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Abstract

3D interactive segmentation is highly relevant in reducing the annotation time for experts.
However, current methods often achieve only small segmentation improvements per inter-
action as lightweight models are a requirement to ensure near-realtime usage. Models with
better predictive performance such as the nnU-Net cannot be employed for interactive seg-
mentation due to their high computational demands, which result in long inference times.
To solve this issue, we propose the 3D interactive segmentation framework i3Deep. Slices
are selected through uncertainty estimation in an offline setting and afterwards corrected
by an expert. The slices are then fed to a refinement nnU-Net, which significantly improves
the global 3D segmentation from the local corrections. This approach bypasses the issue of
long inference times by moving expensive computations into an offline setting that does not
include the expert. For three different anatomies, our approach reduces the workload of
the expert by 80.3%, while significantly improving the Dice by up to 39.5%, outperforming
other state-of-the-art methods by a clear margin. Even on out-of-distribution data i3Deep
is able to improve the segmentation by 19.3%.
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1. Introduction

Manual segmentation of 3D medical data such as CT, MRI or ultrasound scans is highly
time-consuming, as it often consists of hundreds of slices. Interactive segmentation reduces
the workload on experts by refining the segmentation from user interactions with the goal
to minimize the necessary amount and thus saving the expert time. Such methods could
enable an expert to segment a CT scan with just a few clicks.
The two requirements for interactive applications are a high predictive performance
and a low reaction time (< 1s). The first enables the expert to annotate the image with
much fewer interactions than when done manually, while the latter ensures the application
is usable in practice. Current approaches limit the model capabilities as all their computa-
tions are performed live. To this day, no approaches exist to our knowledge that try to lift
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this limitation and benefit from the much higher predictive performance of larger models.
Our framework addresses this and provides an alternative by moving the expensive compu-
tations into an offline setting. Not only does this lead to fast reaction times, but also enables
the use of large models, which provide much better segmentation results. Our method con-
sists of the following steps, illustrated in Figure 1.
First, we extract both initial segmentations and uncertainties with a presegmentation nnU-
Net for a subject. Based on the uncertainties, we automatically select a small number
of slices with a one-shot slice acquisition function and send these to the expert for
corrections. The corrections are then used by a refinement nnU-Net to improve the
segmentation globally by inferring from the local corrections. Both the presegmentation
and refinement nnU-Nets are trained once beforehand, with the framework solely relying
on inference during the interactive segmentation process.
The expert is not involved in the presegmentation or refinement stages, which reduces the
practical reaction time for the framework to zero. As a one-shot slice acquisition function
is used, only a single iteration with the framework is needed to significantly improve the
segmentations.
We demonstrate the effectiveness of our approach with an evaluation on the brain tumor and
pancreas datasets from the Medical Segmentation Decathlon and an out-of-distribution
in-house chest CT scan dataset with COVID-19 lesions. The code is open source and
released at: https://github.com/Karol-G/i3Deep

2. Related Work

A number of interactive segmentation approaches have been proposed over the years, which
we discuss in the following. An overview of the relevant methods in regards to predictive
performance and reaction time is given in Table 1.

Classical U-Net/FCN Konyushkova P-Net/iW-Net i3Deep

Predictive Performance Low Medium Low Medium High

Reaction Time Medium Slow Fast Fast Instantly

Table 1: Predictive performance and reaction times of interactive segmentation approaches.

Classical methods that are still popular today in the medical domain are Graph-Cut
(Greig et al., 1989), Watershed (Meyer, 1994) and Random Walker (Grady, 2006). These
methods are relatively fast even on 3D data, but have a low predictive performance by
current standards.
Deep interactive segmentation approaches often outperform classical methods and most of
them follow a very similar pattern of pretraining a refinement model with simulated user
input and then running inference with actual expert input. However, processing higher
resolution 3D images is computationally very expensive with CNNs. Therefore, approaches
that employ a U-Net or FCN have slow reaction times as it is the case with Bredell et al.
(2018); Li et al. (2021) and the 3D Slicer implementation of Sakinis et al. (2019).
As an alternative, other approaches use very lightweight 3D models like the P-Net (Wang
et al., 2018, 2019b; Lei et al., 2019; Liao et al., 2020; Xu et al., 2021) or iW-Net (Aresta
et al., 2019), which achieve a near-realtime reaction time, but have a lower predictive
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performance in turn.
Besides the approaches that are task-agnostic, there are also a number of methods that are
tailored to specific tasks like prostate, cell or vessel segmentation (Cheng and Liu, 2017;
Koohbanani et al., 2020; Dang et al., 2022).
Other approaches used in active learning, such as by Konyushkova et al. (2015, 2019), use
Boosted Trees uncertainties to find areas that should be corrected by an expert. Drawbacks
of this method are the limited predictive performance and the need to retrain after every
iteration.

3. Methodology

The i3Deep framework uses the nnU-Net (Isensee et al., 2021) for both the presegmentation
and refinement model, as it has a very high predictive performance and achieves state-of-the-
art results on many medical benchmarks. The training process of both models is explained
in 3.1 and the inference pipeline of i3Deep is outlined in 3.2.

3.1. Presegmentation & refinement nnU-Net training

We presume that a small number of subjects is already annotated, which make up the
train set. Both the presegmentation and the refinement nnU-Net are trained exclusively
on this train set once. The presegmentation nnU-Net is trained in a normal fashion, while
the refinement nnU-Net further uses the ground truth annotations of the training set to
simulate user interactions. For each image during training, slices of the ground truth are
randomly chosen and all other slices are set to zero in the image volume. This modified
image volume is then concatenated along the channel dimension of the image data and used
as training input. When presented with corrected slices during inference, the refinement
model is then able to utilize the corrections.

3.2. Inference pipeline

The inference pipeline consists of a four-stage process depicted in Figure 1.

Figure 1: Overview of our proposed i3Deep framework and its four stages.

3.2.1. Stage 1: Presegmentation & uncertainty computation

In stage one, the presegmentation model is used to run inference on new unseen subjects
to provide presegmentations alongside uncertainties from the model. Estimating the uncer-
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tainties for our approach can be done with multiple uncertainty predictors such as Test-Time
Augmentation (Wang et al., 2019a), Monte Carlo Dropout (Gal and Ghahramani, 2016) or
Deep Ensembles (Lakshminarayanan et al., 2017), which provide multiple varying predic-
tions for an image. The voxel uncertainty inherent to the variations of these predictions is
then quantified by computing their entropy. The uncertainty estimation process is expanded
on in Appendix A.

3.2.2. Stage 2: Slice acquisition

In stage two, a one-shot slice acquisition function selects multiple slices for each subject in
axial, coronal and sagittal orientation from the 3D image based on the quantified uncer-
tainties. The goal of this acquisition function is to select the minimum number of slices
necessary to maximally improve the segmentation in a single run.
First, for each slice the sum of all uncertainty voxels is computed. Next, slices that have
less uncertainty than any other slice within a minimum distance minDist are removed.
This leaves only slices that are local maxima and decreases uncertainty correlation between
slices. Afterwards, slices that have not enough uncertainty are removed as well, based on
a minUncert parameter. Of the remaining slices, further, only a subset of maxSlices is
selected that have the highest uncertainty. All three parameters are optimized after the
training of the presegmentation nnU-Net once on validation data.

3.2.3. Stage 3: Expert annotations

In this stage, the expert is involved in the process for the first time. The acquired slices
of the previous stage are sent to the expert for correction. The expert is provided for each
slice the presegmentation and subsequently corrects any mistakes they identify. We opt to
let the expert choose their preferred annotation tool to enable precise corrections even on
images with diffuse class borders, as it is the case with COVID-19 lesions. It is important
to note that stage 1 and 2 both happen in an offline setting and the expert is only involved
once these stages have been completed.

3.2.4. Stage 4: Refinement

In stage four, the refinement model is used to improve upon the segmentation as depicted in
Figure 2. The corrected slices are projected into an empty volume back into their original

Figure 2: Inference process of the refinement nnU-Net with the corrected slices.
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positions. Then this volume is concatenated with the original image and used for inference
by the refinement model, which significantly improves the segmentation.

4. Experimental Setup

4.1. Datasets

We evaluate on three datasets to prove the applicability of our approach to a number of use
cases. First, we use the Medical Segmentation Decathlon (MSD) brain tumor (Antonelli
et al., 2021) dataset consisting of 484 labeled brain MRI scans with 5 MRI-modalities.
The labeled classes are edema, non-enhancing tumor and enhancing tumor and the mean
subject size of the dataset is 240x240x155 voxels. We split the dataset into a train set of
100 subjects, a validation set of 50 subjects and a test set of 334 subjects.
The MSD pancreas (Antonelli et al., 2021) dataset consists of 281 labeled portal-venous
phase CT scans with the classes pancreas and cancer and a mean subject size of 512x512x98
voxels. Again, we split the dataset into a train set of 100 subjects, a validation set of 36
subjects and a test set of 145 subjects.
The third dataset is a COVID-19 dataset, which consists of COVID-19 chest CT scans
with the label ground-glass opacity (GGO). The dataset is divided into a set of subjects
that are publicly available (MedSeg; Jun et al., 2020; Morozov et al., 2020) and an out-of-
distribution (OOD) in-house private set to evaluate the generalizability of our approach.
In total, the dataset consists of 129 subjects and a mean subject size of 1280x1280x266
voxels. The data is split into a train set of 79 subjects, a validation set of 10 subjects and
an in-house OOD test set of 40 subjects.

4.2. Baselines

We compare our approach to other state-of-the-art 3D interactive segmentation techniques
that focus on fast reaction times for the expert and can thus be used in practice. Ap-
proaches that have long reaction times such as Bredell et al. (2018); Li et al. (2021); Sakinis
et al. (2019) are excluded due to their missing practicality. For the classical methods, we
compare against Graph-Cut (Jirik et al., 2018; Jirik), Watershed (Skimage) and Random
Walker (Skimage). For CNN-based methods, we compare against the P-Net from DeepI-
GeoS (Wang et al., 2019b), which is used in most fast CNN-based approaches. We found
during training that the used geodesic distance transforms from DeepIGeoS drastically de-
crease the performance in our setting and thus opted train the P-Net in the same fashion
as our refinement nnU-Net instead. Further, to be able to fairly compare all baselines, they
all receive the exact same corrected slices as the refinement nnU-Net from i3Deep.

4.3. Training details

Training of the presegmentation and refinement nnU-Nets was done in PyTorch with SGD
optimizer, a learning rate of 1e−2, a weight decay of 3e−5, a momentum of 0.99 and 1000
epochs of training time. The P-Net used the same settings, but with grid-search optimized
learning rates for the brain tumor, pancreas and COVID-19 datasets of 1e−2, 1e−4 and
1e−4, respectively. The parameters of the acquisition function were optimized to a minDist
of 0.0234, maxSlices of 12 and minUncert of 0.1.
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5. Results

5.1. Predictive performance

We conduct an evaluation of the predictive performance in terms of Dice score performance
over all datasets. The results are shown in Figure 3 and as table in Appendix B.1. Based
on our uncertainty ablation study in section 5.3, we choose Deep Ensembles as the used un-
certainty predictor for the presegmentation nnU-Net. However, other uncertainty methods
can be used as well and are viable options for i3Deep.
Starting with the brain tumor dataset (red plots in Figure 3), we can see that the pre-
segmentation (blue) performs acceptable for the classes edema and enhancing tumor, but
rather bad for non-enhancing tumor. By contrast, i3Deep with nnU-Net refinement (or-
ange) outperforms the presegmentation and all other baselines over all classes by a margin
of up to 19.2%. Compared to the presegmentation, i3Deep improves the mean Dice score
by 8.1%, 19.2% and 7.2%, respectively. The improvements for edema and non-enhancing
tumor are lower as the Dice scores are already high for the presegmentation and thus only
limited improvements are possible.

Figure 3: Box plots for different classes of the brain tumor, pancreas and COVID-19 dataset
for the presegmentation, our method and all baselines.

Next, we inspect the results for the pancreas dataset (blue plots in Figure 3). For the
pancreas class, we see again a significant improvement with i3Deep in comparison to the
presegmentation by 8.4%. By contrast, all baseline methods perform significantly worse
than the presegmentation, which shows their limited predictive performance. For the can-
cer class, we see that the presegmentation fails completely with a mean Dice score of only
27.4% due to the difficulty of separating the small cancer class from the pancreas class, by
which it is often surrounded. In this instance, i3Deep manages to improve the segmenta-
tion by a margin of 39.5%. The P-Net improves the Dice score by 34.1%, which is also
considerable. Yet, it shows again the predictive limitations of this lightweight model. The
other baselines manage to improve the Dice score, but are significantly worse than i3Deep
and the P-Net.
The last dataset we evaluate is the COVID-19 test set (green plot in Figure 3). It is im-
portant to note, that i3Deep has never seen any of our in-house data during training, thus
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making the test data out-of-distribution (OOD) and an important benchmark for the prac-
tical usability of i3Deep. Here, the presegmentation achieves a Dice score of 64.4%, which
is acceptable for OOD data. However, even though the data is OOD i3Deep still improves
the Dice score by 19.3% to 83.7%, showing the applicability of our approach for real world
usage. This time, the P-Net achieves a similar performance with a Dice score of 80.09%.
The other baselines are again considerably worse, with Graph-Cut showing even a very high
variance in terms of predictive performance.
In summary, i3Deep can improve the segmentation quality significantly in comparison to
state-of-the-art baselines, while enabling the usage of models with high predictive perfor-
mance such as the nnU-Net in an interactive setting.

5.2. Qualitative comparison

In Figure 4 a qualitative comparison of the brain tumor dataset is shown. Here, the preseg-
mentation model fails to detect a part of the non-enhancing tumor (green) and only badly
predicted the enhancing tumor (blue). By contrast, i3Deep manages to recover the missing
regions almost perfectly with only minor inaccuracies for the enhancing tumor. The P-Net
also recoveres some of the regions, but the overall prediction lacks the same quality as that
of i3Deep. The predictions for Watershed and Random Walker also recover small amounts
of the missing regions, but are worse in comparison to both i3Deep and the P-Net. The
pancreas and COVID-19 dataset comparison (Appendix B.2) further confirm our results.
In conclusion, all refinement models managed to recover missing lesions, yet i3Deep is the
model that achieves the best segmentation in comparison to the ground truth. This shows
the importance of using models with a high predictive performance in interactive settings
to reliably provide segmentations of high quality for the expert.

Figure 4: Qualitative comparison of the ground truth, the presegmentation, our approach
and the baselines on the brain tumor dataset.

5.3. Uncertainty ablation

We conduct an ablation study to determine the uncertainty predictor for the presegmen-
tation model that performs best with our approach. It is important to note that the
tested uncertainty predictors are only used for the presegmentation model, as the refine-
ment model does not need to compute uncertainties. In total, we compare the predictors
Test-Time Augmentation (TTA), Monte Carlo Dropout (MC Dropout) and Deep Ensem-
bles. The evaluation is done on all three validation datasets and measured in terms of Dice
score. The results are shown in Figure 5. The Dice scores show that all predictors perform
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quite similar on the brain tumor dataset with Deep Ensembles being only 0.8%, 1.3% and
0.1% better in the mean than the second best predictor on each class respectively. On the
pancreas dataset the results are clearer with Deep Ensembles surpassing the second best
predictor in the mean by 2.4% and 5.1%, respectively. However, Deep Ensembles perform
1.5% worse than TTA on the COVID-19 dataset. As Deep Ensembles have the best perfor-
mance on most classes, we choose it as our predictor for our evaluation in section 5.1. Yet,
the evaluation also shows that all three predictors are viable methods.
Further, we evaluate the predictors in terms of ECE for which the results are discussed in
Appendix C.1 and reflect these results. We also evaluate the impact of using P-Net Deep
Ensemble uncertainties instead of nnU-Net Deep Ensemble uncertainties in Appendix C.2.
The results show that the uncertainties of both models are equally good for our approach.

Figure 5: Comparison of the uncertainty predictors TTA, MC Dropout and Deep Ensembles
on the brain tumor, pancreas and COVID-19 dataset.

5.4. Annotation Ratio

To assess the expected workload reduction we propose the subject-wise Annotation Ratio
(AR), which measures how many fewer slices need to be annotated: AR = |S|

|GTforeground| .

Here, |S| denotes the number of all selected slices and |GTforeground| the number of axial
ground truth slices that contain foreground annotations.
On the brain tumor dataset we achieve an AR of 20.56%, on the pancreas dataset 17.94%
and on the COVID-19 dataset 20.50%. Averaged over all datasets, we achieve an AR of
19.67% meaning that an expert needs to annotate 80.33% less slices of what they would
normally annotate, resulting in a significant workload reduction.

6. Conclusion

We introduce the interactive framework i3Deep, which enables the usage of models with
a high predictive performance. i3Deep provides an expert pre-acquired slices based on
uncertainties and uses the expert corrections to improve the segmentation with a refinement
nnU-Net. The evaluation shows that this approach reduces the workload of the expert by
80.3%, while significantly improving the segmentations up to 39.5% and outperforming
other state-of-the-art interactive methods often considerably. Even on out-of-distribution
data, i3Deep is able to improve the segmentation by 19.3%. In the future, we intend to move
from slices to patches and evaluate i3Deep in multiple user studies on even more anatomies
and out-of-distribution datasets.
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Appendix A. Uncertainty estimation

Uncertainty can be estimated by multiple means and the estimation consists of two steps.
First, multiple predictions need to be inferred stochastically with methods such as Test-
Time Augmentation (Wang et al., 2019a), Monte Carlo Dropout (Gal and Ghahramani,
2016) or Deep Ensembles (Lakshminarayanan et al., 2017), which we refer to as uncertainty
predictors. Second, the uncertainty from the predictions must be quantified with methods
such as the entropy, variance or the bhattacharyya coefficient (Kang and Wildes, 2015),
which we refer to as uncertainty quantification. We determine the best predictor in section
5.3, but choose entropy for the quantification as it is the most popular one and the influence
of the quantification method is limited.
In this context, the entropy is defined as the entropy of each voxel belonging to a certain
class and is based on the average of multiple predictions. Further, the entropy is divided
by its information length to be within the interval of [0,1].
For an image x with C classes and a total of T different predictions pt,c(x) for each class,
the entropy is defined as:

pT,c(x) =
1

T

T∑
t=1

pt,c(x) (1)

H(pT,C(x)) =
−
∑C

c=1 pT,c(x) ∗ log(pT,c(x))
log(C)

(2)

Appendix B. Results

B.1. Predictive performance

In this section we report the mean and standard deviation for our results of the brain tumor
dataset in Table 2, the pancreas dataset in Table 3 and the COVID-19 dataset in Table 4.
Dice scores marked with ∗ denote a p-value < 0.05 when compared with the second place
method. The results are the same as the one depicted in Figure 3.
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Brain Tumor

Preseg. i3Deep P-Net Watershed Random Walker

Edema 0.784±0.128 0.865±0.103∗ 0.792±0.101 0.53±0.102 0.75±0.124

Non-E. T. 0.566±0.233 0.758±0.192∗ 0.596±0.218 0.603±0.174 0.7±0.182

Enh. T. 0.792±0.201 0.864±0.158∗ 0.751±0.186 0.598±0.155 0.74±0.175

Table 2: Mean and standard deviation Dice scores for the edema, non-enhancing tumor and
enhancing tumor class of the brain tumor dataset for the presegmentation, our method and
all baselines.

Pancreas

Preseg. i3Deep P-Net Watershed Random Walker

Pancreas 0.749±0.096 0.834±0.08∗ 0.66±0.114 0.509±0.116 0.525±0.181

Cancer 0.274±0.309 0.669±0.298∗ 0.615±0.308 0.478±0.274 0.467±0.312

Table 3: Mean and standard deviation Dice scores for the pancreas and cancer class of the
pancreas dataset for the presegmentation, our method and all baselines.

COVID-19

Preseg. i3Deep P-Net Watershed Graph-Cut

GGO 0.644±0.125 0.837±0.079 0.809±0.136 0.702±0.172 0.464±0.357

Table 4: Mean and standard deviation Dice scores for the GGO class of the COVID-19
dataset for the presegmentation, our method and all baselines.

B.2. Qualitative comparison

We continue the qualitative comparison of the pancreas and COVID-19 dataset in this sec-
tion. Figure 6 shows a comparison for the pancreas dataset.

Figure 6: Qualitative comparison of the ground truth, the presegmentation, our approach
and the baselines on the pancreas dataset.

Both the pancreas and the cancer class are relatively small with the pancreas class surround-
ing the cancer class in most subjects. It can be seen, that the presegmentation overestimated
both classes. By comparison, i3Deep and the P-Net both reduced this oversegmentation,
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yet i3Deep aligned the class borders overall better with the ground truth borders than the
P-Net. For Watershed and Random Walker the issue of oversegmentation only increased
with either the pancreas or cancer class oversegmenting the entire lesion. The comparison
for the COVID-19 dataset is shown in Figure 7. Here, we see that the presegmentation
missed the GGO lesions in the lower lungs, while all interactive methods were able to re-
cover the missing lesions. However, we see again similar results with i3Deep being the most
precise by not falsely segmenting the sparse small pockets of lesion free lung. The P-Net also
recovered the GGO lesions for the lower lungs, but oversegmented the lung in general by
segmenting the small lesion free pockets too. Again, the classical methods did not achieve
the same level of refinement as i3Deep as both of them are too coarse.

Figure 7: Qualitative comparison of the ground truth, the presegmentation, our approach
and the baselines on the COVID-19 dataset.

Similar to our qualitative evaluation of the brain tumor dataset, all refinement models
managed to recover missing lesion. However, i3Deep is the method that achieved the best
segmentation in comparison to the ground truth, showing the importance of using models
with a high predictive performance in interactive settings to reliably provide segmentations
of high quality.

Appendix C. Uncertainty ablation

C.1. Expected Calibration Error

A common method to determine the quality of uncertainty is the Expected Calibration
Error (ECE) (Naeini et al., 2015; Guo et al., 2017). The ECE measures the difference in
expectation between confidence and accuracy to determine the miscalibration and thus the
quality of the uncertainty. It divides the softmax output range of [0,1] into M multiple bins
Bm of equal size and measures the accuracy and confidence of the softmax outputs that
fall within each bin. A weighted average over the total number of predictions n is taken to
compute a scalar miscalibration value. The ECE is formally defined as:

ECE =

M∑
m=1

|Bm|
n

|acc(Bm)− conf(Bm)| (3)

The accuracy and confidence of bin Bm are defined as follows:

acc(Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi) (4)

conf(Bm) =
1

|Bm|
∑
i∈Bm

p̂i (5)
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Here, ŷi and yi denotes the predicted class and ground truth class for a prediction i and p̂i
denotes the confidence for a prediction i.
Based on this, we evaluated the predictors TTA, MC Dropout and Deep Ensembles on the
validation sets of the brain tumor, pancreas and COVID-19 dataset with the ECE measure.
The results are shown in Table 5. For the brain tumor and pancreas dataset Deep Ensembles
achieve the lowest calibration error and have thus the best uncertainties. By contrast, TTA
performs best on the COVID-19 dataset with Deep Ensembles being slightly worse than
MC Dropout. We can conclude that Deep Ensembles have probably a slight advantage
over the other predictors, yet it is difficult to estimate based on the ECE how relevant that
advantage is. However, in conjunction with our Dice score evaluation in section 5.3 we can
conclude that this advantage is noticeable but not too significant.
Another important aspect to note is that the calibration seems to be very good based on the
ECE results. However, this is most likely only partly the case as the ECE has a number of
issues that are discussed in (Nixon et al., 2019) and which are especially true for 3D data,
which suffers from severe class imbalance. Still, the ECE is a commonly used measure,
hence us including it, but the result should always be taken with a grain of salt. For this
reason, our uncertainty evaluation based on Dice score performance is more reliable.

Brain Tumor Pancreas COVID-19

Deep Ensembles 0.0008 0.0004 0.0103

MC Dropout 0.0012 0.0011 0.01

TTA 0.0013 0.0006 0.0086

Table 5: The ECE results for the uncertainty predictors TTA. MC Dropout and Deep
Ensembles over all three datasets.

C.2. nnU-Net & P-Net uncertainty comparison

We evaluated the impact of using a different underlying model when using Deep Ensem-
bles for the uncertainty computation. For this purpose, we computed uncertainties with a
nnU-Net and a P-Net Deep Ensemble on the brain tumor dataset and used the resulting
uncertainties to compare the predictive performance of the refinement nnU-Net and refine-
ment P-Net. The mean Dice score result are shown in Table 6.
The performance of both nnU-Net refinement models is almost the same and independent
of the uncertainty generating underlying model. The results for the refinement P-Net are
similar with no significant change in model performance. However, due to the fact that the
nnU-Net has a considerably better predictive performance, the refinement nnU-Net achieves
a significantly better mean Dice score across all classes than the refinement P-Net.
We can conclude that there is no impact of using a different presegmentation model for
uncertainty computation in our setting when using Deep Ensembles.
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Brain Tumor

i3Deep (nnU-Net U.) i3Deep (P-Net U.) P-Net (nnU-Net U.) P-Net (P-Net U.)

Edema 0.865±0.103 0.863±0.105 0.792±0.101 0.785±0.116

Non-E. T. 0.758±0.192 0.770±0.183 0.596±0.218 0.615±0.204

Enh. T. 0.864±0.158 0.863±0.1655 0.751±0.186 0.75±0.188

Table 6: Mean and standard deviation Dice scores on the brain tumor dataset for the i3Deep
nnU-Net refinement model and P-Net refinement model evaluated with nnU-Net and P-Net
uncertainties. The term Uncertainties has been denoted as U.
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