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Abstract

Federated learning exposes the participating clients to issues of leakage of private
information from the client-server communication and the lack of personaliza-
tion of the global model. To address both the problems, we investigate the use
of metric-based local privacy mechanisms and model personalization. These are
based on operations performed directly in the parameter space, i.e. sanitization
of the model parameters by the clients and clustering of model parameters by the
server.

1 Introduction

With the modern developments in machine learning, user data collection has become ubiquitous,
often disclosing sensitive personal information with increasing risks of users’ privacy violations
[20, 26]. To try and curb such threats, Federated Learning (FL) [23] was introduced as a collabo-
rative machine learning paradigm where the users’ devices, on top of harvesting user data, directly
train a global predictive model, without ever sending the raw data to a central server. On the one
hand, this paradigm has received much attention with the appealing promises of guaranteeing user
privacy and model performance. On the other hand, given the heterogeneity of the data distributions
among clients, training convergence is not guaranteed and model utility may be reduced by local
updates. Many works have thus focused on the topic of personalized federated learning, to tailor
a set of models to clusters of users with similar data distributions [14, 22, 27]. On a similar note,
other lines of work have also showed that relying on avoiding the release of user’s raw data only pro-
vides a lax protection to potential attacks violating the users’ privacy [16], [25], [31]. To tackle this
problem, researchers have been exploring the application of Differential Privacy (DP) [11, 12] to
federated learning, in order to quantify and provide privacy to users participating in the optimization.
The goal of differential privacy mechanisms is to introduce randomness in the information released
by the clients, such that each user’s contribution to the final model can be made probabilistically
indistinguishable up to a certain likelihood factor. To bound this factor, the domain of secrets (i.e.
the parameter space in FL) is artificially bounded, be it to provide central [5, 24] or local DP guar-
antees [28,30]. When users share with the central server their locally updated models for averaging,
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constraining the optimization to a subset of Rn can have destructive effects, e.g. when the optimal
model parameters for a certain cluster of users may be found outside such bounded domain. There-
fore, in this work we aim to address the problems of personalization and local privacy protection by
adopting a generalization of DP, i.e. d-privacy or metric-based privacy [9]. This notion of privacy
does not require a bounded domain and provides guarantees dependent on the distance between any
two points in the parameter space. Thus, under the minor assumption that clients with similar data
distributions will have similar optimal fitting parameters, d-privacy will provide them with stronger
indistinguishability guarantees. Conversely, privacy guarantees degrade gracefully for clients whose
data distributions are vastly different.

2 Background

Related works Federated optimization has shown to be under-performing when the local datasets
are samples of non-congruent distributions, failing to minimize both the local and global objectives
at the same time. In [14, 22, 27], the authors investigate different meta-algorithms for personaliza-
tion. Claims of user privacy preservation are based solely on the clients releasing updated models (or
model updates) instead of transferring the raw data to the server, with potentially dramatic effects. To
confront this issue, a number of works have focused on the privatization of the (federated) optimiza-
tion algorithm under the framework of DP [2,5,13,24] who adopt DP to provide defenses against an
honest-but-curious adversary. Even in this setting though, no protection is guaranteed against sam-
ple reconstruction from the local datasets [31], using the client updates. Different strategies have
been tried to provide local privacy guarantees, either from the perspective of cryptography [7], or
under the framework of local DP [3, 17, 28]. In particular in [17] the authors address the problem of
personalized and locally differentially private federated learning, but for the simple case of convex,
1-Lipschitz cost functions of the inputs. Note that this assumption is unrealistic in most machine
learning models, and it excludes many statistical modeling techniques, notably neural networks.

Personalized federated learning The problem can be cast under the framework of stochastic
optimization and we adopt the notation of [14] to find the set of minimizers θ∗j ∈ Rn with j ∈
{1, . . . , k} of the cost functions

F (θj) = Ez∼Dj [f(θj ; z)] , (1)

where {D1, . . . ,Dk} are the data distributions which can only be accessed through a collection of
client datasets Zc = {z|z ∼ Dj , z ∈ D} for some j ∈ {1, . . . , k} with c ∈ C = {1, . . . , N} the set
of clients, and D a generic domain of data points. C is partitioned in k disjoint sets

S∗
j = {c ∈ C | ∀z ∈ Zc, z ∼ Dj} ∀ j ∈ {1, . . . , k} (2)

The mapping c → j is unknown and we rely on estimates Sj of the membership of Zc to compute
the empirical cost functions

F̃ (θj) =
1

|Sj |
∑
c∈Sj

F̃c(θj ;Zc); F̃c(θj ;Zc) =
1

|Zc|
∑

zi∈Zc

f(θ; zi) (3)

The cost function f :Rn×D 7→ R≥0 is applied on z ∈ D, parametrized by the vector θj ∈ Rn. Thus,
the optimization aims to find, ∀ j ∈ {1, . . . , k},

θ̃∗j = argmin
θj

F̃ (θj) (4)

Privacy d-privacy [9] is a generalization of DP for any domain X , representing the space of orig-
inal data, endowed with a distance measure d:X 2 7→ R≥0, and any space of secrets Y . A random
mechanismR : X 7→ Y is called ε-d-private if for all x1, x2 ∈ X and measurable S ⊆ Y :

P [R(x1) ∈ S] ≤ eεd(x1,x2)P [R(x2) ∈ S] (5)

Note that when X is the domain of databases, and d is the distance on the Hamming graph of their
adjacency relation, then Equation (5) results in the standard definition of DP in [11,12]. In this work
we will have though that θ ∈ Rn = X = Y . The main motivation behind the use of d-privacy is to
preserve the topology of the parameter distributions among clients, i.e. to have that, in expectation,
clients with close model parameters in the non-privatized space X will communicate close model
parameters in the privatized space Y .
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3 An algorithm for private and personalized federated learning

We propose an algorithm for personalized federated learning with local guarantees to provide group
privacy (Algorithm 1). Locality refers to the sanitization of the information released by the client
to the server, whereas group privacy refers to indistinguishability with respect to a neighborhood of
clients, defined with respect to a certain distance metric. Thus we proceed to define neighborhood
and group.
Definition 3.1. For any model parametrized by θ ∈ Rn, we define its r-neighborhood as the set of
points in the parameter space which are at a L2 distance of at most r from θ, i.e., {x ∈ Rn: ‖θ, x‖2 ≤
r}. Clients whose models are parametrized by θ ∈ Rn in the same r-neighborhood are said to be in
the same group, or cluster.

Algorithm 1 is motivated by the Iterative Federated Clustering Algorithm (IFCA) [14] and builds
on top of it to provide formal privacy guarantees. The main differences lie in the introduction of the
SanitizeUpdate function described in Algorithm 2 and k-means for server-side clustering of the
updated models.

Algorithm 1 An algorithm for personalized federated learning with formal privacy guarantees in
local neighborhoods.

Require: number of clusters k; initial hypotheses θ(0)j , j ∈ {1, . . . , k}; number of rounds T ; num-
ber of users per round U ; number of local epochs E; local step size s; user batch size Bs; noise
multiplier ν; local dataset Zc held by user c.

1: for t = {0, 1, . . . , T − 1} do ▷ Server-side loop
2: C(t) ← SampleUserSubset(U )
3: BroadcastParameterVectors(C(t); θ(t)j , j ∈ {1, . . . , k})
4: for c ∈ C(t) do in parallel ▷ Client-side loop
5: j̄ = argminj∈{1,...,k} Fc(θ

(t)
j ;Zc)

6: θ
(t)

j̄,c
← LocalUpdate(θ(t)

j̄
; s;E;Zc)

7: θ̂
(t)

j̄,c
← SanitizeUpdate(θ(t)

j̄,c
; ν)

8: end for
9: {S1, . . . , Sk} = k-means(θ̂(t)

j̄,c
, c ∈ C(t); θ(t)j , j ∈ {1, . . . , k})

10: θ
(t+1)
j ← 1

|Sj |
∑

c∈Sj
θ̂
(t)

j̄,c
, ∀j ∈ {1, . . . , k}

11: end for

3.1 The Laplace mechanism under Euclidean distance in Rn

Algorithm 2 SanitizeUpdate obfuscates a vector
θ ∈ Rn, with a Laplacian noise tuned on the ra-
dius of a certain neighborhood and centered in 0.

1: function SANITIZEUPDATE(θ(t)
j̄

; θ
(t)

j̄,c
; ν)

2: δ
(t)
c = θ

(t)

j̄,c
− θ

(t)

j̄

3: ε = n

ν∥δ(t)c ∥
4: Sample ρ ∼ L0,ε(x)

5: θ̂
(t)

j̄,c
= θ

(t)

j̄,c
+ ρ

6: return θ̂
(t)

j̄,c

7: end function

Algorithm 2’s SanitizeUpdate is based on
a generalization of the Laplace mechanism un-
der Euclidean distance to Rn, introduced in [4]
for geo-indistinguishability in R2. The motiva-
tion to adopt the L2 norm as distance measure
is twofold. First, clustering is performed on
θ with the k-means algorithm under Euclidean
distance. Since we define clusters or groups of
users based on how close their model parame-
ters are under L2 norm, we are looking for a d-
privacy mechanism that obfuscates the reported
values within a certain group and allows the
server to discern among users belonging to dif-
ferent clusters. Second, parameters that are san-
itized by equidistant noise vectors in L2 norm

are also equiprobable by construction and lead to the same bound in the increase of the cost function
in first order approximation, as shown in Proposition 3.2. The Laplace mechanism under Euclidean
distance in a generic space Rn is defined in Proposition 3.1.
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Proposition 3.1. Let Lε:Rn 7→ Rn be the Laplace mechanism of the form Lx0,ε(x) =

P [Lε(x0) = x] = Ke−εd(x,x0) with d(.) being the Euclidean distance. If ρ ∼ Lx0,ε(x), then:

1. Lx0,ε is ε-d-private and K =
εnΓ(n

2 )

2π
n
2 Γ(n)

2. ‖ρ‖2 ∼ γε,n(r) =
εne−εrrn−1

Γ(n)

3. The ith component of ρ has variance σ2
ρi

= n+1
ε2

where Γ(n) is the Gamma function defined for positive reals as
∫∞
0

tn−1e−t dt which reduces to the
factorial function whenever n ∈ N.
Proposition 3.2. Let y = f(x, θ) be the fitting function of a machine learning model parameterized
by θ, and (X,Y ) = Z the dataset over which the RMSE loss function F (Z, θ) is to be minimized,
with x ∈ X and y ∈ Y . If ρ ∼ L0,ε, the bound on the increase of the cost function does not depend
on the direction of ρ, in first order approximation, and:

‖F (Z, θ + ρ)‖2 − ‖F (Z, θ)‖2 ≤ ‖Jf (X, θ)‖2‖ρ‖2 + o(‖Jf (X, θ) · ρ‖2)

The results in Proposition 3.1 allow to reduce the problem of sampling a point from Laplace to
i) sampling the norm of such point according to Equation (11) and then ii) sample uniformly a
unit (directional) vector from the hypersphere in Rn. Much like DP, d-privacy provides a means to
compute the total privacy parameters in case of repeated queries, a result known as Compositionality
Theorem for d-privacy 3.1. Although it was known as a folk result, we provide a formal proof.
Theorem 3.1. Let Ki be (εi)-d-private mechanism for i ∈ {1, 2}. Then their independent composi-
tion is (ε1 + ε2)-d-private.

A heuristic for defining the neighborhood of a client At the tth iteration, when a user c calls
the SanitizeUpdate routine in Algorithm 2, it has already received a set of hypotheses, optimized
θ
(t)

j̄
(the one that fits best its data distribution), and got θ(t)

j̄,c
. It is reasonable to assume that clients

whose datasets are sampled from the same underlying data distribution Dj̄ will perform an update
similar to δ

(t)
c . Therefore, we enforce points which are within the δ

(t)
c -neighborhood of θ̂(t)

j̄,c
to be

indistinguishable. To provide this guarantee, we tune the Laplace mechanism such that the points
within the neighborhood are ε‖δ(t)c ‖2 differentially private. With the choice of ε = n/(νδ

(t)
c ), one

finds that ε‖δ(t)c ‖2= n/ν, and we call ν the noise multiplier. It is straightforward to observe that
the larger the value of ν gets, the stronger is the privacy guarantee. This results from the norm of
the noise vector sampled from the Laplace distribution being distributed according to Equation (11)
whose expected value is E [γε,n(r)] = n/ε.

4 Experiments

Synthetic data We generate data according to k = 2 different distributions: y = xT θ∗i + u

and u ∼ Uniform [0, 1), ∀i ∈ {1, 2} and θ∗1 = [+5,+6]
T , θ∗2 = [+4,−4.5]T . We then assess

how training progresses as we move from the Federated Averaging [19] (Figure 1a, 1b, 1c), to IFCA
(Figure 1d, 1e, 1f), and finally Algorithm 1 (Figure 1g, 1h, 1i). Figure 2 provides the maximum value
of privacy leakage clients incur into, per cluster. Further details about the experimental settings are
provided in Appendix B.

Hospital charge data This experiment is performed on the Hospital Charge Dataset by the Cen-
ters for Medicare and Medicaid Services of the US Government [1]. The healthcare providers are
considered the set of clients willing to train a machine learning model with federated learning. The
goal is predicting the cost of a service given where it is performed in the country, and what kind of
procedure it is. More details on the preprocessing and training settings are included in Appendix
B. To assess the trade-off between privacy, personalization and accuracy, a different number of ini-
tial hypotheses has been checked, as it is not known a-priori how many distributions generated the
data. Accuracy has been evaluated at different levels of the noise multiplier ν. Results are shown
in Figure 4. Figure 3 provides the empirical privacy leakage distribution of the clients involved in a
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Figure 1: Learning federated linear models with: (a, b, c) one initial hypothesis and non-sanitized
communication, (d, e, f) two initial hypotheses and non-sanitized communication, (g, h, i) two initial
hypotheses and sanitized communication. The first two figures of each row show the parameter
vectors released by the clients to the server.
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Hypotheses

ν 7 5 3 1

0 −,− −,− −,− −,−
0.1 517.0, 1551.0 418.0, 1342.0 473.0, 1386.0 528.0, 1540.0
1 36.3, 126.5 40.7, 127.6 44.0, 138.6 49.5, 147.4
2 15.4, 57.8 14.3, 54.5 22.0, 69.3 21.5, 66.6
3 7.7, 32.3 8.4, 36.7 12.5, 40.0 12.1, 40.0
5 5.7, 21.3 5.9, 22.0 5.5, 21.6 5.3, 20.9

Table 1: Hospital charge data: median and maximum local privacy budgets over the whole set of
clients, averaged over 10 runs with different seeds. ν = 0 means no privacy guarantee.

Figure 2: Synthetic data: max privacy leak-
age among clients clients. Privacy leakage
is constant when clients with the largest pri-
vacy leakage are not sampled (by chance) to
participate in those rounds.

Figure 3: Hospital charge data: the empiri-
cal distribution of the privacy budget over the
clients for: ν = 3, 5 initial hypotheses, seed
= 3, r is the radius of the neighborhood, the
total number of clients is 2062.

particular training configuration. Table 1 shows privacy leakage statics over multiple rounds and for
all configurations.

FEMNIST Image Classification [8] Details on the experimental settings are in Appendix B.
With the choice of the range of noise multipliers ν the corresponding value for the privacy leakage
ε‖δ(t)c ‖2= n/ν would be enormous, considering a CNN with n = 206590 parameters, providing no
meaningful theoretical privacy guarantees. This is a common issue for local privacy mechanisms [6],
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Figure 4: RMSE for models trained with Al-
gorithm 1 on the Hospital Charge Dataset.
Error bars show ±σ, with σ the empirical
standard deviation. Lower RMSE values are
better for accuracy.
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Figure 5: Effects of the Laplace mechanism
in Proposition 3.1 with different noise multi-
pliers as a defense strategy against the DLG
attack.
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Cross Entropy loss RMSE loss

ν
Average

Accuracy
Standard
Deviation

Average
Accuracy

Standard
Deviation

0 0.832 ± 0.012 0.801 ± 0.001
0.001 0.843 ± 0.006 0.813 ± 0.014
0.01 0.832 ± 0.017 0.805 ± 0.008
0.1 0.834 ± 0.026 0.808 ± 0.019
1 0.834 ± 0.014 0.814 ± 0.012
3 0.835 ± 0.017 0.825 ± 0.010
5 0.812 ± 0.016 0.787 ± 0.003
10 0.692 ± 0.002 0.687 ± 0.014
15 0.561 ± 0.005 0.622 ± 0.003

Table 2: Effects of increasing the noise multiplier on the validation accuracy and standard deviation.

and it comes from the linear dependence on n: E [γε,n(r)] = n/ε. Still, it is possible to validate,
in practice, whether this particular generalization of the Laplace mechanism can protect against a
specific attack: DLG [31]. Figure 5 and Table 2 report the results of varying the noise multiplier
values. When ν = 10−3 the ground truth image is fully reconstructed. Up to ν = 10−1 we see that
at least partial reconstruction is possible. For ν ≥ 1 we see that, experimentally, the DLG attack
fails to reconstruct input samples.

5 Conclusion

We use the framework of d-privacy to sanitize points in the parameter space of machine learning
models, which are then communicated to a central server for aggregation in order to converge to the
optimal parameters and, thus, obtain the personalized models for the diverse datasets. Given that
the distribution of the data among individuals is unknown, it is reasonable to assume a mixture of
multiple distributions. Clustering the sanitized parameter vectors released by the clients with the
k-means algorithm shows to be a good proxy for aggregating clients with similar data distributions.
This is possible because d-private mechanisms preserve the topology of the domain of true values.
Our mechanism shows to be promising when machine learning models have a small number of pa-
rameters. Although formal privacy guarantees degrade sharply with large machine learning models,
we show experimentally that the Laplace mechanism is effective against the DLG attack.
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A Proofs

Proposition 3.1. Let Lε:Rn 7→ Rn be the Laplace mechanism of the form Lx0,ε(x) =

P [Lε(x0) = x] = Ke−εd(x,x0) with d(.) being the Euclidean distance. If ρ ∼ Lx0,ε(x), then:

1. Lx0,ε is ε-d-private and K =
εnΓ(n

2 )

2π
n
2 Γ(n)

2. ‖ρ‖2 ∼ γε,n(r) =
εne−εrrn−1

Γ(n)

3. The ith component of ρ has variance σ2
ρi

= n+1
ε2

where Γ(n) is the Gamma function defined for positive reals as
∫∞
0

tn−1e−t dt which reduces to the
factorial function whenever n ∈ N.

Proof. We provide proofs for all three statements separately:

1. If Lx0,ε(x) = Ke−εd(x,x0) is a probability density function of a point x ∈ Rn then K should
be such that

∫
Rn Lx0

(x)dx = 1. We note that it depends only on the distance x and x0 and we can
write Ke−εd(x,x0) as Ke−εr where r is the radius of the ball in Rn centered in x0. Without loss of
generality, let us now take x0 = 0. The probability density of the event x ∈ Sn(r) = {x : ‖x‖2 = r}
is then p(x ∈ Sn(r)) = Ke−εrSn(1)rn−1 where Sn(1) is the surface of the unitary ball in Rn and
Sn(r) = Sn(1)r

n−1 is the surface of a generic ball of radius r. Given that

Sn(1) =
2πn/2

Γ(n2 )
(6)

solving ∫ +∞

0

P [x ∈ Sn(r)] dr =

∫ +∞

0

Ke−εrSn(1)r
n−1dr =

K
2πn/2Γ(n)

εnΓ(n2 )
= 1

(7)

results in

K =
εnΓ(n2 )

2π
n
2 Γ(n)

(8)

where Γ(·) denotes the gamma function. By plugging Lx0,ε(x) = Ke−εd(x,x0) in Equation 5:

Ke−εd(x,x1) ≤ eεd(x1,x2)Ke−εd(x,x2) (9)

eε(∥x−x2∥2−∥x−x1∥2) ≤ eε∥x1−x2∥ = eεd(x1,x2) (10)
which completes the poof of the first statement.

2. Without loss of generality, let us take x0 = 0. Exploiting the radial symmetry of the Laplace
distribution, we note that, in order to sample a point ρ ∼ Lx0,ε(x) in Rn, it is possible to first
sample the set of points distant d(x, 0) = r from x0 and then sample uniformly from the resulting
hypersphere. Accordingly, the p.d.f. of the L2-norm of ρ is the p.d.f. of the event ρ ∈ Sn(r) =
{ρ : ‖ρ‖2 = r} which is then P [ρ ∈ Sn(r)] = Ke−εrSn(1)rn−1, where Sn(r) is the surface of the
sphere with radius r in Rn. Hence, we can write

‖ρ‖2 ∼ γε,n(r) =
εne−εrrn−1

Γ(n)
(11)

which completes the proof of the second statement.

3. With ρ ∼ γε,n we have that, by construction,

E
[
ρ2
]
= E

[
n∑

i=1

ρ2i

]
= nE

[
ρ2i
]
= nσ2

ρi
(12)
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With the last equality holding since L0,ε is isotropic and centered in zero. Recalling that

E
[
ρ2
]
=

d2

dt2
Mρ(t)

∣∣∣∣
t=0

(13)

with Mρ(t) the moment generating function of the gamma distribution γε,n,

d2

dt2

((
1− t

ε

)−n
)∣∣∣∣∣

t=0

=

=
n(n+ 1)

ε2

(
1− t

ε

)−(n+2)
∣∣∣∣∣
t=0

=

=
n(n+ 1)

ε2

which leads to σ2
ρi

= n+1
ε2 , completing the proof of the third statement and of the Proposition.

Proposition 3.2. Let y = f(x, θ) be the fitting function of a machine learning model parameterized
by θ, and (X,Y ) = Z the dataset over which the RMSE loss function F (Z, θ) is to be minimized,
with x ∈ X and y ∈ Y . If ρ ∼ L0,ε, the bound on the increase of the cost function does not depend
on the direction of ρ, in first order approximation, and:

‖F (Z, θ + ρ)‖2 − ‖F (Z, θ)‖2 ≤ ‖Jf (X, θ)‖2‖ρ‖2 + o(‖Jf (X, θ) · ρ‖2)

Proof. The Root Mean Square Error loss function is defined as:

F =

√√√√√ |Z|∑
i=1

(f(xi, θ)− yi)2

|Z|
=
‖f(X, θ)− Y ‖2√

|Z|
(14)

If the model parameters θ are sanitized by the addition of a random vector ρ ∼ L0,ε, we can evaluate
how the cost function would change with respect to the non-sanitized parameters. Dropping the
multiplicative constant we find:

‖f(X, θ + ρ)− Y ‖2 − ‖f(X, θ)− Y ‖2 ≤
‖f(X, θ + ρ)− Y − f(X, θ) + Y ‖2 =

‖f(X, θ + ρ)− f(X, θ)‖2 =

‖f(X, θ) + Jf (X, θ) · ρ− f(x, θ) + o(Jf (X, θ) · ρ)‖2 =

‖Jf (X, θ) · ρ+ o(Jf (X, θ) · ρ)‖2 ≤
‖Jf (X, θ)‖2‖ρ‖2 + o(‖Jf (X, θ) · ρ‖2)

with Jf (X, θ) being the Jacobian of f with respect to X and o(.) being higher terms coming from
the Taylor expansion. Thus we proved that the bound on the increase of the cost function and that it
does not depend on the direction of the additive noise, but on its norm, in first order approximation.
Theorem 3.1. Let Ki be (εi)-d-private mechanism for i ∈ {1, 2}. Then their independent composi-
tion is (ε1 + ε2)-d-private.

Proof. Let us simplify the notation and denote:

Pi = PKi [yi ∈ Si|xi]

P ′
i = PKi

[yi ∈ Si|x′
i]

for i ∈ {1, 2}. As mechanisms K1 and K2 are applied independently, we have:

PK1,K2 [(y1, y2) ∈ S1 × S2|(x1, x2)] = P1.P2

PK1,K2
[(y1, y2) ∈ S1 × S2|(x′

1, x
′
2)] = P ′

1.P
′
2

11



Therefore, we obtain:

PK1,K2
[(y1, y2) ∈ S1 × S2|(x1, x2)] = P1.P2

≤
(
eε1 d(x1,x

′
1)P ′

1

)(
eε2 d(x2,x

′
2)P ′

2

)
≤ eε1 d(x1,x

′
1)+ε2 d(x2,x

′
2)PK1,K2

[(y1, y2) ∈ S1 × S2|(x′
1, x

′
2)]

B Experimental settings

B.1 Synthetic data

A total of 100 users holding 10 samples each, drawn from either one of the distributions, participate
in a training of two initial hypotheses which are sampled from a Gaussian distribution centered in 0
and unit variance at iteration t = 0. A total of U = 7 users are asked to participate in the optimization
at each round and train locally the hypothesis that fits better their dataset for E = 1 epochs each time.
The noise multiplier is set to ν = 5. Local step size s = 0.1 and a batch size Bs = 10 complete the
required inputs to the algorithm. To verify the training process, another set of users with the same
characteristics is held out form training to perform validation and stop the federated optimization
once the is no improvement in the loss function in Equation (14) for 6 consecutive rounds. Although
at first the updates seem to be distributed all over the domain, in just a few rounds of training the
process converges to values very close to the two optimal parameters. With the heuristic presented in
Section 3.1 it is easy to find that whenever a user participates in an optimization round it incurs in a
privacy leakage of at most n/ν = 2/5 = 0.4, in a differential private sense, with respect to points in
its neighborhood. Using the result in Theorem 3.1 clients can compute the overall privacy leakage of
the optimization process, should they be required to participate multiple times. For any user, whether
to participate or not in a training round can be decided right before releasing the updated parameters,
in case that would increase the privacy leakage above a threshold value decided beforehand.

B.2 Hospital charge data

The dataset contains details about charges for the 100 most common inpatient services and the 30
most common outpatient services. It shows a great variety of charges applied by healthcare providers
with details mostly related to the type of service and the location of the provider. Preprocessing of
the dataset includes a number of procedures, the most important of which are described here:

i) Selection of the 4 most widely treated conditions, which amount to simple pneumonia;
kidney and urinary tract infections; hart failure and shock; esophagitis and digestive system
disorders.

ii) Transformation of ZIP codes into numerical coordinates in terms of longitude and latitude.

iii) Setting as target the Average Total Payments, i.e. the cost of the service averaged among
the times it was given by a certain provider.

iv) As it is a standard procedure in the context of gradient-based optimization, dependent and
independent variables are brought to be in the range of the units before being fed to the
machine learning model. Note that this point takes the spot of the common feature normal-
ization and standardization procedures, which we decided not to perform here to keep the
setting as realistic as possible. In fact, both would require the knowledge of the empirical
distribution of all the data. Although it is available in simulation, it would not be available
in a real scenario, as each user would only have access to their dataset.

Given the preprocessing described above, the dataset results in 2947 clients, randomly split in train
and validation subsets with 70 and 30 per cent of the total clients each. The goal is being able to
predict the cost that a service would require given where it is performed in the country, and what kind
of procedure it is. The model that was adopted in this context is a fully connected neural network
(NN) of two layers, with a total of 11 parameters and Rectified Linear Unit (ReLU) activation
function. Inputs to the model are an increasing index which uniquely defines the healthcare service,
the longitude and latitude of the provider. Output of the model is the expected cost. Tests have
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been performed to minimize the RMSE loss on the clients selected for training (100 per round) and
at each round the performance of the model is checked against a held-out set of validation clients,
from where 200 are sampled every time. If 30 validation rounds are passed without improvement
in the cost function, the optimization process is terminated. In order to decrease variability of the
results, a total of 10 runs have been performed with different seeds for every combination of number
of hypotheses and noise multiplier.

B.3 FEMNIST image classification

The task consists in performing image classification on the FEMNIST [8] dataset, which is a stan-
dard benchmark dataset for federated learning, based on EMNIST [10] and with the data points
grouped by user. It consists of a large number of images of handwritten digits, lower and upper
case letters of the Latin alphabet. As a preprocessing step, images of client c are rotated 90 degrees
counter-clockwise depending on the realization of the random variable rotc ∼ Bernoulli(0.5). This
is a common practice in machine learning to simulate local datasets held by different clients being
generated by different distributions [14, 15, 18, 21]. The chosen architecture is described in Table 3
and yields a parameter vector θ ∈ Rn0 , n0 = 1206590. Runs are performed with a maximum of
500 rounds of federated optimization, unless 5 consecutive validation rounds are conducted without
improvements on the validation loss. The latter is evaluated on a held out set of clients, consisting
of 10% of the total number. Validation is performed every 5 training rounds, thus the process termi-
nates after 25 rounds without model’s performance improvement. The optimization process aims to
minimize either the RMSE loss or the Cross Entropy loss [29] between model’s predictions and the
target class.

Layer Properties

2D Convolution

kernel size: (2,2)
stride: (1,1)

nonlinearity: ReLU
output features: 32

2D Convolution

kernel size: (2,2)
stride: (1,1)

nonlinearity: ReLU
output features: 64

2D Max Pool
kernel size: (2,2)

stride: (2,2)
nonlinearity: ReLU

Fully Connected nonlinearity: ReLU
units: 128

Fully Connected nonlinearity: ReLU
units: 62

Table 3: NN architecture adopted in the experiments of Section 4
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