Under review as a conference paper at ICLR 2026

SWE-BENCH+: ENHANCED CODING BENCHMARK
FOR LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) in Software Engineering (SE) can offer assis-
tance for coding. To facilitate a rigorous evaluation of LLMs in practical coding
contexts, Carlos et al. introduced the SWE-Bench dataset, which comprises 2,294
real-world GitHub issues. The SWE-Bench dataset has quickly become the most
popular benchmark for evaluating LLMs in software engineering. It has been
adopted by leading companies such as OpenAl, Anthropic, Google, and Meta to
assess the coding capabilities of their models. Despite its central role in measuring
the state-of-the-art performance of newly released LLMs, a systematic evaluation
of the quality of SWE-Bench is still lacking.

In this paper, we addressed this gap by presenting an empirical analysis of two
variants of SWE-Bench dataset (i.e., SWE-Bench Lite and SWE-Bench Verified),
both of which have been validated by developers to ensure quality. We con-
ducted a manual screening of instances where the top three models in the SWE-
Bench leaderboard (i.e., SWE-AGENT 1.0, OPENHANDS + CODEACT V2.1, and
AUTOCODEROVER-V2.0) successfully resolved issues by comparing the model-
generated patches with the actual pull requests.

Our analysis reveals some critical issues with the SWE-Bench dataset: 1) 60.83%
of the successfully resolved issues involve “solution leakage”, where the solu-
tions were either directly provided or indirectly hinted at in the issue report or
comments. 2) 47.93% of the resolved issues were incorrectly marked as resolved
due to patches passing weak test cases, i.e., the tests were not sufficient to verify
patch correctness; we refer to these insufficiently verified patches as “plausible
patches”. When we filtered out these problematic issues, the resolution rate of the
three agents dropped from 42.1% to 21.8% on average on SWE-Bench Lite and
from 51.7% to 25.9% on average for SWE-Bench Verified.

The critical issues in the current SWE-Bench dataset motivated us to create a
more rigorous evaluation framework, SWE-Bench+, by addressing solution-leak
risks and enhancing test suites for patch validation. Specifically, we introduce
SoluLeakDetector, an LLM-based tool to filter issues with solution leaks,
and TestEnhancer, an LLM-based approach to strengthen test suites and mit-
igate weak test problems. SoluLeakDetector achieves 80.45% accuracy in
solution-leak detection. TestEnhancer improves patch validation and iden-
tifies plausible patches for 97.11% of weak-test issues, leading to average res-
olution rate drops of 27.00 percentage points on SWE-Bench Lite and 36.27 on
SWE-Bench Verified. Although we focus on SWE-Bench, our approach can be
readily extended to other Software Engineering benchmarking datasets to support
their evolution.

1 INTRODUCTION

The SWE-Bench dataset was created to systematically evaluate the capabilities of large language
models (LLMs) in resolving software issues |Jimenez et al|(2024). Given an issue description, the
task for the LLM is to modify the corresponding codebase to produce a correct resolution. Each issue
instance includes a textual description, a pull request referencing the associated buggy repository,
a set of test cases that can be used to verify model-generated patches, and a gold patch made by
developers to fix this issue. The original SWE-Bench contains randomly picked 2,294 issues from

Under review as a conference paper at ICLR 2026

12 projects hosted in GitHub. To improve the dataset’s rigor, two manually curated variants have
recently been introduced: SWE-Bench Liteﬂ, which focuses on 300 bug-fixing issues, and SWE-
Bench Veriﬁeaﬂ which contains 500 carefully validated issues with clear descriptions and strong
test cases.

Since its release in 2023, the SWE-Bench dataset has rapidly become the leading benchmark for
evaluating LLMs in Software Engineering. It has been adopted by major companies such as OpenAl,
Anthropic, Google, DeepSeek, and Meta to assess the coding capabilities of their models. Within
just a year, hundreds of LLM-based agents have been developed and tested on this benchmark |Chen
et al. (2024); |[Zhang et al.| (2024a)); [Xia et al.| (2024); Yang et al.| (2024b); |[Zhang et al.| (2024c));
Rosa et al.| (2024); [Zan et al.| (2024); [Yu et al.| (2025)); |Gao et al.| (2025)); [Lei1 et al.| (2024)); Team &
et al.| (2025); Antoniades et al.|(2025) However, despite its central role in evaluating state-of-the-art
LLMs and agents in the Software Engineering domain, a systematic assessment of the quality of the
SWE-Bench dataset remains missing.

In this paper, we investigate the quality of the SWE-Bench dataset through two key contributions.
First, we conduct an empirical study of state-of-the-art SE agents on SWE-Bench Lite & Verified.
This study examines: (1) the quality of issue descriptions and discussions (which are often wrapped
in the prompts to the SE agents), specifically whether they contain hints that may inadvertently leak
information about how to fix the issues, thereby simplifying the task; and (2) the adequacy of the test
cases of issues, evaluating whether they are sufficiently strong to reliably validate the correctness
of generated patches. Second, we introduce SWE-Bench+, a framework designed to enhance the
SWE-Bench dataset by filtering out solution-leaking issues and strengthening issues’ test cases to
better detect and exclude suspicious patches.

During the time of our empirical study, we selected three top-performing approaches from the SWE-
Bench leaderboard: SWE-Agent 1.0 (Claude 3.5 Sonnet), OpenHands + CodeAct v2.1 (claude-3-5-
sonnet-20241022), and AutoCodeRover-v2.0 (Claude-3.5-Sonnet-20241022).

First, we gathered the commonly re-
solved issues from the SWE-Bench
Verified & Lite dataset across the

— SWE-Bench Lite — SWE-Bench Verified

three agents, yielding a total of 217 b JI52 ‘ ‘ L
issues and 651 patches (217 x 3). Weak Tests I]1333

We achieved this by filtering only

the instances with evaluation logs that | 22.6

showed all tests passed. Second, AnswerlLeak =————mm o o ‘ ‘ B
we conducted our empirical study 0 10 20 30 40 50
through two steps: 1) Manual issue All Tssues (%)

quality checking: We manually ex-
amined the issue descriptions, which
are included in the inputs, to deter-
mine whether they reveal knowledge
related to how to fix an issue. 2)
Patch validation study: We com-
pared the gold patches with the model-generated patches by analyzing the modified files, changed
lines, and code alterations in both versions, based on which, we further evaluated the resulting code
behavior based on the underlying logic. We then examined the corresponding test cases of each issue
to determine whether they adequately covered the changes in the gold patches and were sufficient to
distinguish gold patches from model-generated patches.

Figure 1: Distribution of problematic issues among all in-
stances in SWE-Bench Lite (300 instances) and SWE-Bench
Verified (500 instances)

Our empirical study identified five types of quality problems (see Table [I) in the issues in SWE-
Bench Verified & Lite that significantly affect the reliability of LLM evaluation. We summarized
them into two broadly types: 1) Solution Leak: In 60.83% of the resolved instances, the solutions
to issues were either explicitly stated or subtly implied within the issue reports or comments. In
other words, some issue descriptions directly include the solution code for the reported bug, while
others offer hints or guidance on the general approach the solution should take. 2) Weak Tests: In
47.93% of the resolved instances, the changes made by the model are either incorrect, incomplete,

"https://www.swebench.com/lite.htm]
*https://openai.com/index/introducing-swe-bench-verified/

Under review as a conference paper at ICLR 2026

1 Input
3 Patch Validation

SWE-bench
Logs
Trajectories

&/> Model Patches
on SWE

@ Gold Patches
i
fel/huber.

QSWE-Agem 1.0 (Claude 3.7 Sonnet)
&8 OpenHands + CodeAct v2.1 (claude-|
[3-5-sonnet-20241022),

AutoCodeRover-v2.0 (Claude-3.5-
[Sonnet-20241022)

*\’\reak Tests Enhancement
Use LLM:s to make more accurate
tests

[ala) AN oise Detection
oQ Patterns

Patterns in
passed instances

Resolved instances 1) Solution Leak 9 Solution Leak Removal

2) Weak test cases LLM to remove issues with direct
solutions and hints to solutions

2 Data Selection

4 Issue Quality Analysis And Enhancement

Figure 2: Overview of our analysis for SWE-Bench datasets

or applied to different files or functions compared to the gold patch. Despite these discrepancies, the
changes pass the tests, indicating that the tests are too weak to catch such errors.

Figure [T] presents the distribution of issues in the two experimental datasets, i.e., SWE-Bench Lite
(300 instances) and SWE-Bench Verified (500 instances). On SWE-Bench Lite, 15.67% of all its
issues exhibit answer leakage problems, while on SWE-Bench Verified, the proportion is 22.6%,
including both direct leaks and hint-based guidance. Additionally, 13.33% of all issues in SWE-
Bench Lite and 15.2% in SWE-Bench Verified are identified as problematic due to weak test cases.

To address the quality issues in SWE-Bench datasets, we created a framework, i.e., SWE-Bench+,
which targets 1) identifying the issues that include solutions in the issue description or comments
and 2) enhancing the test suites for filtering out suspicious patches. Specifically, we introduce
an LLM-based solution leak detection tool, i.e., SoluLeakDetector, to filter out issues with
the solution leak problem, and an LLM-based test generation approach, i.e., TestEnhancer, to
enhance the test suite of issues to avoid the weak test problem. Our evaluation shows that SWE-
Bench+ can achieve 80.45% accuracy on solution-leak-issue identification. TestEnhancer helps
enhance the patch validation process and identify plausible patches for 97.11% issues that have weak
tests, resulting in resolution rates dropping by an average of 27.00 percentage points on SWE-Bench
Lite and 36.27 percentage points on SWE-Bench Verified across the three top-performing models.
In addition, although we focus on SWE-Bench, our approach (i.e., solution-leak-issue identification
and TestEnhancer) can be easily extended to other Software Engineering benchmarking datasets
to support their evolution.

2 ISSUE QUALITY ANALYSIS OF SWE-Bench

We conducted an empirical study on the issues in the SWE-Bench Lite and SWE-Bench Verified
datasets that can be resolved by the three agents (i.e., SWE-AGENT 1.0, OPENHANDS + CODE-
ACT v2.1, and AUTOCODEROVER-V2.0). The goal of this study was to determine whether the
issues exhibit potential quality problems that could affect the evaluation of LLMs. Figure[2]outlines
the major steps we followed in our study. The input is the set of all involved issues in SWE-Bench
Lite and SWE-Bench Verified. Each issue contains a description and the patch created by developers
to address the issue, which we call a “gold patch”. We selected three agents and refer to the patches
they generated for each issue as “model-generated patches”. We first examined the issue descrip-
tions, user discussions, and other natural language information included in the prompt that guided
the LLMs in producing a patch. We then compared the gold and model-generated patches to the
issue by analyzing the corresponding files that were changed. As we studied the model-generated
patches, we also examined the logs and trajectories generated by the model. Logs provide the
step-by-step execution of the models. The trajectory data provide a detailed record of the models’
decision-making processes while making a resolution as a patch. To reduce potential biases during

Under review as a conference paper at ICLR 2026

Table 1: Issue quality problems found among the 217 common fixed issues by the three models.

Quality problems Numbers (percentage) Root cause
Solution leak 70 (32.26%) solution leakage
Solution hint leak 62 (28.57%) solution leakage
Incorrect fixes 43 (19.82%) weak tests
Different files/functions changed 22 (10.14%) weak tests
Incomplete fixes 39 (17.97%) weak tests

the comparison between gold and model-generated patches, three authors independently performed
the patch validation study. Each author carefully examined the files and lines changed, reviewed the
issue descriptions, and evaluated the implementation styles and intentions behind both the model-
generated and developer-generated patches. The disagreements were resolved through a broader
discussion involving all the authors.

2.1 QUALITY DEFICIENCIES IN SWE-Bench ISSUES

We analyzed 217 commonly resolved issues across the three models, yielding 651 (217 % 3) patches.
An issue is considered problematic if it meets either of two mutually exclusive conditions: (a)
Solution-leak (direct or hint), affecting 132/217 (60.83%), or (b) Weak-test-only, where at least
one patch is incorrect, incomplete, or touches different files/functions among the remaining 85 is-
sues, identifying 32/217 weak-test-only cases. Combined, 77.88% of commonly resolved issues are
problematic. We categorize these into five patterns, i.e., two solution-leak-related and three weak-
test-related, summarized in Table|1] with definitions, counts, and root causes discussed below.

1. Solution leak: represents instances where the solution to the issue is clearly outlined in the
issue description or comments on GitHub. Since both the issue descriptions and comments (referred
to as hints_text in the SWE-Bench study) are provided as input to the LLM-based issue resolution
agents, these agents can extract the solutions directly from this information instead of generating
them independently. 32.26% of the successfully resolved issues followed this pattern, making it
the most common among resolved patches. This raises significant concerns about a model’s actual
performance and the validity of the SWE-Bench instances as benchmarks. If a model is simply
copying the solution it already has access to, it isn’t demonstrating true problem-solving capabilities
but rather replicating what is provided, thus limiting the assessment of its ability to generate new
solutions. The example shown in Figure [3a] and Figure [§] (in the Appendix [A.T) illustrates issue
report 1666q3_-] from the sympy project, where the issue description provided the exact solution code
patch required to resolve the issue, which makes it possible for the model to directly copy the
solution from the issue report and generate the same solution as provided.

2. Solution Hint Leak: emerges when the descriptions or comments of issues contain partial in-
formation or indirect suggestions that guide models toward the solution without explicitly providing
the complete fix. This pattern was present in 28.57% of issues. For instance, as shown in Figure
3bl a solution hint is provided in the problem description of the issue. While it does not provide the
complete implementation, it gives a clear direction about which function should be used and where
it should be applied. Such hints can influence how a model approaches the solution.

3. Incorrect fixes: refer to cases where the model-generated patches provide incorrect solutions,
yet pass the test cases when they should have failed. This pattern was present in 19.28% of the
passed instances, suggesting a weakness in test cases where the functionality of the issue resolution
is not correctly captured. The fact that incorrect patches can pass the test cases raises suspicion
about the relevance and accuracy of the test cases in assessing whether the issue has been fully
resolved. Figure[J] (in the Appendix shows a comparison between the model-generated patch
and the gold patch for django-32517@ccording to the issue description, a new functionality is
needed to reverse a Python OrderedSet by implementing the __reversed__ function. The gold patch
demonstrates the correct behavior, where the entire dictionary is reversed, while the generated patch
only reverses the dictionary’s keys. As a result, the two patches produce entirely different outputs,
as they apply different methods to the dictionary.

*https://github.com/sympy/sympy/issues/16669
*nttps://code.djangoproject.com/ticket /32517

https://github.com/sympy/sympy/issues/16669
https://code.djangoproject.com/ticket/32517

Under review as a conference paper at ICLR 2026

description of the issue:

description of the issue:

The SQLCompiler is incorrectly removing "
order_by" clauses because it
determines the clause was already "
seen" in SQLCompiler.get_order_by ()
. The issue occurs with expressions
written as multiline RawSQL.The bug
is located in SQLCompiler.
get_order_by (), specifically at:
without_ordering = self.
ordering_parts.search(sql) .group (1)

As a quick/temporal fix I can suggest
making sqgl variable clean of newline
characters, like this:

sgql_oneline = ’_’.join(sgl.split(’\n’))

without_ordering = self.ordering_parts.
search (sgl_oneline) .group (1)

A security vulnerability exists in the
password reset functionality where
tokens remain valid even after a user

changes their email address. The
current implementation of
PasswordResetTokenGenerator does not
consider email address changes when
validating tokens.

The fix is to add the user email address
into PasswordResetTokenGenerator.
_make_hash_value ()

}| Nothing forces a user to even have an
email as per AbstractBaseUser.
Perhaps the token generation method
could be factored out onto the model,

ala get_session_auth_hash() .

(a) A Direct Solution Leak example (django-11001) (b) An example of Hint Leak (django-13551)

Figure 3: Side-by-side examples of (a) direct solution leak and (b) hint leak in problem statements.

4. Different files/functions changed: This pattern refers to cases where the model-generated
patches modify files or functions unrelated to the issue at hand. These files differ from those al-
tered in the gold patch, yet the model’s patches still pass the test cases despite this discrepancy. This
pattern appears in 10.14% of the passed instances. This pattern highlights a weakness in the model’s
ability to accurately locate and address the source of the issue. The fact that the test cases pass, even
though changes were made in irrelevant files, suggests that the test cases are either weak or irrele-
vant and should have failed in detecting the incorrect modifications. Figure[I0](in the Appendix
presents an example from issue-26093 of the Matplotlib projeclﬂ where the model-generated patch
modifies the cbook.py file, while the gold patch makes changes to the _axes.py file. This shows that
the model’s patch affects a completely different file from the gold patch, highlighting the model’s
inability to accurately identify the correct file containing the bug.

5. Incomplete fixes: This pattern refers to model-generated patches that offer incomplete imple-
mentations compared to the gold patches, often omitting critical details. This pattern appears in
17.97% of passed instances. For instance, some patches include only partial if-else statements, ne-
glecting edge cases that the gold patch addresses. Although the model-generated patches follow
the correct implementation approach, they overlook important aspects that could lead to failures in
production or when handling edge cases. This underscores a weakness in the test cases, as they fail
to capture the finer details necessary for a comprehensive issue resolution.

The example provided in Figure [IT] (in the Appendix [A.T)) shows the same change being made by
the model and the one made by the developers in the gold patclﬂ The gold patch provides a com-
plete fix, while the model patch provides a partial fix. Specifically, the gold patch properly handles
the detection of an event loop in the current thread by including a fry-except block to catch Run-
timeError when an event loop is unavailable and checks if the event loop is running before raising
an exception. Additionally, it wraps the entire logic in a condition that checks the environment vari-
able DJANGO_ALLOW_ASYNC_UNSAFE. In contrast, the generated patch is missing critical parts
of this logic, such as the try-except block and the check for a running event loop. As a result, the
model-generated patch is incomplete, missing key error handling and flow control that are necessary
for ensuring safe operation.

2.2 IMPACT OF SOLUTION (HINT) LEAK

To quantitatively assess the impact of solution leakage on model performance, we conducted an
empirical study using the three models evaluated in this paper. Among the 217 commonly resolved
instances, we identified 132 instances (60.83%) containing some form of solution leakage, with 70
instances exhibiting direct solution leaks and 62 instances containing solution hint leaks. Before

Shttps://github.com/matplotlib/matplotlib/issues/26093
®https://code.djangoproject.com/ticket /31056

https://github.com/matplotlib/matplotlib/issues/26093
https://code.djangoproject.com/ticket/31056

Under review as a conference paper at ICLR 2026

leakage removal, all 132 instances were successfully resolved by the models. We then automatically
removed all solution-related information, including direct code solutions, suggestions, and hints
(e.g., expected behavior) from the issue descriptions and re-evaluated the models’ performance to
determine if they could still fix the issues without leaked information.

Figure shows that resolution rates dropped substantially after removing leaked informa-
tion. OpenHands+CodeAct-v2.1 resolved 52/132 instances (39.39%, a 60.61-point drop),
AutoCodeRover-v2.0 resolved 87/132 (65.91%), and SWE-Agent-v1.0 resolved 70/132 (53.03%),
demonstrating the positive impact of solution leaks. Examining leakage types, for 70 solution-leak-
direct instances, AutoCodeRover-v2.0 led with 70% (49/70), SWE-Agent-1.0 65.71% (46/70), and
OpenHands+CodeAct-v2.1 35.71% (25/70). For 62 solution-leak-hint instances, AutoCodeRover-
v2.0 achieved 61.29% (38/62), OpenHands+CodeAct-v2.1 43.55% (27/62), and SWE-Agent-1.0
38.71% (24/62). Higher resolution rates for direct-solution issues indicate that direct solutions were
particularly helpful for the models.

2.3 IMPACT OF WEAK TESTS

Given that 77.88% of commonly resolved is-
sues are problematic, we quantify how weak-
test-only cases inflate headline resolution rates.
For each model and dataset (i.e., SWE-Bench 100 ‘
Lite and SWE-Bench Verified), we recompute 8 O - |
resolution rates after excluding only weak-test- 600 e 2 5 e
only issues, keeping solution-leak cases intact 107 8 E e
to isolate the impact of weak tests. Follow- 20 W ﬂ ﬂﬁ
ing the weak-test breakdown in Table |1} Ta- 0 ‘] !

ble [2] reports the distribution of weak-test pat- Overall Direct Hint
terns among passed patches (Lite: n=82, Ver-

ified: n=179). Using the protocol from Sec- Figure 4: Resolution rates after leakage removal
tion[2.1] we manually review each passed patch,

flag weak-test-only cases, and recount them as failures while keeping the instance set and denomi-
nator unchanged, yielding the weak-test-removed resolution rate.

D [AutoCodeRover-v2.0 D [] OpenHands+CodeAct-v2.1
D [SWE-Agent-1.0

5171

Resolution Rate(%)
8]

In SWE-Bench Lite, AutoCodeRover-v2.0 produced incorrect fixes in 10.98% of cases, incomplete
fixes in 25.61%, and fixes involving different files or functions in 3.66%. OpenHands+CodeAct-v2.1
showed incorrect fixes in 9.76% of cases, incomplete fixes in 17.07%, and different files/functions in
8.54%. SWE-Agent-v1.0 generated incorrect fixes in 10.98% of cases, incomplete fixes in 15.85%,
and different files/functions in 6.10%. In SWE-Bench Verified, AutoCodeRover-v2.0 produced incor-
rect fixes in 12.29% of cases, incomplete fixes in 10.61%, and fixes involving different files/func-
tions in 5.03%. OpenHands+CodeAct-v2.1 showed incorrect fixes in 11.17% of cases, incomplete
fixes in 10.61%, and different files/functions in 5.59%. SWE-Agent-v1.0 generated incorrect fixes in
13.97% of cases, incomplete fixes in 8.94%, and different files/functions in 3.91%. These suspicious
fix patterns resulted in a substantial reduction in the actual resolution rates across all models.

Figure [5] contrasts the original resolution rates with weak test issues removed: we treat those in-
stances with weak test patterns as failures, leaving the instance set and denominator unchanged. The
difference shows how weak tests inflated the original rates. The new resolution criteria resulted in
significant drops in the resolution percentages across all models. For AutoCodeRover-v2.0 (Claude-
3.5-Sonnet-20241022), the performance drops by 21.33 percentage points (from 37.33% to 16%)
on SWE-Bench Lite and drops by 26 percentage points from 45% to 19% on SWE-Bench Verified.
OpenHands + CodeAct v2.1 showed a decline from 42% to 22% on Lite and from 52.4% to 26.8%
on Verified. SWE-agent 1.0 (Claude 3.5) experienced a drop from 47% to 27.33% on Lite and from
57.6% to 31.8% on Verified when considering only correct fixes.

3 BUILDING SWE-BENCH+

To address the issues of the current SWE-Bench datasets and ensure a more accurate evaluation
of the models’ effectiveness in resolving issues, we create a more rigorous evaluation dataset SWE-
Bench+ by filtering out suspicious patches in SWE-Bench. Specifically, we introduce an LLM-based

Under review as a conference paper at ICLR 2026

L ’ [0 Original [1 Weak Test Issues Removed ‘ S ’ [0 Original [] 0 Weak Test Issues Removed ‘
% 60 E:\:% g‘b w\:\‘ — % 60— @\m g\; Iﬁ‘% —
&40 s 2 = 40 ” .
g - | g o0l |
= 20 H = 20
e 0 \ 1 T S 0 T 1 T
~ ACR OH+CodeActSWE-Agent & ACR OH+CodeActSWE-Agent

v2.0 v2.1 1.0 v2.0 v2.1 1.0

(a) SWE-Bench Lite (b) SWE-Bench Verified

Figure 5: Resolution rate changes (Original vs Weak Test Removed) for three models.

Table 2: Patches Passing Due to Weak Test Cases (aka. plausible patches): SWE-Bench Lite (82 out
of 300) vs. SWE-Bench Verified (179 out of 500)

SWE-Bench Lite (n=82)

Weak tests AutoCodeRover-v2.0 OpenHands+CodeAct-v2.1 SWE-Agent-v1.0
Incorrect fixes 9 (10.98%) 8 (9.76%) 9 (10.98%)
Incomplete fixes 21 (25.61%) 14 (17.07%) 13 (15.85%)
Different files/functions 3 (3.66%) 7 (8.54%) 5(6.10%)
SWE-Bench Verified (n=179)

Weak tests AutoCodeRover-v2.0 OpenHands+CodeAct-v2.1 SWE-Agent-v1.0
Incorrect fixes 22 (12.29%) 20 (11.17%) 25 (13.97%)
Incomplete fixes 19 (10.61%) 19 (10.61%) 16 (8.94%)
Different files/functions 9 (5.03%) 10 (5.59%) 7 (3.91%)

solution leak detection tool, i.e., SoluLeakDetector, to filter out issues with the solution leak
problem, and an LLM-based test generation approach, i.e., TestEnhancer, to enhance the test
suite of issues to avoid the weak test problem.

3.1 SoLULEAKDETECTOR: LLM-BASED SOLUTION LEAK ISSUE DETECTION

Our study revealed the persistent presence of solution leakage in SWE-Bench instances, where issue
reports often contain direct or indirect hints about their resolution. To address this, we developed
SoluLeakDetector, an LLM-based technique designed to systematically identify and filter in-
stances in SWE-Bench that exhibit either direct solution leaks or solution hint leaks.

SoluLeakDetector leverages GPT-4 to categorize instances into three distinct groups: (1) in-
stances containing direct solution leaks, (2) instances with hint-based solution leaks, and (3) in-
stances free from any form of solution leakage. The classification is performed using a three-shot
prompting technique, where three clear examples of each category are provided to guide GPT-4 in
categorizing SWE-Bench instances accordingly. The model is prompted with issue descriptions ex-
tracted from the root of the instance’s pull request. Additionally, SoluLeakDetector identifies
and extracts potential hints or direct solutions from the issue description and generates an explana-
tion detailing why the extracted fragment is classified as either a hint or a direct solution. We show
the prompts in Appendix [A.3.2]

3.2 TesTENHANCER: LLM-BASED TESTS ENHANCEMENT

Our study highlights that 47.93% of issues have plausible patches described in Table [T] are due to
weak tests. To address this issue, we develop TestEnhancer, an automated test generation and
validation process aimed at enhancing the original SWE-Bench test patches.

Our workflow is outlined in Figure[6] We begin by selecting specific attributes from the SWE-Bench
dataset. Specifically, we extract the following attributes: instance_id, gold_patches, test_patches,
and base_commits. The base_commits represent the commit IDs leading to the buggy version of
each instance before the corresponding pull request (PR). To retrieve the buggy code patches, we
trace these base_commits and extract the affected source code files from the repository. Next, we

Under review as a conference paper at ICLR 2026

Tests Generation Tests Enhancement

Data Preparation Iterative Validation

Select SWE-Bench Baseline and Coverage
attributes: instance_id, Ret o d
gold_patches, CRDITe0

Apply gold patch
Test patohes via base_commits and run original Check Coverage
- ’ tests

base_comits.

Test Generation with LLM

Did testpass on | Yes
gold and fail on
b

Deduplicate candidate

e Accept test

Accumulate

Check if more
rounds remain

Reject test No

.=

Final enhanced test set and coverage report

Prompt GPT-5-mini with repo test style

— n
and uncovered behaviors CEIED

Figure 6: Test enhancement workflow

identify the specific files modified in the gold patch and apply REGEX-based pattern matching to
extract the functions or methods that were changed. We show the prompts in Appendix [A.3.1]

After applying the gold patch and running the original tests, TestEnhancer analyzes coverage
gaps in modified files and prompts GPT-5-mini to generate enhanced tests that follow repository
conventions, exercise uncovered behavior, and include regression tests failing on the buggy version
but passing on the gold patch. Iteratively, it generates candidate tests, deduplicates overlaps, and
runs them in isolated Docker containers to retain only those that meet the fail-to-pass criterion.
Across rounds, it accumulates a curated set of tests that maximize behavioral coverage.

4 EVALUATION OF SWE-Bench+

4.1 PERFORMANCE ANALYSIS OF SOLULEAKDETECTOR

To ensure the reliability of the classification, two of the authors independently reviewed the catego-
rized instances by reviewing all issue reports for the instances in SWE-Bench Lite and SWE-Bench
Verified for cases of solution leakage. This human evaluation process helped mitigate potential
biases and verify the correctness of SoluLeakDetector’s predictions. The manual review con-
firmed that SoluLeakDetector achieved an overall 80.45% accuracy in correctly classifying so-
lution leaks within SWE-Bench Lite & Verified. For each dataset, SoluLeakDetector achieves
85.11% on SWE-Bench Lite and 77.88% in SWE-Bench Verified as shown in Table 3]

After categorizing all instances,

we constructed SWE-Bench+, Table 3: The accuracy of SoluLeakDetector on
a refined benchmark that ex- ¢glution-leak detection.

cludes any instance exhibiting

solution leakage. SWE-Bench+ Dataset # Solution-Leaks Correctly Detected Accuracy (%)
consists of 707 instances, de- SWE-Bench Lite 47 40 85.11
rived ﬁ.om SWE-Bench Lite SWE-Bench Verified 113 88 77.88

& Verified, that were veri-

fied to contain no direct or indirect solution hints, ensuring a more reliable evaluation
dataset. By eliminating biased instances, SWE-Bench+ provides a fairer and more ro-
bust framework for evaluating LLM-based models in real-world GitHub issue resolution.

4.2 PERFORMANCE ANALYSIS OF TESTENHANCER

To evaluate the performance of

TestEnhancer, we applied theen- Table 4: Resolution rates before and after the enhanced test

hanced test suite to patches gener- gyite (values in %). A is the percentage-point drop.
ated by the three models for issues in

SWE-bench Lite & Veriﬁed and mea- Model Dataset Original TE A (pp)
sured the reduction in resolution rate AutoCodeRover-v2.0 Lite 3733 1000 2733
when applying the newly generated Verified 4800 920 38.80
OpenHands+CodeAct-v2.1 Lite 42.00 15.67 26.33

test cases. Verified 5240 1820 34.20
) SWE-Agent-v1.0 Lite 4700 19.67 2733

Our evaluation revealed that Verified 5760 2180 35.80

TestEnhancer helps enhance
the patch validation process and

Under review as a conference paper at ICLR 2026

identify plausible patches for 97.11% of issues that have the weak tests problem. The enhanced test
cases lead to significant drops in resolution rate across all models when evaluated with the enhanced
test suite, as shown in Table] Our evaluation revealed substantial drops in resolution rates across
all models when using the enhanced test suite. On SWE-Bench Lite, AutoCodeRover-v2.0 dropped
from 37.33% (112 instances) to 10% (30 instances, 27.33-point drop), OpenHands+CodeAct-v2.1
from 42% (126) to 15.67% (47, 26.33-point drop), and SWE-Agent-v1.0 from 47% (141) to
19.67% (59, 27.33-point drop). On SWE-Bench Verified, AutoCodeRover-v2.0 fell from 48%
(225) to 9.2% (46, 38.8-point drop), OpenHands+CodeAct-v2.1 from 52.4% (262) to 18.2% (91,
34.2-point drop), and SWE-Agent-v1.0 from 57.6% (288) to 21.8% (111, 35.8-point drop). Notably,
TestEnhancer substantially improved coverage, increasing average line coverage from 33.39%
to 55.55% (22.16-point gain). These results indicate that TestEnhancer effectively identifies
plausible patches. The enhanced tests reveal flaws undetected by the original SWE-Bench suite, con-
firming that weak tests inflate apparent LLM patch success and demonstrating TestEnhancer’s
utility as a more robust evaluation framework for LLM-generated patches.

5 RELATED WORK

LLM for Software Engineering. Large Language Models (LLMs) have emerged as powerful
tools and demonstrated impressive capabilities in various software engineering tasks, including code
generation [Jiang et al.|(2024)); [Li & Dohmen| (2024)); Chen et al.|(2021)); Luo et al.|(2024); [Du et al.
(2024), program repair|Zhang et al.| (2024b); |Yang et al.|(2024a)); de Fitero-Dominguez et al.| (2024)
and bug detection |Alrashedy & Binjahlan| (2024)); Hossain et al.| (2024). The development of code
generation benchmarks has been crucial for evaluating LLM performance. Notably, HumanEval
Chen et al.|(2021) was introduced to assess the functional correctness of code generated by LLMs.
Building on this foundation, AlphaCode |Li et al.| (2022) demonstrated competitive performance in
solving complex programming problems. To address limitations in existing benchmarks, EvalPlus
Liu et al.|(2024) enhanced HumanEval with more comprehensive test cases and revealed a significant
overestimation of LLM performance in previous evaluations. LLMs also have shown promising re-
sults in program repair and bug detection. For example, AlphaRepair Xia & Zhang|(2022) employed
a zero-shot learning approach that outperformed traditional automated program repair (APR) tools.
Further research demonstrated that LLMs could surpass existing APR techniques, particularly when
fine-tuned on domain-specific data|Xia et al.|(2023)). The application of LLMs in bug detection with
innovative approaches like FuzzGPT Deng et al.[(2023b) and TitanFuzz Deng et al.| (2023a), lever-
aging these models to generate edge-case test inputs and perform mutation-based fuzzing for deep
learning libraries. Several comprehensive studies have explored LLM applications across various
software engineering domains |[Fan et al.[|(2023); Hou et al.|(2024), delved into the natural language
to code generation Zan et al.| (2023)), and analyzed the evolution and performance of Code LLMs
across different tasks Zheng et al.|(2024).

6 CONCLUSION

In this paper, we present the first empirical study on the robustness of the SWE-Bench dataset. Our
analysis reveals significant limitations in the original SWE-Bench, particularly solution leakage and
weak test cases, which compromise the reliability of prior model evaluations. To address these
challenges, we construct SWE-Bench+, a more rigorous evaluation dataset that filters out suspi-
cious patches from SWE-Bench. Specifically, we introduce an LLM-based solution leak detection
tool, SoluLeakDetector, to identify and remove issues affected by solution leakage. Addi-
tionally, we develop an LLM-based test generation approach, TestEnhancer, to strengthen test
suites and mitigate weak test issues. Our evaluation shows that SoluLeakDetector can achieve
80.45% accuracy on solution-leak-issue identification and reveals the extent of weak test issues:
TestEnhancer causes resolution rates to drop by an average of 27.00 percentage points on SWE-
Bench Lite and 36.27 percentage points on SWE-Bench Verified across the three top-performing
models. Furthermore, SWE-Bench+ supports the continuous, automated evolution of the SWE-
Bench dataset and can be applied to other software engineering benchmarks, promoting more re-
liable and robust future evaluations.

Under review as a conference paper at ICLR 2026

REFERENCES

Kamel Alrashedy and Ahmed Binjahlan. Language models are better bug detector through code-pair
classification, 2024. URL https://arxiv.org/abs/2311.07957.

Antonis Antoniades, Albert Orwall, Kexun Zhang, Yuxi Xie, Anirudh Goyal, and William Wang.
Swe-search: Enhancing software agents with monte carlo tree search and iterative refinement,
2025. URL https://arxiv.org/abs/2410.20285

Dong Chen, Shaoxin Lin, Muhan Zeng, Daoguang Zan, Jian-Gang Wang, Anton Cheshkov, Jun Sun,
Hao Yu, Guoliang Dong, Artem Aliev, Jie Wang, Xiao Cheng, Guangtai Liang, Yuchi Ma, Pan
Bian, Tao Xie, and Qianxiang Wang. Coder: Issue resolving with multi-agent and task graphs,
2024. URL https://arxiv.org/abs/2406.01304.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
language models trained on code, 2021. URL https://arxiv.org/abs/2107.03374,

David de Fitero-Dominguez, Eva Garcia-Lopez, Antonio Garcia-Cabot, and Jose-Javier Martinez-
Herraiz. Enhanced automated code vulnerability repair using large language models. Engineering
Applications of Artificial Intelligence, 138:109291, 2024. ISSN 0952-1976. doi: https://doi.org/
10.1016/j.engappai.2024.109291. URL https://www.sciencedirect.com/science/
article/pii/S0952197624014490.

Yinlin Deng, Chungiu Steven Xia, Haoran Peng, Chenyuan Yang, and Lingming Zhang. Large
language models are zero-shot fuzzers: Fuzzing deep-learning libraries via large language models,
2023a. URL https://arxiv.org/abs/2212.14834.

Yinlin Deng, Chungiu Steven Xia, Chenyuan Yang, Shizhuo Dylan Zhang, Shujing Yang, and Ling-
ming Zhang. Large language models are edge-case fuzzers: Testing deep learning libraries via
fuzzgpt, 2023b. URL https://arxiv.org/abs/2304.02014,

Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Evaluating large language models in class-level code
generation. In Proceedings of the IEEE/ACM 46th International Conference on Software Engi-
neering, ICSE *24, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
9798400702174. doi: 10.1145/3597503.3639219. URL https://doi.org/10.1145/
3597503.36392109.

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sengupta, Shin Yoo, and
Jie M. Zhang. Large language models for software engineering: Survey and open problems,
2023. URL https://arxiv.org/abs/2310.03533.

Pengfei Gao, Zhao Tian, Xiangxin Meng, Xinchen Wang, Ruida Hu, Yuanan Xiao, Yizhou Liu, Zhao
Zhang, Junjie Chen, Cuiyun Gao, et al. Trae agent: An llm-based agent for software engineering
with test-time scaling. arXiv preprint arXiv:2507.23370, 2025.

Soneya Binta Hossain, Nan Jiang, Qiang Zhou, Xiaopeng Li, Wen-Hao Chiang, Yingjun Lyu, Hoan
Nguyen, and Omer Tripp. A deep dive into large language models for automated bug localization
and repair. Proc. ACM Softw. Eng., 1(FSE), July 2024. doi: 10.1145/3660773. URL https:
//doi.org/10.1145/3660773\

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong Wang, Li Li, Xiapu Luo, David Lo, John
Grundy, and Haoyu Wang. Large language models for software engineering: A systematic litera-
ture review, 2024. URL https://arxiv.org/abs/2308.10620.

10

https://arxiv.org/abs/2311.07957
https://arxiv.org/abs/2410.20285
https://arxiv.org/abs/2406.01304
https://arxiv.org/abs/2107.03374
https://www.sciencedirect.com/science/article/pii/S0952197624014490
https://www.sciencedirect.com/science/article/pii/S0952197624014490
https://arxiv.org/abs/2212.14834
https://arxiv.org/abs/2304.02014
https://doi.org/10.1145/3597503.3639219
https://doi.org/10.1145/3597503.3639219
https://arxiv.org/abs/2310.03533
https://doi.org/10.1145/3660773
https://doi.org/10.1145/3660773
https://arxiv.org/abs/2308.10620

Under review as a conference paper at ICLR 2026

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim, and Sunghun Kim. A survey on large language
models for code generation, 2024. URL |https://arxiv.org/abs/2406.00515.

Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024. URL
https://arxiv.org/abs/2310.06770.

Bin Lei, Yuchen Li, Yiming Zeng, Tao Ren, Yi Luo, Tianyu Shi, Zitian Gao, Zeyu Hu, Weitai Kang,
and Qiuwu Chen. Infant agent: A tool-integrated, logic-driven agent with cost-effective api usage,
2024. URL https://arxiv.org/abs/2411.01114!

Xue Li and Till Dohmen. Towards efficient data wrangling with llms using code generation. In
Proceedings of the Eighth Workshop on Data Management for End-to-End Machine Learning,
DEEM 24, pp. 62-66, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
9798400706110. doi: 10.1145/3650203.3663334. URL https://doi.org/10.1145/
3650203.3663334.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, Thomas Hubert, Peter Choy, Cyprien
de Masson d’Autume, Igor Babuschkin, Xinyun Chen, Po-Sen Huang, Johannes Welbl, Sven
Gowal, Alexey Cherepanov, James Molloy, Daniel J. Mankowitz, Esme Sutherland Robson,
Pushmeet Kohli, Nando de Freitas, Koray Kavukcuoglu, and Oriol Vinyals. Competition-level
code generation with alphacode. Science, 378(6624):1092—1097, December 2022. ISSN 1095-
9203. doi: 10.1126/science.abql158. URL http://dx.doi.org/10.1126/science.
abgll58.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by chat-
gpt really correct? rigorous evaluation of large language models for code generation. Advances
in Neural Information Processing Systems, 36, 2024.

Hanbin Luo, Jianxin Wu, Jiajing Liu, and Maxwell Fordjour Antwi-Afari. Large language model-
based code generation for the control of construction assembly robots: A hierarchical generation
approach. Developments in the Built Environment, 19:100488, 2024. ISSN 2666-1659. doi:
https://doi.org/10.1016/j.dibe.2024.100488. URL https://www.sciencedirect.com/
science/article/pi11/S2666165924001698.

Ricardo La Rosa, Corey Hulse, and Bangdi Liu. Can github issues be solved with tree of thoughts?,
2024. URL https://arxiv.org/abs/2405.13057.

5 Team and Aohan Zeng et al. GIm-4.5: Agentic, reasoning, and coding (arc) foundation models,
2025. URL https://arxiv.org/abs/2508.06471.

Chungqiu Steven Xia and Lingming Zhang. Less training, more repairing please: Revisiting auto-
mated program repair via zero-shot learning, 2022. URL https://arxiv.org/abs/2207.
08281.

Chungiu Steven Xia, Yuxiang Wei, and Lingming Zhang. Automated program repair in the era
of large pre-trained language models. In Proceedings of the 45th International Conference on
Software Engineering, ICSE °23, pp. 1482-1494. IEEE Press, 2023. ISBN 9781665457019.
doi: 10.1109/ICSE48619.2023.00129. URL https://doi.org/10.1109/ICSE48619.
2023.00129.

Chungiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying llm-
based software engineering agents, 2024. URL https://arxiv.org/abs/2407.01489.

Boyang Yang, Haoye Tian, Weiguo Pian, Haoran Yu, Haitao Wang, Jacques Klein, Tegawendé F.
Bissyandé, and Shunfu Jin. Cref: An llm-based conversational software repair framework for
programming tutors. In Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2024, pp. 882-894, New York, NY, USA, 2024a. Associ-
ation for Computing Machinery. ISBN 9798400706127. doi: 10.1145/3650212.3680328. URL
https://doi.org/10.1145/3650212.3680328.

11

https://arxiv.org/abs/2406.00515
https://arxiv.org/abs/2310.06770
https://arxiv.org/abs/2411.01114
https://doi.org/10.1145/3650203.3663334
https://doi.org/10.1145/3650203.3663334
http://dx.doi.org/10.1126/science.abq1158
http://dx.doi.org/10.1126/science.abq1158
https://www.sciencedirect.com/science/article/pii/S2666165924001698
https://www.sciencedirect.com/science/article/pii/S2666165924001698
https://arxiv.org/abs/2405.13057
https://arxiv.org/abs/2508.06471
https://arxiv.org/abs/2207.08281
https://arxiv.org/abs/2207.08281
https://doi.org/10.1109/ICSE48619.2023.00129
https://doi.org/10.1109/ICSE48619.2023.00129
https://arxiv.org/abs/2407.01489
https://doi.org/10.1145/3650212.3680328

Under review as a conference paper at ICLR 2026

John Yang, Carlos E. Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering,
2024b. URL |https://arxiv.org/abs/2405.15793.

Zhongming Yu, Hejia Zhang, Yujie Zhao, Hanxian Huang, Matrix Yao, Ke Ding, and Jishen
Zhao. Orcaloca: An llm agent framework for software issue localization. arXiv preprint
arXiv:2502.00350, 2025.

Daoguang Zan, Bei Chen, Fengji Zhang, Dianjie Lu, Bingchao Wu, Bei Guan, Yongji Wang, and
Jian-Guang Lou. Large language models meet nl2code: A survey, 2023. URL https://
arxiv.org/abs/2212.09420.

Daoguang Zan, Zhirong Huang, Ailun Yu, Shaoxin Lin, Yifan Shi, Wei Liu, Dong Chen, Zongshuai
Qi, Hao Yu, Lei Yu, Dezhi Ran, Muhan Zeng, Bo Shen, Pan Bian, Guangtai Liang, Bei Guan,
Pengjie Huang, Tao Xie, Yongji Wang, and Qianxiang Wang. Swe-bench-java: A github issue
resolving benchmark for java, 2024. URL https://arxiv.org/abs/2408.14354,

Kexun Zhang, Weiran Yao, Zuxin Liu, Yihao Feng, Zhiwei Liu, Rithesh Murthy, Tian Lan, Lei
Li, Renze Lou, Jiacheng Xu, Bo Pang, Yingbo Zhou, Shelby Heinecke, Silvio Savarese, Huan
Wang, and Caiming Xiong. Diversity empowers intelligence: Integrating expertise of software
engineering agents, 2024a. URL https://arxiv.org/abs/2408.07060.

Quanjun Zhang, Tongke Zhang, Juan Zhai, Chunrong Fang, Bowen Yu, Weisong Sun, and Zhenyu
Chen. A critical review of large language model on software engineering: An example from chat-
gpt and automated program repair, 2024b. URL https://arxiv.org/abs/2310.08879.

Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
program improvement, 2024c. URL https://arxiv.org/abs/2404.05427.

Zibin Zheng, Kaiwen Ning, Yanlin Wang, Jingwen Zhang, Dewu Zheng, Mingxi Ye, and Jiachi
Chen. A survey of large language models for code: Evolution, benchmarking, and future trends,
2024. URL https://arxiv.org/abs/2311.10372.

12

https://arxiv.org/abs/2405.15793
https://arxiv.org/abs/2212.09420
https://arxiv.org/abs/2212.09420
https://arxiv.org/abs/2408.14354
https://arxiv.org/abs/2408.07060
https://arxiv.org/abs/2310.08879
https://arxiv.org/abs/2404.05427
https://arxiv.org/abs/2311.10372

Under review as a conference paper at ICLR 2026

A APPENDIX

Table of Contents:

* Appendix A: Distribution of patterns across different models

* Appendix B: Solution Leak Examples

» Appendix C: Prompts used in solution leak filtering and test enhancement
* Appendix D: LLM Usage

A.1 APPENDIX A

Distribution of Patterns Across Models

- o— 3
0

< —

= —

150 |- N

72}
)
2
g BB Correct
.E 100 - | [0 Different Files/Functions
S I B Incomplete
g for t
g sl B ncorrec
= o < C% N 2 g
Z — ~ 2 N o .
i —

AutoCodeRover OpenHands+CodeAct SWE-Agent
-v2.0 -v2.1 -1.0

Figure 7: Counts per category for AutoCodeRover-v2.0, OpenHands+CodeAct-v2.1, and SWE-
Agent-1.0.

A.2 APPENDIX B

Issue Report - Comments
ruoyu0088 commented on Apr 17, 2019 « edited =

Iuse lanbdify() to generate some functions and save the code for further use, But the generated code for
f I ;
Indexed operation has some warnings which can be confirmed by following code; Generated Patch

sympy/printing/pycode-py

from sympy import * L.D
P = Indexedsase("p") PREC = precedence(expr)

return self._operatorsf’not!J +
pycode(p(8]) self.parenthesize(expr.argsi01. PREC)

the output is

+ def _print_Indexed(self. expr):
+ base. xindex = expr.args
Not. ted in Python: 0
o Irgenegrred An pyeen G + return "OL{1".format(str(base), "
e . join(Eself._print(ind) for ind in index1))
1

We should add following method to. Pythoncodeprinter

def _print_Indexed(self, expr): fual
base, *index = expr.args
return "{}[{}]".format(str(base), ", ".join([self._print(ind) for ind in index]))

Figure 8: Solution Leakage in issue report for sympy-16669

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Gold Patch
xarray/core/rolling.py

4 b4 e

else:
reshaped(key] = var

should_be_coords = set(window_dim) & set(self.obj.coords)

should handle window dim being unindexed

should be coords = (set(window dim) & set(self.obj.coords)) |
self.obj.coords

)

result = reshaped.set coords(should be coords)

if isinstance(self.obj, DataArray):
return self.obj._from_temp_dataset (result)

Generated Patch

=

+

else:
reshaped(key] = var

should_be_coords = set(window_dim) & set(self.obj.coords)
Preserve all original coordinates, not just the ones being coarsened
should be coords = set(self.obj.coords)
result = reshaped.set_coords (should_be_coords)
if isinstance(self.obj, DataArray):

return self.obj. from temp dataset(result)

Figure 9: Incorrect fix generated by the model for xrray-7732

©old Patch

Generated Patch

1ib/matplotlib/axes/_axes-py

1

ib/matplotlib/cbook-py

def _pcolorargs(self. funcname. ¥args. shading='auto!. kxkuargs):

if

€ = cbook-safe_masked_invalid(C)
€ = cbook-safe_masked_invalid(C. copy=True)

return X» Y, C. shading

len(args) == 3z

Lt
ry
-

+

ef safe_masked_invalid(x. copy=False):
Ensure that we create a copy if the mask is read-only
if np-ma-isMaskedArray(x) and not x-mask-flags-uriteable:
copy = True

xm = np.ma-masked_invalid(x. copy=False)

xm = np.ma-masked_invalid(x. copy=copy)

Figure 10: Different files changed by model for issue-26093 of Matplotlib

14

Under review as a conference paper at ICLR 2026

Patch

django/utils/asyncio-py

def inner(xargs. x*kwargs): Generated Patch

Dete a running eve 0| this threa /django/utils/asyncio-py

try: def inner(message):
event_loop = asyncio.get_event_loop()
except RuntimeError: else:

pass if event_loop.is_running():

else: raise SynchronousOnlyOperation(message

e - if not os-environ-get('DJANGO_ALLOW_ASYNC_UNSAFE')=

raise Synchronaustnlyperation(message) raise SynchronousOnlyoperation(message
if not os-environ.get('DJANGO_ALLOU_ASYNC_UNSAFE")=
Detect a running event loop in this threa 4 Pase omuard
LOVE return func(xargs. xxkwargs)
event_loop = asyncio-get_event_loop()
except RuntimeError
pass
else:
if event_loop-is_running():
raise SynchronousonlyOperation(message)
Pass onuards.

return func(xargs. xxkwargs)

Figure 11: Incomplete fix generated by the model for django-31056

A.3 APPENDIX C

A.3.1 TESTENHANCER PROMPT

/ You are an expert software engineer code assistant tasked with generating additional \
unit tests for a Python source file and its corresponding test file.

TASK: Your objective is to add 30 regression tests that detect the bug, which is resolved by
the provided patch.

GUIDELINES:

1.

Analyze the Code: Examine the provided source code to understand its function-
ality, inputs, outputs, and core logic.

Analyze the Patch: Examine the provided patch to understand the bug it fixes in
the source code.

. Identify Test Cases: Develop a detailed list of test cases that will fully validate the

provided patch.

Add and Review Tests: Integrate individual tests, ensuring they collectively cover
all possible scenarios, including edge cases and exception handling.

. Maintain Consistency: Ensure new tests are consistent with the existing test suite

in terms of style, naming conventions, and structure. Assume new tests are part of
the same suite if a test suite exists.

ADDITIONAL CONSTRAINTS:
* Return only valid Python in the YAML fields; do not produce syntax errors.

* QOctal literals must use digits 0-7 only (e.g., 00644). Do not generate invalid octal

values like 00800.

Source File: Here is the source file source_file that you will be writing tests against.
We have manually added line numbers to assist in understanding the code coverage. These
line numbers are not part of the original code.

source_numbered

Patch: Here is the patch that is applied to the source file source_file to fix a bug.
patch_content

Test File: Here is the file test_file that contains the existing tests.

\test,content

15

Under review as a conference paper at ICLR 2026

troduction text or follow-up text.
Example output:

AU WA

yaml

language: Python
number_of_ tests:
test_behavior:
test_code:
new_imports_code:

\\\\

/OUTPUT FORMAT: The response should be only a valid YAML object, without any in—\

A.3.2 SOLULEAKDETECTOR PROMPT

f You are a solution leakage detection expert.

TASK

Analyze GitHub issue descriptions (problem_statement) and related comments
(hints_text) for solution leakage.

DEFINITION
Solution leakage occurs when:
1. The solution is explicitly mentioned, such as:

* Code snippets providing a direct fix.

* Step-by-step instructions leading directly to the solution.
2. The solution is subtly implied, for example:

» Explanatory text that indirectly leads to the correct fix.

* Comments hinting at how to resolve the issue.

EXAMPLE 1
Description: I propose to add the following settings, with the following default values:

~

LANGUAGE_COOKIE_SECURE = False
LANGUAGE_COOKIE_HTTPONLY False
LANGUAGE_COOKIE_SAMESITE None

[~

w

The default values maintain the current behavior.

These settings do not provide much security value, since the language is not secret or sensi-
tive. This was also discussed briefly here: https://github.com/django/django/
pull/8380#discussion_r112448195.

Reasons for Change:

* Sometimes auditors require them.

* I personally prefer to set them unless I have a reason not to.

* Browsers are increasingly enforcing HttpOnly and
Secure, e.g., https://webkit.org/blog/8613/
intelligent-tracking-prevention—-2-1/.

Expected Output:
1] {
2 "solution_leakage_detected": true,
3 "reason": "The_solution_is _explicitly, provided _in_the_description.",
4 "extracted_solution": "LANGUAGE_COOKIE_SECURE_=_False, LANGUAGE_COOKIE_HTTPONLY =
False, LANGUAGE_COOKIE_SAMESITE_=_None"
50}

N

16

https://github.com/django/django/pull/8380#discussion_r112448195
https://github.com/django/django/pull/8380#discussion_r112448195
https://webkit.org/blog/8613/intelligent-tracking-prevention-2-1/
https://webkit.org/blog/8613/intelligent-tracking-prevention-2-1/

Under review as a conference paper at ICLR 2026

(EXAMPLE 2 \

Description: Shape of coef_ is incorrect for linear_model.Lasso when using
fit_intercept=False.

Steps to Reproduce:
1| import numpy as np
2| from sklearn import linear_model
3
4| est_intercept = linear_model.LlLasso (fit_intercept=True)
5| est_intercept.fit (np.c_[np.ones(3)], np.ones(3)
6| assert est_intercept.coef_.shape == (1,)
7
8| est_no_intercept = linear_model.Lasso(fit_intercept=False)
9| est_no_intercept.fit (np.c_[np.ones(3)], np.ones(3)
10| assert est_no_intercept.coef_.shape == (1,)
Expected Output:
1] {
2 "solution_leakage_detected": false,
3 "reason": "The_description_identifies_a, bug_but does not_explicitly, provide_a,,
solution.",
4 "extracted_solution": null
50}
EXAMPLE 3

Description: A typoin Poly3DCollection.__init__() causesa TypeError excep-
tion when calling the function with shade=True.
Relevant Code:

matplotlib/lib/mpl_toolkits/mplot3d/art3d.py

1
2
3| Line 908 in f7a8cab
4
5| if facecolors is None and edgecolors in None:
6| edgecolors in None should be edgecolors is None
Expected Output:
1 {
2 "solution_leakage_detected": true,
3 "reason": "The_solution is_explicitly, provided _as_a, corrected_code_snippet.",
4 "extracted_solution": "edgecolors_in_None_should_be_edgecolors_is_None"
5

}

N /

A.4 LLM USAGE

We used a large language model (LLM) solely for proofreading and minor copyediting (grammar,
clarity, and style). All suggestions were verified by the authors, who remain responsible for the final
content.

17

	Introduction
	Issue Quality Analysis of SWE-Bench
	Quality Deficiencies in SWE-Bench Issues
	Impact of Solution (hint) Leak
	IMPACT OF Weak Tests

	Building SWE-Bench+
	SoluLeakDetector: LLM-based Solution Leak Issue Detection
	TestEnhancer: LLM-based Tests Enhancement

	Evaluation of SWE-Bench+
	Performance Analysis of SoluLeakDetector
	Performance Analysis of TestEnhancer

	Related Work
	Conclusion
	Appendix
	Appendix A
	Appendix B
	Appendix C
	TestEnhancer Prompt
	SoluLeakDetector Prompt

	LLM Usage

