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Abstract

Inverse protein folding addresses the challenge of designing amino acid sequences
that fold into a predetermined tertiary structure, bridging geometric and evolu-
tionary constraints to advance protein engineering. Inspired by the pivotal role
of multiple sequence alignments (MSAs) in structure prediction models like Al-
phaFold, we hypothesize that structural alignments can provide an informative
prior for inverse folding. In this study, we introduce DualMPNN, a dual-stream
message passing neural network that leverages structurally homologous templates
to guide amino acid sequence design of predefined query structures. DualMPNN
processes the query and template proteins via two interactive branches, coupled
through alignment-aware cross-stream attention mechanisms that enable exchange
of geometric and co-evolutionary signals. Comprehensive evaluations across on
CATH 4.2, TS50 and T500 benchmarks demonstrate DualMPNN achieves state-of-
the-art recovery rates of 65.51%, 70.99%, and 70.37%, significantly outperforming
base model ProteinMPNN by 15.64%, 16.56%, 12.29%, respectively. Further
template quality analysis and structural foldability assessment underscore the value
of structural alignment priors for protein design.

1 Introduction

Protein inverse folding addresses the computational challenge of identifying amino acid sequences that
fold into a predefined tertiary structure[1]. As the inverse of the traditional protein folding problem
that predicts structures from sequences, this task is critical for advancing protein engineering[2, 3,
4], enabling broad applications in drug discovery, peptide design, synthetic biology, and enzyme
design[5, 6, 7]. Despite its broad utility, protein inverse folding remains hindered by three key
challenges: (1) the non-injective mapping between sequences and structures, where diverse sequences
can adopt geometrically similar folds (structural degeneracy); (2) the computational intractability
of exhaustively exploring the vast sequences space; (3) the difficulty of ensuring thermodynamic
stability and experimental feasibility in designed sequences.

Recent advances in computational methods have made incremental progress. Energy-based methods
(Rosetta[8], K Yue et al. [9]) leverage physical potentials but struggle with conformational sampling.
Combinatorial optimizing methods (Craig et al.[10], Kleinberg et al.[11]) address sequence space
complexity but lack scalability. Deep learning models (ProteinMPNN[12], GraDe-IF[13], ESM-
IF[14]) have improved design efficiency through learned sequence-structure relationships. However,
these methods often fail to resolve structural degeneracy, producing sequences that prioritize structural
compatibility over functional stability. Consequently, achieving high-recovery sequence design that
both fold into target structures and exhibit native-like stability remains an open challenge.
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A promising strategy to address degeneracy involves integrating evolutionary or structural priors into
the design framework. Multiple sequence alignments (MSAs) have proven instrumental in struc-
ture prediction tools (like AlphaFold[15] and RoseTTAFold[16]), encoding evolutionary constraints
that guide folding simulations. We posit that homologous structural motifs captured by structural
alignments offer complementary prior knowledge for inverse folding. Unlike sequence-based MSAs,
structural alignments directly encode conserved spatial and physicochemical constraints across ho-
mologs, providing a blueprint for stable sequence-structure compatibility. Preliminary experiments,
in which randomly initialized ProteinMPNN’s node embeddings with a certain proportions of correct
and perturbed sequence templates, support this hypothesis by improved sequences recovery rates
(Supplementary Table S1), suggesting that structural homology informs viable sequence design.
In this work, we present DualMPNN, a dual-stream message passing neural network that leverages
structural alignments to guide high-recovery inverse protein folding. DualMPNN jointly reasons
over query structure geometry and homologous structural templates via two interactive branches.
The nodes in the query branch are iteratively updated from homologous structural templates-derived
amino acids through alignment-aware cross-stream attention mechanisms. Consequently, DualMPNN
learns to disentangle degenerate sequence solutions while preserving stability constraints, leading
to significant improvements in recovery rate of inverse protein folding. The contributions of our
work are summarized as: (1) Dual-stream architecture for structural priors. We proposed the
first framework to explicitly integrate structural alignments-derived templates into inverse protein
folding via dual-stream framework, enabling simultaneous learning of target. (2) Impact of template
quality. We systematically quantify how template selection (e.g. structural similarity) impacts
sequence recovery, establishing guidelines for optimal structural alignment utilization in protein
design. Structural priors derived from homologous templates can inspire new strategies for protein
design. (3) State-of-the-art performance. Evaluations across three benchmarks (CATH, TS50
and T500) demonstrate that DualMPNN achieved state-of-the-art in sequence recovery rates, out-
performing the base model ProteinMPNN by at least 12%. These results underscore its robustness
and capability to leverage structural homology for high-fidelity design. The code is available at
https://github.com/chen-bioinfo/DualMPNN.

2 Related work

Graph Neural Networks (GNNs) for Protein Design. GNNs have emerged as a dominant paradigm
for modeling protein structures, offering an inductive bias that aligns naturally with the spatial and rela-
tional dependencies of residues. By representing proteins as graphs, where nodes encode residue-level
features (amino acid embeddings) and edges capture pairwise geometric relationships (e.g. distances
or angular orientations), GNNs enable direct learning of sequence-structure compatibility[17]. Early
approaches, such as protein design was formulated as a conditional node classification task, predicting
amino acid identities given a fixed backbone coordinates [18, 19]. Subsequent advancements intro-
duced SE(3)-equivariant architectures[20, 21], which preserve rotational and translational invariance
critical for generalizing across structural conformations. These methods excel at capturing local
geometric constraints but often struggle to resolve global topological degeneracy, where distinct
sequence neighborhoods map to similar structural motifs.

Diffusion Models for Sequence-Structure Co-Design. To address the one-to-many mapping
inherent in inverse folding, recent work has integrated diffusion models with GNN backbones. These
frameworks treat sequence design as a stochastic denoising process, iteratively refining sequences
to match target structures while sampling from a learned distribution of plausible solutions. For
instance, GraDe-IF[13] employs a graph diffusion framework to model residue-wise dependencies,
achieving improved recovery rates in structurally ambiguous regions. Similarly, MaskDPD[22]
combines masked language modeling with diffusion to probabilistically explore sequence space,
demonstrating robustness to backbone perturbations. While diffusion models mitigate degeneracy
by sampling diverse solutions, their reliance on purely geometric features limits their ability to
incorporate evolutionary or structural priors that could further constrain the design space.

Dual-Stream Architectures for Multimodal Learning. Dual-stream neural network architectures,
although primarily explored outside the protein domain, offer compelling insights into multi-modal
and hierarchical representation learning. These architectures employ two parallel processing pathways
to extract and fuse complementary information from distinct input modalities or feature scales. In
computer vision, dual-stream models have achieved notable success. For example, DS-Net[23]
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Figure 1: Illustration of DualMPNN model. DualMPNN leverages structural templates as prior
knowledge to guide the inverse protein folding through dual-branch processing. Structural templates
are identified using Foldseek against the PDB. Query branch processes geometric features from
backbone atom coordinates to perform sequence recovery through inverse folding. Template branch
leverages aligned template structures and sequences to guide the query branch’s sequence recovery.
These two branches share the identical MPNN components.

simultaneously captures fine-grained local patterns and global context, outperforming single-stream
baselines in image classification tasks. Dual-stream Reasoning Network (DRNet)[24] designed for
abstract visual reasoning demonstrates strong generalization across multiple benchmarks by jointly
modeling spatial and semantic cues. Beyond vision, dual-stream architectures have been applied to
sign language recognition [25] and behavioral analysis [26], showcasing their flexibility in processing
heterogeneous input sources such as raw video and spatiotemporal patterns. These successes suggest
that dual-stream architectures may hold promise for leveraging the rich prior information encoded in
homologous structural templates.

3 Methods

We introduce DualMPNN that integrates structural alignments as prior information to guide the inverse
protein folding through dual-branch processing (Fig. 1). Given a query structure Gq = (Vq,Eq) and
a homologous structural template Gt = (Vt,Et), where Vq and Vt represent residues, and Eq and
Et represents pairwise residue relationships, DualMPNN learns to recover the sequence sq by jointly
reasoning over Gq and Gt.

3.1 Structural Templates Acquisition

Homologous templates are identified using Foldseek[27] against the Protein Data Bank (PDB).
Foldseek takes one protein structure as input and returns a list of candidate proteins, sorting by their
similarity. To prevent data leak from identical proteins or other chains of the same protein from being
used as pairings, we exclude near-identical matches (TM-score > 0.99) as well as same PDB IDs.
The remaining highest similar template is structurally aligned to query structure via TM-align [28],
yielding residue correspondences A = {(iq, it)} and global similarity scores STM ∈ [0, 1]. There
are some certain cases of the structure alignments according to TM-scores (see Supplementary B).
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3.2 Protein Representation

In this study, we employed ProteinMPNN as the base model. Therefore, the query representation
and template representation follow the formula of ProteinMPNN. Their key difference lies in the
availability of sequence information. For templates, their sequences are known, allowing the node
features to be initialized using the corresponding amino acid sequences. In contrast, the query protein
does not have sequence information available.

Query Representation (Gq): Query representation is the same as the base model ProteinMPNN.
Since the sequence is to be designed, node features are initialized to zeros. The edge features are
pairwise distances between five backbone-derived positions:

Eq =
{
eijab

}
a, b ∈ {N,Cα, C,O,Cβ}, 1 ≤ i, j ≤ Lq , (1)

where a virtual Cβ atom is estimated geometrically from N -Cα-C coordinates. Lq denotes the length
of the template sequence.

Template Representation (Gt): The template representation uses the same formula for edge features
Et =

{
eijab

}
to calculate pairwise relationships among residues. The amino acid sequence information

is incorporated via one-hot encoding, which includes 20 standard amino acid types along with 1
additional "unknown" type. The resulting node features are represented as:

Vt = {vi ∈ {0, 1}21}, i ∈ {1, . . . , Lt}, (2)

where Lt denotes the length of the template sequence. This integration of sequence priors enables the
template branch to provide richer contextual information compared to the query branch.

Alignment Representation (A): The query and template structures are aligned via TM-align to
extract detailed domain alignment information. The alignment representation A = (A(iq, jt), S)
includes aligned pairs A(iq, jt) and a global measure score S. The aligned pairs A(iq, jt) is denoted:

A(iq, jt) =

{
1 matched
0 otherwise

, (3)

where tuple (iq, jt) indicates the i-th amino acid of query protein aligned with j-th amino acid
of template protein, iq ∈ {1, . . . Lq}, jt ∈ {1, . . . Lt}. The sets of matched nodes in query
and template structures are Aquery = {iq|A(iq, jt) = 1} and Atemplate = {jt|A(iq, jt) = 1},
respectively.

3.3 DualMPNN Architecture

3.3.1 MPNN Module

The shared MPNN module employs a hierarchical encoder-decoder architecture with interleaved
message passing between structural encoding and sequence decoding stages. The node and edge
embeddings are computed in encoding stage: hV = VWv ∈ RN×d, hE = EWe ∈ RN×K×d,
where N denotes node number, K denotes the number of neighbors for each aggregated node, d
denotes hidden dims, Wv and We denote learnable weights. Notably, the node features V are
exclusively incorporated into the template branch, while the hidden states hV within the query branch
are initialized as zero vectors.

Structure Encoder. The MPNN encoding stage comprises three successive message-passing layers,
each employing a shared architectural schema.

• Node Update: (1) Construct message function. Collect the node features from k neigh-

bors hneigh
V =

K⊕
k=1

hk
V , where

⊕
denotes stacking along the third dim and hneigh

V ∈

RN×K×d. Then expand the dims of hV for concatenation h̃V ∈ RN×K×d. Concate-
nates the features hEV = Cat[h̃V,hneigh

V ,hE ] and then constructs the message function
m = MLP(hEV ) ∈ RN×K×d. (2) Passing step of messages. Utilizing the aggregated
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message to update nodes by the following functions:

∆hV =
1

K

K∑
k=1

m(:,:,k,:) (4)

hV = N2(hV +D3(score) +D2(F(N1(hV +D1(∆hV ))))) (5)

• Edge Update: (1) Construct message function. The message function is nearly the same as
that in node update. The hV and hE used for the computation are updated in the previous
node update step. (2) Passing step of messages. Utilizing the aggregated message to update
edges by the following function:

hE = N3(hV +D3(m)) (6)

where N (·) denotes normalization layer, D(·) denotes dropout layer and F(·) denotes
feedforward layer. Score denotes the attention score from the interactive alignment-aware
attention, see Eq. 8.

Sequence Decoder. The MPNN decoder comprises three hierarchical decoding layers, each ingesting
node-edge feature pairs from the encoder outputs while incorporating the native protein sequence
embeddings to perform autoregressive sequence recovery.

• Autoregressive decoding. The sequence decoder takes both sequence embeddings and node
embeddings as input and generates outputs through chain-rule factorization:

pθ(s|v, e) =
L∏

l=1

pθ(sl|s<l, v>l, e) (7)

where l denotes the l-th node that is decoding, each generated element sl depends on the
latent node v>l, edge states e and previously generated elements s<l. The sequence will be
decoded sequentially. For each node i, we consider the following:

(1) For node features: hneigh
Vi

=
K⊕

k=i+1

hk
Vi

, hEV = Cat[h̃V;hneigh
V ;hE ], where node i

aggregates the next up latent node features h>i
Vi

to update.

(2) For sequence embeddings: hneigh
Si

=
i⊕

k=1

hk
Si

, hES = Cat[h̃S;h
neigh
S ;hE ], where

node i aggregates the previous sequence features h<i
Si

to update.
(3) Message construction and passing: hESV = Cat[hEV ;hES ] , mS = MLP(hESV ),

∆hV = 1
K

K∑
k=1

m
(:,:,k,:)
S , hV = N2(hV + D3(score) + D2(F(N1(hV + D1(∆hV ))))),

where [·, ·] represents row-wise concatenation, N (·) denotes normalization layer, D(·)
denotes dropout layer and F(·) denotes feedforward layer, score denotes the attention score
from the interactive alignment-aware attention, see Eq. 8.

• Iterative Sampling. During inference, the decoder employs autoregressive sampling to
iteratively generate sequence embeddings. At step t, it synthesizes a subsequence st
conditioned on historical outputs {s1:t−1} and predicted node features ht:K from latent
projections.

3.3.2 Interactive Attention Layer

The DualMPNN architecture employs a cross-modal attention layer to enable synergistic information
exchange between the query and template branches. The interaction leverages structural alignment-
guided attention to fuse query and template features. Let hV ∈ RL×d and ht

V ∈ RLt×d denote
node embeddings from the query and template MPNN encoders or decoders, respectively. The
query-key-value projections are computed as: Q = W1 · ht

V [Aquery], K = W2 · ht
V [Atemplate],

V = W3 · ht
V [Atemplate], where Q,K,V ∈ RLA×d share the same shapes, LA is the length of

aligned residue pairs; W1,W2,W3 ∈ Rd×d are learnable projection matrices; Aquery ∈ NLA

and
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Atemplate ∈ NLA

are the aligned residue indices extracted from the TM-align output that controls
the attention area between the query and template branch.

The attention score is calculated and utilized by the following functions:

score = σ(
Q×K√

d
)× V × S (8)

hV [Aquery] = N (hV [Aquery] +D(score)) (9)

where S ∈ [0, 1] is the TM-score between query and template proteins. N (·),D(·), σ(·) denote
normalization, dropout, and softmax layers, respectively.

Interactive attention will be applied within every encoder and decoder layer. This mechanism enables
prior information guidance between the two branches at each layer, allowing the model to refine
its internal projections in a context-aware manner. Structure alignment-guided sequence recovery
provides a bridge between protein structure and sequence space. It enhances our ability to recover
protein sequences with aligned structures by incorporating evolutionary and structural constraints.

4 Experiments

4.1 Experimental Protocol

Dataset. We trained and evaluated DualMPNN on CATH, following the standardized data partition
from prior work GraphTrans [17] and GraDe-IF [13]. The proteins are categorized into a division
of 18,024 proteins for training, 608 for validation, and 1,120 for testing. The model is tested in 3
different categories: short, single-chain, and all proteins. The short chain category is those with
sequence lengths shorter than 100. The single-chain category contains only those models in which
the single chain accounted for the entire protein record in the PDB. Additionally, we tested our model
on the T500 and TS50 datasets introduced by DenseCPD[29], which includes 9,888 structures for
training and two distinct test datasets containing 50 (TS50) and 500 (T500) structures, respectively.

Training setup. The MPNN blocks possess a hidden dimension of 128 for the node and edge
projections. The number of neighbors for each aggregated node is 48 in the query MPNN and 4 in
the template MPNN. The interactive attention layer shares the same hidden dimension as the MPNN
block. In addition, we utilize a dropout rate of 0.1 to avoid overfitting both in the MPNN block and
in the attention layer. The model is trained on 40 epochs, and the learning rate is scheduled by the
Adam optimizer.

Generation of Structure Alignments. We utilize Foldseek[27] to perform multiple structural
alignments for a given query protein. The search mode is "easy-search". The alignment-type is "TM
alignment". The prefilter-mode is "nofilter". Other arguments are default. After generating protein
candidates, We filter them by removing the same protein and those with TM-scores greater than 0.99
to prevent data leak from identical proteins.

Evaluation Metric. The quality of recovered protein sequences is evaluated using two key metrics:
perplexity and recovery rate. Perplexity quantifies the alignment between the model’s predicted
amino acid probability distribution and the actual residues observed at each sequence position, with
lower values indicating superior model-data compatibility. The recovery rate measures predictive
accuracy by calculating the percentage of amino acids in the reconstructed sequence that correctly
match the native protein sequence, with higher values reflecting enhanced sequence reconstruction
capability from structural inputs. The quality of protein structure alignment is quantified by TM-score
and RMSD. TM-score employs a length-normalized assessment that evaluates both local structural
matches and global topological similarity, producing values ranging from 0 to 1 , with scores above
0.5 generally indicating biologically meaningful structural relationships. RMSD measures the average
spatial deviation between corresponding Cα atoms in superimposed structures, with lower values
indicating stronger geometric congruence.

4.2 Inverse Folding

Table 1 shows the results of the different structure-aware models in the CATH, T500 and TS50
datasets. DualMPNN achieves state-of-the-art performance across all metrics, demonstrating superior
sequence recovery capabilities and lower perplexity scores. Specifically, our model reaches a recovery
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Table 1: Comparison of recovery rate and perplexity performance on CATH, TS50, and T500.
Models marked with † use CATH v4.3, the rest use CATH v4.2. PPL denotes perplexity, Rec.
denotes recovery rate.

Models
CATH TS50 T500

PPL ↓ Rec. % ↑ PPL ↓ Rec.% ↑ PPL ↓ Rec.% ↑
Short Single All Short Single All

STRUCTGNN [17] 8.29 8.74 6.40 29.44 28.26 35.91 5.40 43.89 4.98 45.69
GRAPHTRANS [17] 8.39 8.83 6.63 28.14 28.46 35.82 5.60 42.20 5.16 44.66

GCA [30] 7.09 7.49 6.05 32.62 31.10 37.64 5.09 47.02 4.72 47.74
GVP [31] 7.23 7.84 5.36 30.60 28.95 39.47 4.71 44.14 4.20 49.14

GVP-LARGE [14] † 7.68 6.12 6.17 32.60 39.40 39.20 – – – –
ALPHADESIGN [32] 7.32 7.63 6.30 34.16 32.66 41.31 5.25 48.36 4.93 49.23

ESM-IF1 [14] † 8.18 6.33 6.44 31.30 38.50 38.30 – – – –
PROTEINMPNN [12] 6.21 6.68 4.57 36.35 34.43 49.87 3.93 54.43 3.53 58.08

PIFOLD [33] 6.04 6.31 4.55 39.84 38.53 51.66 3.86 58.72 3.44 60.42
GRADE-IF [13] 5.49 6.21 4.35 45.27 42.77 52.21 3.71 56.32 3.23 61.22

DualMPNN 4.42 5.04 3.18 55.97 52.41 65.51 2.76 70.99 2.71 70.37

Figure 2: Impact of template quality on sequence recovery rate. (a) Violin plot comparing sequence
recovery rates of DualMPNN and ProteinMPNN across distinct TM-score intervals on the CATH
test set. (b) Scatter plot of per-protein recovery rates, colored by TM-score intervals. Points above
the dashed parity line (y = x) highlight instances where DualMPNN outperforms the baseline,
particularly for high-quality templates (TM-score > 0.5).

rate of 65.51% and a perplexity of 3.19. The recovery rate improved 13.3% compared to GraDe-IF.
Since most of the data from CATH consists of oligomers or multimers, the chains within these
assemblies are significantly influenced by interchain interactions[34]. In multichain proteins, such
interactions induce context-dependent conformational plasticity, causing identical sequences to adopt
distinct structural geometries in oligomeric assemblies compared to their monomeric states. This
occurs through cooperative adjustments of backbone dihedrals, side-chain rotamers, and quaternary-
stabilized folding motifs. Therefore, single chains are particularly challenging to predict in the CATH
dataset. However, DualMPNN leverages direct guidance from prior structural information, enabling it
more accurately to predict single-chain structures, reaching a recovery rate of 52.41% and a perplexity
of 5.04. Short chains also face the challenge of a lack of similar data within the dataset, which makes
accurate prediction more difficult. Despite this limitation, DualMPNN demonstrates its robustness
by achieving an impressive recovery rate of 55.97%, showcasing its ability to handle even the most
data-scarce scenarios effectively. Furthermore, the results in T500 and TS50 datasets (Table 1) also
show that DualMPNN remains the best performance across all metics, reaching a recovery rate of
70.37% , 70.99% and a perplexity of 2.71, 2.76 in T500, TS50, respectively.
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4.3 Template Quality Matters

To evaluate the impact of template quality, we divided the CATH test dataset based
on their TM-scores against the corresponding template proteins into five categories:
[0, 0.3), [0.3, 0.5), [0.5, 0.7), [0.7, 0.9), [0.9, 0.99]. Among the alignments, 880 proteins had a TM
score greater than 0.5, while 240 proteins had a TM score less than 0.5. We then compared the
performance improvements of DualMPNN against ProteinMPNN within these categories. As shown
in Fig. 2(a), DualMPNN demonstrates significant advantages over ProteinMPNN when the template
quality exceeds a TM score of 0.5, with improvements becoming more pronounced as the quality
of the structural alignment increases. Specifically, DualMPNN achieves a recovery rate of 58.7%,
61.5% and 84.0%, outperforming the baseline model ProteinMPNN by 13.4%, 13.5% and 31.3%,
within the TM score interval of [0.5,0.7), [0.7,0.9) and [0.9,0.99], respectively.

Furthermore, we compared the recovery rate performance of a certain protein between ProteinMPNN
and DualMPNN (Fig. 2(b)). The diagonal line indicates equal performance between the two models.
Points above the diagonal represent cases where DualMPNN outperforms ProteinMPNN, while
points below the diagonal represent cases where ProteinMPNN performs better. We observed that
ProteinMPNN rarely achieves a recovery rate above 70%, while DualMPNN can easily recover
certain protein sequences with a recovery rate above 70%, and in some cases, even close to 100%.

These results highlight DualMPNN’s superior ability to leverage high-quality templates for accurate
sequence recovery. However, our model does have some limitations. For templates with low quality,
it remains challenging to significantly improve sequence recovery performance. Fortunately, with
the help of Foldseek, we can identify a large number of high-quality templates through structural
alignments, which ensures that the approach remains practical and effective in real-world applications.

4.4 Ablation Study

To evaluate the contributions of the components in DualMPNN, we conducted an ablation study
(Table 2). Starting with ProteinMPNN, we incorporated aligned domain node initialization using
template proteins. By leveraging the prior knowledge of template proteins, the recovery rate improved
significantly, increasing from 49.87% to 61.29%. Next, we utilized a dual-stream protein message
passing neural network to update node projections within the encoding and decoding layers, where
nodes were directly updated by added features. Additionally, we used interactive attention layers to
refine the node features, enabling the model to sense contextual information and enhance protein
sequence recovery. The interactive attention layers contributed significantly, increasing the recovery
rate from 62.13% to 64.78% and reducing perplexity from 3.48 to 3.23. Finally, by applying the TM
score as a similarity bias between the template and query proteins, DualMPNN achieved a recovery
rate of 65.35% and maintained a perplexity of 3.20. This demonstrates the effectiveness of each
component in improving sequence recovery and model performance. Furthermore, we discovered
that sampling 10 times at the inference stage with different random seeds and using the most frequent
amino acid type as the answer further improved the recovery rate to 65.51% and reduced the perplexity
to 3.18.

Table 2: Ablation study on different components of DualMPNN on CATH. PPL denotes perplexity,
Rec. denotes recovery rate.

Configuration PPL ↓ Rec. % ↑
Short Single-chain All Short Single-chain All

A Baseline Model 6.21 6.68 4.57 36.35 34.43 49.87
B A + Node init by template 5.35 5.83 3.55 50.85 47.03 61.29
C B + Dual-stream update 4.82 5.54 3.48 53.78 50.23 62.13
D C + Interactive attention update 4.57 5.23 3.29 54.95 51.11 64.78
E D + TM score bias 4.46 5.09 3.20 55.74 52.19 65.35
F E + Sample 10 times 4.42 5.04 3.18 55.97 52.41 65.52

4.5 Generalization

To assess generalization on novel samples, we stratified test proteins by structural similarity (TM-
score) to the training set. As summarized in Table 3, DualMPNN is substantially better than
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ProteinMPNN, especially at low similarity. For TM-score < 0.3, DualMPNN attains 66.9% recovery
vs. 50.9% for ProteinMPNN; for 0.3–0.5, 60.5% vs. 45.3%; and for 0.5–0.7, 58.6% vs. 40.9%.
These marginal gains indicate robustness beyond close structural matches and highlight superior
performance on structurally novel cases, indicating that DualMPNN does not simply rely on near-
neighbor memorization but scales across the full novelty spectrum.

Table 3: Comparison of generalization in terms of structural similarity (TM-score) or sequence
identity stratification.

Generalization
Benchmarks

TM-score (Test vs Train) Sequence Identity (Test vs Template)
<0.3 0.3–0.5 0.5–0.7 0.7–0.9 0.9–0.99 <0.3 0.3–0.5 0.5–0.7 0.7–0.9 0.9–0.99

# Samples 706 307 73 29 5 803 153 79 53 32
ProteinMPNN 50.9 45.3 40.9 45.1 48.1 48.5 52.4 48.0 50.7 51.8
DualMPNN 66.9 60.5 58.6 74.5 71.6 60.6 68.4 83.8 87.1 95.5

To validate the model generalization on low-quality templates, we binned test samples by sequence
identity to templates and compared recovery across five identity ranges. DualMPNN exhibits
strong performance in all bins, achieving 60.6% recovery even sequence identity <0.3. While
recovery rate increases with template quality (higher identity), DualMPNN shows a consistently
larger improvement margin. This indicates it more effectively leverages higher-quality template
signals without sacrificing performance when they are weak. These results are corroborated by
TM-score analysis, confirming gains are consistent across both evolutionary (sequence) and structural
(TM-score) notions of divergence. In addition, lower perplexity (where Section 4.2 reported) aligns
with higher recovery on both the test and holdout splits, suggesting better-calibrated sequence
distributions that translate into improved top-1 design accuracy without sacrificing stability.

4.6 Foldability

To validate the foldability of the generated protein sequences, we fold them with AlphaFold2[15]
and Alphafold3[35] then align the folded structures with the native structures using TM-align to
compare their similarity. Following GraDe-IF[13], we evaluate each novel sequence by the TM-score
between its predicted structure and the native structure, where a TM-score above 0.5 indicates a
successful design. We fold 100 generated sequences from the CATH test set (first 100 sequences
ordered alphabetically by PDB ID), and summarize the results in Table 4.

Under Alphafold2 inference, DualMPNN attains a success rate of 94%, a mean TM-score of approxi-
mately 0.86, an average pLDDT near 0.91, and an RMSD around 1.5 Å. These results indicate that
the sequences produced by DualMPNN not only fold into well-defined structures but also receive
high model confidence. Native sequences processed by AF2 exhibit an average pLDDT of about
0.91, which underscores that the confidence of our generated sequences approaches that of the
native counterparts. When evaluated with Alphafold3, DualMPNN reaches a success rate of 95%,
a mean TM-score close to 0.87, an average pLDDT near 0.92, and RMSD values on the order of
1.4 Å. Relative to ProteinMPNN under AF3, DualMPNN delivers higher success, stronger structural
similarity, and higher confidence while maintaining comparable geometric deviation. Collectively,
these results demonstrate that DualMPNN produces sequences that fold reliably, attain high structural
agreement with native targets, and are assigned consistently high confidence by modern structure
predictors.

Table 4: Foldability comparison between generated structures and the native structures. The methods
with † are generated by Alphafold3 and the rest using Alphafold2.

Method Success↑ TM score ↑ avg pLDDT ↑ avg RMSD ↓
PiFOLD 85 0.80 ± 0.22 0.84 ± 0.15 1.67 ± 0.99

ProteinMPNN 94 0.86 ± 0.16 0.89 ± 0.10 1.36 ± 0.81
GRaDe-IF 94 0.86 ± 0.17 0.86 ± 0.08 1.47 ± 0.82

DualMPNN 94 0.86 ± 0.16 0.91 ± 0.10 1.49 ± 0.86

ProteinMPNN † 94 0.86 ± 0.18 0.88 ± 0.12 1.41 ± 0.76
DualMPNN † 95 0.87 ± 0.16 0.92 ± 0.11 1.39 ± 0.80
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Figure 3: Folding comparison of generated sequences (blue) and native sequences (orange).

Specific cases of folded sequences, selected from the CATH test set, are presented in Fig. 3. The
three folded structures (3GA2, 3GOC, and 3HKV) exhibit sequence recovery rates of 0.53, 0.69, and
0.88, respectively. All achieved TM scores greater than 0.95 and average pLDDT scores exceeding
0.92, which are comparable to the native sequences. The generated structures are well-aligned with
their native counterparts, highlighting the exceptional foldability of DualMPNN.

5 Conclusion

We introduce DualMPNN, a dual-stream message-passing neural network that synergizes geo-
metric and co-evolutionary signals from query structures and their structurally aligned homologs.
DualMPNN is a novel paradigm that leverages structural alignments as informative priors for in-
verse protein folding. The architecture comprises two distinct branches, which interact through
alignment-aware cross-attention mechanisms, enabling feature enhancement while maintaining
weight independence. Extensive empirical validation demonstrates DualMPNN’s state-of-the-art
performance, surpassing existing baselines by significant margins. Structural validity assessments
confirm the biological plausibility of designed sequences, with AlphaFold2-predicted structures
exhibiting high confidence and geometric fidelity to native backbones. Crucially, we identify a
TM-score threshold of 0.5 as a critical determinant of template utility, beyond which structural
homology significantly enhances sequence recovery.

Our work underscores the transformative potential of structural alignment priors in protein design,
bridging geometric constraints with evolutionary insights to advance sequence generation accuracy.
By circumventing reliance on explicit sequence covariation data, DualMPNN offers a scalable
framework for de novo protein engineering, with implications for designing functional proteins in
low-MSA regimes. Future directions include integrating dynamic template selection strategies and
extending the framework to multi-state protein design. This approach not only advances computational
protein engineering but also deepens our understanding of the structure-sequence interplay in biology.
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1. Claims167

Question: Do the main claims made in the abstract and introduction accurately reflect the168

paper’s contributions and scope?169

Answer: [Yes]170

Justification: The results of our experiments prove that.171

Guidelines:172

• The answer NA means that the abstract and introduction do not include the claims173

made in the paper.174

• The abstract and/or introduction should clearly state the claims made, including the175

contributions made in the paper and important assumptions and limitations. A No or176

NA answer to this question will not be perceived well by the reviewers.177

• The claims made should match theoretical and experimental results, and reflect how178

much the results can be expected to generalize to other settings.179

• It is fine to include aspirational goals as motivation as long as it is clear that these goals180

are not attained by the paper.181

2. Limitations182

Question: Does the paper discuss the limitations of the work performed by the authors?183

Answer: [Yes]184

Justification: We mentioned these in Section 4.3185

Guidelines:186

• The answer NA means that the paper has no limitation while the answer No means that187

the paper has limitations, but those are not discussed in the paper.188

• The authors are encouraged to create a separate "Limitations" section in their paper.189

• The paper should point out any strong assumptions and how robust the results are to190

violations of these assumptions (e.g., independence assumptions, noiseless settings,191

model well-specification, asymptotic approximations only holding locally). The authors192

should reflect on how these assumptions might be violated in practice and what the193

implications would be.194

• The authors should reflect on the scope of the claims made, e.g., if the approach was195

only tested on a few datasets or with a few runs. In general, empirical results often196

depend on implicit assumptions, which should be articulated.197

• The authors should reflect on the factors that influence the performance of the approach.198

For example, a facial recognition algorithm may perform poorly when image resolution199

is low or images are taken in low lighting. Or a speech-to-text system might not be200

used reliably to provide closed captions for online lectures because it fails to handle201

technical jargon.202

• The authors should discuss the computational efficiency of the proposed algorithms203

and how they scale with dataset size.204

• If applicable, the authors should discuss possible limitations of their approach to205

address problems of privacy and fairness.206

• While the authors might fear that complete honesty about limitations might be used by207

reviewers as grounds for rejection, a worse outcome might be that reviewers discover208

limitations that aren’t acknowledged in the paper. The authors should use their best209

judgment and recognize that individual actions in favor of transparency play an impor-210

tant role in developing norms that preserve the integrity of the community. Reviewers211

will be specifically instructed to not penalize honesty concerning limitations.212

3. Theory assumptions and proofs213

Question: For each theoretical result, does the paper provide the full set of assumptions and214

a complete (and correct) proof?215

Answer: [NA]216
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Justification: Our work does not include theoretical results.217

Guidelines:218

• The answer NA means that the paper does not include theoretical results.219

• All the theorems, formulas, and proofs in the paper should be numbered and cross-220

referenced.221

• All assumptions should be clearly stated or referenced in the statement of any theorems.222

• The proofs can either appear in the main paper or the supplemental material, but if223

they appear in the supplemental material, the authors are encouraged to provide a short224

proof sketch to provide intuition.225

• Inversely, any informal proof provided in the core of the paper should be complemented226

by formal proofs provided in appendix or supplemental material.227

• Theorems and Lemmas that the proof relies upon should be properly referenced.228

4. Experimental result reproducibility229

Question: Does the paper fully disclose all the information needed to reproduce the main ex-230

perimental results of the paper to the extent that it affects the main claims and/or conclusions231

of the paper (regardless of whether the code and data are provided or not)?232

Answer: [Yes]233

Justification: We provided model details in Section 3.2 and training details in Section 4.1.234

Guidelines:235

• The answer NA means that the paper does not include experiments.236

• If the paper includes experiments, a No answer to this question will not be perceived237

well by the reviewers: Making the paper reproducible is important, regardless of238

whether the code and data are provided or not.239

• If the contribution is a dataset and/or model, the authors should describe the steps taken240

to make their results reproducible or verifiable.241

• Depending on the contribution, reproducibility can be accomplished in various ways.242

For example, if the contribution is a novel architecture, describing the architecture fully243

might suffice, or if the contribution is a specific model and empirical evaluation, it may244

be necessary to either make it possible for others to replicate the model with the same245

dataset, or provide access to the model. In general. releasing code and data is often246

one good way to accomplish this, but reproducibility can also be provided via detailed247

instructions for how to replicate the results, access to a hosted model (e.g., in the case248

of a large language model), releasing of a model checkpoint, or other means that are249

appropriate to the research performed.250

• While NeurIPS does not require releasing code, the conference does require all submis-251

sions to provide some reasonable avenue for reproducibility, which may depend on the252

nature of the contribution. For example253

(a) If the contribution is primarily a new algorithm, the paper should make it clear how254

to reproduce that algorithm.255

(b) If the contribution is primarily a new model architecture, the paper should describe256

the architecture clearly and fully.257

(c) If the contribution is a new model (e.g., a large language model), then there should258

either be a way to access this model for reproducing the results or a way to reproduce259

the model (e.g., with an open-source dataset or instructions for how to construct260

the dataset).261

(d) We recognize that reproducibility may be tricky in some cases, in which case262

authors are welcome to describe the particular way they provide for reproducibility.263

In the case of closed-source models, it may be that access to the model is limited in264

some way (e.g., to registered users), but it should be possible for other researchers265

to have some path to reproducing or verifying the results.266

5. Open access to data and code267

Question: Does the paper provide open access to the data and code, with sufficient instruc-268

tions to faithfully reproduce the main experimental results, as described in supplemental269

material?270
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Answer: [No]271

Justification: The code and data will be released upon acceptance272

Guidelines:273

• The answer NA means that paper does not include experiments requiring code.274

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/275

public/guides/CodeSubmissionPolicy) for more details.276

• While we encourage the release of code and data, we understand that this might not be277

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not278

including code, unless this is central to the contribution (e.g., for a new open-source279

benchmark).280

• The instructions should contain the exact command and environment needed to run to281

reproduce the results. See the NeurIPS code and data submission guidelines (https:282

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.283

• The authors should provide instructions on data access and preparation, including how284

to access the raw data, preprocessed data, intermediate data, and generated data, etc.285

• The authors should provide scripts to reproduce all experimental results for the new286

proposed method and baselines. If only a subset of experiments are reproducible, they287

should state which ones are omitted from the script and why.288

• At submission time, to preserve anonymity, the authors should release anonymized289

versions (if applicable).290

• Providing as much information as possible in supplemental material (appended to the291

paper) is recommended, but including URLs to data and code is permitted.292

6. Experimental setting/details293

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-294

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the295

results?296

Answer: [Yes]297

Justification: We provided this information in Section 4.1298

Guidelines:299

• The answer NA means that the paper does not include experiments.300

• The experimental setting should be presented in the core of the paper to a level of detail301

that is necessary to appreciate the results and make sense of them.302

• The full details can be provided either with the code, in appendix, or as supplemental303

material.304

7. Experiment statistical significance305

Question: Does the paper report error bars suitably and correctly defined or other appropriate306

information about the statistical significance of the experiments?307

Answer: [Yes]308

Justification: We provided the standard deviation in the foldability experiment, and a violin309

plot of the sequence recovery rate distribution.310

Guidelines:311

• The answer NA means that the paper does not include experiments.312

• The authors should answer "Yes" if the results are accompanied by error bars, confi-313

dence intervals, or statistical significance tests, at least for the experiments that support314

the main claims of the paper.315

• The factors of variability that the error bars are capturing should be clearly stated (for316

example, train/test split, initialization, random drawing of some parameter, or overall317

run with given experimental conditions).318

• The method for calculating the error bars should be explained (closed form formula,319

call to a library function, bootstrap, etc.)320

• The assumptions made should be given (e.g., Normally distributed errors).321
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• It should be clear whether the error bar is the standard deviation or the standard error322

of the mean.323

• It is OK to report 1-sigma error bars, but one should state it. The authors should324

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis325

of Normality of errors is not verified.326

• For asymmetric distributions, the authors should be careful not to show in tables or327

figures symmetric error bars that would yield results that are out of range (e.g. negative328

error rates).329

• If error bars are reported in tables or plots, The authors should explain in the text how330

they were calculated and reference the corresponding figures or tables in the text.331

8. Experiments compute resources332

Question: For each experiment, does the paper provide sufficient information on the com-333

puter resources (type of compute workers, memory, time of execution) needed to reproduce334

the experiments?335

Answer: [No]336

Justification:337

Guidelines:338

• The answer NA means that the paper does not include experiments.339

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,340

or cloud provider, including relevant memory and storage.341

• The paper should provide the amount of compute required for each of the individual342

experimental runs as well as estimate the total compute.343

• The paper should disclose whether the full research project required more compute344

than the experiments reported in the paper (e.g., preliminary or failed experiments that345

didn’t make it into the paper).346

9. Code of ethics347

Question: Does the research conducted in the paper conform, in every respect, with the348

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?349

Answer: [Yes]350

Justification:351

Guidelines:352

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.353

• If the authors answer No, they should explain the special circumstances that require a354

deviation from the Code of Ethics.355

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-356

eration due to laws or regulations in their jurisdiction).357

10. Broader impacts358

Question: Does the paper discuss both potential positive societal impacts and negative359

societal impacts of the work performed?360

Answer: [No]361

Justification: This is a computational technical work which does not conduct realistic362

biological application.363

Guidelines:364

• The answer NA means that there is no societal impact of the work performed.365

• If the authors answer NA or No, they should explain why their work has no societal366

impact or why the paper does not address societal impact.367

• Examples of negative societal impacts include potential malicious or unintended uses368

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations369

(e.g., deployment of technologies that could make decisions that unfairly impact specific370

groups), privacy considerations, and security considerations.371
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• The conference expects that many papers will be foundational research and not tied372

to particular applications, let alone deployments. However, if there is a direct path to373

any negative applications, the authors should point it out. For example, it is legitimate374

to point out that an improvement in the quality of generative models could be used to375

generate deepfakes for disinformation. On the other hand, it is not needed to point out376

that a generic algorithm for optimizing neural networks could enable people to train377

models that generate Deepfakes faster.378

• The authors should consider possible harms that could arise when the technology is379

being used as intended and functioning correctly, harms that could arise when the380

technology is being used as intended but gives incorrect results, and harms following381

from (intentional or unintentional) misuse of the technology.382

• If there are negative societal impacts, the authors could also discuss possible mitigation383

strategies (e.g., gated release of models, providing defenses in addition to attacks,384

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from385

feedback over time, improving the efficiency and accessibility of ML).386

11. Safeguards387

Question: Does the paper describe safeguards that have been put in place for responsible388

release of data or models that have a high risk for misuse (e.g., pretrained language models,389

image generators, or scraped datasets)?390

Answer: [NA]391

Justification:392

Guidelines:393

• The answer NA means that the paper poses no such risks.394

• Released models that have a high risk for misuse or dual-use should be released with395

necessary safeguards to allow for controlled use of the model, for example by requiring396

that users adhere to usage guidelines or restrictions to access the model or implementing397

safety filters.398

• Datasets that have been scraped from the Internet could pose safety risks. The authors399

should describe how they avoided releasing unsafe images.400

• We recognize that providing effective safeguards is challenging, and many papers do401

not require this, but we encourage authors to take this into account and make a best402

faith effort.403

12. Licenses for existing assets404

Question: Are the creators or original owners of assets (e.g., code, data, models), used in405

the paper, properly credited and are the license and terms of use explicitly mentioned and406

properly respected?407

Answer: [Yes]408

Justification:409

Guidelines:410

• The answer NA means that the paper does not use existing assets.411

• The authors should cite the original paper that produced the code package or dataset.412

• The authors should state which version of the asset is used and, if possible, include a413

URL.414

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.415

• For scraped data from a particular source (e.g., website), the copyright and terms of416

service of that source should be provided.417

• If assets are released, the license, copyright information, and terms of use in the418

package should be provided. For popular datasets, paperswithcode.com/datasets419

has curated licenses for some datasets. Their licensing guide can help determine the420

license of a dataset.421

• For existing datasets that are re-packaged, both the original license and the license of422

the derived asset (if it has changed) should be provided.423
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• If this information is not available online, the authors are encouraged to reach out to424

the asset’s creators.425

13. New assets426

Question: Are new assets introduced in the paper well documented and is the documentation427

provided alongside the assets?428

Answer: [NA]429

Justification: We didn’t introduce new datasets.430

Guidelines:431

• The answer NA means that the paper does not release new assets.432

• Researchers should communicate the details of the dataset/code/model as part of their433

submissions via structured templates. This includes details about training, license,434

limitations, etc.435

• The paper should discuss whether and how consent was obtained from people whose436

asset is used.437

• At submission time, remember to anonymize your assets (if applicable). You can either438

create an anonymized URL or include an anonymized zip file.439

14. Crowdsourcing and research with human subjects440

Question: For crowdsourcing experiments and research with human subjects, does the paper441

include the full text of instructions given to participants and screenshots, if applicable, as442

well as details about compensation (if any)?443

Answer: [NA]444

Justification:445

Guidelines:446

• The answer NA means that the paper does not involve crowdsourcing nor research with447

human subjects.448

• Including this information in the supplemental material is fine, but if the main contribu-449

tion of the paper involves human subjects, then as much detail as possible should be450

included in the main paper.451

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,452

or other labor should be paid at least the minimum wage in the country of the data453

collector.454

15. Institutional review board (IRB) approvals or equivalent for research with human455

subjects456

Question: Does the paper describe potential risks incurred by study participants, whether457

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)458

approvals (or an equivalent approval/review based on the requirements of your country or459

institution) were obtained?460

Answer: [NA]461

Justification:462

Guidelines:463

• The answer NA means that the paper does not involve crowdsourcing nor research with464

human subjects.465

• Depending on the country in which research is conducted, IRB approval (or equivalent)466

may be required for any human subjects research. If you obtained IRB approval, you467

should clearly state this in the paper.468

• We recognize that the procedures for this may vary significantly between institutions469

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the470

guidelines for their institution.471

• For initial submissions, do not include any information that would break anonymity (if472

applicable), such as the institution conducting the review.473

16. Declaration of LLM usage474
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Question: Does the paper describe the usage of LLMs if it is an important, original, or475

non-standard component of the core methods in this research? Note that if the LLM is used476

only for writing, editing, or formatting purposes and does not impact the core methodology,477

scientific rigorousness, or originality of the research, declaration is not required.478

Answer: [NA]479

Justification:480

Guidelines:481

• The answer NA means that the core method development in this research does not482

involve LLMs as any important, original, or non-standard components.483

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)484

for what should or should not be described.485
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