
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SWE-BENCH+: ENHANCED CODING BENCHMARK
FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) in Software Engineering (SE) can offer assis-
tance for coding. To facilitate a rigorous evaluation of LLMs in practical coding
contexts, Carlos et al. introduced the SWE-Bench dataset, which comprises 2,294
real-world GitHub issues. The SWE-Bench dataset has quickly become the most
popular benchmark for evaluating LLMs in software engineering. It has been
adopted by leading companies such as OpenAI, Anthropic, Google, and Meta to
assess the coding capabilities of their models. Despite its central role in measuring
the state-of-the-art performance of newly released LLMs, a systematic evaluation
of the quality of SWE-Bench is still lacking.
In this paper, we addressed this gap by presenting an empirical analysis of two
variants of SWE-Bench dataset (i.e., SWE-Bench Lite and SWE-Bench Verified),
both of which have been validated by developers to ensure quality. We con-
ducted a manual screening of instances where the top three models in the SWE-
Bench leaderboard (i.e., SWE-AGENT 1.0, OPENHANDS + CODEACT V2.1, and
AUTOCODEROVER-V2.0) successfully resolved issues by comparing the model-
generated patches with the actual pull requests.
Our analysis reveals some critical issues with the SWE-Bench dataset: 1) 60.83%
of the successfully resolved issues involve “solution leakage”, where the solu-
tions were either directly provided or indirectly hinted at in the issue report or
comments. 2) 47.93% of the resolved issues were incorrectly marked as resolved
due to patches passing weak test cases, i.e., the tests were not sufficient to verify
patch correctness; we refer to these insufficiently verified patches as “plausible
patches”. When we filtered out these problematic issues, the resolution rate of the
three agents dropped from 42.1% to 21.8% on average on SWE-Bench Lite and
from 51.7% to 25.9% on average for SWE-Bench Verified.
The critical issues in the current SWE-Bench dataset motivated us to create a
more rigorous evaluation framework, SWE-Bench+, by addressing solution-leak
risks and enhancing test suites for patch validation. Specifically, we introduce
SoluLeakDetector, an LLM-based tool to filter issues with solution leaks,
and TestEnhancer, an LLM-based approach to strengthen test suites and mit-
igate weak test problems. SoluLeakDetector achieves 80.45% accuracy in
solution-leak detection. TestEnhancer improves patch validation and iden-
tifies plausible patches for 97.11% of weak-test issues, leading to average res-
olution rate drops of 27.00 percentage points on SWE-Bench Lite and 36.27 on
SWE-Bench Verified. Although we focus on SWE-Bench, our approach can be
readily extended to other Software Engineering benchmarking datasets to support
their evolution.

1 INTRODUCTION

The SWE-Bench dataset was created to systematically evaluate the capabilities of large language
models (LLMs) in resolving software issues Jimenez et al. (2024). Given an issue description, the
task for the LLM is to modify the corresponding codebase to produce a correct resolution. Each issue
instance includes a textual description, a pull request referencing the associated buggy repository,
a set of test cases that can be used to verify model-generated patches, and a gold patch made by
developers to fix this issue. The original SWE-Bench contains randomly picked 2,294 issues from

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

12 projects hosted in GitHub. To improve the dataset’s rigor, two manually curated variants have
recently been introduced: SWE-Bench Lite1 , which focuses on 300 bug-fixing issues, and SWE-
Bench Verified2, which contains 500 carefully validated issues with clear descriptions and strong
test cases.

Since its release in 2023, the SWE-Bench dataset has rapidly become the leading benchmark for
evaluating LLMs in Software Engineering. It has been adopted by major companies such as OpenAI,
Anthropic, Google, DeepSeek, and Meta to assess the coding capabilities of their models. Within
just a year, hundreds of LLM-based agents have been developed and tested on this benchmark Chen
et al. (2024); Zhang et al. (2024a); Xia et al. (2024); Yang et al. (2024b); Zhang et al. (2024c);
Rosa et al. (2024); Zan et al. (2024); Yu et al. (2025); Gao et al. (2025); Lei et al. (2024); Team &
et al. (2025); Antoniades et al. (2025) However, despite its central role in evaluating state-of-the-art
LLMs and agents in the Software Engineering domain, a systematic assessment of the quality of the
SWE-Bench dataset remains missing.

In this paper, we investigate the quality of the SWE-Bench dataset through two key contributions.
First, we conduct an empirical study of state-of-the-art SE agents on SWE-Bench Lite & Verified.
This study examines: (1) the quality of issue descriptions and discussions (which are often wrapped
in the prompts to the SE agents), specifically whether they contain hints that may inadvertently leak
information about how to fix the issues, thereby simplifying the task; and (2) the adequacy of the test
cases of issues, evaluating whether they are sufficiently strong to reliably validate the correctness
of generated patches. Second, we introduce SWE-Bench+, a framework designed to enhance the
SWE-Bench dataset by filtering out solution-leaking issues and strengthening issues’ test cases to
better detect and exclude suspicious patches.

During the time of our empirical study, we selected three top-performing approaches from the SWE-
Bench leaderboard: SWE-Agent 1.0 (Claude 3.5 Sonnet), OpenHands + CodeAct v2.1 (claude-3-5-
sonnet-20241022), and AutoCodeRover-v2.0 (Claude-3.5-Sonnet-20241022).

0 10 20 30 40 50

Answer Leak

Weak Tests

15.67

13.33

22.6

15.2

All Issues (%)

SWE-Bench Lite SWE-Bench Verified

Figure 1: Distribution of problematic issues among all in-
stances in SWE-Bench Lite (300 instances) and SWE-Bench
Verified (500 instances)

First, we gathered the commonly re-
solved issues from the SWE-Bench
Verified & Lite dataset across the
three agents, yielding a total of 217
issues and 651 patches (217 × 3).
We achieved this by filtering only
the instances with evaluation logs that
showed all tests passed. Second,
we conducted our empirical study
through two steps: 1) Manual issue
quality checking: We manually ex-
amined the issue descriptions, which
are included in the inputs, to deter-
mine whether they reveal knowledge
related to how to fix an issue. 2)
Patch validation study: We com-
pared the gold patches with the model-generated patches by analyzing the modified files, changed
lines, and code alterations in both versions, based on which, we further evaluated the resulting code
behavior based on the underlying logic. We then examined the corresponding test cases of each issue
to determine whether they adequately covered the changes in the gold patches and were sufficient to
distinguish gold patches from model-generated patches.

Our empirical study identified five types of quality problems (see Table 1) in the issues in SWE-
Bench Verified & Lite that significantly affect the reliability of LLM evaluation. We summarized
them into two broadly types: 1) Solution Leak: In 60.83% of the resolved instances, the solutions
to issues were either explicitly stated or subtly implied within the issue reports or comments. In
other words, some issue descriptions directly include the solution code for the reported bug, while
others offer hints or guidance on the general approach the solution should take. 2) Weak Tests: In
47.93% of the resolved instances, the changes made by the model are either incorrect, incomplete,

1https://www.swebench.com/lite.html
2https://openai.com/index/introducing-swe-bench-verified/

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Figure 2: Overview of our analysis for SWE-Bench datasets

or applied to different files or functions compared to the gold patch. Despite these discrepancies, the
changes pass the tests, indicating that the tests are too weak to catch such errors.

Figure 1 presents the distribution of issues in the two experimental datasets, i.e., SWE-Bench Lite
(300 instances) and SWE-Bench Verified (500 instances). On SWE-Bench Lite, 15.67% of all its
issues exhibit answer leakage problems, while on SWE-Bench Verified, the proportion is 22.6%,
including both direct leaks and hint-based guidance. Additionally, 13.33% of all issues in SWE-
Bench Lite and 15.2% in SWE-Bench Verified are identified as problematic due to weak test cases.

To address the quality issues in SWE-Bench datasets, we created a framework, i.e., SWE-Bench+,
which targets 1) identifying the issues that include solutions in the issue description or comments
and 2) enhancing the test suites for filtering out suspicious patches. Specifically, we introduce
an LLM-based solution leak detection tool, i.e., SoluLeakDetector, to filter out issues with
the solution leak problem, and an LLM-based test generation approach, i.e., TestEnhancer, to
enhance the test suite of issues to avoid the weak test problem. Our evaluation shows that SWE-
Bench+ can achieve 80.45% accuracy on solution-leak-issue identification. TestEnhancer helps
enhance the patch validation process and identify plausible patches for 97.11% issues that have weak
tests, resulting in resolution rates dropping by an average of 27.00 percentage points on SWE-Bench
Lite and 36.27 percentage points on SWE-Bench Verified across the three top-performing models.
In addition, although we focus on SWE-Bench, our approach (i.e., solution-leak-issue identification
and TestEnhancer) can be easily extended to other Software Engineering benchmarking datasets
to support their evolution.

2 ISSUE QUALITY ANALYSIS OF SWE-Bench

We conducted an empirical study on the issues in the SWE-Bench Lite and SWE-Bench Verified
datasets that can be resolved by the three agents (i.e., SWE-AGENT 1.0, OPENHANDS + CODE-
ACT V2.1, and AUTOCODEROVER-V2.0). The goal of this study was to determine whether the
issues exhibit potential quality problems that could affect the evaluation of LLMs. Figure 2 outlines
the major steps we followed in our study. The input is the set of all involved issues in SWE-Bench
Lite and SWE-Bench Verified. Each issue contains a description and the patch created by developers
to address the issue, which we call a “gold patch”. We selected three agents and refer to the patches
they generated for each issue as “model-generated patches”. We first examined the issue descrip-
tions, user discussions, and other natural language information included in the prompt that guided
the LLMs in producing a patch. We then compared the gold and model-generated patches to the
issue by analyzing the corresponding files that were changed. As we studied the model-generated
patches, we also examined the logs and trajectories generated by the model. Logs provide the
step-by-step execution of the models. The trajectory data provide a detailed record of the models’
decision-making processes while making a resolution as a patch. To reduce potential biases during

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Issue quality problems found among the 217 common fixed issues by the three models.

Quality problems Numbers (percentage) Root cause
Solution leak 70 (32.26%) solution leakage
Solution hint leak 62 (28.57%) solution leakage
Incorrect fixes 43 (19.82%) weak tests
Different files/functions changed 22 (10.14%) weak tests
Incomplete fixes 39 (17.97%) weak tests

the comparison between gold and model-generated patches, three authors independently performed
the patch validation study. Each author carefully examined the files and lines changed, reviewed the
issue descriptions, and evaluated the implementation styles and intentions behind both the model-
generated and developer-generated patches. The disagreements were resolved through a broader
discussion involving all the authors.

2.1 QUALITY DEFICIENCIES IN SWE-Bench ISSUES

We analyzed 217 commonly resolved issues across the three models, yielding 651 (217∗3) patches.
An issue is considered problematic if it meets either of two mutually exclusive conditions: (a)
Solution-leak (direct or hint), affecting 132/217 (60.83%), or (b) Weak-test-only, where at least
one patch is incorrect, incomplete, or touches different files/functions among the remaining 85 is-
sues, identifying 32/217 weak-test-only cases. Combined, 77.88% of commonly resolved issues are
problematic. We categorize these into five patterns, i.e., two solution-leak-related and three weak-
test-related, summarized in Table 1, with definitions, counts, and root causes discussed below.

1. Solution leak: represents instances where the solution to the issue is clearly outlined in the
issue description or comments on GitHub. Since both the issue descriptions and comments (referred
to as hints text in the SWE-Bench study) are provided as input to the LLM-based issue resolution
agents, these agents can extract the solutions directly from this information instead of generating
them independently. 32.26% of the successfully resolved issues followed this pattern, making it
the most common among resolved patches. This raises significant concerns about a model’s actual
performance and the validity of the SWE-Bench instances as benchmarks. If a model is simply
copying the solution it already has access to, it isn’t demonstrating true problem-solving capabilities
but rather replicating what is provided, thus limiting the assessment of its ability to generate new
solutions. The example shown in Figure 3a and Figure 8 (in the Appendix A.1) illustrates issue
report 166693 from the sympy project, where the issue description provided the exact solution code
patch required to resolve the issue, which makes it possible for the model to directly copy the
solution from the issue report and generate the same solution as provided.

2. Solution Hint Leak: emerges when the descriptions or comments of issues contain partial in-
formation or indirect suggestions that guide models toward the solution without explicitly providing
the complete fix. This pattern was present in 28.57% of issues. For instance, as shown in Figure
3b, a solution hint is provided in the problem description of the issue. While it does not provide the
complete implementation, it gives a clear direction about which function should be used and where
it should be applied. Such hints can influence how a model approaches the solution.

3. Incorrect fixes: refer to cases where the model-generated patches provide incorrect solutions,
yet pass the test cases when they should have failed. This pattern was present in 19.28% of the
passed instances, suggesting a weakness in test cases where the functionality of the issue resolution
is not correctly captured. The fact that incorrect patches can pass the test cases raises suspicion
about the relevance and accuracy of the test cases in assessing whether the issue has been fully
resolved. Figure 9 (in the Appendix A.1) shows a comparison between the model-generated patch
and the gold patch for django-325174. According to the issue description, a new functionality is
needed to reverse a Python OrderedSet by implementing the reversed function. The gold patch
demonstrates the correct behavior, where the entire dictionary is reversed, while the generated patch
only reverses the dictionary’s keys. As a result, the two patches produce entirely different outputs,
as they apply different methods to the dictionary.

3https://github.com/sympy/sympy/issues/16669
4https://code.djangoproject.com/ticket/32517

4

https://github.com/sympy/sympy/issues/16669
https://code.djangoproject.com/ticket/32517

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

description of the issue:

1 The SQLCompiler is incorrectly removing "
order by" clauses because it
determines the clause was already "
seen" in SQLCompiler.get_order_by()
. The issue occurs with expressions
written as multiline RawSQL.The bug
is located in SQLCompiler.
get_order_by(), specifically at:
without_ordering = self.
ordering_parts.search(sql).group(1)

2
3 As a quick/temporal fix I can suggest

making sql variable clean of newline
characters, like this:

4 sql_oneline = ’ ’.join(sql.split(’\n’))
5 without_ordering = self.ordering_parts.

search(sql_oneline).group(1)

(a) A Direct Solution Leak example (django-11001)

description of the issue:

1 A security vulnerability exists in the
password reset functionality where
tokens remain valid even after a user
changes their email address. The
current implementation of
PasswordResetTokenGenerator does not
consider email address changes when
validating tokens.

2
3 The fix is to add the user email address

into PasswordResetTokenGenerator.
_make_hash_value()

4 Nothing forces a user to even have an
email as per AbstractBaseUser.
Perhaps the token generation method
could be factored out onto the model,
ala get_session_auth_hash().

(b) An example of Hint Leak (django-13551)
Figure 3: Side-by-side examples of (a) direct solution leak and (b) hint leak in problem statements.

4. Different files/functions changed: This pattern refers to cases where the model-generated
patches modify files or functions unrelated to the issue at hand. These files differ from those al-
tered in the gold patch, yet the model’s patches still pass the test cases despite this discrepancy. This
pattern appears in 10.14% of the passed instances. This pattern highlights a weakness in the model’s
ability to accurately locate and address the source of the issue. The fact that the test cases pass, even
though changes were made in irrelevant files, suggests that the test cases are either weak or irrele-
vant and should have failed in detecting the incorrect modifications. Figure 10 (in the Appendix A.1)
presents an example from issue-26093 of the Matplotlib project5, where the model-generated patch
modifies the cbook.py file, while the gold patch makes changes to the axes.py file. This shows that
the model’s patch affects a completely different file from the gold patch, highlighting the model’s
inability to accurately identify the correct file containing the bug.

5. Incomplete fixes: This pattern refers to model-generated patches that offer incomplete imple-
mentations compared to the gold patches, often omitting critical details. This pattern appears in
17.97% of passed instances. For instance, some patches include only partial if-else statements, ne-
glecting edge cases that the gold patch addresses. Although the model-generated patches follow
the correct implementation approach, they overlook important aspects that could lead to failures in
production or when handling edge cases. This underscores a weakness in the test cases, as they fail
to capture the finer details necessary for a comprehensive issue resolution.

The example provided in Figure 11 (in the Appendix A.1) shows the same change being made by
the model and the one made by the developers in the gold patch6. The gold patch provides a com-
plete fix, while the model patch provides a partial fix. Specifically, the gold patch properly handles
the detection of an event loop in the current thread by including a try-except block to catch Run-
timeError when an event loop is unavailable and checks if the event loop is running before raising
an exception. Additionally, it wraps the entire logic in a condition that checks the environment vari-
able DJANGO ALLOW ASYNC UNSAFE. In contrast, the generated patch is missing critical parts
of this logic, such as the try-except block and the check for a running event loop. As a result, the
model-generated patch is incomplete, missing key error handling and flow control that are necessary
for ensuring safe operation.

2.2 IMPACT OF SOLUTION (HINT) LEAK

To quantitatively assess the impact of solution leakage on model performance, we conducted an
empirical study using the three models evaluated in this paper. Among the 217 commonly resolved
instances, we identified 132 instances (60.83%) containing some form of solution leakage, with 70
instances exhibiting direct solution leaks and 62 instances containing solution hint leaks. Before

5https://github.com/matplotlib/matplotlib/issues/26093
6https://code.djangoproject.com/ticket/31056

5

https://github.com/matplotlib/matplotlib/issues/26093
https://code.djangoproject.com/ticket/31056

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

leakage removal, all 132 instances were successfully resolved by the models. We then automatically
removed all solution-related information, including direct code solutions, suggestions, and hints
(e.g., expected behavior) from the issue descriptions and re-evaluated the models’ performance to
determine if they could still fix the issues without leaked information.

Figure 4 shows that resolution rates dropped substantially after removing leaked informa-
tion. OpenHands+CodeAct-v2.1 resolved 52/132 instances (39.39%, a 60.61-point drop),
AutoCodeRover-v2.0 resolved 87/132 (65.91%), and SWE-Agent-v1.0 resolved 70/132 (53.03%),
demonstrating the positive impact of solution leaks. Examining leakage types, for 70 solution-leak-
direct instances, AutoCodeRover-v2.0 led with 70% (49/70), SWE-Agent-1.0 65.71% (46/70), and
OpenHands+CodeAct-v2.1 35.71% (25/70). For 62 solution-leak-hint instances, AutoCodeRover-
v2.0 achieved 61.29% (38/62), OpenHands+CodeAct-v2.1 43.55% (27/62), and SWE-Agent-1.0
38.71% (24/62). Higher resolution rates for direct-solution issues indicate that direct solutions were
particularly helpful for the models.

2.3 IMPACT OF WEAK TESTS

Overall Direct Hint
0
20
40
60
80
100

6
5
.9
1

7
0

6
1
.2
9

3
9
.3
9

3
5
.7
1

4
3
.5
5

5
3
.0
3

6
5
.7
1

3
8
.7
1

R
es

ol
ut

io
n

R
at

e(
%

)

AutoCodeRover-v2.0 OpenHands+CodeAct-v2.1

SWE-Agent-1.0

Figure 4: Resolution rates after leakage removal

Given that 77.88% of commonly resolved is-
sues are problematic, we quantify how weak-
test-only cases inflate headline resolution rates.
For each model and dataset (i.e., SWE-Bench
Lite and SWE-Bench Verified), we recompute
resolution rates after excluding only weak-test-
only issues, keeping solution-leak cases intact
to isolate the impact of weak tests. Follow-
ing the weak-test breakdown in Table 1, Ta-
ble 2 reports the distribution of weak-test pat-
terns among passed patches (Lite: n=82, Ver-
ified: n=179). Using the protocol from Sec-
tion 2.1, we manually review each passed patch,
flag weak-test-only cases, and recount them as failures while keeping the instance set and denomi-
nator unchanged, yielding the weak-test-removed resolution rate.

In SWE-Bench Lite, AutoCodeRover-v2.0 produced incorrect fixes in 10.98% of cases, incomplete
fixes in 25.61%, and fixes involving different files or functions in 3.66%. OpenHands+CodeAct-v2.1
showed incorrect fixes in 9.76% of cases, incomplete fixes in 17.07%, and different files/functions in
8.54%. SWE-Agent-v1.0 generated incorrect fixes in 10.98% of cases, incomplete fixes in 15.85%,
and different files/functions in 6.10%. In SWE-Bench Verified, AutoCodeRover-v2.0 produced incor-
rect fixes in 12.29% of cases, incomplete fixes in 10.61%, and fixes involving different files/func-
tions in 5.03%. OpenHands+CodeAct-v2.1 showed incorrect fixes in 11.17% of cases, incomplete
fixes in 10.61%, and different files/functions in 5.59%. SWE-Agent-v1.0 generated incorrect fixes in
13.97% of cases, incomplete fixes in 8.94%, and different files/functions in 3.91%. These suspicious
fix patterns resulted in a substantial reduction in the actual resolution rates across all models.

Figure 5 contrasts the original resolution rates with weak test issues removed: we treat those in-
stances with weak test patterns as failures, leaving the instance set and denominator unchanged. The
difference shows how weak tests inflated the original rates. The new resolution criteria resulted in
significant drops in the resolution percentages across all models. For AutoCodeRover-v2.0 (Claude-
3.5-Sonnet-20241022), the performance drops by 21.33 percentage points (from 37.33% to 16%)
on SWE-Bench Lite and drops by 26 percentage points from 45% to 19% on SWE-Bench Verified.
OpenHands + CodeAct v2.1 showed a decline from 42% to 22% on Lite and from 52.4% to 26.8%
on Verified. SWE-agent 1.0 (Claude 3.5) experienced a drop from 47% to 27.33% on Lite and from
57.6% to 31.8% on Verified when considering only correct fixes.

3 BUILDING SWE-BENCH+

To address the issues of the current SWE-Bench datasets and ensure a more accurate evaluation
of the models’ effectiveness in resolving issues, we create a more rigorous evaluation dataset SWE-
Bench+ by filtering out suspicious patches in SWE-Bench. Specifically, we introduce an LLM-based

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

ACR
v2.0

OH+CodeAct
v2.1

SWE-Agent
1.0

0

20

40

60

3
7
.3
3

4
2 4
7

2
6
.3
3

3
1
.6
7

3
7
.6
7

R
es

ol
ut

io
n

R
at

e
(%

) Original Weak Test Issues Removed

(a) SWE-Bench Lite

ACR
v2.0

OH+CodeAct
v2.1

SWE-Agent
1.0

0

20

40

60 4
5 5
2
.4

5
7
.6

3
5 4
1 4
8

R
es

ol
ut

io
n

R
at

e
(%

) Original Weak Test Issues Removed

(b) SWE-Bench Verified

Figure 5: Resolution rate changes (Original vs Weak Test Removed) for three models.

Table 2: Patches Passing Due to Weak Test Cases (aka. plausible patches): SWE-Bench Lite (82 out
of 300) vs. SWE-Bench Verified (179 out of 500)

SWE-Bench Lite (n=82)
Weak tests AutoCodeRover-v2.0 OpenHands+CodeAct-v2.1 SWE-Agent-v1.0
Incorrect fixes 9 (10.98%) 8 (9.76%) 9 (10.98%)
Incomplete fixes 21 (25.61%) 14 (17.07%) 13 (15.85%)
Different files/functions 3 (3.66%) 7 (8.54%) 5 (6.10%)

SWE-Bench Verified (n=179)
Weak tests AutoCodeRover-v2.0 OpenHands+CodeAct-v2.1 SWE-Agent-v1.0
Incorrect fixes 22 (12.29%) 20 (11.17%) 25 (13.97%)
Incomplete fixes 19 (10.61%) 19 (10.61%) 16 (8.94%)
Different files/functions 9 (5.03%) 10 (5.59%) 7 (3.91%)

solution leak detection tool, i.e., SoluLeakDetector, to filter out issues with the solution leak
problem, and an LLM-based test generation approach, i.e., TestEnhancer, to enhance the test
suite of issues to avoid the weak test problem.

3.1 SOLULEAKDETECTOR : LLM-BASED SOLUTION LEAK ISSUE DETECTION

Our study revealed the persistent presence of solution leakage in SWE-Bench instances, where issue
reports often contain direct or indirect hints about their resolution. To address this, we developed
SoluLeakDetector, an LLM-based technique designed to systematically identify and filter in-
stances in SWE-Bench that exhibit either direct solution leaks or solution hint leaks.

SoluLeakDetector leverages GPT-4 to categorize instances into three distinct groups: (1) in-
stances containing direct solution leaks, (2) instances with hint-based solution leaks, and (3) in-
stances free from any form of solution leakage. The classification is performed using a three-shot
prompting technique, where three clear examples of each category are provided to guide GPT-4 in
categorizing SWE-Bench instances accordingly. The model is prompted with issue descriptions ex-
tracted from the root of the instance’s pull request. Additionally, SoluLeakDetector identifies
and extracts potential hints or direct solutions from the issue description and generates an explana-
tion detailing why the extracted fragment is classified as either a hint or a direct solution. We show
the prompts in Appendix A.3.2.

3.2 TESTENHANCER : LLM-BASED TESTS ENHANCEMENT

Our study highlights that 47.93% of issues have plausible patches described in Table 1 are due to
weak tests. To address this issue, we develop TestEnhancer, an automated test generation and
validation process aimed at enhancing the original SWE-Bench test patches.

Our workflow is outlined in Figure 6. We begin by selecting specific attributes from the SWE-Bench
dataset. Specifically, we extract the following attributes: instance id, gold patches, test patches,
and base commits. The base commits represent the commit IDs leading to the buggy version of
each instance before the corresponding pull request (PR). To retrieve the buggy code patches, we
trace these base commits and extract the affected source code files from the repository. Next, we

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 6: Test enhancement workflow

identify the specific files modified in the gold patch and apply REGEX-based pattern matching to
extract the functions or methods that were changed. We show the prompts in Appendix A.3.1.

After applying the gold patch and running the original tests, TestEnhancer analyzes coverage
gaps in modified files and prompts GPT-5-mini to generate enhanced tests that follow repository
conventions, exercise uncovered behavior, and include regression tests failing on the buggy version
but passing on the gold patch. Iteratively, it generates candidate tests, deduplicates overlaps, and
runs them in isolated Docker containers to retain only those that meet the fail-to-pass criterion.
Across rounds, it accumulates a curated set of tests that maximize behavioral coverage.

4 EVALUATION OF SWE-Bench+

4.1 PERFORMANCE ANALYSIS OF SOLULEAKDETECTOR

To ensure the reliability of the classification, two of the authors independently reviewed the catego-
rized instances by reviewing all issue reports for the instances in SWE-Bench Lite and SWE-Bench
Verified for cases of solution leakage. This human evaluation process helped mitigate potential
biases and verify the correctness of SoluLeakDetector’s predictions. The manual review con-
firmed that SoluLeakDetector achieved an overall 80.45% accuracy in correctly classifying so-
lution leaks within SWE-Bench Lite & Verified. For each dataset, SoluLeakDetector achieves
85.11% on SWE-Bench Lite and 77.88% in SWE-Bench Verified as shown in Table 3.

Table 3: The accuracy of SoluLeakDetector on
solution-leak detection.

Dataset # Solution-Leaks Correctly Detected Accuracy (%)

SWE-Bench Lite 47 40 85.11
SWE-Bench Verified 113 88 77.88

After categorizing all instances,
we constructed SWE-Bench+,
a refined benchmark that ex-
cludes any instance exhibiting
solution leakage. SWE-Bench+
consists of 707 instances, de-
rived from SWE-Bench Lite
& Verified, that were veri-
fied to contain no direct or indirect solution hints, ensuring a more reliable evaluation
dataset. By eliminating biased instances, SWE-Bench+ provides a fairer and more ro-
bust framework for evaluating LLM-based models in real-world GitHub issue resolution.

4.2 PERFORMANCE ANALYSIS OF TESTENHANCER

Table 4: Resolution rates before and after the enhanced test
suite (values in %). ∆ is the percentage-point drop.

Model Dataset Original TE ∆ (pp)

AutoCodeRover-v2.0 Lite 37.33 10.00 27.33
Verified 48.00 9.20 38.80

OpenHands+CodeAct-v2.1 Lite 42.00 15.67 26.33
Verified 52.40 18.20 34.20

SWE-Agent-v1.0 Lite 47.00 19.67 27.33
Verified 57.60 21.80 35.80

To evaluate the performance of
TestEnhancer, we applied the en-
hanced test suite to patches gener-
ated by the three models for issues in
SWE-bench Lite & Verified and mea-
sured the reduction in resolution rate
when applying the newly generated
test cases.

Our evaluation revealed that
TestEnhancer helps enhance
the patch validation process and

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

identify plausible patches for 97.11% of issues that have the weak tests problem. The enhanced test
cases lead to significant drops in resolution rate across all models when evaluated with the enhanced
test suite, as shown in Table 4. Our evaluation revealed substantial drops in resolution rates across
all models when using the enhanced test suite. On SWE-Bench Lite, AutoCodeRover-v2.0 dropped
from 37.33% (112 instances) to 10% (30 instances, 27.33-point drop), OpenHands+CodeAct-v2.1
from 42% (126) to 15.67% (47, 26.33-point drop), and SWE-Agent-v1.0 from 47% (141) to
19.67% (59, 27.33-point drop). On SWE-Bench Verified, AutoCodeRover-v2.0 fell from 48%
(225) to 9.2% (46, 38.8-point drop), OpenHands+CodeAct-v2.1 from 52.4% (262) to 18.2% (91,
34.2-point drop), and SWE-Agent-v1.0 from 57.6% (288) to 21.8% (111, 35.8-point drop). Notably,
TestEnhancer substantially improved coverage, increasing average line coverage from 33.39%
to 55.55% (22.16-point gain). These results indicate that TestEnhancer effectively identifies
plausible patches. The enhanced tests reveal flaws undetected by the original SWE-Bench suite, con-
firming that weak tests inflate apparent LLM patch success and demonstrating TestEnhancer’s
utility as a more robust evaluation framework for LLM-generated patches.

5 RELATED WORK

LLM for Software Engineering. Large Language Models (LLMs) have emerged as powerful
tools and demonstrated impressive capabilities in various software engineering tasks, including code
generation Jiang et al. (2024); Li & Döhmen (2024); Chen et al. (2021); Luo et al. (2024); Du et al.
(2024), program repair Zhang et al. (2024b); Yang et al. (2024a); de Fitero-Dominguez et al. (2024)
and bug detection Alrashedy & Binjahlan (2024); Hossain et al. (2024). The development of code
generation benchmarks has been crucial for evaluating LLM performance. Notably, HumanEval
Chen et al. (2021) was introduced to assess the functional correctness of code generated by LLMs.
Building on this foundation, AlphaCode Li et al. (2022) demonstrated competitive performance in
solving complex programming problems. To address limitations in existing benchmarks, EvalPlus
Liu et al. (2024) enhanced HumanEval with more comprehensive test cases and revealed a significant
overestimation of LLM performance in previous evaluations. LLMs also have shown promising re-
sults in program repair and bug detection. For example, AlphaRepair Xia & Zhang (2022) employed
a zero-shot learning approach that outperformed traditional automated program repair (APR) tools.
Further research demonstrated that LLMs could surpass existing APR techniques, particularly when
fine-tuned on domain-specific data Xia et al. (2023). The application of LLMs in bug detection with
innovative approaches like FuzzGPT Deng et al. (2023b) and TitanFuzz Deng et al. (2023a), lever-
aging these models to generate edge-case test inputs and perform mutation-based fuzzing for deep
learning libraries. Several comprehensive studies have explored LLM applications across various
software engineering domains Fan et al. (2023); Hou et al. (2024), delved into the natural language
to code generation Zan et al. (2023), and analyzed the evolution and performance of Code LLMs
across different tasks Zheng et al. (2024).

6 CONCLUSION

In this paper, we present the first empirical study on the robustness of the SWE-Bench dataset. Our
analysis reveals significant limitations in the original SWE-Bench, particularly solution leakage and
weak test cases, which compromise the reliability of prior model evaluations. To address these
challenges, we construct SWE-Bench+, a more rigorous evaluation dataset that filters out suspi-
cious patches from SWE-Bench. Specifically, we introduce an LLM-based solution leak detection
tool, SoluLeakDetector, to identify and remove issues affected by solution leakage. Addi-
tionally, we develop an LLM-based test generation approach, TestEnhancer, to strengthen test
suites and mitigate weak test issues. Our evaluation shows that SoluLeakDetector can achieve
80.45% accuracy on solution-leak-issue identification and reveals the extent of weak test issues:
TestEnhancer causes resolution rates to drop by an average of 27.00 percentage points on SWE-
Bench Lite and 36.27 percentage points on SWE-Bench Verified across the three top-performing
models. Furthermore, SWE-Bench+ supports the continuous, automated evolution of the SWE-
Bench dataset and can be applied to other software engineering benchmarks, promoting more re-
liable and robust future evaluations.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Kamel Alrashedy and Ahmed Binjahlan. Language models are better bug detector through code-pair
classification, 2024. URL https://arxiv.org/abs/2311.07957.

Antonis Antoniades, Albert Örwall, Kexun Zhang, Yuxi Xie, Anirudh Goyal, and William Wang.
Swe-search: Enhancing software agents with monte carlo tree search and iterative refinement,
2025. URL https://arxiv.org/abs/2410.20285.

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan, Jian-Gang Wang, Anton Cheshkov, Jun Sun,
Hao Yu, Guoliang Dong, Artem Aliev, Jie Wang, Xiao Cheng, Guangtai Liang, Yuchi Ma, Pan
Bian, Tao Xie, and Qianxiang Wang. Coder: Issue resolving with multi-agent and task graphs,
2024. URL https://arxiv.org/abs/2406.01304.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374.

David de Fitero-Dominguez, Eva Garcia-Lopez, Antonio Garcia-Cabot, and Jose-Javier Martinez-
Herraiz. Enhanced automated code vulnerability repair using large language models. Engineering
Applications of Artificial Intelligence, 138:109291, 2024. ISSN 0952-1976. doi: https://doi.org/
10.1016/j.engappai.2024.109291. URL https://www.sciencedirect.com/science/
article/pii/S0952197624014490.

Yinlin Deng, Chunqiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang. Large
language models are zero-shot fuzzers: Fuzzing deep-learning libraries via large language models,
2023a. URL https://arxiv.org/abs/2212.14834.

Yinlin Deng, Chunqiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and Ling-
ming Zhang. Large language models are edge-case fuzzers: Testing deep learning libraries via
fuzzgpt, 2023b. URL https://arxiv.org/abs/2304.02014.

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Evaluating large language models in class-level code
generation. In Proceedings of the IEEE/ACM 46th International Conference on Software Engi-
neering, ICSE ’24, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
9798400702174. doi: 10.1145/3597503.3639219. URL https://doi.org/10.1145/
3597503.3639219.

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo, and
Jie M. Zhang. Large language models for software engineering: Survey and open problems,
2023. URL https://arxiv.org/abs/2310.03533.

Pengfei Gao, Zhao Tian, Xiangxin Meng, Xinchen Wang, Ruida Hu, Yuanan Xiao, Yizhou Liu, Zhao
Zhang, Junjie Chen, Cuiyun Gao, et al. Trae agent: An llm-based agent for software engineering
with test-time scaling. arXiv preprint arXiv:2507.23370, 2025.

Soneya Binta Hossain, Nan Jiang, Qiang Zhou, Xiaopeng Li, Wen-Hao Chiang, Yingjun Lyu, Hoan
Nguyen, and Omer Tripp. A deep dive into large language models for automated bug localization
and repair. Proc. ACM Softw. Eng., 1(FSE), July 2024. doi: 10.1145/3660773. URL https:
//doi.org/10.1145/3660773.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
Grundy, and Haoyu Wang. Large language models for software engineering: A systematic litera-
ture review, 2024. URL https://arxiv.org/abs/2308.10620.

10

https://arxiv.org/abs/2311.07957
https://arxiv.org/abs/2410.20285
https://arxiv.org/abs/2406.01304
https://arxiv.org/abs/2107.03374
https://www.sciencedirect.com/science/article/pii/S0952197624014490
https://www.sciencedirect.com/science/article/pii/S0952197624014490
https://arxiv.org/abs/2212.14834
https://arxiv.org/abs/2304.02014
https://doi.org/10.1145/3597503.3639219
https://doi.org/10.1145/3597503.3639219
https://arxiv.org/abs/2310.03533
https://doi.org/10.1145/3660773
https://doi.org/10.1145/3660773
https://arxiv.org/abs/2308.10620

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation, 2024. URL https://arxiv.org/abs/2406.00515.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Bin Lei, Yuchen Li, Yiming Zeng, Tao Ren, Yi Luo, Tianyu Shi, Zitian Gao, Zeyu Hu, Weitai Kang,
and Qiuwu Chen. Infant agent: A tool-integrated, logic-driven agent with cost-effective api usage,
2024. URL https://arxiv.org/abs/2411.01114.

Xue Li and Till Döhmen. Towards efficient data wrangling with llms using code generation. In
Proceedings of the Eighth Workshop on Data Management for End-to-End Machine Learning,
DEEM ’24, pp. 62–66, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
9798400706110. doi: 10.1145/3650203.3663334. URL https://doi.org/10.1145/
3650203.3663334.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. Science, 378(6624):1092–1097, December 2022. ISSN 1095-
9203. doi: 10.1126/science.abq1158. URL http://dx.doi.org/10.1126/science.
abq1158.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36, 2024.

Hanbin Luo, Jianxin Wu, Jiajing Liu, and Maxwell Fordjour Antwi-Afari. Large language model-
based code generation for the control of construction assembly robots: A hierarchical generation
approach. Developments in the Built Environment, 19:100488, 2024. ISSN 2666-1659. doi:
https://doi.org/10.1016/j.dibe.2024.100488. URL https://www.sciencedirect.com/
science/article/pii/S2666165924001698.

Ricardo La Rosa, Corey Hulse, and Bangdi Liu. Can github issues be solved with tree of thoughts?,
2024. URL https://arxiv.org/abs/2405.13057.

5 Team and Aohan Zeng et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation models,
2025. URL https://arxiv.org/abs/2508.06471.

Chunqiu Steven Xia and Lingming Zhang. Less training, more repairing please: Revisiting auto-
mated program repair via zero-shot learning, 2022. URL https://arxiv.org/abs/2207.
08281.

Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated program repair in the era
of large pre-trained language models. In Proceedings of the 45th International Conference on
Software Engineering, ICSE ’23, pp. 1482–1494. IEEE Press, 2023. ISBN 9781665457019.
doi: 10.1109/ICSE48619.2023.00129. URL https://doi.org/10.1109/ICSE48619.
2023.00129.

Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying llm-
based software engineering agents, 2024. URL https://arxiv.org/abs/2407.01489.

Boyang Yang, Haoye Tian, Weiguo Pian, Haoran Yu, Haitao Wang, Jacques Klein, Tegawendé F.
Bissyandé, and Shunfu Jin. Cref: An llm-based conversational software repair framework for
programming tutors. In Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2024, pp. 882–894, New York, NY, USA, 2024a. Associ-
ation for Computing Machinery. ISBN 9798400706127. doi: 10.1145/3650212.3680328. URL
https://doi.org/10.1145/3650212.3680328.

11

https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2411.01114
https://doi.org/10.1145/3650203.3663334
https://doi.org/10.1145/3650203.3663334
http://dx.doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1126/science.abq1158
https://www.sciencedirect.com/science/article/pii/S2666165924001698
https://www.sciencedirect.com/science/article/pii/S2666165924001698
https://arxiv.org/abs/2405.13057
https://arxiv.org/abs/2508.06471
https://arxiv.org/abs/2207.08281
https://arxiv.org/abs/2207.08281
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1109/ICSE48619.2023.00129
https://arxiv.org/abs/2407.01489
https://doi.org/10.1145/3650212.3680328

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024b. URL https://arxiv.org/abs/2405.15793.

Zhongming Yu, Hejia Zhang, Yujie Zhao, Hanxian Huang, Matrix Yao, Ke Ding, and Jishen
Zhao. Orcaloca: An llm agent framework for software issue localization. arXiv preprint
arXiv:2502.00350, 2025.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan, Yongji Wang, and
Jian-Guang Lou. Large language models meet nl2code: A survey, 2023. URL https://
arxiv.org/abs/2212.09420.

Daoguang Zan, Zhirong Huang, Ailun Yu, Shaoxin Lin, Yifan Shi, Wei Liu, Dong Chen, Zongshuai
Qi, Hao Yu, Lei Yu, Dezhi Ran, Muhan Zeng, Bo Shen, Pan Bian, Guangtai Liang, Bei Guan,
Pengjie Huang, Tao Xie, Yongji Wang, and Qianxiang Wang. Swe-bench-java: A github issue
resolving benchmark for java, 2024. URL https://arxiv.org/abs/2408.14354.

Kexun Zhang, Weiran Yao, Zuxin Liu, Yihao Feng, Zhiwei Liu, Rithesh Murthy, Tian Lan, Lei
Li, Renze Lou, Jiacheng Xu, Bo Pang, Yingbo Zhou, Shelby Heinecke, Silvio Savarese, Huan
Wang, and Caiming Xiong. Diversity empowers intelligence: Integrating expertise of software
engineering agents, 2024a. URL https://arxiv.org/abs/2408.07060.

Quanjun Zhang, Tongke Zhang, Juan Zhai, Chunrong Fang, Bowen Yu, Weisong Sun, and Zhenyu
Chen. A critical review of large language model on software engineering: An example from chat-
gpt and automated program repair, 2024b. URL https://arxiv.org/abs/2310.08879.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement, 2024c. URL https://arxiv.org/abs/2404.05427.

Zibin Zheng, Kaiwen Ning, Yanlin Wang, Jingwen Zhang, Dewu Zheng, Mingxi Ye, and Jiachi
Chen. A survey of large language models for code: Evolution, benchmarking, and future trends,
2024. URL https://arxiv.org/abs/2311.10372.

12

https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2212.09420
https://arxiv.org/abs/2212.09420
https://arxiv.org/abs/2408.14354
https://arxiv.org/abs/2408.07060
https://arxiv.org/abs/2310.08879
https://arxiv.org/abs/2404.05427
https://arxiv.org/abs/2311.10372

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

Table of Contents:

• Appendix A: Distribution of patterns across different models
• Appendix B: Solution Leak Examples
• Appendix C: Prompts used in solution leak filtering and test enhancement
• Appendix D: LLM Usage

A.1 APPENDIX A

AutoCodeRover
-v2.0

OpenHands+CodeAct
-v2.1

SWE-Agent
-1.0

0

50

100

150

1
4
8

1
5
1

1
5
4

1
1 1
3

1
0

3
4

3
0

2
5

2
4

2
2 2
8

N
um

be
ro

fi
ns

ta
nc

es

Distribution of Patterns Across Models

Correct
Different Files/Functions
Incomplete
Incorrect

Figure 7: Counts per category for AutoCodeRover-v2.0, OpenHands+CodeAct-v2.1, and SWE-
Agent-1.0.

A.2 APPENDIX B

Figure 8: Solution Leakage in issue report for sympy-16669

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 9: Incorrect fix generated by the model for xrray-7732

Figure 10: Different files changed by model for issue-26093 of Matplotlib

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 11: Incomplete fix generated by the model for django-31056

A.3 APPENDIX C

A.3.1 TESTENHANCER PROMPT

You are an expert software engineer code assistant tasked with generating additional
unit tests for a Python source file and its corresponding test file.
TASK: Your objective is to add 30 regression tests that detect the bug, which is resolved by
the provided patch.
GUIDELINES:

1. Analyze the Code: Examine the provided source code to understand its function-
ality, inputs, outputs, and core logic.

2. Analyze the Patch: Examine the provided patch to understand the bug it fixes in
the source code.

3. Identify Test Cases: Develop a detailed list of test cases that will fully validate the
provided patch.

4. Add and Review Tests: Integrate individual tests, ensuring they collectively cover
all possible scenarios, including edge cases and exception handling.

5. Maintain Consistency: Ensure new tests are consistent with the existing test suite
in terms of style, naming conventions, and structure. Assume new tests are part of
the same suite if a test suite exists.

ADDITIONAL CONSTRAINTS:
• Return only valid Python in the YAML fields; do not produce syntax errors.
• Octal literals must use digits 0-7 only (e.g., 0o644). Do not generate invalid octal

values like 0o800.
Source File: Here is the source file source file that you will be writing tests against.
We have manually added line numbers to assist in understanding the code coverage. These
line numbers are not part of the original code.
source numbered
Patch: Here is the patch that is applied to the source file source file to fix a bug.
patch content
Test File: Here is the file test file that contains the existing tests.
test content

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

OUTPUT FORMAT: The response should be only a valid YAML object, without any in-
troduction text or follow-up text.
Example output:
‘‘‘yaml
language: Python
number_of_tests: ...
test_behavior: ...
test_code: ...
new_imports_code: ...
‘‘‘

A.3.2 SOLULEAKDETECTOR PROMPT

You are a solution leakage detection expert.

TASK

Analyze GitHub issue descriptions (problem statement) and related comments
(hints text) for solution leakage.

DEFINITION

Solution leakage occurs when:
1. The solution is explicitly mentioned, such as:

• Code snippets providing a direct fix.
• Step-by-step instructions leading directly to the solution.

2. The solution is subtly implied, for example:
• Explanatory text that indirectly leads to the correct fix.
• Comments hinting at how to resolve the issue.

EXAMPLE 1
Description: I propose to add the following settings, with the following default values:

1 LANGUAGE_COOKIE_SECURE = False
2 LANGUAGE_COOKIE_HTTPONLY = False
3 LANGUAGE_COOKIE_SAMESITE = None

The default values maintain the current behavior.
These settings do not provide much security value, since the language is not secret or sensi-
tive. This was also discussed briefly here: https://github.com/django/django/
pull/8380#discussion_r112448195.
Reasons for Change:

• Sometimes auditors require them.
• I personally prefer to set them unless I have a reason not to.
• Browsers are increasingly enforcing HttpOnly and
Secure, e.g., https://webkit.org/blog/8613/
intelligent-tracking-prevention-2-1/.

Expected Output:
1 {
2 "solution_leakage_detected": true,
3 "reason": "The solution is explicitly provided in the description.",
4 "extracted_solution": "LANGUAGE_COOKIE_SECURE = False, LANGUAGE_COOKIE_HTTPONLY =

False, LANGUAGE_COOKIE_SAMESITE = None"
5 }

16

https://github.com/django/django/pull/8380#discussion_r112448195
https://github.com/django/django/pull/8380#discussion_r112448195
https://webkit.org/blog/8613/intelligent-tracking-prevention-2-1/
https://webkit.org/blog/8613/intelligent-tracking-prevention-2-1/

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

EXAMPLE 2
Description: Shape of coef is incorrect for linear model.Lasso when using
fit intercept=False.
Steps to Reproduce:

1 import numpy as np
2 from sklearn import linear_model
3
4 est_intercept = linear_model.Lasso(fit_intercept=True)
5 est_intercept.fit(np.c_[np.ones(3)], np.ones(3))
6 assert est_intercept.coef_.shape == (1,)
7
8 est_no_intercept = linear_model.Lasso(fit_intercept=False)
9 est_no_intercept.fit(np.c_[np.ones(3)], np.ones(3))

10 assert est_no_intercept.coef_.shape == (1,)

Expected Output:
1 {
2 "solution_leakage_detected": false,
3 "reason": "The description identifies a bug but does not explicitly provide a

solution.",
4 "extracted_solution": null
5 }

—

EXAMPLE 3
Description: A typo in Poly3DCollection. init () causes a TypeError excep-
tion when calling the function with shade=True.
Relevant Code:

1 matplotlib/lib/mpl_toolkits/mplot3d/art3d.py
2
3 Line 908 in f7a8cab
4
5 if facecolors is None and edgecolors in None:
6 edgecolors in None should be edgecolors is None

Expected Output:
1 {
2 "solution_leakage_detected": true,
3 "reason": "The solution is explicitly provided as a corrected code snippet.",
4 "extracted_solution": "edgecolors in None should be edgecolors is None"
5 }

A.4 LLM USAGE

We used a large language model (LLM) solely for proofreading and minor copyediting (grammar,
clarity, and style). All suggestions were verified by the authors, who remain responsible for the final
content.

17

	Introduction
	Issue Quality Analysis of SWE-Bench
	Quality Deficiencies in SWE-Bench Issues
	Impact of Solution (hint) Leak
	IMPACT OF Weak Tests

	Building SWE-Bench+
	SoluLeakDetector: LLM-based Solution Leak Issue Detection
	TestEnhancer: LLM-based Tests Enhancement

	Evaluation of SWE-Bench+
	Performance Analysis of SoluLeakDetector
	Performance Analysis of TestEnhancer

	Related Work
	Conclusion
	Appendix
	Appendix A
	Appendix B
	Appendix C
	TestEnhancer Prompt
	SoluLeakDetector Prompt

	LLM Usage

