.03
Weight Decay 0
Batch Size per GPU 1
Total Batch Size 128
Gradient Accumulation Steps 128
Random Seed 42
Preprocessing Workers 16

memory. The peak memory usage ranges from 60GB to 70GB, and the total embedding process takes
about 4 hours. Both the annotation and embedding steps are one-time preprocessing costs that can be
reused via intermediate file caching.

Training and Evaluation is conducted using the accelerate (Gugger et al., 2022) framework with
LoRA (Hu et al., 2022). Each GPU consumes approximately 70GB of memory during training. On a
dataset with 10K samples, the fine-tuning step typically completes in around 2 hours using 2 GPUs.
Evaluation is most time-consuming on the MMLU benchmark, which takes roughly 20 minutes. To
optimize utilization, we allocate one GPU exclusively for MMLU evaluation and run the remaining
benchmarks sequentially on the second GPU, completing all evaluations within 20 minutes.
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