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ABSTRACT

In recent years, Message-Passing Neural Networks (MPNNs), the most prominent
Graph Neural Network (GNN) framework, have celebrated much success in the
analysis of graph-structured data. In MPNNs the computations are split into three
steps, Aggregation, Update and Readout. In this paper a series of models to succes-
sively sparsify the linear transform in the Update step is proposed. Specifically, the
ExpanderGNN model with a tuneable sparsification rate and the Activation-Only
GNN, which has no linear transform in the Update step, are proposed. In agree-
ment with a growing trend in the relevant literature the sparsification paradigm is
changed by initialising sparse neural network architectures rather than expensively
sparsifying already trained architectures. These novel benchmark models enable
a better understanding of the influence of the Update step on model performance
and outperform existing simplified benchmark models such as the Simple Graph
Convolution (SGC). The ExpanderGNNs, and in some cases the Activation-Only
models, achieve performance on par with their vanilla counterparts on several
down-stream graph prediction tasks, while containing exponentially fewer trainable
parameters. In experiments with matching parameter numbers our benchmark
models outperform the state-of-the-art GNNs models. These observations enable
us to conclude that in practice the update step often makes no positive contribution
to the model performance.

1 INTRODUCTION

Recent years have witnessed the blossom of Graph Neural Networks (GNNs). They have become
the standard tools for analysing and learning graph-structured data (Wu et al., 2020) and have
demonstrated convincing performance in various application areas, including chemistry (Duvenaud
et al., 2015), social networks (Monti et al., 2019), natural language processing (Yao et al., 2019) and
neural science (Griffa et al., 2017).

Among various GNN models, Message-Passing Neural Networks (MPNNs, Gilmer et al. (2017))
and their variants are considered to be the dominating class. In MPNNs, the learning procedure
can be separated into three major steps: Aggregation, Update and Readout, where Aggregation and
Update are repeated iteratively so that each node’s representation is updated recursively based on the
transformed information aggregated over its neighbourhood. With each iteration, the receptive field
of the hidden representation is increased by 1-step on the graph structure such that at kth iteration,
the hidden state of node i is composed of information from its k-hop neighbourhood.

There is thus a division of labour between the Aggregation and the Update step, where the Aggregation
utilises local graph structure, while the Update step is only applied to single node representations at a
time independent of the local graph structure. From this a natural question then arises: What is the
impact of the graph-agnostic Update step on the performance of GNNs?

Wu et al. (2019) first challenged the role of Update steps by proposing a simplified graph convolutional
network (SGC) where they removed the non-linearities in the Update steps and collapsed the
consecutive linear transforms into a single transform. Their experiments demonstrated, surprisingly,
that in some instances the Update step of Graph Convolutional Network (GCN, Kipf & Welling
(2017)) can be left out completely without the models’ accuracy decreasing.
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In the same spirit, we propose in this paper to analyse the impact of the Update step in a systematic
way. To this end, we propose two nested model classes, where the Update step is successively
sparsified. In the first model class which we refer to as Expander GNN, the linear transform layers
of the Update step are sparsified; while in the second model class, the linear transform layers
are removed and only the activation functions remain in the model. We name the second model
Activation-Only GNN and it contrasts the SGC where the activation functions where removed to
merge the linear layers.

Inspired by the recent advances in the literature of sparse Convolutional Neural Network (CNN)
architectures (Prabhu et al., 2018), we propose to utilise expander graphs as the sparsifier of the
linear layers (hence the model’s name). Guided by positive graph theoretic properties, it optimises
sparse network architectures at initialisation and accordingly saves the cost of traditional methods of
iteratively pruning connections during training.

Through a series of empirical assessments on different graph learning tasks (graph and node classifi-
cation as well as graph regression), we demonstrate that the Update step can be heavily simplified
without inhibiting performance or relevant model expressivity. Our findings partly agree with the
work in (Wu et al., 2019), in that dense Update steps in GNN are expensive and often unnecessary. In
contrast to their proposition, we find that there are many instances in which leaving the Update step
out completely significantly harms performance. In these instances our Activation-Only model shows
superior performance while matching the number of parameters and efficiency of the SGC.

Our contributions can be summarised as follows.

(1) We explore the impact of the Update step in MPNNs through the newly proposed model class of
Expander GNNs with tuneable density. We show empirically that a sparse update step matches
the performance of the standard model architectures.

(2) As an extreme case of the Expander GNN, as well as an alternative to the SGC, we propose the
Activation-Only GNNs that remove the linear transformation layer from the Update step and keep
non-linearity in tact. We observe the Activation-Only models to exhibit comparable, sometimes
significantly superior performance to SGC while being equally time and memory efficient.

Both of our proposed model classes can be extrapolated without further efforts to a variety of models
in the MPNN framework and hence provide practitioners with an array of efficient and often highly
performant GNN benchmark models.

The rest of this paper is organised as follows. In Section 2, we provide an overview of the related
work. Section 3 introduces preliminary concepts of MPNNs and expander graphs, followed by a
detailed presentation of our two proposed model classes. Section 4 discusses our experimental setting
and empirical evaluation of the proposed models in a variety of downstream graph learning tasks.

2 RELATED WORKS

In recent years the idea of utilising expander graphs in the design of neural networks is starting
to be explored in the CNN literature. Most notably, Prabhu et al. (2018) propose to replace linear
fully connected layers in deep networks using an expander graph sampling mechanism and hence,
propose a novel CNN architecture they call X-nets. The great innovation of this approach is that
well-performing sparse neural network architectures are initialised rather than expensively calculated.
Furthermore, they are shown to compare favourably in training speed, accuracy and performance
trade-offs to several other state of the art architectures. McDonald & Shokoufandeh (2019) and
Kepner & Robinett (2019) build on the X-net design and propose alternative expander sampling
mechansisms to extend the simplistic design chosen in the X-nets. Independent of this literature
branch, Bourely et al. (2017) explore 6 different mechanisms to randomly sample expander graph
layers. Across the literature the results based on expander graph layers are encouraging.

Recently, two papers observed that simplifications in the update step of the GCN model is a promising
area of research (Wu et al., 2019; Salha et al., 2019). Wu et al. (2019) proposed the Simple Graph
Convolution (SGC) model, where simplification is achieved by removing the non-linear activation
functions from the GCN model. This removal allows them to merge all linear transformations in
the update steps into a single linear transformation without sacrificing expressive power. Salha et al.
(2019) followed a similar rationale in their simplification of the graph autoencoder and variational
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graph autoencoder models. These works have had an immediate impact on the literature featuring as
a benchmark model and object of study in many recent papers. The idea of omitting update steps
guided Chen et al. (2020) in the design of simplified models and has found successful application in
various areas where model complexity needs to be reduced (Waradpande et al., 2020; He et al., 2020)
or very large graphs (∼ 106 nodes/edges) need to be processed (Salha et al., 2020).

In our work we aim to extend these efforts by providing more simplified benchmark models for
GNNs without a specific focus on the GCN.

3 INVESTIGATING THE ROLE OF THE UPDATE STEP

In this section, we present the two proposed model classes, where we sparsify or remove the linear
transform layer in the Update step, with the aim to systematically analyse the impact of the Update
step. We begin in Section 3.1 by introducing the general model structure of MPNNs, the main GNN
class we study in this paper, and expander graphs, the tool we use to sparsify linear layers. We then
demonstrate how expander graphs are used to sparsify linear layers and how an Expander GNN is
constructed in Section 3.2. The idea of Activation-Only GNNs is discussed in Section 3.3 and a
comparison to the SGC model is drawn.

3.1 PRELIMINARIES

3.1.1 MESSAGE-PASSING GRAPH NEURAL NETWORK

We define graphs G = (A,X) in terms of their adjacancy matrix A = [0, 1]n×n, which contains
the information of the graph’s node set V, and the node features X ∈ Rn×d = [x1, . . . ,xn]T of
dimension d. Given a graph G, a graph learning task aims at learning meaningful embeddings on
the node or graph level that can be used in downstream tasks such as node or graph classification.
MPNNs, a prominent paradigm that arose in recent years for performing machine learning tasks
on graphs, learn such embeddings by iteratively aggregating information from the neighbourhoods
of each node and updating their representations based on this information. Precisely, the learning
procedure of MPNNs can be divided into the following phases:

Initial (optional). In this phase, the initial node features X are mapped from the feature space
to a hidden space by a parameterised neural network U (0), usually a fully-connected linear layer.
H(1) = U (0)(X) = (h

(1)
1 , . . . ,h

(1)
n ), where the hidden representation of node i is denoted as h(1)

i ,
which will be used as the initial point for later iterations.

Aggregation. In this phase, MPNNs gather, for each node, information from the node’s neighbour-
hood, denoted N (i) for node i. The gathered pieces of information are called “messages”, denoted
by mi. Formally, if f (l)(·) denotes the aggregation function at iteration l, then

m
(l)
i = f (l)({h(l)

j |j ∈ N (i)}). (1)

Due to the isotropic nature of graphs (arbitrary node labelling), this function needs to be permutation
invariant. It also has to be differentiable so that the framework will be end-to-end trainable.

Update. The nodes then update their hidden representations based on their current representations
and the received “messages”. Let U (l) denote the update function at iteration l. For node i, we have

h
(l+1)
i = U (l)(h

(l)
i ,m

(l)
i ). (2)

Readout (optional). After L aggregation and update iterations, depending on the downstream
tasks, the MPNN will either output node representations directly or generate a graph representation
via a readout phase, g = R({h(L)

i |i ∈ V}). Just like the aggregation function, the readout function
also needs to be permutation invariant and differentiable.

This paper focuses on the Update step. More precisely, we would like to find the answer to the
question: What is the impact of the Update step on the performance of GNNs?
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It is clear that the MPNN framework divides its learning procedure into two parts: the Aggregation
step that utilises graph structure and the Update step, the main source of model parameters while
being completely agnostic to graph structure. Thus, understanding the importance of the Update step
could have a great impact on the design of parsimonious GNNs.

Note that various choices of Aggregation, Update and Readout functions are proposed in the literature.
To avoid shifting from the subject of this paper, we work with the simplest and most widely used
function choices, such as sum, mean and max aggregators for Aggregation, the Multi-Layer Perceptron
(MLP) for the Update step and summation for the Readout. As an example to visualise our model in
the subsequent sections we use the following matrix representation of the GCN computations,

H(L) = σ(Â . . . σ(ÂH(1)W (1)) . . .W (L)), (3)

where σ denotes a nonlinear activation function, W (i) contains the trainable weights of the linear
transform in the update step and Â = D̃−

1
2 ÃD̃−

1
2 is the symmetric normalised adjacency matrix

with Ã = A+ I denoting the adjacency matrix with added self-loops and D̃ being the corresponding
degree matrix.

Now we proceed to define the class of expander graphs, which serves as necessary background
knowledge for our chosen sparsification mechanism in the Update step.

3.1.2 EXPANDER GRAPHS

Expander graphs are a well studied class of graphs. They can be informally defined as being highly
connected and sparse, i.e., in expander graphs relatively few edges are present and arranged in such a
way that many edges have to be cut to disconnect the graph (the cut definition is only one way in
which the “high connectivity” of expanders can be measured) (Hoory et al., 2006; Lubotzky, 2012).
Formally, expander graphs can be characterised by the expansion ratio, which we will now define.

Definition 1 (Expander Graph). For 0 < δ ∈ R, G is an δ-expander graph if for all S ⊂ V such that
|S| ≤ |V|2 we have |∂S||S| ≤ δ, where |S| denotes the cardinality of set S and ∂S is the boundary set of
S, i.e., the set of all vertices, which are connected to a vertex in S by an edge but are not in S. Then,
the expansion ratio h(G) is defined to be the minimal δ such that G is an δ-expander graph.

Expander graphs have been successfully applied in communication networks where communication
comes at a certain cost and is to be used such that messages are spread across the network efficiently
(Lubotzky, 2012). We believe that expander graphs have a promising future in the neural network
literature. In a neural network each parameter (corresponding to an edge in the neural network
architecture) incurs a comuputational cost both when training the model and when obtaining inference.
Therefore, the number of parameters in the model is directly linked to the computational effort and
thereby, energy, the model requires to run. Designing neural network architectures using the concept
of expander graphs leads to neural network architectures, where fewer edges are placed in such a
way that the overall computational structure remains highly connected. In Bölcskei et al. (2019)
the connectedness of a sparse neural network architecture was linked to the complexity of a given
function class which can be approximated by sparse neural networks. Hence, utilising neural
networks parameters to optimise the connectedness of the network maximises the expressivity of the
neural network. In Kepner & Robinett (2019) and Bourely et al. (2017) the connectedness of the
neural network architecture graph was linked – via the path-connectedness and the graph Laplacian
eigenvalues – to the performance of neural network architectures. Therefore, for both the expressivity
of the neural network and its performance the connectedness is a parameter of interest and expander
graphs utilise a given budget of edges, corresponding to parameters in the neural network, to achieve
graphs which are highly connected.

3.2 SPARSIFYING THE UPDATE STEP: EXPANDER GNN

In order to study the influence of the Update step in GNNs, we propose an experimental design,
where its linear transform (of the MLPs) is gradually sparsified. By observing the trend of model
performance change (on downstream tasks) with respect to the sparsity of the linear transform layer,
we measure the impact of the Update step.
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Linear Layer as a graph The fully-connected linear transform layer in MLPs can be represented
by a bipartite graph B(S1,S2,E), where S1 and S2 are two sets of nodes and E the set of edges that
satisfy ∀u ∈ S1,∀v ∈ S2,∃(u, v) ∈ E; ∀u, v ∈ S1(resp.S2),@(u, v) ∈ E. The number of edges, or
number of parameters, is |S1||S2| and the edges can be encoded in matrix form by W ∈ R|S1|×|S2|,
the weight matrix in Equation (3), that maps the input node features of dimension |S1| to output node
features of dimension |S2|.

3.2.1 EXPANDER LINEAR LAYER

Following Prabhu et al. (2018), we choose expander graphs as the sparsifiers for the linear transform
layer. When compared to pruning algorithms which sparsify neural network layers by iteratively
removing parameters according to certain metric during training, the expander sparsifiers have two
advantages:

(1) Good properties of expander structures allow consecutive linear layers to be highly connected
when only a smaller number of edges is present. The expander design assures that paths exist
between consecutive layers, avoiding the risk of layer-collapse that is common in many pruning
algorithms, where the algorithm prunes all parameters (weights) in one layer and cuts down the
flow between input and output (Tanaka et al., 2020).

(2) The expander sparsifier removes parameters at initialisation and keeps the sparsified structures
fixed during training, which avoids the expensive computational cost stemming from adapting
the neural network architecture during or after training and then retraining the network as is done
in the majority of pruning algorithms (Frankle & Carbin, 2019; Han et al., 2015).

Given the bipartite graph corresponding to a linear transform layer B(S1,S2,E), we follow the design
of Prabhu et al. (2018) to construct the sparsifier by sampling its subgraph of specific expander
structure.
Definition 2. Suppose |S1| ≤ |S2|. For each vertex u ∈ S1, we uniformly sample d vertices
{vui }i=1,...,d from S2 to be connected to u. Then, the constructed graph B′(S1,S2,E′) is a subgraph
of B with edge set E′ = {(u, vui ) : u ∈ S1, i ∈ {1, . . . , d}}. Else if |S1| > |S2|, we define the
expander sparsifier with the roles of S1 and S2 reversed meaning that we sample nodes from S1.
Definition 3 (layer density). We refer to the density of the expander linear layer as the ratio of the
number of sampled connections to the number of connections in the original graph. For example, the
fully-connected layer has density 1. The sampling scheme in Definition 2 returns an expander linear
layer of density d

|S2| .

When we replace all linear layers in the Update steps of a GNN with expander linear layers constructed
by the sampling scheme in Definition 2, we get the Expander GNN. An illustration can be found in
Appendix B. Bipartite expander graphs as defined in Definition 2 are also discussed in the field of
so called “lossless expanders” in Hoory et al. (2006, pp. 517-522), where several expander graph
concepts are discussed in the context of bipartite graphs.

3.2.2 IMPLEMENTATION OF EXPANDER LINEAR LAYER

The most straightforward way of implementing the expander linear layer is to store the weight matrix
W as a sparse matrix. However, due to the known issue of inefficiency of hardware acceleration
on sparse matrices (Wen et al., 2016), we use masks, similar to those of pruning algorithms, to
achieve the sparsification. A mask M ∈ {0, 1}|S1|×|S2| is of the same dimension as weight matrix
and Mu,v = 1 if and only if (u, v) ∈ E′. An entrywise multiplication is then applied to the mask and
the weight matrix so that undesired parameters in the weight matrix are removed, i.e., Equation (3)
can be rewritten as,

H(L) = σ(Â . . . σ(ÂH(1)M (1) �W (1)) . . .M (L) �W (L)), (4)
where � denotes the Hadamard product. Theoretically, replacing fully connected linear layers by
expander linear layers should both save memory cost and speed up computation. However, this
practical implementation, which is adapted to current hardware constraints, worsens the computation
time slightly by adding new operations. Contrariwise, the inference computation time is significantly
improved by the sparsification. This behaviour of the training and inference time is shared with many
pruning approaches, where the training time is increased and the significant time saving comes at the
inference stage (Frankle & Carbin, 2019). In Section 4.2 we observe this effect in practice.
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3.3 AN EXTREME CASE: ACTIVATION-ONLY GNN

A natural extension for the Expander GNN is to consider the extreme case where linear transformation
layer is removed by removing the trainable weight matrix W from the update step. Gama et al.
(2020) argue that the non-linearity present in GNNs, in form of the activation functions, has the effect
of frequency mixing in the sense that “part of the energy associated with large eigenvalues” is brought
“towards low eigenvalues where it can be discriminated by stable graph filters.” This theoretical
insight that activation functions help capture information stored in the high energy part of graph
signals is strong motivation to consider the extreme case, which we refer to as the Activation-Only
GNN models, in which each message-passing step is immediately followed by a pointwise activation
function and the linear transformation of the update step is forgone. Hence, in a Activation-Only
GNN, Equation (3) will be rewritten as,

H(L) = σ(Â . . . σ(ÂH(1))). (5)

This proposed simplification is applicable to a wide variety of GNN models, whose extract formula-
tions can be found in Appendix C.3. For comparison we display the model equation of the SGC (Wu
et al., 2019),

H(L) = ÂLH(1)Θ,

where Θ = W (1) . . .W (L). Here the nonlinear activation functions have been removed and the
linear transformations have been collapsed into a single linear transformation layer. Interestingly, we
observe that the repeated application of the symmetric matrix Â to the input data X is equivalent to
an unnormalised version of the power method approximating the eigenvector corresponding to the
largest eigenvalue of Â. Hence, if sufficiently many layers L are used then inference is drawn in the
SGC model simply on the basis of the first eigenvector of Â.

4 EXPERIMENTS AND DISCUSSION

In this section, we empirically study the impact of the Update step on model performance. Specifically,
in Section 4.1 we provide an overview of the experimentation setup and the vanilla GNNs we compare
against. Then, in Sections 4.2, 4.3 and 4.4, we observe the performance of the proposed benchmark
models on the tasks of graph classification, graph regression and node classification, respectively. The
full set of results can be found in Appendix A.1-A.3. In Section 4.5, we compare the performance of
Expander GNNs and vanilla GNNs when they have equally many parameters.

4.1 GENERAL SETTINGS AND BASELINES

We experiment on eleven datasets from areas such as chemistry, social networks, computer vision and
academic citation, for three major graph learning tasks. Details of the used datasets can be found in
Appendix C.1. Throughout this section we refer to the standard, already published, architectures as
“vanilla” architectures. We compare the performance of the vanilla GNN models, the Expander GNN
models with different densities (10%, 50%, 90%), the Activation-Only GNN models with different
activation functions (ReLU, PReLU, Tanh), as well as the SGC for the GCN models.

To ensure that our inference is not specific to a certain GNN architecture only, we evaluate the
performance across 4 representative GNN models of the literature state-of-the-art. The considered
models are the Graph Convolutional Network (GCN, Kipf & Welling (2017)), the Graph Isomorphism
Network (GIN, Xu et al. (2019)), the GraphSage Network (Hamilton et al., 2017), and the Principle
Neighborhood Aggeragation (PNA, Corso et al. (2020)), along with a MLP baseline that only takes
the node features into account while ignoring the graph structure. The Activation-Only model class
is defined in the context of a GNN architecture and cannot be sensibly extrapolated to the MLP.
Therefore, we consider only the vanilla and Expander variants for the MLP benchmark.

Since we aim to observe the performance of our benchmark models independent of the GNN choice
we use the model hyperparameters found to yield a fair comparison of GNN models in Dwivedi et al.
(2020). Other experiment details, such as the choice of loss functions for different tasks, dataset splits
as well as the extact message-passing formulation of the models we studied and their variants can be
found in Appendix C.
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Figure 1: (a,b,c,e): Accuracy of different model types for GCN, GIN and MLP on
ENZYMES/DD/PROTEINS/IMDB-BINARY; (f,g): Accuracy of different model types for GCN,
GIN and MLP on MNIST/CIFAR10; (d): Training time (per epoch) of different model type for GCN
on PROTEINS; (h): Number of parameters required for GCN on PROTEINS.

4.2 GRAPH CLASSIFICATION

Figure 1(a), (b), (c) and (e) show the experiment results of the GCN, GIN and MLP models and their
Expander and Activation-Only variants on the ENZYMES, DD, PROTEINS and IMDB-BINARY
datasets for graph classification. The evaluation metric is classification accuracy, where the average
accuracy, obtained from a 10-folder cross validation, is used.

One direct observation from Figure 1(a), (b), (c) and (e) is that the Expander GNN models, even at
10% density, perform on par with the vanilla models. Surprisingly, the same is true for the Activation-
Only model on the ENZYMES, DD and PROTEINS datasets. IMDB-BINARY is our only graph
classification dataset where the node attributes are initialised to all be equal. This uninformative
initialisation, surprisingly, seems to lead to an increased performance if the linear update step is
present, visible in the performance gap of the Activation-Only models and the Expander GCN models.
While for GIN model we still observe the Activation-Only model and to match the performance of
the Expander GIN. Different activation functions often do not cause significantly different results.
However, in a few cases The influence of different activation functions is non-negligible only in a few
cases, e.g., in Figure 1(c) the PReLU activation model outperforms the Tanh activation. The SGC
performs either on par or worse than the Activation-Only model.

It is a known fact that the simple MLP can achieve better performance than GNNs (Luzhnica et al.,
2019) on the several of the TU datasets. Dwivedi et al. (2020) have shown that more complex GNN
models can outperform the MLP on the aforementioned datasets. However, this known shortcoming
has no impact on our conclusion, where we compare model performance within a GNN model class
rather than between GNN model classes.

In Figure 1(d) and (h) we observe the Activation-Only model to be comparable to the SGC in
computation time and in the scale of model parameters. Both models are significantly more efficient
than vanilla and Expander models. As stated in Section 3.2.2, the training time efficiency of the
Expander GNN models is slightly less than that of the vanilla models as is expected in the training of
a sparsified architecture.

Figure 1(f) and (g) show the graph classification results for the MNIST and CIFAR10 datasets.
Interestingly, the GCN Activation-Only model outperforms the SGC by a larger margin than we
observed on the TU datasets. It seems that especially for these computer vision datasets the presence
of activation functions in the GCN architecture has a large positive impact on model performance in
the graph classification task.
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Figure 2: (a,b,c,d): Accuracy of different model types for GCN/GIN/MLP on
CORA/CITESEER/PUBMED/ogbn-arxiv datasets; (e): Mean Absolute Error of different
model types for GCN/GIN/GraphSage/PNA/MLP on ZINC dataset; (f,g,h): Accuracy vs. number of
parameters plot on a logarithmic x-axis on (f) ogbn-arxiv for GCN models with different sparsifiers
and (g,h) on CITESEER/PUBMED for vanilla and Expander GCN with same parameter budget.

In summary, almost for all graph classification datasets we find the linear transformation in the
update step of the GCN and GIN to make little to no positive contribution to the model performance.
The activation function in the update step however turns out to be of great importance on the
vision datasets, where as for the TU collection it seems to be of little consequence. Overall, the
Activation-Only benchmark outperforms the SGC on all observed datasets.

4.3 GRAPH REGRESSION

In Figure 2(a) the Mean Absolute Error (MAE) of our studied and proposed models on the ZINC
dataset for graph regression is displayed. Similar to the graph classification task, the Expander GCN
and GraphSage models are on the same level with vanilla models, regardless of their densities. The
performance of the Expander GIN and PNA models exhibits greater variance accross the different
densities, especially in the case of the PNA models the performance is increasing as the network
gets denser indicating that the density of the Update step does positively contribute to the model
performance of the PNA for the task of graph regression on the ZINC dataset. The Activation-Only
models perform worse than their Expander counterparts on this task, again confirming the insight
from the results of the Expander GNNs that the linear transform in the update step does improve
performance in this graph regression task. Again we see that Activation-Only GCNs outperform the
SGC benchmark in this set of experiments.

Hence, for the task of graph regression we observe that both the linear transformation and non-linear
activation function in the Update step have a positive impact on model performance. We might have
been able to expect that the addition of the transformation performed in the Update step is of greater
impact in a regression task, which is evaluated on a continuous scale, than in a classification task,
where only a discrete label needs to be inferred.

4.4 NODE CLASSIFICATION

Results from the node classification experiments on four citation graphs (CORA, CITESEER,
PUBMED and ogbn-arxiv) can be found in Figure 2(a), (b), (c) and (d), respectively. For medium-
sized datasets such as CORA, CITESEER and PUBMED, we have the same observation with the
graph classification and graph regression tasks discussed in Sections 4.2 and 4.3, the Expander mod-
els, regardless of their sparsity, are performing on par with the vanilla ones. Only on the CITESEER
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dataset, we observe that the GIN Expander model with 10% density shows a small but non-negligible
drop in performance compared to the vanilla model; while the 50% and 90% dense Expander models
remain comparable to the vanilla one. The Activation-Only models also perform as well as or even
better than (on CITESEER) the vanilla model. The performance of the GCN Activation-Only model
and SGC are equally good across all three datasets.

These conclusions remain true for large-scale datasets like ogbn-arxiv with 169,343 nodes and
1,166,243 edges. The ExpanderGCNs are on par with the vanilla GCN while the Activation-Only
model and SGC perform slightly worse. However, the training time of Activation-Only model and
SGC is five times faster than that of the Expander and vanilla models. The PReLU Activation-Only
model performs better than the SGC, while the other two Activation-Only models do worse.

We observe that in the node classification task both the linear transformation and the non-linear
activation function offer no benefit for the medium scale datasets. For the large-scale dataset we find
that the linear transformation can be sparsified heavily without a loss in performance, but deleting it
entirely does worsen model performance.

4.5 SPARSIFICATION VS. SHRINKAGE

In Figure 2 (f) we compare the results from an ExpanderGCN to the those achieved by a GCN
model, where the Expander Linear Layer, presented in Definition 2, is replaced by a deterministic
sparsificsftion construction from Bourely et al. (2017) the “Regular Rotating Edge Construction”
(RREC). Bourely et al. (2017) observe that sparsifiers obtained from the RREC sampler have a
significantly lower algrbraic connectivity than the Expander Linear Layer sampler which we chose
to utilise in the Expander GNNs. We observe that Expander GCNs outperform the RREC sampled
GCN for almost all parameter budgets. Therefore, we confirm that the Expander Linear Layer is an
appropriate choice for the Expander GNN model class.

The experiments in Sections 4.2, 4.3 and 4.4 show that the linear transform layer in the Update step of
GNN can be sparsified to an arbitrary level without loss of performance. From this a natural question
then arises: Will a shrunk model, i.e., a model with a smaller hidden dimension used in the Update
step, matching the number of parameters of the sparsified Expander GNN, perform on par with its
Expander GNN counterpart?

To study this question we compare the performance of vanilla GCNs to Expander GCNs with equally
many parameters, but doubling the size of the hidden dimension of the vanilla GCN. Figure 2 (g) and
(h) show the experiment results on two citation datasets. We observe that for most parameter values
the Expander GCN outperforms the vanilla GCN. This phenomenon becomes more evident when the
number of parameter is small. In conclusion, it seems to always be beneficial to choose a sparsified
large model rather than a compact model with equally many parameters.

5 CONCLUSION

With extensive experiments across different GNN models and graph learning tasks, we are able to
confirm that the Update step can be sparsified heavily without a significant performance cost. In fact
for seven of the eleven tested datasets across a variety of tasks we found that the linear transform can
be removed entirely without a loss in performance, i.e., the Activation-Only models performed on par
with their vanilla counterparts. The Activation-Only GCN model consistently outperformed the SGC
model and especially in the computer vision datasets we witnessed that the activation functions seem
to be crucial for good model performance accounting for an accuracy difference of up to 59%. These
findings partially support the hypothesis by Wu et al. (2019) that the update step can be simplified
significantly without a loss in performance. Contrary to Wu et al. (2019) we find that the nonlinear
activation functions result in a significant accuracy boost and the linear transformation in the update
step can be removed or heavily sparsified.

The Activation-Only GNN is an effective and simple benchmark model framework for any message
passing neural network. It enables practitioners to test whether they can cut the large amount of model
parameters used in the linear transform of the update steps. If the linear transform does contribute
positively to the model’s performance then the Expander GNNs provide a model class of tunable
sparsity which allows efficient parameter usage.
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APPENDIX

A COMPLETE EXPERIMENT RESULTS

A.1 GRAPH CLASSIFICATION

Table 1: Full results of GCN/GIN/MLP on Four TU Datasets

ENZYMES DD
ACC Time per Epoch(s) #Parameters ACC Time per Epoch(s) #Parameters

Simple GCN — 63.67 ± 8.06 0.2004 37853 75.90 ± 3.93 1.3841 43643

Activations

GCN

lelu 66.67 ± 6.24 0.2073

37853

74.79 ± 3.46 1.3979

43643

prelu 66.67 ± 6.71 0.2486 75.39 ± 3.98 1.4643
relu 66.33 ± 5.31 0.2132 74.88 ± 3.41 1.3915
selu 66.17 ± 6.99 0.206 75.64 ± 4.54 1.3948

softshrink 66.17 ± 7.11 0.2031 58.66 ± 0.30 1.4099
tanh 65.67 ± 7.04 0.2154 76.57 ± 5.20 1.391

GIN

lelu 52.17 ± 5.78 0.3219

5420

70.12 ± 4.30 1.6544

10610

prelu 55.17 ± 7.94 0.3531 69.19 ± 3.02 1.7253
relu 51.00 ± 5.88 0.3122 70.03 ± 3.27 1.6424
selu 53.83 ± 7.34 0.3201 72.49 ± 4.30 1.6772

softshrink 54.83 ± 7.97 0.3165 71.22 ± 3.39 1.6558
tanh 62.83 ± 7.15 0.3073 71.32 ± 5.29 1.6443

Expander

GCN
10% 66.33 ± 6.78 0.2863 22775 74.53 ± 3.50 1.5731 21064
50% 64.83 ± 8.64 0.285 58293 74.28 ± 2.52 1.5856 56960
90% 64.83 ± 9.44 0.2917 93209 75.13 ± 4.69 1.5763 92215

GIN
10% 65.83 ± 7.75 0.3798 8918 68.59 ± 2.70 1.6605 6730
50% 67.00 ± 6.05 0.3822 29070 70.03 ± 4.20 1.6427 28789
90% 67.50 ± 5.74 0.3729 49222 68.93 ± 3.26 1.637 50335

MLP
10% 71.50 ± 5.13 0.1653 26001 77.00 ± 3.39 1.0672 23858
50% 74.67 ± 5.72 0.1783 59661 76.66 ± 2.69 1.07 58020
90% 73.17 ± 7.65 0.1772 92811 76.24 ± 3.80 1.0621 91631

Vanilla
GCN — 66.50 ± 8.71 0.2557 102239 75.13 ± 3.44 1.5782 101189
GIN — 67.67 ± 7.68 0.3692 54260 68.76 ± 5.55 1.6572 55978
MLP — 74.17 ± 6.34 0.1646 101481 77.43 ± 3.98 1.0523 100447

PROTEINS IMDB-BINARY
ACC Time per Epoch(s) #Parameters ACC Time per Epoch(s) #Parameters

Simple GCN — 67.65 ± 2.21 0.3374 39311 61.30 ± 3.61 0.3297 31499

Activations

GCN

lelu 75.20 ± 5.19 0.3464

39311

61.30 ± 4.05 0.3418

31499

prelu 75.29 ± 4.85 0.3654 61.00 ± 3.92 0.388
relu 74.48 ± 4.61 0.348 61.90 ± 4.01 0.3497
selu 75.92 ± 2.88 0.3469 62.70 ± 3.32 0.3479

softshrink 70.53 ± 3.27 0.3462 50.00 ± 0.00 0.344
tanh 70.89 ± 2.70 0.3452 61.20 ± 4.56 0.3522

GIN

lelu 67.74 ± 4.82 0.4978

4410

68.10 ± 4.50 0.5292

1282

prelu 70.34 ± 4.78 0.5144 69.50 ± 3.88 0.577
relu 68.82 ± 5.97 0.4897 67.90 ± 3.96 0.5262
selu 72.40 ± 5.03 0.4989 69.00 ± 6.03 0.5345

softshrink 69.45 ± 3.66 0.4929 69.70 ± 4.31 0.5271
tanh 71.96 ± 4.26 0.494 67.30 ± 5.62 0.5233

Expander

GCN
10% 76.55 ± 1.90 0.4524 22781 71.60 ± 5.50 0.4673 19920
50% 76.36 ± 3.43 0.448 58948 72.40 ± 5.70 0.4779 50888
90% 75.38 ± 4.01 0.4476 94502 72.30 ± 6.65 0.4835 81303

GIN
10% 70.53 ± 3.96 0.5481 6819 72.00 ± 6.16 0.6368 5850
50% 70.08 ± 2.69 0.5483 27455 68.80 ± 5.90 0.6268 24125
90% 70.71 ± 2.55 0.5455 48091 70.30 ± 7.39 0.6127 41975

MLP
10% 69.00 ± 4.99 0.2856 25453 50.00 ± 0.00 0.287 22538
50% 64.15 ± 4.32 0.2852 58928 50.00 ± 0.00 0.2896 51244
90% 63.61 ± 2.40 0.2831 91888 50.00 ± 0.00 0.2967 79487

Vanilla
GCN — 76.73 ± 3.85 0.4388 103697 72.70 ± 5.68 0.4433 89045
GIN — 72.51 ± 2.39 0.5309 53250 69.00 ± 6.23 0.6135 46650
MLP — 64.33 ± 4.93 0.2769 100643 50.00 ± 0.00 0.2725 86895
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Table 2: Full results of GCN/GIN/MLP on Computer Vision datasets (MNIST/CIFAR10)

MNIST CIFAR10
ACC Time per Epoch(s) #Parameters ACC Time per Epoch(s) #Parameters

Simple GCN — 24.48 100.098 35811 27.90 143.721 36103

Activations

GCN

lelu 83.52 101.554

14349

48.31 39.6657

14641
prelu 83.84 103.11 47.90 41.3494
relu 83.16 102.443 48.27 40.2591
tanh 77.67 102.975 43.89 40.6699

GIN

lelu 75.68 119.803

5990

37.90 44.6216

6210
prelu 71.60 115.862 36.48 46.0211
relu 75.73 119.081 38.67 45.0776
tanh 79.49 119.729 39.71 45.0382

Expander

GCN
10% 89.00 124.411 22713 50.27 45.0057 22741
50% 90.75 124.075 57346 50.69 45.1236 57492
90% 90.87 124.166 91392 51.68 44.769 91654

GIN
10% 88.73 120.735 10973 35.93 44.4764 10995
50% 92.31 119.554 30465 40.35 44.537 30575
90% 90.24 116.378 49957 42.25 44.401 50155

MLP
10% 94.97 67.2461 26980 57.96 31.6988 27012
50% 96.04 66.9236 61456 58.12 31.6178 61624
90% 96.17 66.7391 95425 58.85 31.6307 95727

Vanilla
GCN — 90.77 124.091 100197 52.04 44.337 100489
GIN — 90.33 120.191 54830 42.46 45.2386 55050
MLP — 96.17 66.125 104044 58.66 31.5435 104380
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A.2 GRAPH REGRESSION

Table 3: Full results of GCN/GIN/GraphSage/PNA/MLP on Molecule dataset (ZINC)

ZINC
MAE Time per Epoch(s) #Parameters

Simple GCN — 0.6963 1.9847 34347

Activations

GCN

lelu 0.5947 1.8624

13177

prelu 0.5855 1.9273
relu 0.5967 1.8407
selu 0.6128 1.8581

softshrink 0.6549 1.8574
tanh 0.6086 1.8639

GIN

lelu 0.5368 2.8046

555

prelu 0.5743 2.8826
relu 0.5524 2.8009
selu 0.5424 2.8144

softshrink 0.5221 2.821
tanh 0.5354 2.8263

GraphSage

lelu 0.4937 4.1406

5130

prelu 0.494 4.3778
relu 0.4907 4.1238
selu 0.5365 4.1293

softshrink 1.5508 4.1428
tanh 0.5665 4.121

PNA

lelu 0.5181 27.9922

3515

prelu 0.5038 28.1269
relu 0.4972 28.0074
selu 0.5285 27.9645

softshrink 0.5374 28.0993
tanh 0.4493 27.9598

Expander

GCN
10% 0.3958 2.5833 21877
50% 0.3856 2.5793 55517
90% 0.3845 2.5578 89157

GIN
10% 0.4888 3.0905 5835
50% 0.5274 3.1125 25195
90% 0.4456 3.0852 44555

GraphSage
10% 0.4721 4.461 11970
50% 0.4584 4.4495 37890
90% 0.4579 4.4581 63810

MLP
10% 0.6931 2.1455 23775
50% 0.6898 2.1426 59775
90% 0.6873 2.1542 95775

PNA
10% 0.3798 32.0922 23735
50% 0.3384 32.148 102495
90% 0.2946 32.0666 181255

Vanilla

GCN — 0.3823 2.5538 97857
GIN — 0.4939 3.0569 49395

GraphSage — 0.4526 4.4149 70290
MLP — 0.6916 2.1085 104775
PNA — 0.3184 31.6077 201205
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A.3 NODE CLASSIFICATION

Table 4: Full results of GCN/GIN/MLP on Three Citations dataset

CORA CITESEER
ACC Time per Epoch(s) #Parameters ACC Time per Epoch(s) #Parameters

Simple GCN — 80.40 ± 0.00 0.0088 10038 72.70 ± 0.00 0.0116 22224

Activations

GCN
prelu 80.40 ± 0.00 0.0112 10038 72.70 ± 0.00 0.0159 22224
relu 80.40 ± 0.00 0.0088 10038 72.70 ± 0.00 0.0124 22224
tanh 80.40 ± 0.00 0.0086 10038 72.70 ± 0.00 0.0125 22224

GIN
prelu 75.42 ± 0.97 0.0124 30114 66.70 ± 0.65 0.0211 66672
relu 75.42 ± 0.97 0.0117 30114 66.70 ± 0.65 0.0202 66672
tanh 78.65 ± 0.36 0.0121 30114 65.45 ± 0.63 0.0202 66672

Expander

GCN
10% 80.59 ± 0.64 0.021 38663 68.68 ± 0.73 0.0244 96518
50% 80.42 ± 0.28 0.0228 185351 69.43 ± 0.34 0.0278 475654
90% 80.82 ± 0.23 0.0213 332039 69.42 ± 0.26 0.0259 854790

GIN
10% 77.08 ± 0.96 0.0163 57156 64.83 ± 0.49 0.022 126940
50% 77.06 ± 0.81 0.017 230212 67.24 ± 0.49 0.0253 532444
90% 77.36 ± 1.40 0.0167 403012 68.31 ± 0.70 0.0229 937692

MLP
10% 49.91 ± 1.34 0.0096 38663 49.34 ± 1.43 0.0143 96518
50% 53.57 ± 0.53 0.0111 185351 52.53 ± 1.25 0.0175 475654
90% 54.06 ± 0.88 0.0102 332039 52.34 ± 1.64 0.0154 854790

Vanilla
GCN — 80.54 ± 0.44 0.0172 368903 69.50 ± 0.19 0.0194 949766
GIN — 76.57 ± 1.36 0.0126 446532 68.33 ± 0.56 0.0154 1039324
MLP — 53.21 ± 1.69 0.0061 368903 52.44 ± 1.71 0.0086 949766

PUBMED ogbn-arxiv
ACC Time per Epoch(s) #Parameters ACC Time per Epoch(s) #Parameters

Simple GCN — 78.90± 0.00 0.0148 1503 66.53± 0.07 0.0501 5160

Activations

GCN
prelu 78.90± 0.00 0.0201 1503 68.29± 0.13 0.0603 5160
relu 78.90± 0.00 0.0156 1503 63.97± 0.09 0.0519 5160
tanh 78.83± 0.05 0.0157 1503 65.51± 0.12 0.0518 5160

GIN
prelu 76.38± 1.06 0.0245 4509 54.45± 3.20 0.0732 15480
relu 76.46± 1.12 0.0235 4509 52.21± 3.47 0.071 15480
tanh 77.46± 0.67 0.0236 4509 64.10± 0.32 0.0711 15480

Expander

GCN
10% 78.95± 0.63 0.0237 13827 70.70± 0.42 0.2733 20392
50% 79.34± 0.28 0.0246 65027 71.42± 0.55 0.2681 59944
90% 79.17± 0.23 0.0236 116227 71.22± 0.71 0.2732 99112

GIN
10% 76.91± 0.51 0.0235 22757 68.78± 0.31 0.2742 52768
50% 76.06± 1.14 0.024 100325 69.11± 0.86 0.2742 118688
90% 76.50± 0.73 0.0236 177637 67.54± 3.91 0.274 183968

MLP
10% 69.43± 0.94 0.0142 13827 51.77± 0.30 0.1109 20392
50% 69.34± 1.24 0.0151 65027 54.83± 0.20 0.1106 59944
90% 68.78± 1.56 0.0145 116227 55.55± 0.08 0.1107 99112

Regular
GCN — 79.04± 0.12 0.0215 129027 71.22± 0.76 0.2713 109096
GIN — 76.55± 0.84 0.022 197093 69.37± 0.34 0.2737 200608
MLP — 68.87± 1.78 0.0129 129027 55.63± 0.11 0.1098 109096
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A.4 CONVERGE BEHAVIOR: AN EXAMPLE OF GCN ON PROTEINS DATASET
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Figure 3: Train loss (cross-entropy) converging behaviour of different model type for GCN on
Proteins dataset.

Figure 3 exhibits the loss convergence in training of GCN model class on PROTEINS dataset. We
implement a learning rate decay scheme and terminate the training process when learning rate drops
to a preset minimum value. Then if a model terminates ealier than its alternatives, it indicates that
this model converges faster. As we can see from the figure, Activation-Only and SGC both terminate
the process with less epochs than vanilla and Expander models. Similar to the main paper, we are
able to draw the conclusion that Activation-Only and SGC do not only have fewer parameters but that
their training also converges faster, hence more efficient in time.

B ILLSTRATION OF EXPANDER MPNNS

Iteration 1

Iteration 2

Iteration L

Aggregation Update

Figure 4: Illustration of Expander MPNNs. The left part is the Aggregation or graph propagation step
and the right part is theUpdate step. The red lines on the left part represents preserved connections in
MLPs sampled by expander sparsifier.
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C EXTRA INFORMATION FOR EXPERIMENTS AND MODELS

C.1 DATASET DETAILS

Table 5: Properties of all datasets used in experiments.

Dataset #Graphs #Nodes (avg.) #Edges (avg.) Task

TU datasets

ENZYMES 600 32.63 62.14

Graph Classification
DD 1178 284.32 715.66

PROTEINS 1113 39.06 72.82
IMDB-BINARY 1000 19.77 193.06

Computer Vision MNIST 70K 70.57 282.27
CIFAR10 60K 117.63 470.53

ZINC 12K 23.16 24.92 Graph Regression

Citations

CORA 1 2708 5278

Node ClassificationCITESEER 1 3327 4552
PUBMED 1 19717 44324
ogbn-arxiv 1 169343 1166243

Differed on the learning tasks, the datasets we use can be classified into three categories. For graph
classification, we have four TU datasets (Kersting et al., 2016) which are either chemical or social
network graphs, and two Image datasets (MNIST/CIFAR10) that are constructed from original images
following the procedure in Knyazev et al. (2019). To perform this conversion they first extract small
regions of homogeneous intensity from the images, named “Superpixels” (Dwivedi et al., 2020), and
construct a K-nearest neighbour graph from these superpixels. The technique we implemented to
extract superpixels, the choice of K and distance kernel for constructing a nearest neighbour graph
are the same as in Knyazev et al. (2019) and Dwivedi et al. (2020). For graph regression, we consider
molecule graphs from the ZINC dataset (Irwin et al., 2012). And for node classification, we use four
citation datasets (Sen et al., 2008; Wang et al., 2020; Hu et al., 2020), where the nodes are academic
articles linked by citations.

In Table 5, we summarise the statistics of the aforementioned eleven datasets in detail. We display
their number of graphs, number of nodes and of edges, as well as the tasks that are performed on
them. In the number of nodes and edges column we show the values, or the average of these values if
there are multiple graphs.

C.2 EXPERIMENT SETTINGS

In order to ensure a fair comparison across different GNN models, we follow the recent bench-
mark proposed in Dwivedi et al. (2020). Specifically, we use their datasets on computer vision
(MNIST/CIFAR10) and chemistry(TU datasets/ZINC dataset); we follow the same training proce-
dure, such as train/valid/test dataset splits, choice of optimiser, learning rate decay scheme, etc., as
well as the same hyper-parameters, such as initial learning rate, hidden feature dimensions, number of
GNN layers, etc. We also implement the same normalisation tricks such as adding batch normalisation
after non-linearity of each Update step. Their setting files (training procedure/hyperparameters) are
made public and can be found in this repository.

For the node classification task on citation datasets, we follow the settings from Wu et al. (2019). Our
experiments found that the node classification task on citation graphs of small/medium size can be
easily overfit and model performances heavily depend on the choice of hyperparameters. Using the
same parameters with Wu et al. (2019), such as learning rate, number of training epochs and number
of GNN layers, helps us achieve similar results with the paper on the same model, which allows a fair
comparison between the proposed Activation-Only models and the SGC.

C.3 MODEL DETAILS: GNNS UNDER THE MPNN FRAMEWORK

In Section 3, we present the message-passing GNN framework and explained the ideas which drive
the Expander and Activation-Only models that we proposed. These ideas are illustrated by an example
of GCN. In this section, we will recall the MPNN formulation. Normalisation layers such as batch
normalisation are omitted in the formulation for the purpose of clarity. For each of the models, we
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present their vanilla version, Expander version and Activation-Only version. As stated in Section 3,
we ignore the various variants of vanilla models and only work with variants of simple forms.

C.3.1 GRAPH CONVOLUTIONAL NETWORK

Vanilla GCN and Expander GCN We have shown the matrix form of Aggregation and Update
iterations in GCN in the main paper. Here we are going to revisit the message-passing procedure in
GCN from the angle of a single node. At iteration l,

m
(l)
i =

1√
degi

∑
j∈N (i)

h
(l)
j

1√
degj

, (6)

h
(l+1)
i = σ(m

(l)
i M (l) �W (l)), (7)

where W (l) is the weight matrix of lth linear transform layer and M (l) is its corresponding mask. For
vanilla GCNs, all entry of M (l) is 1 while for Expander GNN M (l) is a sparse matrix. Equation (6)
is the Aggregation step, which constructs “messgae” equivalent to a weighted average of neighbours’
embeddings, then Equation (7) Updates node i’s representation based on constructed “message”.

Activation-Only GCN The Activation-Only model can then simply be written as,

h
(l+1)
i = σ

 1√
degi

∑
j∈N (i)

h
(l)
j

1√
degj

 .

C.3.2 GRAPH ISOMORPHISM NETWORK

Vanilla GIN and Expander GIN The message-passing procedure of GIN is very similar to GCN,
except that at the Aggregation step, it adds explicitly a learnable ratio of the central node’s own
representation, defined as,

m
(l)
i = (1 + ε)h

(l)
i +

∑
j∈N (i)

h
(l)
j . (8)

Its Update step is the same with Equation (7).

Activation-Only GIN Similar to GCN, the Activation-Only model can then be written as,

h
(l+1)
i = σ

(1 + ε)h
(l)
i +

∑
j∈N (i)

h
(l)
j

 .

C.3.3 GRAPHSAGE NETWORK

Vanilla GraphSAGE and Expander GraphSAGE GraphSage also incorporates explicitly the
central node’s representation in the Aggregation step by concatenation. Their message-passing
procedure is,

m
(l)
i = h

(l)
i ‖MAXj∈N (i)σ(h

(l)
j M

(l)
1 �W

(l)
1 ), (9)

h
(l+1)
i =

ĥi
(l+1)

‖ĥi
(l+1)
‖2
, ĥi

(l+1)
= σ(m

(l)
i M

(l)
2 �W

(l)
2 ), (10)

where ‖ denotes concatenation and MAX function takes maximum along each feature dimension.

Activation-Only GraphSAGE In Activation-Only models for GraphSage, we need to consider the
issue of dimension incoherence after removing linear transforms. Since a simple removal of linear
transforms will result in an exponential growth in the dimension of hidden representation. One
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convenient solution is to replace concatenation with a summation so that the dimension of either m
or h remains unchanged after the iteration. The message-passing steps then become,

m
(l)
i = h

(l)
i + MAXj∈N (i)σ(h

(l)
j ), (11)

h
(l+1)
i =

ĥi
(l+1)

‖ĥi
(l+1)
‖2
, ĥi

(l+1)
= σ(m

(l)
i ). (12)

A more complex way is to separate the propagation and update of “message” m and hidden represen-
tation h. More precisely,

m
(l)
i = MAXj∈N (i)σ(m

(l−1)
j ), m

(0)
i = h

(1)
i , (13)

h
(l+1)
i =

ĥi
(l+1)

‖ĥi
(l+1)
‖2
, ĥi

(l+1)
= σ(h

(l)
i ‖m

(l)
i ), (14)

where the dimension of hi grows proportionally to the number of iterations. Neither of the methods
is out-weighted by the other based on evidence from our empirical experiments. However, from an
economic view on developping parsimonious GNN, Equation 11 is our preferred method.

C.3.4 PRINCIPAL NEIGHBOURHOOD AGGREGATION

Vanilla PNA and Expander PNA The PNA model concatenates in its Aggregation step the “mes-
sages” obtained from different combinations of scalars and aggregators. This step can be written as
(Fey & Lenssen, 2019),

m
(l)
i =

⊕
j∈N (i)

σ(h
(l)
j M (l) �W (l)), (15)

where
⊕

is defined as the outer product, denoted by ⊗, of the arrays of scalars and aggregators, with
cardinality c1 and c2, respectively, as follow,

[
1

S(D, α = 1)
S(D, α = −1)

]
︸ ︷︷ ︸

scalars

⊗

mean
std
max
min


︸ ︷︷ ︸
aggregators

.

The Update step is the same as Equation (7).

Activation-Only PNA Similar to the Activation-Only GraphSage, the Activation-Only PNA also
suffers from dimension incoherence issue, due to the concatenate operation. Instead of concatenation,
we take the average of each representation obtained from one combination of scaler and aggregator in
Activation-Only models. Then the message-passing procedure becomes,

h
(l+1)
i = σ

 1

c1c2

∑
1T

 ⊕
j∈N (i)

σ(h
(l)
j )

1

 ,

where c1 denotes the number of scalars and c2 denotes the number of aggregators used in the PNA.

C.3.5 GRAPH-AGNOSTIC BASELINE: MULTI-LAYER PERCEPTRON

Vanilla MLP and Expander MLP The MLP baseline has no Aggregation steps. Its Update step is
simply,

h
(l+1)
i = σ(h

(l)
i M (l) �W (l)).

20



Under review as a conference paper at ICLR 2021

C.4 LOSS FUNCTIONS FOR DIFFERENT TASKS

After L message-passing iterations, we obtain H(L) = [h
(L)
1 , . . . ,h

(L)
n ]T ∈ Rn×d as the final node

embedding, where we denote d as its feature dimension. Depending on downstream tasks, we either
keep working with H(L) or construct a graph-level representation g from H(L) by,

g =
1

n

∑
i∈V

h
(L)
i ,

which is refer to as the Readout step in Section 3.

g or H(L) is then fed into a fully-connected network (MLP) to be transformed into the desired form
of output for further assessment, i.e., a scalar value as prediction scores for graph regression. We
denote this network as f(·), which, in our experiments, is fixed to be a three-layer MLP of the form

f(·) = σ(σ(·,W1)W2)W3,

where W1 ∈ Rd×[ d2 ], W2 ∈ R[ d2 ]×[
d
4 ], W3 ∈ R[ d4 ]×k with k being the desired output dimension.

The final output, either f(g) or f(H(L)), is compared to the ground-truth by a task-specific loss
function. For graph classification and node classification, we choose cross-entropy loss and for graph
regression, we use mean absolute error (or the L1 loss).
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