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ABSTRACT

Large language models rely on attention mechanisms with a softmax activation.
Yet the dominance of softmax over alternatives (e.g., component-wise or lin-
ear) remains poorly understood, and many theoretical works have focused on the
easier-to-analyze linearized attention. In this work, we address this gap through a
principled study of the single-location regression task, where the output depends
on a linear transformation of a single input token at a random location. Building
on ideas from statistical physics, we develop an analysis of attention-based predic-
tors in the high-dimensional limit, where generalization performance is captured
by a small set of order parameters. At the population level, we show that soft-
max achieves the Bayes risk, whereas linear attention fundamentally falls short.
We then examine other activation functions to identify which properties are nec-
essary for optimal performance. Finally, we analyze the finite-sample regime: we
provide an asymptotic characterization of the test error and show that, while soft-
max is no longer Bayes-optimal, it consistently outperforms linear attention. We
discuss the connection with optimization by gradient-based algorithms.

1 INTRODUCTION

Large language models (LLMs) have recently reshaped natural language processing, enabling appli-
cations ranging from conversational agents and code generation to knowledge-intensive reasoning.
At the heart of these models lies the Transformer architecture (Vaswani et al., 2017), where the use
of softmax in attention layers has proven remarkably effective. Despite its dominance, it has compu-
tational drawbacks due to its quadratic complexity in the sequence length, while being theoretically
arduous to study due to the softmax normalization that couples tokens in a complex manner.

For these reasons, numerous alternatives have been proposed. Notably, kernelized attention approx-
imates the softmax function with kernel feature maps (Wang et al., 2020; Luo et al., 2021; Choro-
manski et al., 2021; Qin et al., 2022), achieving linear complexity in sequence length. In parallel,
state-space models (Peng et al., 2023; Poli et al., 2023; Gu & Dao, 2024) introduce linear recurrent
dynamics with gating to tackle long-context information retrieval. On the other hand, while less
studied empirically, linear attention, which is the linearization of softmax around the origin, has
been extensively studied in theoretical works (e.g. Ahn et al., 2023; von Oswald et al., 2023; Bai
et al., 2023; Mahankali et al., 2023; Zhang et al., 2024; Lu et al., 2025; Zhang et al., 2025).

The comparison of softmax with these alternatives has been investigated in particular in the frame-
work of synthetic in-context retrieval tasks, such as Needle-in-a-Haystack (NIAH), where the model
must retrieve a single fact hidden in a long block of irrelevant text (Kamradt, 2023; Machlab & Bat-
tle, 2024). Overall, the comparison is nuanced: while some alternatives, in particular SSMs, match
or even outperform softmax in some of these synthetic tasks, they fail to do so in slight variations
thereof or in actual language settings (Arora et al., 2024; Hsieh et al., 2024; Shen et al., 2024). All
in all, the practical dominance of softmax in attention is still not fully understood.

Contributions and organization. In this paper, we take a more principled approach to the ques-
tion, with the following contributions. Code to reproduce our simulations is provided.

* We propose a mathematical formalization of tasks where the output depends on a single input
token as the single-location regression model (Section 3). This model subsumes previous
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theoretical studies (Marion et al., 2025), notably by introducing random sequence lengths,
and gives a formalization of information retrieval tasks such as NIAH.

* By combining analytical and numerical results, we provide an analysis of the performance
of various attention layers, in particular softmax and linear, in increasingly involved settings
(approximation, statistical, computational). The analysis remains tractable despite the pres-
ence of the softmax nonlinearity by leveraging ideas from the sequence multi-index models
(Cui et al., 2024; Arnaboldi et al., 2025; Cui, 2025; Troiani et al., 2025), where properly
scaled random variables concentrate in the high-dimensional limit and the learning behavior
can then be characterized by a small set of so-called order parameters.

* We prove a gap in approximation performance between linear and softmax attention (Section
4), with the latter reaching Bayes performance. We argue that this analysis captures the
performance efficiently attainable with one-pass stochastic gradient descent. This gap arises
from both the exponential nonlinearity and the normalization in softmax, as illustrated by
our comparison with kernelized and element-wise attention (Fig. 1).

* We characterize the regularized empirical risk minimizer (ERM), in the high-dimensional
limit with sample complexity linearly proportional to the dimension, as the solution to self-
consistent equations (Section 5). By solving these equations, we show that the advantage of
softmax over linear attention still holds, and we benchmark against the optimal test risk at
finite sample complexity, which we will call Bayes-optimal performance. We show numer-
ically that the predicted ERM is achieved by gradient-based optimization algorithms (see
Fig. 2).

2 FURTHER RELATED WORK

Synthetic information retrieval tasks. Notable tasks related to single-location include Needle-
in-a-Haystack (NIAH) (Kamradt, 2023; Machlab & Battle, 2024), where the goal is to retrieve a
fact (“needle”) given in a sentence inserted within a large block of unrelated text (“haystack™). An
abstraction of NIAH is the Associative Recall (AR) (Graves et al., 2014; Ba et al., 2016) task. In this
task, the input contains a sequence of bigrams representing key-value pairs from a random dictionary
followed by a query token. For example, the correct output for the input A2B8C4 A3 — B?is 8.
This task has been extensively studied through the lens of information retrieval circuits in Transform-
ers, specifically induction heads (Olsson et al., 2022). AR is extended in the Multi-Query Associated
Recall (MQAR) task (Arora et al., 2024), featuring several queries for each input sequence.

Alternatives to softmax attention. Two main alternative directions feature a linear complex-
ity in the sequence length. First, in kernelized attention (often referred to as linear attention in
the literature), the original attention function Att(Q, K) = softmax(QK ' /v/d) is replaced by
Att(Q,K) = @(Q)@(K)T, where ¢ is a kernel function (see, among others, Wang et al., 2020;
Choromanski et al., 2021; Qin et al., 2022). More recently, state-space models (SSMs) were specif-
ically introduced to handle information retrieval in long contexts (Fu et al., 2023; Peng et al., 2023;
Poli et al., 2023; Gu & Dao, 2024). They consist in alternating linear recurrent neural networks
(which can be seen as 1d-convolutions along the sequence time) with nonlinear operations applied
in parallel over each element of the sequence (sometimes referred to as gating). We refer to Arora
et al. (2024) for a common mathematical framework encompassing many variants of SSMs.

While SSMs outperform attention-based models in AR thanks to their capacity to handle long con-
texts, this success is brittle since they lag behind Transformers on the slightly more involved MQAR
task (Arora et al., 2024; Aksenov et al., 2024; Chou et al., 2024; Wang et al., 2025). Arora et al.
(2024) propose a theoretical explanation based on the lack of expressivity of convolution-gating
models. Transformers also outperform SSMs and kernelized attention in (a generalization of) NIAH
(Hsieh et al., 2024; Shen et al., 2024). In this work, we take a principled approach to understanding
the benefits of softmax, by identifying an information retrieval framework amenable to theoretical
study, and going beyond expressivity results to statistical and computational advantages.

Methodology for sequence multi-index models. While our data model is inspired by Marion
et al. (2025), it departs significantly by generalizing to variable sequence length, introducing a
generic weighting mechanism to encode single location, and renormalizing to obtain proper high-
dimensional limits, thereby allowing theoretical analysis of the softmax nonlinearity. The data model
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belongs among the sequence multi-index models as introduced in Cui (2025). Special cases of
single-index models we studied in Cui et al. (2024); Arnaboldi et al. (2025). Our model corresponds
to a sequence two-index case, for which the Bayes-optimal estimator was studied in Troiani et al.
(2025). A related classification problem where outputs only depend on a few tokens was concur-
rently studied in Barnfield et al. (2025) with analysis of steps-wise gradient descent training.

3 TASK AND DATA MODEL

3.1 OVERVIEW OF THE SINGLE-LOCATION REGRESSION TASK

We consider a sequence regression task where the input is a sequence X € RE*P of L tokens,
each of dimension D. The length L of the sequence is allowed to vary, remaining upper bounded
by L > 0. Each sequence is labeled by a scalar y € R, with the particularity that it depends
only on a single input token. We model this single-location dependency by setting a hidden index
e* € {1,..., L} selecting the relevant token of the input sequence X. We emphasize that the latent
index €* is sample/context-dependent, hence its recovery is akin to a toy in-context learning task.

Without additional structure, there is little hope to retrieve the relevant token. We explore two ways
to add such structure, which both involve learning a hidden direction k* € RP to recover the relevant
token. In spiked single-location regression (spiked-SLR), a spike is introduced in the direction of k*
at the relevant token X.«. A closely related scheme, referred to as max-SLR (for maximal-correlation
SLR), consists in setting ¢* as the index of the token with the largest scalar product with k*.

Our goal is to theoretically study the learning properties of such tasks. For this purpose, we introduce
a probabilistic data model that is amenable to analysis in the high-dimensional limit. This framework
also unifies the two variants under consideration (spiked-SLR and max-SLR), as described next.

3.2 PROBABILISTIC DATA MODEL FOR SLR

Denote by N (w, V') a Gaussian law centered at w with covariance V, and by N (z;w, V) its density
evaluated at z. The probabilistic data model begins by drawing two hidden directions

k‘*NN(O,ID), ’U*NN(O,ID) (1)
Then, each sample (X, y) is drawn as follows. The length L of the sequence is drawn from some
discrete law Py, over {1,..., L}, such as uniform or truncated Poisson, while the index €* of the
relevant token is taken, conditionally on L, uniformly at random over {1, ..., L}. The label is then

a (potentially random) function of the projection of the relevant token along v*, that is,

1
RN 2
V=75 3

where ¢ is independent standard Gaussian noise and A > 0. It remains to discuss the law of the
sequence X . A flexible framework consists in taking X as a reweighted Gaussian distribution. More
precisely, conditionally on L, ¢* and k*, the density of X at a point z € RX*P is given by

L
1
P(z|L,e*, k*) = g, (¢", x* N(z4;0,1p), where x* = —ak* € RY | 3)
(] ) = gu(€",x )1;[ (z¢;0,1Ip) X' =75
Here, g, : {1,...,L} x RE — R* is a weight function, indexed by the signal strength v > 0.
Its goal is to give more weight to sequences with a large projection ¢« = %xe*k*. Both the

examples from Section 3.1 fall into this framework for specific values of g, .

Spiked-SLR corresponds to g, (¢, x) = eVrxe=zv, Factorizing the density of x.~ shows that this
definition is equivalent to shifting the mean of X« by 1/vk*, while the other tokens are centered, as
studied by Marion et al. (2025).

Maximum-correlation SLR (max-SLR) is a special case of the sequence multi-index model of Cui
(2025); Troiani et al. (2025); Arnaboldi et al. (2025), obtained with g, (e, x) = Le*X</ ZzL evxe,
To gain intuition, note that by Bayes’ rule, this model is equivalent to first drawing the tokens
as independent standard Gaussians, then picking e randomly with logits proportional to the scalar
product of the tokens with k*, that is, P(e* = i|X) = e”Xik*/Zj evXik" . When v — oo, €*
corresponds to the index of the token with the largest scalar product with £*.
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Other weight functions can be considered as long as they are invariant by label permutation, are prop-
erly normalized so that [, , dzP(x|L, e*, k*) = 1, and at zero signal v are uniform i.e. go (e, x) = 1.

3.3 LEARNING WITH ATTENTION

Since the input sequence may have arbitrary length, we adopt the formalism of working with (R?)Y,

the set of sequences in R that are eventually zero. We consider the class of estimators F, =
{forkw : RP)G = R} k0)e®p)2. Where for a certain activation function o : R — R{ and two

vectors k, v € RP, the function fo,k,v 1s defined by
_ b _ 1
=D VD

We focus on four cases for the activation function o. Note that we always assume that o returns 0
on the vanishing part of the input sequence, so we only define its value on the non-vanishing part.

forn(X)=0a(x)"z, XkeRY, z Xv eRY. 4)

Softmax activation corresponds to the standard choice in current large language models. For an
input of length L, the softmax writes for £ € {1,..., L} as o(x)¢ = eX¢/ ZZL/=1 exe .,

Linear activation writes o(x)¢ = 1 + x¢. We add a constant term to break the symmetry around
x = 2z = 0, as further discussed in Section 4.2. This corresponds to linearizing the softmax around 0
up to a rescaling. Notice that the activation with the constant term is strictly more expressive than
the identity o (x) = X, which can be retrieved by taking large x, and small z;, at constant x¢z;.

For element-wise sigmoidal non-linearity, we focus on o(x), = 1 + erf(c + x/) =
% i f:oxe dze=3*, that varies from 0 to 2, with ¢ € R a learnable bias. While for concision

we omit this parameter in the mathematical presentation below, it is learned in the numerical exper-
iments. Here also we add a constant term 1 to break the symmetry around x = z = ¢ = 0.

Finally, we investigate softplus kernelized attention o ()¢ = ¢(x¢)/ >, ©(xr) in the particular
case of the kernel ¢(x) = softplus(z) = log(1 + €*).

A limitation of our setting, compared to practical models, is the absence of learnable query vectors,
which are not necessary here due to the structure of the task. Still, we note that the output of
a standard attention layer for a so-called [CLS] query token exactly corresponds to our model (see
Marion et al. (2025) for details). The absence of query vector also means that, in our setting, softmax
attention is a special case of kernelized attention by taking ¢ = exp. Our analysis shall still give
insightful results on the choice of nonlinearity by comparing softmax to the softplus kernel.

4 COMPARISON OF SOFTMAX WITH ALTERNATIVES IN POPULATION RISK

In this section, we compare the expressivity of the softmax attention with alternatives on our task, by
theoretically assessing the Bayes risk and the minimal population risk for various activation func-
tions. We show that the softmax reaches the Bayes performance. We combine analytical arguments
with numerical evidence to support the claim that this approach also captures the performance that is
efficiently achievable by running one-pass SGD, which directly minimizes the population risk from
random initialization. All proofs of the results in this section are deferred to Appendix A.

Remark 4.1. We consider in this section the case A = 0 in the output channel (2). Because of
independence of the output noise with the other random variables, results would be identical for a
positive A, up to increasing all errors by A? corresponding to the irreducible noise.

4.1 BAYES RISK AND OPTIMALITY OF SOFTMAX

In what follows, we assess the performances of the different architectures with respect to the Bayes
risk (or Bayes error) Epayes = E[(y — E(y|X, L, k*,v*))?], i.e. the best achievable risk given the
task defined in Section 3.2.

Proposition 4.1. Let L ~ Py, and, conditionally on L, ¢ ~ Unif({1,...,L}) and x ~ N(0,1I).
Then the Bayes risk is given by
gv(e:x)?
gBayes =1- ELEe,X—- (5)
2521 gl/(e/7 X)
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Two particular cases are of interest. First, if the function g, is identically equal to 1, then the position
of the relevant token is uniformly distributed over 1, ..., L and independent of the tokens X. In this
case, the Bayes error equals 1 — Ey[1/L] > 0. This reflects the irreducible noise stemming from the
randomness of the informative token. Conversely, if g, (¢,£) = 1.—1, the first token always carries
the information. We then return to standard noiseless regression, where the Bayes error is null.

We turn our attention to the best reachable theoretical risk over the class of estimators F, when o is
the softmax function. Surprisingly, this estimator reaches the Bayes performance as shown next.

Proposition 4.2. Assume that, for all L > 0, (¢,€') € {1,...,L}? and x € RE,

gv (€ X) = e (Xexer) | (6)

9u(€,X)
for some constant c,, > 0. Then, for any k*, v* € R?,

i E; ~E — Freo(XN?) = Eayes-
& o B (= Fin (X)) = Eey

Note that the requirement on g,, defining the distribution of X holds in particular for the spiked-SLR
and the max-SLR. In consequence, the softmax architectures Foftmax reach the Bayes performance
in both settings, and furthermore the proof reveals that the minimum is reached for k£ = ¢, k* and
v = v*, corresponding to recovery of the hidden directions. In statistical physics terminology, the
softmax attention is said to satisfy the Nishimori condition, as detailed in the proof. This is to be
contrasted with the performance of other activation functions, which is characterized next.

4.2 EXPRESSION OF THE POPULATION RISK FOR ARBITRARY ACTIVATION FUNCTIONS

We now characterize the theoretical population risk of the attention £, (k,v) =E[(y — fo,.(X))?].

Proposition 4.3. The population risk of the attention (k,v) — E(k,v) can be reparametrized as a
function of the following 7 variables, referred to as order parameters:

Mg = Eka My = BUTU Mppr = BkTv My = BUTk 7
1 1 1
dkk = Eka Quv = EUTU Quk = BkTU- (8)

The first two order parameters, myg+ and m,,«, quantify the recovery of the hidden directions,
while g and g, are the squared norm of the parameters k£ and v. Finally, the cross-correlation
terms My, Myk+, and ¢, are nuisance parameters. We let &, : R” — R be the reparametrized
risk depending on the order parameters.

Optimization dynamics and manifold assumption. In the following, we consider the case where
these three nuisance parameters are null, that is, we restrain our analysis to the manifold

M = {(kﬂ)) € (RD)27mkv* = Myk* = Quk = 0}

This simplification is supported by the following observations pertaining to the landscape of the
population risk £,. In practice, we do not have access to minimizers of the risk, but can instead
optimize parameters k and v by one-pass SGD on &,, which corresponds on average to running
gradient descent (GD) on the reparametrized risk &,. In the high-dimensional limit D — co, random
Gaussian initialization of the parameters lands on M because the cross-correlations vanish. Then,
the manifold is invariant by GD, in the sense that iterates initialized on the manifold remain on it
(see Appendix A.2 for details on this statement and the following). At finite D, random initialization
lands in a neighborhood of M. In this case, we numerically check that M is stable in the sense that
parameters stay close throughout GD. For linear attention, we also show that the risk has only one
(local) minimizer on M, which is also a local minimizer of the risk over the whole parameter space,
while for softmax attention we know that a global minimizer is on M. Taken together, these facts
support that GD on &, and thus one-pass SGD on &, converges to a minimizer of the risk on M. A
formal proof is delicate, as the landscape features other local minima outside of the manifold.

With a small abuse of notation, we let gg (Mggs, Myy=, Rik, Ryy) be the reparametrized risk re-
stricted to M, with RY), = qu, — mfy. and R}, = gy, —m3,. the orthogonal components. It turns
out that this object is amenable to insightful theoretical analysis. We first write it explicitly.
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Proposition 4.4. Let L ~ Py, and, conditionally on L, ¢ ~ Unif({1,...,L}), x ~ N(0,I1) and
g ~ N(O7 IL) Then, fOV Mk, Moyy*, Rkk; R, € R4,

gU (mkk* y Moyw*, Rk/m va) - ELEG,X,Sgu(év X) [1 - Qmm)*a(mkk*x + Rkkf)e (9)
+ (mfw* + wa)a(mkk*x + Rkké)TJ(mkk*X + Rkkf)] .

A consequence is the characterization of the activation functions o that allow easy learning, in the
sense that the gradients at initialization with respect to the recovery order parameters myy~ and
Mgy« are nonzero. If this quantity vanishes, moving away from the initial condition is harder and
requires more iterations and thus samples (Ben-Arous et al., 2021). At initialization, M= and 1,
concentrate around 0 while Ry and R,, concentrate around 1. At the first order, the gradient at
initialization thus equals V&, (0,0, 1, 1). The next result characterizes when this quantity vanishes.
In particular, o (x) = x and o(x) = erf(x) impede learning, which is why we add a constant bias.

Corollary 4.1. If the activation function o has a non-vanishing mean, i.e. if ELE¢ nr0,1,)0(§)e #
0 for all 4, then

(Ormyps €y O, £5)(0,0,1,1) # (0,0) . (10)
If the activation function o is symmetric, i.e. if o(—x)y = —0o (), for all £ and all x € RE then
(O Eoy Oy £5)(0,0,1,1) = (0,0). (11)

4.3 COMPARISON BETWEEN LINEAR AND SOFTMAX ATTENTIONS

Letting E, = minaq &, = mings &, be the minimum of the population risk, we now compare the
optimal population risk Ej;, for linear attention o (x)¢ = 1 + X/ to the one for softmax Egoftmax =
ERayes, €NCOMpassing asymptotic regimes of strong signals v — oo or long sequences L — oo.

Corollary 4.2. Consider the spiked-SLR model with input sequences of deterministic length L. The
minimal risks attained over the manifold M satisfy
L+v(L—-1 L 1 . -

Biin =1 — L2 + I/((L — 1)) :L 1 ; + 0V—>oo(1) while  Egottmax = € eLv+os—oo(¥) (12)
with cg, > 0 a constant that depends on L. Consider then the max-SLR model at v — +00 where
gv(e,x) = LT c=arg max, x, With deterministic L. The softmax attention is well-specified while the
linear attention is not: the minimal risks attained over M satisfy

log L
Ein=1-0150 (Og> while Esoftmax = 0 . (13)

The first part of the corollary shows that on the spiked-SLR for strong signal v — 400 the risk
vanishes for both attentions. However, the softmax model has a better dependence on v, thereby
establishing its superiority over linear attention in this setting. Turning to the dependency on the
sequence length L, for the max-SLR, the second part of Corollary 4.2 shows a clear separation in
the performance of the linear and the softmax attentions: as the sequence length increases the error
of the linear attention converges to 1, which is the error of the trivial null predictor, while the softmax
attention reaches perfect prediction for all L.

The following corollary illustrates the impact of varying sequence lengths on the linear attention.

Corollary 4.3. Consider the max-SLR model at v — +00 where g, (€,X) = Llc—argmax, x,- Let
J(L) = Eyno,12) max[L:1 X¢- Then, the minimal risk attained over M by linear attention satisfies

L B f(D)P | 1+ (EL)P
ErL - ErL '

Consider then SLR at v = 0 (i.e. g, (€, x) = 1). We obtain that Ej;, = 1 — 1/Ep L and Esoftmax =
1 —E.(1/L) and consequently Eyi, > Egottmax, With equality when Var L = 0.

Eiin =1— (14)

The first part of the result reveals that the variance in the sequence length L hurts linear attention,
since the risk for some distribution of L is always worse than the risk associated to the mean value
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of this distribution. This illustrates a fundamental limitation of linear attention, arising from its poor
normalization properties. In Fig. 1, we indeed observe that the performance gap between softmax
and linear attention widens when L ~ Unif(1, 2, 3) compared to L = 2, everything else being fixed.
We characterize this phenomenon in the second part of Corollary 4.3, for the case of null signal
v = 0, where the position of the relevant token is independent from the law of the tokens. Here
again softmax performs better than linear attention whenever L admits some variance.

L=2 L~Unif({1,2,3}) L=10
0.8 —>¢ o= lincar
o=1+erf
5 o = normalized softplus
@ 0.6 b -@- o =softmax
g k& -+ Bayes risk
= A
o \
n \

E;,

o4
(6]
=
o
=
ul

0.8

max-SLR

E,,

o
w
=
o
=
v

v v v

Figure 1: Minimal population risk E, over F, for different attention activations o (colors), com-
pared to the Bayes risk Egayes (5) (black), for the two tasks spiked-SLR (top) and max-SLR (bottom).
Softmax is the only one achieving the Bayes risk. The markers on the lines are for readability only.
Population risks are computed via numerical optimization of (9), starting from a random initializa-
tion. In all cases, we found that Ry, = R,, = 0 was optimal, i.e. k exactly aligns with £* and v
with v*.

4.4 OTHER ACTIVATION FUNCTIONS

We now turn to two non-linear activation functions, element-wise erf and normalized softplus (see
Section 3.3). Contrarily to linear attention, the expression (9) cannot be analytically minimized.
Instead, we resort to numerical optimization of this expression, and report results in Fig. 1. Over-
all, we observe that the population risks for these two activation functions are between linear and
softmax. In particular, on the max-SLR model the two activation functions are not well-specified.
Importantly, the element-wise function suffers from variable sequence lengths while the normalized
softplus does not, as can be seen by comparing results for L = 2 and L ~ Unif{1,2,3}. This
highlights the importance for the activation function to perform a normalization operation involving
all the tokens. Furthermore, the gap between normalized softplus and softmax widens for larger L.
This can be expected since the softplus does not grow fast enough at +oo to dominate the noise
stemming from the irrelevant tokens. This shows that, for kernelized attention, the kernel has to be
well tuned to reach good performances, as is commonly known (see, e.g., Aksenov et al., 2024).

5 PERFORMANCE OF THE ATTENTION AT FINITE SAMPLE COMPLEXITY

So far, our analysis has focused on the properties of the minimizer of the population risk. In practice,
however, we only have access to a finite dataset D = {(X,,,y,) € REW>*(P+) ), € [N]}, and
must therefore rely on an empirical estimator. In this section, we consider the regularized empirical
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risk defined for some regularization strengths 7, > 0 and r,, > 0 by

1 N

D D
T Ty
L(k0) = 5 D2 0 = foa(Xu))? + 5’“ DL DI (15)
=1 =1

p=1

Our goal is to assess the performance of an empirical risk minimizer (ERM) (I%, 0) € argmin L.
Our approach here is thus statistical in nature: it quantifies the impact of the finite sample size on
the performance of attention. We defer computational questions (i.e. how to practically minimize £)

to the end of the section. The performance of an estimator (iﬂ, ) is evaluated through the test error
&k 0) =E [(y — b (X)L v*} (16)

We investigate the high-dimensional proportional limit where N, D — oo at finite /D — o =
O(1). Observe that letting o« — oo recovers the population risk discussed in Section 4. For simplic-
ity, we consider the noiseless task A = 0 in the following.

While in Section 4 the benchmark was the Bayes risk, at finite sample complexity it is natural to con-
sider instead the best achievable test risk conditionally on a finite batch of data D, also known as the
Bayes-optimal risk. In the proportional high-dimensional limit, the Bayes-optimal performance for
the SLR task can be computed by extending the results of Troiani et al. (2025) to random sequence
lengths L ~ P, and arbitrary g,,. Although this result is of independent interest, for conciseness we
refer the reader to Appendix C for the details. The outcome is that the Bayes-optimal performance
presents a rich phenomenology, with a hard phase where the best-known first-order method fails to
achieve the information-theoretical performance, see Appendix B for a full discussion.

The performance (16) of an ERM is a random quantity that depends on the draw of £*, v* and of the
dataset. Our main result in this section is that, in the proportional high-dimensional limit and under
a concentration assumption known as the replica symmetry, see e.g. Vilucchio et al. (2025), this
random variable converges to a deterministic quantity, which can be fully characterized in terms of
a few real-valued variables that follow a self-consistent equation. An analogous result for a class of
sequence multi-index models was derived in Cui (2025). However, the generality of the result in Cui
(2025) did not provide any specific insight about the behavior of the single-location regression model
studied here. We instead provide a numerical evaluation of this characterization for our setting.

Result 5.1 (Test risk for attention-based predictors). In the proportional high-dimensional limit
N,D — oo with a« = N/p = ©(1), under the replica symmetry assumption, the test risk (16) of a
global minimizer (k,0) of the empirical risk (15) converges to a deterministic quantity

7oy P . * T 2
E (kD) = Ega) = ErEe ¢ v ygu (1, - 17
(k, ) (@) N AR w9 (LX) Yy —o(y) w) a7

where v = myX* + \/qr — mi € RE, wy = myy + \/qw — m2¢y and, for £ > 1, wy = V@ Ce.
The first expectation is over L ~ Py, and the second conditionally on L over &,(, x* ~ N(0,11)
and y ~ N(0,1) independently. Finally, the set S C RS is the set of fixed points of the following
iterative self-consistent equations

it = VO, = e VTR ), T = et VDT a9)
my = oA V) T, @ = e V) ) +a), W=k V)T A9)
~t N Vt—l L * 1 tvt—lc
(2?;) = oELEe ¢ 00 (LX) (( k(Vt);Z(ZSZZ fmtm‘l/c’t()fl)Cov((;‘i();“)) 20
45t L t\—2 (/) 2
* Vi -
() =emescanmr (8200720
Y =1 v
Vi V-1 LN (V2
(\A/kt> =aErL (EvktgA) —oBLEe ¢y g0 (L X )Z <((th))72 C?):,/((Z)D (22)

=1

where we define the potential 1. over (RF)2, its extremizers and its covariances as:

L L
Bou (0 2) =~ (5= 000 2) + 308N (e, Vi) + D log N (250, Vo) (23)
£ £
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X', 7 = argmax Yous (X, 2) € (RY)? (24)
X,z

Cov (x¢) = — ((VQ'I/)out(Xl, z/))_l) eR, Cov (z¢) = — ((VQQ/Jom(X/,z'))_l)

Xe

eR. (25

z

The derivation of this result is given in Appendix C. We simplified it assuming diagonal order
parameters, which is analogous to the manifold assumption made in Section 4. Taking the limit
a — oo we checked that we recover the expression of the population risk of Proposition 4.4, and in
particular lim,_, o, E, () corresponds to the value of E, derived in Section 4.3 for the population
risk. While our derivation is based on the non-rigorous replica method, we expect that a formal
proof could be established under the so-called replicon condition along the lines of recent progress
in proof techniques from Vilucchio et al. (2025) that is able to deal with minimization of intrinsically
non-convex objectives for single-index models. Extending this proof to multi-index models, such
as (15), is a technical challenge left for future work.

As in the population result of Proposition 4.3, the high-dimensional analysis shows that the risk
depends only on a few order parameters. Although the resulting expressions are cumbersome, it
is important to emphasize that these quantities are deterministic and independent of the diverging
dimensions N and D, in contrast to the original risk (15). Thus the result provides an implementable
formula for the performance of ERMs. In practice, the minimum over the set S is computed by
running the fixed point method from several initializations, typically random (so-called uninformed)
and informed ones corresponding to (partial) alignment of k and v with £* and v*.

spiked-SLR, vr=1 spiked-SLR, v=10 max-SLR, v=+o00
+ o=linear
i === a=+4o00

e o =softmax
—= a=-+00

Bayes-optimal

Figure 2: Test error of the trained attention (linear vs. softmax) across different tasks and signal
strengths v, for L = 3. Linear attention is shown in red and softmax in blue. Solid lines indicate
E, () at finite o (Result 5.1), while markers represent the test error of an ERM obtained via a local
optimization method with /ND = 10%. The regularizations rj and r, are tuned by grid search
to minimize the test error. Dotted and dashed lines correspond to the value of E, in the infinite-a
limit (see closed-formed formulas in Proposition 4.1 for softmax and Appendix A.2.7 for linear).
The Bayes-optimal risk is shown in black (see Appendix B for a discussion on its discontinuity).
Appendices D-E include more experimental details and results.

We conclude by a few computational remarks. Because the empirical risk (15) is non-convex, it is
not guaranteed a priori that optimization algorithms can find global minima. To assess the effect
of non-convexity, we rely on numerical simulations shown in Fig. 2. More precisely, we compare
the prediction of Result 5.1 (here, uninformed and informed initializations give the same result) to
the outcome of running a local optimization algorithm (specifically, a quasi-Newton method) on
the risk (15), starting from a random initialization, for finite but large NV and D. We first note
that the agreement between both is excellent. This suggests that potential bad local minima in the
optimization landscape are avoided, at least for the appropriate regularization strength. Analyzing
this landscape is an interesting open question. Furthermore, the softmax attention has lower error
than the linear attention across all the tested hyperparameters, which shows that the benefits of
softmax extend beyond the population risk analysis of Section 4 to statistical and computational
advantages on the empirical risk. We finally note that in this case the softmax is no longer Bayes-
optimal but the gap to the Bayes risk closes as o grows, as expected from our analysis in Section 4.
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A POPULATION RISK

In this part we prove the expressions for the Bayes risk and the optimal risk of the attention layer,
on population loss, stated in Proposition 4.1 and 4.3 and 4.4.

A.1 PROOF OF PROPOSITION 4.1: BAYES RISK

We consider the Bayes risk Egayes. We assume the estimator exactly knows k* and v*. Epayes is not
trivially null because the position €* of the relevant token is not known.

The best estimator §Bayes Minimizing the square error on a given sample X € RE*P s the posterior
mean of y given L, k*, v* and X:

~ * * 1 *
JBayes = Y P(e|L, k", X)y = > P(e|L, k ,X)ﬁX:v (26)

The conditional distribution of € given L, k* and X reads

R o g9lex")
P(e|L,k*, X) = P(e|x™) = —Zf/:l D) 27

Conditionally on L, let x* = %Xk* € Rl and 2* = %Xv* € R” be the projections of X onto

the two relevant directions. They are distributed according to uncorrelated standard Gaussians with
law N (0, Iy ) .

We express the empirical means over samples 1 as expectations over one sample. The risk of §jp,yes
is:

gBayes = ELk*,v*Ee*,X(y - gBayes)2 (28)

1 * * ~
= EL,k*,v*EX~N(O,IL®D)Z Zgu(f » X )(y - yBayeS)2 (29)
. 2
=14+ELE -« .- 7 Zgy(e*,x*) -2z ZP(€|X*)2’: + <Z P(e|x*)z:> (30)
1 * * * * *\2
=1+ELEX*ZZgu(e X°) [—2P(e|x )+§;P(6Ix )] 31)

“Eeg Z Z g0 (€, X) G2

This gives the expression stated in result 4.1.

A.2 RISK OF THE ATTENTION LAYER ON POPULATION LOSS

We consider the risk of the trained attention. We work on population loss. We recall that k € R
and v € RP are the weights of the attention. They can be described by the following scalar order
parameters (or summary statistics, or sufficient statistics):

Mg = lka* My = %’UT'U* My = lk—rv* Mg = %ka* (33)
w=Tkk qw=goTv gw= gk (34)
Setting
(fik 80) = C)™ + G 44 (35)
with ¢ a positive 2 X 2 matrix, k and v can be expressed as
k= mpg-k* + mppev* 4+ (G ikt + (G povt (36)
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U = Mg k™ + M= 0* + (G ok + (G2) v (37)

with k&t € RP and v+ € RP two vectors orthogonal to k*, v* and between themselves. We
introduce the shorthands

Ry = (@) Ry = (310 Ryo = (§"?) 00 (38)

Ry, Ry, and R, are related to the magnitude of the components in k£ and v that are orthogonal to
k* and v* and bring no information. In the case where there is no overlap between v and & or k*,
and no overlap between k and v or v*, i.e. when mpy,« = myp+ = gy = 0, one can simply express
the Rs as Rik = Qi — mik*, wa = Quv — mfw* and R, = 0. Then Ry, = R,, = 0 means that

k is perfectly aligned with £* and v with v*.

The loss depends on & and v only via their projections onto the tokens X. Conditionally on L, we
introduce the projections

X' = %Xk* = %Xv* (39)
£ = %XI& ¢= %X“ (40)

By central limit theorem we have x* ~ N(0,11),2* ~ N(0,11),& ~ N(0,1I),¢ ~ N(0,1).
For conciseness we introduce the projections of k and v:

1 \

b= EX k= mppe X" + My 2* + Rir€ + Ry € RE (41)
1

@ = K= M X+ e B+ R € R 42)

We introduce
7
0= (mkk* s Mgy y Myl y Myy*, Rklw leH va) eR
the set of parameters over which the loss is effectively minimized. Then the risk reads

Es(k,v) = E5(0) (43)
£s(0) =Ep e o Eer x(y — §)° (44)
= EL,k*,U*EXNN(O,ILIX)D)ye* gu(€*7 X*)(y - Z})Q (45)

* * * 2
=ErEe s 2760 90 (€5, x7) (ze* — aTa(b)) (46)

and the minimal risk is

E, — in & (k, 47
o ol )
= min &,(© 48
Qin £5(©) (48)

A.2.1 PROOF OF PROPOSITION 4.2: THE SOFTMAX IS BAYES-OPTIMAL

We recall that the Bayes risk and the optimal risk of the attention estimators are

1 y 6*, 2
Enuyes = 1 —ELEy T X" (49)

— > 9v(€:x)

E, < min EL]Ee,X [1 - vav*gv(ey X)U(mkk*X)s + mi’u*gv(ea X)U(mkk*X)Ta(mkk*X)]

Mpgex My x ER?

(50)

where for £, we have a upper-bound obtained by restraining the min of eq. (48) to
Myk*, Mpy*, Ryy, Rk, Ry = 0,0,0,0,0. By definition of the Bayes risk we have Egayes < Eo.

We search for the optimal 0. We show that it has to match the Bayes-optimal estimator of e. We
recall that, from the previous part A.1, the posterior distribution of € given x = %X k* is

g(e,x)

P(e =
(b i 1 9(€,x)

(G
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If, for a certain myg+, o (Mg Xx)e = P(€|x), then

L L
1
EL]EE,X gl,(e, X)U(mkk*X)TU(mkk*X) = ELEXz Z gu(eu X) Z P(6/|X)2 (52)
L
1 g(e, x)?
) DI AR O (53)
YL g )
=ErEc 9u(€ x)0(Mik= X)e (54)

One can notice the similarity with the derivation of the Bayes risk in part A.1. We proved the equality

EL]EE,X gu(ea X)U<mkk*X)e = ELE€7X gl,(e, X)U(mkk*X)TU(mkk*X) . (55)
In statistical physics this equality is called the Nishimori condition. It is satisfied when o (mgg= X)e
matches the posterior distribution of €. The optimal m,,,~ is then m,,,,~ = 1 and we obtain

EO' =1- E’LEG,X gz/(ea X)U(mk}k*X)e (56)

L 2

=1-E.E, T
L € Ze/ 9(6/7 X)
Consequently E, = Epayes-

It remains to show which o can satisfy the Nishimori condition. We assume that there is a constant
c, such that for all L, all ¢,¢’ € {1,..., L} and all x € RF

M _ pev(xexa) (58)

gu(€,x)

Then
o (M X)e = Plelx) 59)
67
- 960 (60)
>og(e,x)

eCVXE 61
~Sren "

that is to say o is a softmax with inverse temperature myi« = c,.

A.2.2 INVARIANT MANIFOLD

In the main part sec. 4 we introduced the manifold
M = {(k,v) € R")®, mpye = Mo+ = qui = 0}.
We show that it is invariant by GD. We consider the space of the order parameters, parameterized by
© = (Myye, Mok, Migyr s Mgk, R Ricke, Riew) € RY.

We introduce the manifold

M ={0 € R, mpps = Myp = Ry = 0}. (62)
Atrandom initialization we have that © =(0,0,0,0,1,0,1) € M. We consider the dynamics given
by the gradient flow over the loss £, defined in eq. (44):

O = —Veé,(0) (63)

We show that M is invariant under this dynamics. The gradient in the three directions
(mk’u* y Mk, Rk:’u) on M I‘eads

Omgye€o = 2BLEe yv v e c gu(€5,x7) (aTo(b) — 25) a Vo (b)z* (64)
O e &, = 2ELEcx yo 2v e.c g (€7, x7) (aTU(b) - z:*) U(b)TX* (65)
8Rkvéo = 2ELEe v+ o0 g€, x") (aTa(b) — z:*) (U(b)T§ + aTVU(b)() (66)

At Mpyx = Myp = R = 0 we have a = M+ 2* + Ry and b = myg- x* + Ry1€ is independent
of z* and (. Then, because of the parity with respect to z* and (, we obtain that the gradient vanishes.
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A.2.3 STABILITY OF THE MANIFOLD
We show numerically that the manifold
M= {0 € R, mpye = My = Ry = 0}
is stable. We simulate the gradient flow
0 = -Veé,(0) (67)

starting from a perturbed random initial condition (Mmpygs, My, Mk, Moy, Rick, Riws Bow) =
(0,0,0,0,1,0,1) + n, with n ~ Unif([~7, +7]7) some small noise. We consider the value of
© reached after convergence, for several independent realizations of 7, for all the configurations
considered in the main part of the article. On Figure 3 we observe that all the trajectories converge
to a point that belongs to M, up to the numerical errors due to the integration. We additionally
observe that Ry, ~ R,, ~ 0.

L=2, spiked-SLR L~ Unif({1,2,3}), spiked-SLR L =10, spiked-SLR L=2, max-SLR L~Unif({1,2,3}), max-SLR. L =10, max-SLR

0.11

0.0 { Ebmsiis

softmax

~0.14

0.11

olimgrie| |ty | (S

normalized softplus

erf
e
°

Figure 3: Values of the order parameters Mgy« , Myk* , Moo=, Rik, Riy and R, obtained after
convergence of the gradient flow. The mean, max and min are taken over the independent runs. The
initial noise is 77 = 0.1 and there are at least twenty independent runs.

A.2.4 ORTHOGONAL COMPONENTS ON THE MANIFOLD

We show that the minimization of &, on the previously defined manifold, leads to a vanishing
orthogonal component RR,,, = 0. We can show that the second orthogonal component Ry, is null if
we assume that the attention is linear.

We recall that on the manifold a = My« 2* + Ry and b = mgp+ x™ + Riepé. We compute the
gradient of the loss with respect to R,,:

Oy Eo = 2ELBe o e ¢ gu(€¥,X7) (a"a(b) — 25 ) o(b) ¢ (68)
=2R,y ELEcs v ¢ gu(€", x*)o(b) o (b) (69)
>0

where we used the parity with respect to ¢ and assumed that the supports of o and b overlap. As a
consequence R, = 0 is the minimizer of &,.
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We turn to the second orthogonal component Ryr. In full generality Rir = 0 cannot be
straightforwardly derived by considering only the gadient Og,, £, because the gradient may not
be monotonous. Instead we assume that o(x) = 1 4 x. Then the gradient is

OpEo = 2ELEe yo oo gc gu(e®, x*) (aT (14b) —25)a’¢ (70)
= 2B Ec- v ¢ gu (€5, X" )Moy (1+0) ¢ (71)
— 2Ry, (72)

and consequently Ry = 0 is the minimum of the loss.

A.2.5 LINEAR ATTENTION, STABILITY OF THE FIXED POINT

We consider the case of the linear attention o(y) = 1 + x. For this activation function we can state
a more precise result about the stability of the manifold. We show that the fixed point obtained by
minimizing the loss on the manifold is stable, i.e. it is a local minimum in the whole space of the
order parameters R”.

At the fixed point obtained by minimizing the loss on the manifold we have
Mayk* , Mgy Ryw, Rgk, Rkw = 0,0,0,0,0.  We compute the Hessian of &, with respect to
Moyk*, Miy* s Ruy, Rik, Ry at this point. For this we expand SU to the second order with respect to
these five parameters. We have

€ = BLEe - 20 6.0 9u(€5XT) (73)
2
(Z:* - (mvk*x* + mv'u*z* + Rkvf + R’UUC)TU(mkk*X* + mk’u*z* + Rkké + Rkug))
=1- 2mvv* - 2(mvv*mk¢k* + mkv*mvk*)ELEe*,X* gV(€*7 X*)X:* (74)

* * * 1) 2
+ ELEG*,X* gl/(e » X ) |:(mvv*z T(l + M= X )) + L(szv + Rzk)
* * * * 2
+ miv*m%v*(z Tz )2 + m%k* ((1 + Mg X )TX )

+ml,. (R + Rpp)z2 2% + mipg (R, + RO )X X

Vv

+ 2 Mg Mg 2127 (1 e X ) TXT A+ 20 e Mg (1 4 e X ™) T 2727 X7
The Hessian is diagonal and positive with respect to R,,, Rxr and Rpy,; and consequently
Ryy, Rkk, Ry = 0,0,0 is well stable. The Hessian in the two remaining directions g+ and
M+ reads
a * %\ 2
2 e fo = E (L4 mpeex™) Tx") (75)
~ 2
8121%,”*,777,“*50’ = Em?}v* (Z*T’Z*) (76)
02, e o = 2E [=XEe 4 M2 T2 (1 4+ Mg X7) X+ Mwwe (14 Mg X*) T 272 T 7]
(77

where we used the shorthand E for EfEc- y« .+ g, (¢*, x*). The trace of the Hessian is positive. The
determinant of the Hessian is

det = m%v*]E ((1 + mkk*X*)TX*)Q E (z*TZ*)2 (78)
* * * * * * * %k * 2
- (E’ [_Xe* + Myy* 2 TZ (1 + Mg+ X )TX =+ Myp* (1 —+ Mgk X )TZ z TX })
We evaluate this quantity at m,,+, mgi+~ the minimizers of the loss on the manifold, for all the

configurations considered in the article. We find that det > 0 and consequently the Hessian at the
fixed point is positive, that is to say the fixed point on the manifold is a local minimizer on R”.

A.2.6 OTHER POSSIBLE MINIMA

We numerically show that if one does not restrict the space of the parameters to M, £, can admit
several minima. Yet, among them, the minimum reached on M is the best.

We perform a local minimization of &, starting from the initial condition
(Mkkx s My, Mokx , Mypr, Rigky Rkwy Row) = (0,1,1,0,0,0,0). The intuition is that the at-
tention can confuse and mix k* and v*. For instance for an identity activation function o(x) = x, k
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and v play symmetric roles, that we partially broke by adding a constant bias. We call mismatched
minimum such a minimum where my,« # 0,myp- # 0 and mygps = 0,4+ = 0, and set J,
its risk, by opposition with the well matched minimum on M where myp« # 0, My« # 0 and
Mpy= = 0, myr= = 0. On Figure 4 we show that at large enough sequence length L = 10 and at
v > 0, on the two models, the attention always has a well matched and a mismatched minimum,
and that the mismatched minimum has a larger population error 3, > E,.

spiked-SLR
1'0 oe w
50 W
0.8 X @uug
x @ ® —>— o =linear
o 0.6 7 . o=1+erf
O AN X o =normalized softplus
u 0.4 4 —@— o =softmax
------ mismatched minimum
0.2 A well matched minimum
0.0 A . . . : 1 : : :
0 5 10 15 0 5 10 15

Figure 4: Minimal population risk E,, reached at the well matched minimum, and population risk of
the mismatched minimum 3,,, for different attention activations o (colors), for the two tasks spiked-
SLR and max-SLR at . = 10. The markers on the lines are for readability only. Population risks are
computed by numerical optimization of £, from a random initialization (well matched minimum)
or from the mismatched initialization described in section A.2.6 (mismatched minimum).

A.2.7 MINIMIZER FOR THE LINEAR ATTENTION

On the manifold M the loss can be analytically minimized. We state here the expression of the
minimizer. The loss is

& * * * * * 2
Es :ELES*Q(*,Z*,g,C gu(e » X ) (Ze* - (mvv*z + RU’UC)T(l + Mek= X" + Rkkf))
=1- 2mvv* - 2mvv*mkk*ELEe*,x* gl/(G*a X*)X:* (79)
+ELEc o+ gu (€5, X¥) [m%v* (1+ mkk*x*)T(l + Mgk x")
+ LRy, + Lmi,. By + migg- Ry, X X]

At the minimizer R,,, = 0 and Ry, = 0. We perform the minimization over the remaining variables
and obtain that the loss is
e g (EQ+mgex)e)’ _ _ELEx:. —EITY"
7 E(1 + mprsx*) T (1 + mpp-x*) MR T By Ty —Ex:ELT x*
where we used the shorthand E for ELE.« , g, (e*, x*). We evaluate these quantities for the two
models, the spiked- and the max-SLR. We set f(L,v) = Ec y» g, (€*, x*)x?-, which for the max-
SLR has no simpler expression in general. We compute:

IEXZ* ElTX* EX*TX*

(80)

spiked — SLR N Vv  EL+v
max — SLR  Ef(L,v) 0 EL
The optimal risk for the spiked-SLR finally is
EL+v(EL —1)
E,=1- 81
(EL)® + /(EL — 1) 6D
while for the max-SLR the optimal risk is
1+ (Ef(L,v))?
E,=1-— M i (82)

EL
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A.2.8 PROOF OF COROLLARY 4.2: ASYMPTOTIC CONVERGENCE RATES

Spiked-SLR at large signal v — co and constant length L. The loss of the linear attention is
derived in part A.2.7. We take the limit v — oc:

L+v(L—-1) L 1

B EE Ay Rl A PRl (83)

E, =1
The loss of the softmax attention is derived in part A.2.1. For the spiked-SLR it reads

L
1 g(e,x)?

E,=1-E, B ANCELY (84)
L5 lg(e,)
L Vrxi
e
=1-FE H[]E,N | —/—— (85)
x1~N(v/v,1) x1~N(0,1) L )
I>1 D -1 eV

where we isolated the first index by symmetry and made a change of variable on x;. At large v we
approximate the softmax by a hardmax and

L
Eo~1—Ey vy H [Exi~n(0.1)] Ox >maxist xa (86)
>1
L
—1(y—max, 1 Op—s00(V
=[] [Exionon)] e 20 mmaszxitorme () (87)
>1
— e_%u-‘rolf*’@o(”) (88)

Max-SLR at v = oo for growing lengths L. We take the limit v = oo so g,(€,x) =
Lie—arg max, x; and f(L,v) = Ey«(0,7,) max; x;. We assume constant length, i.e. P is a delta.
The loss of the linear attention is derived in part A.2.7:

L+ (Bf(L)?

E,=1-— 8
EL (89)
For large L we have the asymptotic f(L,v) = O (v/log L), which gives
log L
Eal(QL_m(Og ) : (90)
L
The loss of the softmax attention is derived in part A.2.1. For the max-SLR it reads
L
1 2
E,—1-E Ly A0 1)
L Yea(e,x)
1
=1-Ey; Z ge.x) 92)
=0 (93)

The softmax attention reaches exact recovery for any L, and in particular for large L, the limit been
taken after the limit v = oo.

B BAYES-OPTIMAL ERROR AT FINITE SAMPLE COMPLEXITY «

In this section we state the expression for the Bayes-optimal test error in the case where samples
are limited, i.e. when o = N/p is finite, in the high-dimensional limit N, D — co. The derivation
of this expression is given in appendix C. We analyze behaviour of the BO performances and show
that the SLR task presents a hard phase where best algorithmic performances cannot reach best
information-theoretical performances. This hard phase is not present at o« — o©.
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The Bayes-optimal performances can be expressed in function of two low-dimensional order param-
eters (or summary statistics, or sufficient statistics), my € R and m, € R. Writing kgo € RP and
vpo € RP the BO estimators of k* and v*, my, and m,, are defined as

1 ) 1

my = Ekgok:* = angle(kpo, k"), my, = ngov* = angle(vpo, v*)? . (94)

To state our asymptotic characterization result we introduce the following partition functions, for all
Landfor B,y € R, AR,V € Rt and v,w € R:

Zy(B, A) = Epunr(o,1)€ —3ARHBE Zy(B,A) = q;NN(o e —3 AV B 95)
Zout(y,%R,w,V):/ dXdZ*Zgu €, X) Pout (Y] 2) HN xu v RN (23w, V) (96)

where
P ( | " ) e—ﬁ(y—z:*)z
tWZer) = ——F7——
o ‘ 2 A
is the output channel that corresponds to an additive Gaussian noise. We set h,, an effective distri-
butionon e € {1,..., L} defined as

L

hy(€,7, R) = /RL dx gu(e,) [ [N i n B) - 97)

!
Last we set the function xlogx : * — x log(x).

Result B.1 (Bayes-optimal risk). We consider the high-dimensional limit N, D — oo, with o =
Q(1). Let L ~ Py, and, conditionally on L, s ~ N(0,1), £ ~ N(0,1r) and ¢ ~ N (0, Ir). Fix my,
and m,, so they satisfy the following fixed-point condition:

My, My = arg max ¢ppo (M, my) (98)
MMy

1 . R 1 - .
oo (mi, my,) = —— (mgmy + mymy) + anglongk (\/mkg, mk> (99)

max
g €ER, 1, ER [ 2a
1 I /
+ aECXIOgXZU ( mys, mv) + EL]Ef,( dy XlogXZOut (Z/7 \/%k§7 1- mg, mva 1- m'u)
R
@Bo is the free entropy of the problem at given my, and m.,. Then the Bayes-optimal (BO) test error
on inferring y is:

SBO =1- mUIELE5 Z h \/mkf, 1-— mk)] Z hl,(e, \/mkg, 1-— mk)Q . (100)

Our above result describes the information-theoretical (IT) best performance. In general it may
not correspond to the algorithmic best performance. In fact, the SLR task presents an interesting
phenomenology: in a whole region of the parameters «, v, L of the model, there is a gap between
the IT and algorithmic achievable best performances. Such a discrepancy is related to the existence
of several maxima in the free entropy ¢po eq. (99) and has already been studied for other models in
numerous previous works (Krzakala et al., 2012; Dia et al., 2016; Lesieur et al., 2017) and we refer
to Bandeira et al. (2022) for a more rigorous treatment. The free entropy ¢po plays a central role
and it is related to the log-likelihood of the model; higher free entropy gives lower risk.

We can show that ¢po admits one or two maxima. We introduce some notation to distinguish them.
At given v, L we call a0 the algorithmic threshold (or spinodal) the smallest o such that for all
O > Qlalg, $BO has a unique maximum. In the region o < a1, Where ¢po admits two maxima,
we set @b, the maximum whose basin of attraction includes a neighborhood of my, m, = 1,1 and
call it informed maximum. We set ¢ the maximum of ¢po whose basin of attraction includes a
neighborhood of my, m, = 0,0 and call it uninformed maximums; it describes the algorithmic best
performances, in the sense that an algorithm locally optimizing ¢po and starting without informa-
tion on the solution will reach 3. In general p¥, # ¢k . We call ayr the IT threshold the o such
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that (;5}30 = ¢Bo- We have art < a1 and we compute that for the SLR arr = 1 for a noise-less
output channel A = 0.

To summarize, in the region arT < o < a1 the free entropy ¢po has two maxima; the global
maximum describes the IT best performances but it cannot be reached from my, m,, = 0, 0 by local
algorithms, that only reach a local maximum with higher risk. We depict this hard phase on Figure 5
for the spiked- and max-SLR.

spiked-SLR, L =6,v=0 spiked-SLR, L=6,v=2 max-SLR, L=2,v=+00 max-SLR, L=4,v=+00
1 : 1 1™ H] 1 : 1
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1
rnn) i i
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.
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Figure 5: BO test error £, overlap m,, with v* and overlap my, with k* for the spiked-SLR and the
max-SLR models, for different signals v and sequence lengths L, in the noise-less case A = 0. The
values are given by the eq. (100). The algorithmic best performances are given by the “uninformed”
curve while for arr < o < aalg the IT best performances are given by the “informed” curve. For
a < ogr and aa1g < « the two curves are equal.

Considering Figure 5 we can state that the extent of the hard phase aa1z — ogT decreases with the
signal v and grows with the sequence length L. At finite L the upper limit of the hard phase cg is
finite and consequently on population loss at &« = oo the hard phase is not sensible. Notice that
since we consider a noise-less setting v* can be exactly inferred at finite «.

A possible explanation of why such a hard phase exists is that it is induced by the sparsity of the SLR.
If one flatten each sequence into a single token X of dimension LD one would have a setting similar
to compress sensing where y = X | &%, where the regression vector #* € R has a proportion (L—
1)/L of null entries. Compress sensing has been shown to present a similar hard phase (Krzakala
etal., 2012). More generally sparsity induces hard phase, as shown for sparse PCA (Dia et al., 2016)
or strongly unbalanced binary SBM (Caltagirone et al., 2016).

An interesting particular case is the 0-SLR when v = 0 and the tokens are iid Gaussians bringing
no information alone. As shown on Figure 5 it is still possible to exactly recover v* and perform
better than random. Indeed one can compare the train label y to X, v for each token I. If v has some
correlations with v* then (y — X, v)? is likely to be smaller for [ = €*. This gives some information
on the probable relevant token. Then one can refine v by focusing more on the right X;. Atinference
time one cannot use the label to guess €* and the prediction is simply > 5, X lT .
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C ASYMPTOTIC CHARACTERIZATION AT FINITE SAMPLING RATIO: REPLICA

In this part we derive the asymptotic characterization of the Bayes-optimal performances and the
performances of the trained attention, at finite sampling ratio a. We jointly treat the two cases, the
BO and the attention, and the two models, spiked-SLR and max-SLR, taking a variable sequence
length. The derivation is done for a general output channel P, such that for each sample the label y
is distributed with density Poyt(y|22 ). The additive Gaussian noise channel considered in the main
part then corresponds to

o i -2
V2r A2

Moreover the derivation is done for any convex loss function with strictly convex regularization.

Pout(ylzh) = (101)

C.1 INTRODUCTION OF THE PARTITION FUNCTION

We consider data X, y made of N train samples, indexed by x = 1, ..., N, together with N’ = pN
test samples, with p > 0, indexed by p = N + 1,..., N + N’. They are distributed according
to the generative model defined in the main part 3.1. We will take the limit p — 0 at the end
of the derivation, so no information can be extracted from the test samples Xy 1<, <n4n in a
unsupervised way by the Bayes-optimal estimator.

The expected test square error of the attention-based estimator is

| NEN
Eo(@) =Exyqm D (W = fonn(Xp)? (102)
pu=N+1
where
Forw(X,) =0 (1X k)Tlx v (103)
okv\Apu) = VD M VD H
k,v = argmin L(k,v) (104)
k,v
N D D
Lk, 0) = D s foeo (X)) 1 Yy (ki) + 10 ) (v3) (105)
p=1 [ %

with {(z,2') = 3(z — 2’)? the square loss and y(z) = %22 the I, regularization. Notice that

the following derivation is done in full generality for any convex ¢ and strictly convex . We will
specialize to ridge regression at the end of the derivation.

The expected test square error of the BO estimator is

1 N+N' N+N'

A 1 A A
oo =BExyzm > e =800 =Bxygm > (i — 20800+ GI°)7)  (106)
p=N+1 p=N+1

where 7P© is the optimal estimator in terms of expected square error, that is, for a test sample
/
uw > N:

@E’O = /dyu’ yu’P(yu’|X7 yuSN) (107)

Notice that, since g)E,O is sampled from the posterior distribution, we have the simplification
Exy (55°)° = Ex.y yu9,°. We can expand the posterior distribution over the test labels as

P(yu>n|X,yu<n) = /dedkva(yu>N,e,k,v|X,yu§N) (108)

x /dP(e,k,v\X) P(y|X, e k,v) (109)
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N+N 1 1
/de )AP,( H dP.(e,) g (eu,\/ﬁxuk)za(yu@(xm%) (110)

with P, = P, = N(0, Ip) the prior distribution on k and v and, with an abuse of notation, P, =

Unif({1,..., L(u)}) the prior on ¢,. We used Bayes rule and P(X|e, k,v) g, (¢, Xk/v/D)P(e)
to rewrite P(e, k,v|X); and we used the independence of the samples X > Yy conditional on €, k
and v to factorize the expression.

We can express the two errors E,(«) and Ego under the same formalism thanks to a partition
function and a free entropy over k and v:

N
Z(X,y):/dﬁk(k)dpv(v)/HdPE(e#)gy< \/EX k) P(yu| X, €, K, 0) (111)

N+N'
1 | ' X -
/ 1 9.dP(c.) 3 (eu,xuk> Pl X € ke, 0) €Zn=n1 (39 =) 415 (=507

=t VD
b= EXylogZ(X Y) (112)
Where, depending on the estimator, the densities are taken according to
Dy (k) Py(v) Gv Pyl X enkov)  P(ulXu, ek 0)
attention e PreXl vk e BroXT) 1 =Bl ok (X)) 6(Ju = foukw(Xp))
BO By (k) Py(v) G0 PO Xmenn)  P(30X,. 0 0)

with 8 — oo, so for the attention k& and v concentrate onto the minimizer of the empirical loss. We
introduced tilting variables s and ¢ to access the expected test errors, obtained according to

. 01
Eo(a) Zﬁlgf;oapﬁﬂa 0,t=0 » (113)
01
Epo = 6**¢|s:o,t:0 . (114)
sp

C.2 REPLICA, FREE ENTROPY

We compute the free entropy ¢ in the high-dimensional limit N, D — co. We use the replica trick:

IEX,y IOgZ(X7 y) = aTL(EX,yZ()(vy)n>|n:0 (115)
We introduce n replica, indexed by a = 1,...,n, and count the expectation over the data X,y
as an additional replica indexed by a = 0 corresponding to the ground truth. We equivalently

use the superscript * to denote the ground truth when it is clearer to do so. We use the shorthand
0% = sy, (y, — %) + tB(y, — §2)? for the observables. This gives

N+N n
1
Ex 2" odEXy/Hde (E*)dP,( H HdP ( @Xuk“) (116)
HHP“(yﬂlxu,ez,k“,m 11 Hdgzﬁ<gz|xu,ez7k“,va>eoﬁ
u o a=1 pu>N a=1
N+N' n 1
ocEXNN/HdPa k)dP% (v®) H HdP ( @XMM) 117)
N n ~ n
T s T P wul Xus € k% 0%) [T QvaP@ul X, € v™) T] A5 P05 X, €6, k%, 0") €
w a=0 nw>N a=

where Pa Pa7 go, pe equals Py, P,, g,, Pifa = 0 and Pk, PU7 Jus P otherwise. We now introduce
the two prOJectlons

1 1
Xo = —=X,k" € RE®) 2% = ——=X,v* € REW (118)

VD ’ " VD
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thanks to Dirac deltas. We integrate over Gaussian X . We pack the replica into vectors of size n+ 1.
This gives

N+N' n
Ex,2" ocEXNN/Hde k)P (v®) H de,‘id)zadz“déadP( @) g2 (€2, x4) (119)

n
de#HP“(yHIZZ,XZ,GZ) 11 dw.P .z €, deu (]2, X%, €6) e
u>N a=1

n_ N+N' Lp) s S 1
H H ezl 1X“l X#l \/7 Xpuak® )+1zml(z%l—ﬁX“,w)

N+N'

/Hde (k*)dPg (v H dPL(L deZdz dP(e2) g (ea,x%)  (120)

n

de#HP y[L|Z/1,7X/u I H dy,u y#‘zuﬂ I H y,u|z,u7X;u ,u.)eo‘;

u>N a=1

N+N' L ) 1 mkk* —uk*

N Xu,l -0 My Q mkv* Q.
Zul Y 0 my, «

LIPS

T T
My Q) My Q

—vv

where we used that (k*)"k*/D = (v*)Tv*/D = 1, v*/D = 0 and we introduced the
overlaps My, Myjos s Mypye, Myyye € R"and @, Q, qu e R"X” defined for @, b > 0 by
1 1 1 1
(g )o = 50 K ()0 = 50070, (my)a = 5 0)TR, (my,0)a = 55 (0%) o
(121)
_ 1 Tb _ 1 T, b
(@) ab D(ka) kb (@, )ab = B(Ua) ko (Q,,)a = E(Ua) v (122)

We introduce these overlaps via new Dirac deltas. We leverage the replica-symmetric assumption:
we assume that there are mpp«, Moyg*, Mgys s Moo= s @k, Qv Govs @k, Qkv, @uy € R such that for
all @ and b

(mkk*)a = Mkk* (mvk*)a = Myk* , (mkv*)a = Mky* (myv*)a = Myy* (123)
(@,)ab = @kklazt + Qrrba=b ,  (Q,, )ab = Grvlazb + Qkvba=b, (Q, )ab = qovlazb + Quvda=b
(124)

We pack these values into matrices

m = (mkk* Mgy ) e R2%2 , q= (Qkk qu) c R2%2 ’ Q= (Qkk ka) c R2%2 (125)

Moy fex Myy* dkv Quv Qrv Quov

We factorize the replica by introducing random Gaussian variables ¢ ~ AN (0, I3), & ~ N (0, IL)
and ¢ ~ N(0,I1). After a standard computation (see e.g. Aubin et al. (2020)) we obtain that the
free entropy can be expressed as an extremum over the order parameters © = (m, ¢, Q) and their

conjugates 6= (m e RQXZ,Q c ]RQXQ,Q c R2><2):

¢ = max (6, o) (126)
$(0,0) = —éTrm m+ —(Trqq+TrQQ) (127)
+11E§Z,:;J (mTq—l/ ¢, g 1m) IOngv( 12, q+Q)
+ELE5C/dyZ0ut (9ma /2 (55 ) 1= m qm) 1og Zow (42 (41 ) .Q —a)

T
+p1ELE5</dy s (5oma™ 2 (50 ) 1= mTqm ) 1og Z, (v.0'% () .@ = a)
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with the partition functions
1 ]i)* T IC* k*
Z;U(B,A):/de(k*)PU(v*)e () A+ (5| (128)
R

Z1o(B, A) = Adﬁk(k)ﬁv(v)e—%(ﬁ)TA(ﬁ) +B7(3) (129)

L
Z;ut(y,w,V):/ dX*dz*/dPe(e*)g,,(e*,x*)Pout(y\z:*)H/\f((’;li);wl,v) (130)
RL 1
~ L
Zout(y,w, V') =/ dde/dPe(e)éy(ax)P(ylz,x76)HN((§Z);wz,V) (131)
RL

1
Z! /dye /]RL dxdz/dP €) 3w (e, )P (92, x, € )HN((’Z‘Z’);wl,V) (132)

and the observables O = sy(y — §) +t8(y — §)°.

This expression of the free entropy can be simplified assuming that the order parameters m, q, () are
diagonal. We numerically extremized ¢ for the full order parameters from uninformed and informed
initializations and we observed that the cross-terms mpq«, My g, Qrv, @k and their conjugates go to
0. This simplification is similar to the one discussed in the main part for the population loss, though
there is no direct relation with gradient descent and that we have the additionnal order parameter ().
We simplify the notations setting

My = M Qe = Qrk Qr = Qi (133)
My = Mg+ qv = Qoo* Qv = Quy (134)
and similarly for the conjugates The set of order parameters becomes © =
(mka mk7 mua m’U7 qky C]k7 q’U7 QU? Qk‘? Qk) QU) QU) RlQ' The free entropy iS now
1, . 1. A R .
(b(@) = _7(mkmk + mvmv) + 7((]ka + QrQr + Guqu + Q'UQU) (135)
o 2a
1 My, 1 My M2 — A
+ —E Z*T( = )IOng(\/ CQk+Qk)+ EZ*( S f’>10gZ;( GuS, q +Q)
o T\ Ve Vv Qv CAV IR
+ BB [ dyZi (02 1= T8 g o (V6 Qi — e VG Qo — )
Llke, Y — — 108 Zout \Y, vV Qus, Wk — Gk, / Qi v — Qo
ST fk @ ¢q7 G ‘

m2

m
+ p]ELE s / dy z} (y7 7& 1- —k C 1- U> log %;57 Qk — gk, %sz Qu — Qv
€,¢ R out \/ak ak \/7 0 out (\/> \/> )

with ¢ ~ A/(0, 1) and the partition functions

Z (B, A) :/de(k*)e*%Aw*)“Bk*, Zk(B,A):/d~k(k)e’%Ak2+Bk (136)
R R
Zy(B,A) = / AP, (v*)e  #ACTHEY 7 (B A) = / dP, (v)e™ 340 +BY (137)
R R
L
Zot(y, v, Bow, V) = N dx*dZ*/dPe(e*)gu(e*yx*)Pout(yIZE*)HN(X7;717R)N(ZZ‘;wz7V)
l
(138)

Zowt (Y, 7, B, w, V. / dde/dP €) v (&, X)P(yl2, x, € )HN(Xz;%,R)N(Zz;wz,V)
RL
(139)

Zow (7, R w, /dye /dedZ/dP €) u (e, X) P32, X, € )HN(Xz;w,R)N(zz;wz,V)
R
(140)
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Once ¢ is extremized over the order parameters the test errors are computed as

1 _
Eo(a) = BELEf,c/dy(Z{)ut) ' Zout 0t ZL o | s=0,4=0 (141)
R
Epo = ErE¢ ¢ / AY (Zhue) ™" ZoutOs Zug | s=0.1=0 - (142)
R

C.3 SPECIALIZATION TO THE BO
We consider the BO setting, where Z; = Zy, Z, = Z, and Z},; = Zout. A main simplification,
known as Nishimori condition, is given by the fact the BO estimator is sampling the posterior distri-

bution: we have my, = qi, Mr = Gi, Qrx = 1, My = qu, My, = Gy and @, = 1. We set the function
xlogx : © — xlog(x). The resulting free entropy is

1 1 1
6 = =5 (i + 1i,m,) + ~EoxlogxZy (\/mkg, mk) + ~ExlogxZ, (\/mvg, mv)
(143)

+ EL]E.E}C / dy xlogxZout (y> ﬂk& 1 —my, vV my(, 1 — mv)
R

+ pELEﬁ,C / dy Zout (y7 \/ak£7 1 —my, A% mv(a 1- mv) 1Og Z(/mt (\/%kfv 1 —my, V m'uCa 1- mv)
R

The extremality condition of ¢ over the order parameters is obtained by setting its gradient to zero.
We take the limit p = 0. It gives the following fixed-point equations:

mi, =EcZ, (05 2Z1)? (144)

m, =K. Z,; 1 (0pZ,)* (145)

1y, = aBpEe ¢ / Ay Zoh (Ve Zouwt) " (Ve Zout) (146)
R

mv = CYELEg,g / dy Zo_u%;(vwzout)—r(vwzout) (147)
R

We explicit the fixed-point equations. We set

L
hy(€,7, R) =/ dx g (e,) [TV G, R) (148)
RL ;
the effective distribution over . We assume that P, is the identity channel. Then
Mg
= 149
M 14+ my ( )
My = — 1 (150)
14+ m,
_w-vimean? 171
fe = aELE /dy S (e, /R 1 — ) e (151)
mp =« v\©& ) - B
SR - § Y ar —my)
I _ - vmgee? 72
L2 | 0uhte vime 1 =)
— vi€,v/mpé, 1 —my) ————=
Lo | 4 " g g 2m(1 —m,)
weymme? 1L
Sty = aELE /dy S e, Vg, 1 — my) e (152)
my =« v\€ y L I
FRC e - § Y ar —my)
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2

L _w—vmpep?
1 Yy — \/mv<l € 2(1—my)
- hy, (I, /mp&, 1 — my
LZI: ( K ¢) I —m, 27m(1 —m,)

At the fixed-point the Bayes-optimal error is given by
) -1
€po =1 - muELEe + D hulevmi& L—mi)| D (e, v/mig, 1 —my)?  (153)

C.3.1 SPECIALIZATION TO SPIKED-SLR

The spiked-SLR is defined by taking g, (e, x) = eVX<~%. We can integrate over x and explicitly
compute h,:

hu(e,, R) = eV?yetavBi=d) (154)

Thanks to the invariance by permutation of the tokens we isolate the index | = 1. We change the

variables &1 — & + /vmy, and (1 — /1 — m,(1 + /M,y to obtain expressions that are easier to
compute numerically. This gives

Thk mv
_ , = . 155
R T (155)
dy 1,2 1
my, = avEpEe, / e 2Y
&4 v 2 1 L fumk+\/umk(§zf§1)*%Jr%(\/lfmvyﬂ/muél?
+ Zl>1 e v

(156)

e [ -

Y l—my ¢ 2T 1 L —mG+\/wmc(éz—51)—%+%(vl—muy—\/7mél)2
+25€ v
(157)
vmy eVVmks1

Eeo=1-— mveiT]ELEg (158)

14+ EIL>1 eV (§1—61)

C.3.2 SPECIALIZATION TO THE MAX-SLR MODEL

The max-SLR model is defined by taking g, (€, x) = Le"X< /(3 e”X*). x cannot be integrated out.
We consider the limit ¥ = 400 to simplify the expression of h,,:

1 X — M
ho (e, 7R:L/d./\/ 1%, R (1—!— f ) 159
(6,7, R) [ dx (G )l|7é|52 erf ~ (159)

Thanks to the invariance by permutation of the tokens we isolate the indices ! = 1 and ! = 2. We can
still change variables (¢ — +/1 — m,(. + /M,y to obtain expressions that are easier to compute
numerically. This gives

My My
= v — 1
=T e ™ T T, (160)
d 1 1
g, = oAELEg,g/ \/;/Tr e~V (0, b (1, /M€, 1 — my))2e 2 (VImmuy—ymi)? (161)

(= vmy¢y)?
+2(L —1)0,, ho (1, v/mi&, 1 — my) 0y, ho (2, /mg€, 1 — my)e™ o) }

L
ho (1, €, 1 —my)e™ 2 VTV e)® L N g (1 g 1 - my)e” 20

-1
(y—vm5¢))? ]
>1

d —
+ Oé]ELEs,C/ \/;/7 e (L —=1)(0y, hy (2, v/my€, 1 — my))2e 5 T=moy = Ge)*
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(y—/5¢3)?
+ (L2 = 3L 4 2)0y, hy (2, /Iir€, 1 — mp) Dy, by (3, /M, 1 — my)e ™ 2=

-1

L 2
(y—vma¢y)
B (2, /TR, 1 — my e~ 2 (VImmoy—vimata)” | > ho(l, kg 1 - my)e 2w

1#£2

— _ 2
dy 6_%y2 (\/ 1 myy \/mvC].) h,l,(].7 \/ﬂTk£7 1 — mk)e_%(my_m41)2
V2T 1—m,

mv = OCEL]E&C

L ) —1
(' *\/m'uC )
[h”(l’ SR, L —my)e BTG LS b (1 e, 1 — e T ]

>1
(162)

1
Epo =1 = mErEe hy (1, v/mig, 1 = my)? (163)

C.4 SPECIALIZATION TO THE ATTENTION

We consider the attention case, where the distributions Py, P, and P(y|X , €, k,v) do not match the
distributions of the model. In this case it is more convenient to work with the variables

Vk:Qk_Qk» Vk:Qk+Qk7 Vv:Qv_QUa Vv:Qv+qu~ (164)

We perform the changes i, — i, + k*1 /v/ios So = So + V™ 100/ V8o, & — &/ a1 — M3/ /T +
Xi M/ /@ and ¢ = G/ — M2 /\/Gu + 2 My [\/qu. We deal with the limit 3 — oo by rescaling
the parameters according to 7y, — [1k, M — B, Gk — B4k, Go — B2Gw, Vi = ﬁVk,
Vy = BV, and Vi, — 71V, V, — BV,
We introduce the effective joint distribution of the data, fory € R, ¢* € {1,...,L}, x* € REL and
2* e RE:

L

* * * * 1 * * * * *
P (yve X 1 % ) = Zgl/(e » X )Pout(y|25*) I |N(X17071)N(Zl ;071) . (165)
l

The free entropy is then

%¢(@) = _é(mkmk + 1, my) + i (;ka/k + e Vi — Vied + %VUVU + g,V — Vvdu)
+ 0715E< /IR dPy(k*) log /R dk PVrR) aiﬁEg /R dP,(v*) log /}R dv ¥ () (166)
+ %ELEg,g‘/dP* (y, €, x*, 2%) log /R“‘ dydz (eﬁwout(x,z;l) + peﬁwouc(X,Z;O)Hﬂ(y*Qo(Z,X))Q)
with the potentials
(k) = —rey(k) — %kaz + (k™ + /@xs)k (167)
Yo (v) = =1y (v) — %sz + (0™ + \/Gus)v (168)

L L
wout(Xaz;E) = 7££(yaga(’zax>) + ZlogN(Xl;’yl; Vk) + ZIOgN(Zl;WZ, Vv) (169)
l l

v =meX" + g — mEg, w=myz" + /gy — M3 (170)

t € {0, 1} controls whether the loss or the observable are active or not. We introduce the extremizers
of these potentials:

k' = argmax ¢ (k) , v’ = arg max 1, (v) (171)
k v
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X7 = argmaxou(, 5 =1), X", 2" = agmaxdou(x, i =0)  (172)
X2 X%
We introduce the covariances under these potentials around there maxima, with V2 the Hessian.

1 1

Cov(k) = — (V2yp(K)) Cov(v) = — (V2 (v)) (173)
Cov (1)) = = ((V?Woue (735 =1) "), Cov(an) = = (Vo 755 =1)) )
(174)

The extremality condition of ¢ over the order parameters is obtained by setting its gradient to zero.
We take the limit p = 0. It gives the following fixed-point equations:

my = Eg/ dP. (k") k* K m, = E. / dP,(v*) v*v’ (175)
R R
QG = Eg/de(k*) (k')? — Eg/de(v*) (v')? (176)
R R
Vi = E / dP;, Cov(k) V, = E. / dP, Cov(v) 177)
R R
and
1 L m
i = afBec [ AP (e ) g 3 (i - T Covtu)) (178)
1
A * * * * 1 *x _/ My
my, = oBrEe ¢ [ dP*(y, €, x™, 2 )7 ke = Cov(zer) (179)
L 2
5. — aErE dP* * % _% 1 / * 2 1
Gr = o Ee ¢ (ya€7XaZ)7£zl: Xp — mkX; — A/ — mi& (180)
1 & 2
(jv = aELEE,C /dP*(y»E*yx*,Z*) 12 Z (Zl/ - mvzl* — Vv — m%(l) (181)
v l
al 1 &
Vi = ]Eka - OéELEg,c/dP*(y’G*,X*’Z*) 3 ZCOV(Xl) (182)
ko
al, 1 L
Vy = EL? — aIELEg,C/dP*(y, x5 2") — Z Cov(z) (183)
v vy

At the fixed-point the test error is given by
Ea(0) = EuBec [ AP (e X" 2) (0 = 02" (184

C.4.1 SPECIALIZATIONS TO SPIKED- AND MAX-SLR MODELS

We consider an attention trained with lo regularization v(x) = %xQ. The first fixed-point equations
can be explicited
my, = —k_ my = — (185)
Tk + Vk Ty + V'u
m; + (jk ﬁl% + (jv
ar = —F—= =" (186)
(Tk + Vk) (Tv + Vv)
1 1
Vi = _ Vv, = - (187)
Tk + Vk Ty + Vv

We can simplify the rest of the equations by using the permutation invariance w.r.t. the tokens to fix
¢* = 1. For the two models we have that, for [ # €, z;' is Gaussian under P*(y, €*, x*, 2*) and
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My2] +\/ Qv — m2(; ~ N(0,q,), so we can integrate out z;'. We assume that Py is the identity

channel so z}. = y. In the potential 1oy, we have w; = m,yd;1 + \/qv — m20;,1¢ for all I. The
joint distribution over data reduces to

L

Py, €, X", 2%) = P*(y,x") = N(:0,1)0.(1,x") [ [N (%73 0,1) - (188)
l

Taking y ~ N(0,1) and x* ~ N(0, I1), the fixed-point equations and the error are

L
1 my
e = aBLEe ¢ o g0 (1, X)) — x;—~——C 189
e = aBLEe ¢y g0 (1, X )szl:(xm V. 0V(Xl)) (189)
1 /
My = oBrEe ¢y 400 (1, X) Vv Yz — 71) Y Cov(zy) (190)
1 L 2
G = OBLEe ¢y 90 (1, X ) 53 D < —meX] —\/ @k — mi&) (191)
ko
. 1
Qv = aELEﬁ,C,y,X*gV(LX )W ((z mMyY — vV Qv — m2Cl) + Z \/%Cl > (192)
v >1
al 1 L
Vk = ELE — QELES,C,y,X*glI(L X*)W Z COV(X[) (193)
oL
V, = ELy — 0BLEe g, (1,x%) vz Zcov ) (194)
Eo() = ELEe ¢y 90 (1, X") (¥ — 9o (X", 2"))? (195)

For the spiked-SLR model we additionally have that x; is Gaussian under P*(y, x*); so myx; +
\/qk — mkfl ~ NHv md11,q,) and x* can be integrated out. In the potential o, We have
=rmpdi1 + V/@x&; for all I. We have the simplifications

. 1
mp = QELEE,C,ka (\/;)(/1 — I/mk) (196)

1 L
Q= 0BLEe ¢y ((xa — Vmy, = V@€ + Y (- @&)2) (197)
k

>1
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D DETAILS ON THE NUMERICS

D.1 TRAINING OF THE ATTENTION

The attention eq. (4) is trained using LBFGS on the full batch until convergence. The parameters v
and k are initialized randomly according to a standard Gaussian A/(0, Ip).

In Fig. 2 the regularizations r and r, are tuned by grid search to minimize the test error, over
{0.3,1,3,10}? for the linear attention and {0.03,0.1, 0.3, 1}? for the softmax. These values were
determined according to Fig. 6.

For most of the parameters of the data model we explored the training converges to the global
minimum of the training loss eq. (15), in the sense that the training loss of trained attention is equal
to the training loss predicted by our asymptotic characterization.

In a few cases, in particular at low signal and low regularization, the training does not converge
towards the global minimum of the loss, which results in a discrepancy between the simulated per-
formances and the predicted ones. In these cases we train the attention starting from an informed
initialization v = v* and k = k*. Note that this initialization does not necessary correspond to a
minimum of the loss. The performances of the trained attention then better matches our predictions,
as depicted in Fig. 6 for the softmax on the max-SLR. We checked that the achieved training loss is
well smaller than the one starting from a random initialization.

D.2 COMPUTATION OF THE ASYMPTOTIC CHARACTERIZATION

D.2.1 BO

We compute the BO performance stated in result B.1 by iterating the fixed point equations given
by the condition Vg (my, m,) = 0. These equations are detailed in appendices C.3.1 and C.3.2
for the two models. The uninformed initialization corresponds to my, m, = 0.1,0.1 while the
informed initialization corresponds to my, m, = 1 — 1072,1 — 10~2. The expectation over the
Gaussian random variables is computed over 10° and 10°> Monte-Carlo samples respectively for the
spiked-SLR and the max-SLR models.

D.2.2 ATTENTION

We compute the performance of the attention stated in result 5.1 by iterating the given equations.
We use Steffensen’s method to speed up the convergence. For the spiked-SLR a simplification of
the equations is given in Appendix C.4.1. The expectation over the Gaussian random variables
is computed over 10°> Monte-Carlo samples. For each sample at each iteration the extremizers of
Yout are computed using a quasi-Newton optimization scheme. The optimization is started at the
extremizers computed at the previous step.

Notice that 1,4 is not convex and may admit several maxima. In practice, for most of the values of
v, w, Vi, and V,, oy admits a unique maximum. When it is not the case (in particular at low signal
and low regularization) one should compare several different initializations of the optimization al-
gorithm to find the global maximum. We tried on a few cases; it appeared that the final predictions
do not change by a quantity greater than the fluctuations due to the randomness.

The minimum over the set S of fixed points is computed by running the iterations of result 5.1
from several initializations. We considered informed initialization (mpy,m,, gk, ¢, Vi, Vo) =
(1,1,0,0,e,e) for small e, partially informed initializations (mg,my,qk, g, Vi, Vo) =
(1,1,1,1,1,1) and uninformed initializations (my, M, gk, ¢v, Vi, Vo) = (0,0,1,1,1,1). We per-
formed a few different runs, adding small randomness to the initial condition. For all the values of
the parameters, the obtained fixed point did not depend on the choice of the initialization, up to some
small numerical fluctuations. These fluctuations are larger at small regularizations and low signals,
in which case we select the run which reaches the highest free entropy eq. (166), i.e. the lowest train
loss, among those that converged before a certain amount of iterations.
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E ADDITIONAL FIGURES

We provide an additional figure for the result 5.1 about the test risk of the attention at finite . Fig. 6
gives the test risk E,, for the same configurations as in Fig. 2 for several additional regularizations 7y,
and r,. It justifies the ranges of the grid search for the linear and the softmax attention in Fig. 2, in
the sense that E, seems to reach its minimal value for regularizations close to the ones considered in
Fig. 6. Moreover it shows the excellent agreement between our theory result 5.1 and the simulations.
We observe a discrepancy for the softmax at small regularization for the spiked-SLR at v = 1 or the
max-SLR at v = +o0. For the spiked-SLR it may be caused by the replica-symmetry assumption
being false or the numerical errors in the resolution of the fixed point equations. For the max-SLR
atry = r, = 0.03 we observe that initializing the simulations at the informed point k = k*,v = v*
leads to an agreement with our theory. This shows that in this case the local optimization cannot
recover the global minimum of the loss from random initialization.

spiked-SLR, vr=1 spiked-SLR, v=10 max-SLR, v=+oc0

1.25 4 4 —_— rp=r,=10 4
—_— =T, =3

1.00 1 | o |
< 0751 % | =7, =0.3 |
SP0A R e A
0.25 __\_________““:_“ ]

)

Ii

000 L T T T T L T T T T L T T T T
1
1.25 1 4 —_—rp=ry=1 J e random initialization
3 —_— rp=r,=0.3 % informed initialization
Al-oo'“ &* b — rp=71,=0.1 b === a=+00
\% % \ T =1, =0.03 Bayes-optimal
£ 0.751 5 % E
g H
W 0504 Tmee————————— . \
0.25 A E
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2 4 6 8 2 4 6 8 2 4 6 8

Figure 6: Test error of the trained attention, linear (top) and softmax (bottom), across different tasks
and signal strengths v, for L = 3. Solid lines indicate E, () at finite o (Result 5.1), while markers
represent the test error of an ERM approximated via a local optimization method with v ND = 10*
and averaged over ten instances. Random initialization means that the attention is initialized at
random k and v while informed initialization means it is initialized at k = k*,v = v*. Dashed
lines correspond to the value of E,, in the infinite-a limit (see closed-formed formulas in Proposi-
tion 4.1 for softmax and Appendix A.2.7 for linear). The Bayes-optimal risk is shown in black (see
Appendix B for a discussion on its discontinuity). Appendix D includes more experimental details.

F ACKNOWLEDGMENTS

We used large language models for helping the writing and discussing some references and related
work.

32



	Introduction
	Further Related work
	Task and data model
	Overview of the single-location regression task
	Probabilistic data model for SLR
	Learning with attention

	Comparison of softmax with alternatives in population risk
	Bayes risk and optimality of softmax
	Expression of the population risk for arbitrary activation functions
	Comparison between linear and softmax attentions
	Other activation functions

	Performance of the attention at finite sample complexity
	Population risk
	Proof of proposition 4.1: Bayes risk
	Risk of the attention layer on population loss
	Proof of proposition 4.2: the softmax is Bayes-optimal
	Invariant manifold
	Stability of the manifold
	Orthogonal components on the manifold
	Linear attention, stability of the fixed point
	Other possible minima
	Minimizer for the linear attention
	Proof of corollary 4.2: asymptotic convergence rates


	Bayes-optimal error at finite sample complexity 
	Asymptotic characterization at finite sampling ratio: replica
	Introduction of the partition function
	Replica, free entropy
	Specialization to the BO
	Specialization to spiked-SLR
	Specialization to the max-SLR model

	Specialization to the attention
	Specializations to spiked- and max-SLR models


	Details on the numerics
	Training of the attention
	Computation of the asymptotic characterization
	BO
	Attention


	Additional figures
	Acknowledgments

