
Under review as a conference paper at ICLR 2023

ADAPTIVE UPDATE DIRECTION RECTIFICATION FOR
UNSUPERVISED CONTINUAL LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent works on continual learning have shown that unsupervised continual learn-
ing (UCL) methods rival or even beat supervised continual learning methods.
However, most UCL methods typically adopt fixed learning strategies with pre-
defined objectives and ignore the influence of the constant shift of data distribu-
tions on the newer training process. This non-adaptive paradigm tends to achieve
sub-optimal performance, since the optimal update direction (to ensure the trade-
off between old and new tasks) keeps changing during training over sequential
tasks. In this work, we thus propose a novel UCL framework termed AUDR
to adaptively rectify the update direction by a policy network (i.e., the Actor)
at each training step based on the reward predicted by a value network (i.e.,
the Critic). Concretely, different from existing Actor-Critic based reinforcement
learning works, there are three vital designs that make our AUDR applicable to
the UCL setting: (1) A reward function to measure the score/value of the currently
selected action, which provides the ground-truth reward to guide the Critic’s pre-
dictions; (2) An action space for the Actor to select actions (i.e., update directions)
according to the reward predicted by the Critic; (3) A multinomial sampling strat-
egy with a lower-bound on the sampling probability of each action, which is de-
signed to improve the variance of the Actor’s selected actions for more diversified
exploration. Extensive experiments show that our AUDR achieves state-of-the-art
results under both the in-dataset and cross-dataset UCL settings. Importantly, our
AUDR also shows superior performance when combined with other UCL meth-
ods, which suggests that our AUDR is highly extensible and versatile.

1 INTRODUCTION

Continual learning has recently drawn great attention, for it can be applied to learning on a sequence
of tasks without full access to the historical data (Rusu et al., 2016; Rebuffi et al., 2017; Lopez-Paz &
Ranzato, 2017; Fernando et al., 2017; Kirkpatrick et al., 2017; Zenke et al., 2017). Most of existing
methods focus on supervised continual learning (SCL), and only a few (Rao et al., 2019; Madaan
et al., 2021; Fini et al., 2022) pay attention to unsupervised continual learning (UCL). UCL is an
important yet more challenging task which requires a model to avoid forgetting previous knowledge
after being trained on a sequence of tasks without labeled data.

Recent UCL methods (Rao et al., 2019; Madaan et al., 2021; Fini et al., 2022) have achieved promis-
ing results, and even outperform the SCL methods. However, these UCL methods are still limited
by the fixed learning strategies with pre-defined objectives. For instance, LUMP (Madaan et al.,
2021) proposed a fixed lifelong mixup strategy that integrates current and memory data in a random
ratio sampled from a Beta distribution regardless of the shift in data distributions. This non-adaptive
paradigm is not ideal for UCL, since the optimal update direction of achieving the best performance
on all learned tasks is continuously changing during training. Therefore, a new adaptive paradigm
for UCL to model the process of selecting the optimal update direction is needed.

In this work, we thus devise a new UCL framework termed AUDR that can adaptively rectify the
update direction (see Figure 1), where a policy network (i.e., the Actor) is proposed to select the
best action for current data batch and a value network (i.e., the Critic) is designed for predicting the
action’s latent value. The Actor is trained to maximize the Critic’s prediction reward, and the Critic
is trained to more precisely predict the reward for the Actor’s selected action. Different from the

1

Under review as a conference paper at ICLR 2023

Images

Encoder

Encoder

Current

Memory

(a) Traditional UCL method (LUMP)

UCL Loss

Features

Mixup

Loss

dynamic

strategy

Actor-Critic

for UCL

Revise

(b) AUDR (Ours)

Fixed

mixup strategy

Current

Memory

𝑎

Adaptive

mixup strategy

Actor-Critic

Rectification

 Reward function

 Action space

 Sampling strategy

···Features

Mixed Features

UCL Loss

Mixed Features

Figure 1: Illustration of the traditional UCL method LUMP and our AUDR. Their main difference
lies in that our AUDR adopts an Actor-Critic architecture to rectify the update direction (i.e., adap-
tive mixup strategy) with three core designs while LUMP has a fixed mixup strategy.

short-sighted approaches (e.g., directly using a learnable parameter) that can only adjust the update
direction based on current batch of data/loss, our AUDR predicts the total future rewards which
is more and more precise/reliable during training. This is inspired by the Actor-Critic learning, a
combination of policy-based and value-based methods, in the reinforcement learning field (Sutton
et al., 1999; Haarnoja et al., 2018; Yarats et al., 2020; Mu et al., 2022). Actor-Critic learning enables
the policy network to be updated at each training step (instead of after completing each task) with
sampled transitions (i.e., from one state to next state), and thus it is possible to be transferred to
UCL. However, we still have difficulty in directly deploying existing Actor-Critic methods under
the UCL setting, because: (1) there is no environment (or reward function) that could give feedback
rewards to all input states; (2) the action space for the Actor is not explicitly defined; (3) how to
alleviate the problem of the trade-off between the old and new tasks remains unclear.

To address these problems, our AUDR thus has three core designs: (1) A reward function defining
the ground-truth reward to guide the Critic’s training. It is based on two UCL losses of the next
model (after one-step gradient descent) by respectively using the current and memory data. Thus,
this reward can represent the changes of model performance on old and new tasks with the selected
action, which is then utilized to conduct a continual TD-error loss to train the Critic. (2) An action
space containing different actions (i.e., different update directions) for the Actor to select. To be
more specific, an action with larger value (e.g., 0.99) represents that the memory data accounts for
higher percentage when mixed with current data, and thus the update direction is more oriented
towards improving the model performance on old tasks. (3) A multinomial sampling strategy to
sample the action based on the action probability distributions predicted by the Actor. Concretely,
for each input feature, the Actor outputs a probability distribution where each action is associated
with a probability holding a lower-bound above zero to improve the variance of the Actor’s selected
actions. We then multinomially sample one action per feature and all samples vote for the final
action. This strategy is designed to explore more diverse actions to avoid the model falling into a
local optimal update direction. Note that the Actor-Critic module of our AUDR is only employed
for training and we only use the backbone network for testing as in LUMP (Madaan et al., 2021).

Furthermore, we combine the proposed adaptive paradigm with another representative method
DER (Buzzega et al., 2020) for UCL to verify the extensibility of our AUDR. Specifically, we
use different coefficients of the penalty loss as the new action space to replace the action space men-
tioned above, which is a key factor that affects the update direction in DER. Other settings remain
the same as in our original AUDR. We find that our AUDR+DER outperforms DER for UCL by a
large margin. This demonstrates that our AUDR is highly generalizable/versatile. We believe that
our work could bring some inspirations to the continual learning community.

Our main contributions are four-fold: (1) We are the first to deploy an adaptive learning paradigm for
UCL, i.e., we propose a novel UCL framework AUDR with an Actor-Critic module. (2) We devise
three core designs in our AUDR to ensure that the Actor-Critic architecture is seamlessly transferred
to UCL, including a reward function, an action space, and a multinomial sampling strategy. (3)
Extensive experiments on three benchmarks demonstrate that our AUDR achieves new state-of-the-
art results on UCL. (4) Further analysis on combining our proposed adaptive paradigm with another
UCL method shows that our AUDR is highly generalizable and has great potential in UCL.

2

Under review as a conference paper at ICLR 2023

2 RELATED WORK

Continual Learning. Existing continual learning methods can be mainly categorized into three
groups: (1) Expansion-based methods have dynamic architectures which add extra extended net-
works for in-coming new tasks (Rusu et al., 2016; Fernando et al., 2017; Alet et al., 2018; Chang
et al., 2018; Li et al., 2019). (2) Regularization-based methods deploy either regularization con-
straints (Li & Hoiem, 2017; Aljundi et al., 2017; Hou et al., 2018; Rannen et al., 2017; Hou et al.,
2019) or penalty losses (Kirkpatrick et al., 2017; Zenke et al., 2017; Farajtabar et al., 2020; Saha
et al., 2021) to align the old and new models. (3) Rehearsal-based methods adopt a memory buffer to
restore the memory data of previous tasks (Rebuffi et al., 2017; Lopez-Paz & Ranzato, 2017; Riemer
et al., 2018; Chaudhry et al., 2019; Buzzega et al., 2020; Aljundi et al., 2019; Chaudhry et al., 2020;
Cha et al., 2021). In contrast to these supervised continual learning works, (Rao et al., 2019; Madaan
et al., 2021; Fini et al., 2022; Davari et al., 2022) have started to study the unsupervised continual
learning (UCL) setting in a fixed learning paradigm by combining continual learning methods with
unsupervised methods (Chen et al., 2020; Chen & He, 2021; Zbontar et al., 2021). Our AUDR is
basically a rehearsal-based method for UCL but with an adaptive training paradigm which rectifies
the update direction at each training step. Note that the adaptive paradigm of our AUDR is different
from those methods that utilize a learnable parameter to adjust the update direction or even learn
to prompt (Wang et al., 2022), since our AUDR is long-sighted (predicting future rewards) and the
adaptively rectified action is only used for training (the Actor-Critic module is dropped at the test
phase). We provide more discussions about their differences in Appendix B.

Actor-Critic Learning. Actor-Critic is a widely-used architecture in recent reinforcement learn-
ing (RL) works. (Peters & Schaal, 2008) builds the Actor-Critic algorithm on standard policy
gradient formulation to update the Actor; (Schulman et al., 2017; Mnih et al., 2016; Gruslys
et al., 2017; Haarnoja et al., 2018) choose to maximize or regularize the entropy of the policy;
CURL (Laskin et al., 2020) combines the unsupervised learning with Actor-Critic reinforcement
learning; DrQ (Yarats et al., 2020) designs a data-regularized Q to improve the Actor-Critic method;
CtrlFormer (Mu et al., 2022) proposes a control transformer to tackle the forgetting problem in visual
control. Our AUDR is the first work to apply Actor-Critic learning to the UCL setting. It consists
of a similar Actor-Critic module as in CURL, DrQ, and CtrlFormer, but also has vital differences:
a reward function for UCL to replace the environment of RL, a new action space designed for the
Actor, and a multinomial sampling strategy to ensure the diversity of actions.

3 METHODOLOGY

3.1 UNSUPERVISED CONTINUAL LEARNING

Unsupervised continual learning (UCL) requires the model to be trained on a sequence of tasks
without labeled data. We follow the learning protocol proposed in LUMP (Madaan et al., 2021) to
conduct our study on UCL. Concretely, let D = [D1,D2, · · · ,DN] denotes a dataset with N tasks.
For each task t, it has Dt = {xt,i, yt,i}nt

i=1 with nt samples, where xt,i is the input image and yt,i is
the ground-truth label (which is utilized only during the validation and test phases). For simplicity,
we omit t and only use xi, yi in the following subsections. For each input sample xi, we first
randomly augment it into two views x1

i , x2
i . We then consider fθ with parameters θ as the backbone

(encoder) and employ it to obtain d-dimensional feature representations {fθ(x1
i), fθ(x

2
i)} ∈ Rd.

Formally, based on a widely-used contrastive learning framework SimSiam (Chen & He, 2021), the
main training loss for UCL can be defined as:

LSimSiam(fθ(x
1
i), fθ(x

2
i)) =

1

2
D(MLP(fθ(x1

i)), fθ(x
2
i)) +

1

2
D(MLP(fθ(x2

i)), fθ(x
1
i)), (1)

where D(p, z) = − cos(p, stop_gradient(z)) = − p
∥p∥2

· z
∥z∥2

, and MLP(·) denotes a multi-layer
perception. After training, the model is then evaluated by a K-nearest neighbor (KNN) classifier (Wu
et al., 2018) following the setup in (Chen et al., 2020; Chen & He, 2021; Madaan et al., 2021).

Directly applying the SimSiam-based learning loss mentioned above is difficult to obtain a well-
performed model due to the catastrophic forgetting problem that the model performance on previous
tasks drops significantly during sequential training. To tackle this forgetting problem, rehearsal-
based methods with a memory buffer to store limited previous data are most popular solutions in the

3

Under review as a conference paper at ICLR 2023

𝑄𝑄𝑠𝑠
(𝐿𝐿𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

Current Data

Memory Data
+ Actor

Encoder

Encoder

𝑓𝑓𝜃𝜃𝑠𝑠+1

𝑓𝑓𝜃𝜃s
···

···

⨁

⨁

···

···

Critic

Target Critic

Momentum
Update

𝑄𝑄𝑠𝑠+1

𝑥𝑥 = 𝑎𝑎𝑏𝑏𝑏𝑏𝑠𝑠𝑎𝑎 ⋅ 𝑥𝑥𝑚𝑚𝑏𝑏𝑚𝑚 + (1 − 𝑎𝑎𝑏𝑏𝑏𝑏𝑠𝑠𝑎𝑎) ⋅ 𝑥𝑥𝑎𝑎𝑐𝑐𝑎𝑎

The Best Action 𝑎𝑎𝑏𝑏𝑏𝑏𝑠𝑠𝑎𝑎

Action Score

Action Score

𝐿𝐿𝑐𝑐𝑎𝑎𝑢𝑢

𝑅𝑅𝑔𝑔𝑎𝑎 = 𝐿𝐿𝑎𝑎𝑐𝑐𝑎𝑎 + 𝐿𝐿𝑚𝑚𝑏𝑏𝑚𝑚 𝐿𝐿𝑎𝑎𝑎𝑎𝑐𝑐𝑎𝑎𝑐𝑐𝑎𝑎
Continual TD-error

current data 𝑥𝑥𝑎𝑎𝑐𝑐𝑎𝑎 memory data 𝑥𝑥𝑚𝑚𝑏𝑏𝑚𝑚 𝑄𝑄𝑠𝑠 ,𝑄𝑄𝑠𝑠+1 predicted rewards

Figure 2: Schematic illustration of our AUDR. At each training step s, the Actor selects the best
action abest and the Critic predicts the reward of taking this action. We train the Actor with the
predicted reward Qs. A reward function Rgt with current loss Lcur and memory loss Lmem of the
next-step encoder fθs+1 is proposed to train the Critic (along with the Target Critic).

past few years. For instance, LUMP (Madaan et al., 2021) proposes a life-long mixup strategy to
integrate the memory data with current data as follows:

x̂1
i = λ · x1

m,i + (1− λ) · x1
i , x̂2

i = λ · x2
m,i + (1− λ) · x2

i , (2)

Lmixup =
1

B

B∑
i=1

LSimSiam(fθ(x̂
1
i), fθ(x̂

1
i)), (3)

where B is the mini-batch size, x1
m,i, x

2
m,i denote two augmentations of the memory data xm,i,

and λ ∼ Beta(α, α), α ∈ (0,∞). This strategy is fixed across all tasks and thus it easily leads to
sub-optimal performance. In addition, randomly changing the update direction at each training step
is not intuitive. In our opinion, whether to use more memory data (i.e., larger λ) or more current
data (i.e., smaller λ) should be measured by an appropriate pattern. Therefore, in the following, we
propose to adaptively rectify the update direction by an Actor-Critic architecture.

3.2 ACTION PREDICTION WITH THE ACTOR

We present the schematic illustration of our AUDR in Figure 2. In contrast to randomly sampling
the mixup ratio from a fixed Beta distribution, we utilize a policy network (i.e., the Actor) to predict
the score distribution of all actions. Concretely, we first define an action space A = {aj |j =
1, 2, · · · , Nact} where each action aj denotes different values of λ and Nact denotes the number of
actions. Further, we adopt an Actor πϕ : Rd → RNact to predict and select a best action aibest based
on the representations of the current data xi:

aibest = aargmaxj [softmax(πϕ(fθ(xi)))]j , (4)

where [πϕ(xi)]j denotes the j-th element of πϕ(xi). For a mini-batch with B data samples, we first
predict the best action of each sample by Eq. (4) and then vote for the action that appears the most
frequently as abest. We take the selected best action abest as the learning strategy of the current
training step s to compute the UCL loss:

x̃1
i = abest · x1

m,i + (1− abest) · x1
i , x̃2

i = abest · x2
m,i + (1− abest) · x2

i , (5)

Lucl =
1

B

B∑
i=1

LSimSiam(fθs(x̃
1
i), fθs(x̃

2
i)), (6)

where θs denotes the parameters of the encoder f at the current training step s. Note that the abest
is detached (i.e., without gradient) in Lucl. Therefore, this UCL loss is only used for training the
encoder fθ. In this paper, we follow recent Actor-Critic learning works (Laskin et al., 2020; Yarats
et al., 2020; Mu et al., 2022) to train the Actor for better predicting the actions, whose learning
objective is to maximize the reward predicted by a value network (i.e., the Critic) Qφ : Rd+Nact →

4

Under review as a conference paper at ICLR 2023

R1 . Formally, for each training step s, we define the actor loss as:

Lactor = − 1

B

B∑
i=1

Qs,i = − 1

B

B∑
i=1

Qφ(concat(fθs(xi), πϕ(fθs(xi)))), (7)

where concat(·, ·) is to concatenate the input vectors as shown in Figure 2 and Qs,i denotes the
predicted reward at the current training step s. Training the Actor with Lactor requires the Critic’s
prediction to be precise and reliable. However, there is no existing environment which provides the
ground-truth rewards of input representations. Therefore, we are supposed to design a dedicated
environment (or reward function) for our AUDR.

3.3 REWARD FUNCTION FOR THE CRITIC

The widely-used concept “environment” in recent Actor-Critic learning works (Laskin et al., 2020;
Yarats et al., 2020; Mu et al., 2022) refers to a pre-defined interactive system, which can provide
the ground-truth reward to any input state for the agent. Without the environment, the basis for
measuring the values of actions is missing. Therefore, in our AUDR, we desvise a reward function
Rgt to compensate for the lack of the environment in UCL. Rgt measures the model performance
on both current data (i.e., Lcur) and memory data (i.e., Lmem) after taking the action abest:

Lcur = LSimSiam(fθs+1
(x1

i), fθs+1
(x2

i)), (8)

Lmem = LSimSiam(fθs+1
(x1

m,i), fθs+1
(x2

m,i)), (9)

Rs,i
gt = −(Lcur + Lmem), (10)

where fθs+1
denotes the updated model. Note that the training data is still from the same batch. In

other words, Rs,i
gt evaluates how well the model can perform on the same data after updating. Further,

we maintain a target Critic Qφt to help train the Critic Qφ. It is first proposed by TD3 (Fujimoto
et al., 2018) to stablize the training process and has been adopted in many recent works (Laskin
et al., 2020; Yarats et al., 2020; Mu et al., 2022). Concretely, Qφt

is initialized by Qφ and then
updated by momentum update strategy (i.e., slowly updated by small part of the parameters of Qφ),
which is also known as exponential moving average (EMA) (Holt, 2004):

φt = m · φ+ (1−m) · φt, (11)

where m is the momentum coefficient. Similar to the Critic, the target Critic can predict the reward
of input features and actions. Differently, the Critic predicts the reward Qs,i for encoder fθs while
the target Critic predicts the reward Qs+1,i for encoder fθs+1

:

Qs+1,i = Qφt
(concat(fθs+1

(xi), πϕ(fθs+1
(xi)))). (12)

As directly predicting the whole future reward is difficult, we could measure the difference between
two training steps by temporal difference learning (i.e., TD-error) (Watkins, 1989), which is an
update rule based on Bellman equation (Bellman, 1966). Since we have re-designed the ground-
truth reward for UCL, we thus call the learning objective of the Critic as “continual TD-error”.
Formally, we define the continual TD-error as follows:

Lcritic =
1

B

B∑
i=1

(Qs,i − (Rs,i
gt + γ ·Qs+1,i))

2, (13)

where γ denotes the discounted factor. During training, the predicted reward will be closer to the
ground-truth reward and thus the selected action becomes more reliable.

3.4 RESTRICTIONS ON SAMPLING PROBABILITY

Although we can predict the best action of each training step by our AUDR framework introduced
above, it still can not guarantee that the predictions are completely accurate, nor that taking other
actions will definitely lead to worse performance. In fact, the predicted optimal model updating
direction is possibly not global optimal. Therefore, completely relying on the predictions and ignor-
ing other choices will hinder the model’s exploration of a better update direction. To address this
problem, we propose to sample each action according to the predicted action score (each score has a

5

Under review as a conference paper at ICLR 2023

range through clamping) by multinomial sampling. Formally, for each sample xi and each training
step s, we adjust Eq. (4) and predict the best action as follows:

π̂ϕ(xi) = clamp(softmax(πϕ(fθs(xi))), pmin, pmax), (14)
abest = aMS(softmax(π̂ϕ(xi)),1), (15)

where clamp(·, pmin, pmax) denotes clamping each element of the input vector into the interval
[pmin, pmax], and MS(·, 1) denotes a multinomial sampling strategy that samples one action accord-
ing to the input score π̂ϕ(xi) and returns the subscript of the selected action. To be more specific,
each element of softmax(πϕ(fθs(xi))) represents an action’s score which will be set to pmin if it
is smaller than pmin and will be set to pmax if it is larger than pmax. Overall, we can obtain the
lower-bound sampling probability Plow for each action as follows:

Plow =
exp(pmin)

exp(pmin) + (Nact − 1) · exp(pmax)
, (16)

which means that each action has at least the probability of Plow to be sampled. It is calculated by
assuming the most extreme case, where only one action’s weight (i.e., one element of π̂ϕ(xi)) is
pmin and the others are pmax after clamping.

3.5 FULL ALGORITHM

There are three main modules in our AUDR framework: the encoder, the Actor, and the Critic.
These modules are updated separately at the training phase and promote each other. Concretely,
the encoder is learned by minimizing the SimSiam-based UCL loss with an adaptively adjusted
mixup strategy. The Actor aims to maximize the prediction score of the Critic. The Critic improves
its prediction preciseness through a continual TD-error. For easier and clearer understanding, we
summarize the full training process of our AUDR as follows: (1) The Actor selects the best action
from the action space by Eq. (14) and Eq. (15); (2) The encoder is updated with the selected action
by Eq. (6); (3) The Actor is updated with the predicted reward of the Critic by Eq. (7); (4) The
Critic is updated with the continual TD-error by Eq. (13). Note that the Actor-Critic architecture is
removed at the test phase and only the encoder is evaluated with a KNN classifier as in other UCL
methods. We present the pseudocode of the full algorithm of our AUDR in Appendix A.

Furthermore, it is worth noting that defining the update direction (or the action space) in the mixup
style as we did above is not the only way to construct our AUDR. In fact, this adaptive paradigm
could be integrated into many other UCL works. For instance, DER (Buzzega et al., 2020) is a
representative work of regularization-based methods, which maintains a penalty function to align
the representations of old and new models. Let the weight of the penalty function in the final loss be
the action, we could define a new action space for our AUDR. We conduct experiments and provide
more details in Sec. 4.4 to show that our AUDR+DER obtains great performance improvements over
DER, which demonstrates that our AUDR is indeed extensible and versatile.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We train and evaluate our model on three benchmarks for in-dataset UCL: (1) Split
CIFAR-10 (Krizhevsky, 2009) contains 5 tasks, with 2 classes (randomly sampled from 10 classes)
per task. (2) Split CIFAR-100 (Krizhevsky, 2009) consists of 20 tasks, with 5 classes (randomly
sampled from 100 classes) per task. (3) Split Tiny-ImageNet is a subset of ImageNet (Deng et al.,
2009) which has 20 tasks with 5 classes per task. We also evaluate our models (pre-trained on
Split CIFAR-10 or Split CIFAR-100) on three benchmarks for cross-dataset UCL: MNIST (LeCun,
1998), Fashion-MNIST (FMNIST) (Xiao et al., 2017), and SVHN (Netzer et al., 2011).

Evaluation Protocol. We follow recent works (Mirzadeh et al., 2020; Madaan et al., 2021) to
establish the evaluation protocol of UCL. Formally, let At,i denote the test accuracy of the model
on task i after trained on task t, where the total number of tasks is N . We define two metrics:
(1) Average Accuracy denotes the average classification accuracy of the model on all learned tasks
after sequential training: Accuracy = 1

N

∑N
i=1 AN,i.

6

Under review as a conference paper at ICLR 2023

Table 1: Comparison results with state-of-the-art methods under the in-dataset UCL setting on three
benchmarks: Split CIFAR-10, Split CIFAR-100 and Split Tiny-ImageNet. “Accuracy” denotes aver-
age accuracy and “Forgetting” denotes average forgetting. “Multi-Task” is the upper-bound method
which is based on multi-task learning. Standard deviation results are shown in brackets.

Method Split CIFAR-10 Split CIFAR-100 Split Tiny-ImageNet

Accuracy (↑) Forgetting (↓) Accuracy (↑) Forgetting (↓) Accuracy (↑) Forgetting (↓)

Multi-Task 95.76 (±0.08) – 86.31 (±0.38) – 82.89 (±0.49) –

Finetune 90.11 (±0.12) 5.42 (±0.08) 75.42 (±0.78) 10.19 (±0.37) 71.07 (±0.20) 9.48 (±0.56)

PNN (Rusu et al., 2016) 90.93 (±0.22) – 66.58 (±1.00) – 62.15 (±1.35) –
SI (Zenke et al., 2017) 92.75 (±0.06) 1.81 (±0.21) 80.08 (±1.30) 5.54 (±1.30) 72.34 (±0.42) 8.26 (±0.64)

DER (Buzzega et al., 2020) 91.22 (±0.30) 4.63 (±0.26) 77.27 (±0.30) 9.31 (±0.09) 71.90 (±1.44) 8.36 (±2.06)

LUMP (Madaan et al., 2021) 91.00 (±0.40) 2.92 (±0.53) 82.30 (±1.35) 4.71 (±1.52) 76.66 (±2.39) 3.54 (±1.04)

Ours 93.29 (±0.21) 1.72 (±0.12) 84.04 (±0.11) 3.35 (±0.16) 77.67 (±0.12) 3.48 (±0.11)

Table 2: Comparison results with the state-of-the-art methods under the cross-dataset UCL setting.
All models are pre-trained on Split CIFAR-10 (or Split CIFAR-100), and then directly evaluated on
MNIST, FMNIST, SVHN, and Split CIFAR-100 (or Split CIFAR-10).

Method Split CIFAR-10 Split CIFAR-100

MNIST FMNIST SVHN CIFAR-100 MNIST FMNIST SVHN CIFAR-10

Multi-Task 90.69 (±0.13) 80.65 (±0.42) 47.67 (±0.45) 39.55 (±0.18) 90.35 (±0.24) 81.11 (±1.86) 52.20 (±0.61) 70.19 (±0.15)

Finetune 89.23 (±0.99) 80.05 (±0.34) 49.66 (±0.81) 34.52 (±0.12) 85.99 (±0.86) 76.90 (±0.11) 50.09 (±1.41) 57.15 (± 0.96)

SI (Zenke et al., 2017) 93.72 (±0.58) 82.50 (±0.51) 57.88 (±0.16) 36.21 (±0.69) 91.50 (±1.26) 80.57 (±0.93) 54.07 (±2.73) 60.55 (±2.54)

DER (Buzzega et al., 2020) 88.35 (±0.82) 79.33 (±0.62) 48.83 (±0.55) 30.68 (±0.36) 87.96 (±2.04) 76.21 (±0.63) 47.70 (±0.94) 56.26 (±0.16)

LUMP (Madaan et al., 2021) 91.03 (±0.22) 80.78 (±0.88) 45.18 (±1.57) 31.17 (±1.83) 91.76 (±1.17) 81.61 (±0.45) 50.13 (±0.71) 63.00 (±0.53)

Ours 93.98 (±0.33) 83.78 (±0.13) 55.95 (±1.76) 39.77 (±0.53) 94.34 (±0.34) 83.09 (±0.43) 55.29 (±0.56) 69.33 (±0.62)

(2) Average Forgetting is the average performance decrease of the model on each task between its
maximum accuracy and the final accuracy: Forgetting = 1

N−1

∑N−1
i=1 maxt∈{1,··· ,N}(At,i −AN,i).

Implementation Details. All baseline methods and our AUDR are implemented based on Sim-
Siam (Chen & He, 2021) with ResNet-18 (He et al., 2016) as the backbone encoder. The Actor
and the Critic are both MLP-based structures. Concretely, the Actor has 4 linear layers and the
Critic has a similar architecture with one more 3-layer MLP head which is adopted for clipped dou-
ble Q-learning (Van Hasselt et al., 2016; Fujimoto et al., 2018). We provide more details for the
Actor-Critic architecture in Appendix B. To obtain our main results and make fair comparison to
recent competitors, we follow LUMP (Madaan et al., 2021) to average the evaluation results over
three independent runs with different random seeds. More details are given as follows: (1) At the
training phase, all images are randomly augmented into two views by horizontal-flip, color-jitter,
gaussian-blur, and gray-scale. (2) We train our model for 200 epochs per task (the same for all
baseline methods). (3) The learning rate is set to 0.03 and the memory buffer size is set to 256 (as
in all baseline methods). Our action space has 10 actions which are uniformly sampled from [0, 1]
while the minimum action score pmin is set to 0.08. The source code will be released soon.

4.2 COMPARISON TO STATE-OF-THE-ART METHODS

In-Dataset UCL. Table 1 shows the accuracy and forgetting results of our AUDR under the
in-dataset UCL setting on three datasets: Split CIFAR-10, Split CIFAR-100, and Split Tiny-
ImageNet. We compare our AUDR model with recent representative methods including expansion-
based method PNN (Rusu et al., 2016), regularization-based methods SI (Zenke et al., 2017) and
DER (Buzzega et al., 2020), and rehearsal-based method LUMP (Madaan et al., 2021). Note that
Finetune denotes the lower-bound of UCL, which means directly finetuning the model across all the
tasks without any continual learning strategies. The upper-bound of UCL is Multi-Task, which is to
simultaneously train the model on all tasks and thus it has no forgetting results. All the results for
the baseline methods are directly copied from LUMP (Madaan et al., 2021). It can be clearly seen
that our AUDR achieves new state-of-the-art results on all three datasets. Particularly, our AUDR
outperforms the second-best method LUMP by 1.68% on accuracy and 0.87% on forgetting (com-

7

Under review as a conference paper at ICLR 2023

Table 3: Ablation study results for our AUDR. Three groups of experiments are constructed to show
the impact of different (a) reward functions, (b) action spaces, and (c) samping strategies.

(a) Different reward functions.

Split CIFAR-10

Method Accuracy Forgetting

None 91.00 2.92
Lcur 91.17 2.59
Lmem 89.83 0.55
Lcur+Lmem 93.29 1.72

(b) Different number of actions.

Split CIFAR-10

Method Accuracy Forgetting

Nact = 0 91.00 2.92
Nact = 5 92.92 2.32
Nact = 10 93.29 1.72
Nact = 20 92.62 2.94

(c) Different sampling strategies.

Split CIFAR-10

Method Accuracy Forgetting

random 91.11 3.92
learnable 91.30 3.14
w/o MS 91.94 2.97
w/ MS 93.29 1.72

paring average results on all three datasets). Note that the performance of our AUDR is remarkable
since it is quite close to the upper-bound (e.g., 84.04 vs. 86.31 on Split CIFAR-100).

Cross-Dataset UCL. Table 2 shows the accuracy and forgetting results of our AUDR under the
cross-dataset UCL setting. We first train our model on the training set of Split CIFAR-10 (or Split
CIFAR-100) and then directly evaluate it on MNIST, FMNIST, SVHN, and Split CIFAR-100 (or
Split CIFAR-10). We can observe that: (1) Our AUDR beats the second-best method SI (Zenke
et al., 2017) in 7 out of 8 cases and outperforms it by 2.32% in average, which demonstrates that our
AUDR has stronger generalization ability. (2) The results of multi-task learning (i.e., Multi-Task)
are not the upper-bound under cross-dataset UCL. This suggests that the model’s generalization
ability can be better enhanced by UCL (e.g., AUDR and SI) than by multi-task learning.

4.3 ABLATION STUDIES

There are three core designs in our AUDR to help transfer the Actor-Critic architecture to the UCL
setting: (1) a reward function, (2) an action space, and (3) the multinomial sampling strategy. We
thus separately conduct experiments to analyze the contributions of them in Table 3.

Impact of Different Reward Functions. Table 3a shows the results of our AUDR with different
reward functions. Note that we have defined the original reward function in Eq. (10), which has two
components: Lcur and Lmem. We can observe that the results obtained by AUDR with Lcur+Lmem

are better than those obtained by AUDR with none reward function (i.e., 1st row) or with only one of
Lcur and Lmem (i.e., 2nd and 3rd rows). Therefore, the reward function should balance the model
performance on both old and new tasks for UCL. The reason why the forgetting results of Lmem is
smaller than Lcur + Lmem (0.55 vs. 1.72) lies in the much lower accuracy results of Lmem, which
means that it doesn’t learn the old knowledge well and thus it has little knowledge to forget.

Impact of Different Action Spaces. We present the results of our AUDR with different action
spaces (i.e., different number of actions) in Table 3b. We compare models with Nact ∈ {0, 5, 10, 20}
and find that: (1) Learning to select actions with our AUDR is better than randomly sampling them
from a fixed distribution (i.e., 1st row vs. others). (2) More actions do not always lead to better
performance (i.e., 3rd row vs. 4th row). In our opinion, learning with more actions means having a
more difficult training process for the Actor-Critic module, especially with limited training iterations
(i.e., 200 epochs per task for fair comparison with baseline methods).

Impact of Different Sampling Strategies. Table 3c shows the results of our AUDR with different
sampling strategies. We compare our multinomial sampling (MS) strategy with three other alterna-
tives: random sampling (1st row), a learnable parameter to directly predict the action’s value (2nd
row), and without our MS strategy (3rd row). We have the following observations: (1) The Actor-
Critic module achieves less satisfactory performance without multinomial sampling (MS) strategy
(i.e., 3rd row vs. 4th row), which demonstrates the effectiveness of MS. (2) Models with discrete
action space are easier to be trained than those with continuous action space (i.e., 2nd row vs. 3rd
row). Note that the 2nd row of Table 3c contains the results of our AUDR with a learnable parameter
to represent the action. In other words, it has a continuous action space [0, 1], which can be regarded
as a space with infinite actions. Training the parameter in this way, its value will have little change
between two training steps (e.g., 0.96 and 0.90). However, the optimal actions between these two
steps may have a large margin (e.g., 0.96 and 0.16). This hypothetical situation is possible (and
common) due to the random sampling and the distribution shift in UCL. Therefore, a discrete action
space is more suitable than a continuous action space for our AUDR.

8

Under review as a conference paper at ICLR 2023

1

2

3

4

5

6

88

89

90

91

92

93

Finetune DER AUDR+DER

F
o

rg
et

ti
n

g

A
cc

u
ra

cy

Methods

Accuracy Forgetting

0.05

0.07

0.09

0.11

0.13

0.15

1 2 3 4 5 6 7 8 9 10

P
ro

b
ab

il
it

y

Actions

task1 task5

(a) Probability distributions of different actions. (b) Results for our AUDR+DER on Split CIFAR-10.

+8%

−6.5%

Figure 3: Further analysis for our AUDR. (a) The probability distributions of sampled actions for
two different tasks (task 1 and task 5) on Split CIFAR-10. (b) Accuracy and forgetting results for
our re-designed AUDR with DER (i.e., AUDR+DER) on Split CIFAR-10.

4.4 FURTHER ANALYSIS

Action Distributions of Different Tasks. To validate the effectiveness of the Actor-Critic module
in our AUDR, we draw sampled action distributions of different tasks from Split CIFAR-10. Con-
cretely, we present the results for the first task (task 1) and the last task (task 5) in Figure 3a. Note
that the larger the action serial number is, the closer the action value is to 1 (i.e., the coefficient of
memory data is higher in Eq. (5)). We can observe that: (1) When training on the last task, our
AUDR tends to choose more-higher-value actions than training on the first task (e.g., 8% more ac-
tions of [8, 9, 10] and 6.5% less actions of [1, 2, 3, 4]). This demonstrates that the model needs to
pay more attention to reviewing the old knowledge in the later tasks. (2) Every action on all tasks
has chance to be sampled by our AUDR (more than 0.05 in Figure 3a), which is mainly due to our
multinomial sampling strategy that holds a lower-bound probability for each action.

Re-design AUDR with DER. To demonstrate that our AUDR is extensible in UCL, we change
the mixup strategy to another UCL method DER (Buzzega et al., 2020). Note that DER was first
proposed for SCL and then re-implemented for UCL in (Madaan et al., 2021). Formally, the UCL
loss for DER is defined as follows:

LDER =
1

B

B∑
i=1

(LSimSiam(fθ(x
1
i), fθ(x

2
i)) + α · ∥fθ(xm,i)− Fm,i∥2), (17)

where α is a fixed coefficient and Fm,i denotes the stored features of memory data. The second term
of this formula is a penalty function to align the outputs of new and old models but with a fixed ratio
α. We thus replace α with our predicted action abest to formulate our AUDR+DER:

LAUDR+DER =
1

B

B∑
i=1

(LSimSiam(fθ(x
1
i), fθ(x

2
i)) + abest · ∥fθ(xm,i)− Fm,i∥2). (18)

Figure 3b shows the results for our AUDR+DER on Split CIFAR-10. More results on Split CIFAR-
100 and Split Tiny-ImageNet are also presented in Appendix C. It can be seen that our AUDR+DER
outperforms DER by a large margin on both accuracy and forgetting. Such success of AUDR+DER
demonstrates that our proposed adaptive paradigm (i.e., AUDR) is highly extensible/versatile and
has great potential in the continual learning field.

5 CONCLUSION

In this paper, we propose an Actor-Critic framework with adaptive update direction rectification
(AUDR) for unsupervised continual learning. We devise three novel designs for our AUDR: (1)
A reward function considering the model performance on both current and memory data, which
provides reliable ground-truth reward for training the Critic; (2) An action space with discrete actions
for the Actor to select; (3) A multinomial sampling strategy to ensure the variance of sampled
actions. We conduct extensive experiments on three benchmarks to show that our AUDR achieves
new state-of-the-art results for both in-dataset and cross-dataset UCL. Further analysis on action
distribution and AUDR+DER demonstrate that our AUDR is indeed effective and extensible.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Ferran Alet, Tomás Lozano-Pérez, and Leslie P Kaelbling. Modular meta-learning. In CoRL, pp.
856–868, 2018.

Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars. Expert gate: Lifelong learning with a
network of experts. In CVPR, pp. 3366–3375, 2017.

Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Bengio. Gradient based sample selection
for online continual learning. NeurIPS, 32:11817–11826, 2019.

Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide Abati, and Simone Calderara. Dark
experience for general continual learning: a strong, simple baseline. NeurIPS, 33:15920–15930,
2020.

Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive continual learning. In ICCV, pp.
9516–9525, 2021.

Michael B Chang, Abhishek Gupta, Sergey Levine, and Thomas L Griffiths. Automatically
composing representation transformations as a means for generalization. arXiv preprint
arXiv:1807.04640, 2018.

Arslan Chaudhry, Marcus Rohrbach, Mohamed Elhoseiny, Thalaiyasingam Ajanthan, Puneet K
Dokania, Philip HS Torr, and Marc’Aurelio Ranzato. On tiny episodic memories in continual
learning. arXiv preprint arXiv:1902.10486, 2019.

Arslan Chaudhry, Albert Gordo, Puneet K Dokania, Philip Torr, and David Lopez-Paz. Using hind-
sight to anchor past knowledge in continual learning. arXiv preprint arXiv:2002.08165, 3, 2020.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In ICML, pp. 1597–1607, 2020.

Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In CVPR, pp.
15750–15758, 2021.

Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In CVPR, pp. 113–123, 2019.

MohammadReza Davari, Nader Asadi, Sudhir Mudur, Rahaf Aljundi, and Eugene Belilovsky. Prob-
ing representation forgetting in supervised and unsupervised continual learning. In CVPR, pp.
16712–16721, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, pp. 248–255, 2009.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for contin-
ual learning. In AISTATS, pp. 3762–3773, 2020.

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks. arXiv preprint arXiv:1701.08734, 2017.

Enrico Fini, Victor G Turrisi da Costa, Xavier Alameda-Pineda, Elisa Ricci, Karteek Alahari, and
Julien Mairal. Self-supervised models are continual learners. In CVPR, pp. 9621–9630, 2022.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In ICML, pp. 1587–1596, 2018.

Audrunas Gruslys, Mohammad Gheshlaghi Azar, Marc G Bellemare, and Remi Munos. The reactor:
A sample-efficient actor-critic architecture. arXiv preprint arXiv:1704.04651, 5, 2017.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash
Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and appli-
cations. arXiv preprint arXiv:1812.05905, 2018.

10

Under review as a conference paper at ICLR 2023

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, pp. 770–778, 2016.

Charles C Holt. Forecasting seasonals and trends by exponentially weighted moving averages.
International Journal of Forecasting, 20(1):5–10, 2004.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Lifelong learning via
progressive distillation and retrospection. In ECCV, pp. 437–452, 2018.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
incrementally via rebalancing. In CVPR, pp. 831–839, 2019.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. PNAS, 114(13):3521–3526, 2017.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, University
of Tront, 2009.

Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representa-
tions for reinforcement learning. In ICML, pp. 5639–5650, 2020.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Xilai Li, Yingbo Zhou, Tianfu Wu, Richard Socher, and Caiming Xiong. Learn to grow: A continual
structure learning framework for overcoming catastrophic forgetting. In ICML, pp. 3925–3934,
2019.

Zhizhong Li and Derek Hoiem. Learning without forgetting. TPAMI, 40(12):2935–2947, 2017.

David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual learning.
NeurIPS, 30:6470–6479, 2017.

Dougal Maclaurin, David Duvenaud, and Ryan Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In ICML, pp. 2113–2122, 2015.

Divyam Madaan, Jaehong Yoon, Yuanchun Li, Yunxin Liu, and Sung Ju Hwang. Representational
continuity for unsupervised continual learning. In ICLR, 2021.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Razvan Pascanu, and Hassan Ghasemzadeh. Under-
standing the role of training regimes in continual learning. NeurIPS, 33:7308–7320, 2020.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In ICML, pp. 1928–1937, 2016.

Yao Mu, Shoufa Chen, Mingyu Ding, Jianyu Chen, Runjian Chen, and Ping Luo. Ctrlformer:
Learning transferable state representation for visual control via transformer. arXiv preprint
arXiv:2206.08883, 2022.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Read-
ing digits in natural images with unsupervised feature learning. In NeurIPS Workshop on Deep
Learning and Unsupervised Feature Learning, 2011.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural
Networks, 21(4):682–697, 2008.

Amal Rannen, Rahaf Aljundi, Matthew B Blaschko, and Tinne Tuytelaars. Encoder based lifelong
learning. In ICCV, pp. 1320–1328, 2017.

Dushyant Rao, Francesco Visin, Andrei Rusu, Razvan Pascanu, Yee Whye Teh, and Raia Hadsell.
Continual unsupervised representation learning. NeurIPS, 32:7647–7657, 2019.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In CVPR, pp. 2001–2010, 2017.

11

Under review as a conference paper at ICLR 2023

Matthew Riemer, Ignacio Cases, Robert Ajemian, Miao Liu, Irina Rish, Yuhai Tu, and Gerald
Tesauro. Learning to learn without forgetting by maximizing transfer and minimizing interfer-
ence. arXiv preprint arXiv:1810.11910, 2018.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning.
arXiv preprint arXiv:2103.09762, 2021.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods
for reinforcement learning with function approximation. NeurIPS, 12:1057–1063, 1999.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double Q-
learning. In AAAI, pp. 2094–2100, 2016.

Zifeng Wang, Zizhao Zhang, Chen-Yu Lee, Han Zhang, Ruoxi Sun, Xiaoqi Ren, Guolong Su, Vin-
cent Perot, Jennifer Dy, and Tomas Pfister. Learning to prompt for continual learning. In CVPR,
pp. 139–149, 2022.

Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. PhD thesis, University
of Cambridge, 1989.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In CVPR, pp. 3733–3742, 2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Denis Yarats, Ilya Kostrikov, and Rob Fergus. Image augmentation is all you need: Regularizing
deep reinforcement learning from pixels. In ICLR, 2020.

Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. Mastering visual continuous con-
trol: Improved data-augmented reinforcement learning. arXiv preprint arXiv:2107.09645, 2021.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In ICML, pp. 12310–12320, 2021.

Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic intelligence.
In ICML, pp. 3987–3995, 2017.

12

Under review as a conference paper at ICLR 2023

A FULL ALGORITHM OF AUDR

We provide the pseudocode of the full algorithm for our AUDR in Algorithm 1.

Algorithm 1 Pseudocode of AUDR.

Input: Encoder fθ with parameters θ;
Actor πϕ with parameters ϕ;
Critic Qφ with parameters φ;
Target Critic Qφt

with parameters φt;
An action space A = {aj |j = 1, 2, · · · , Nact} of Nact actions;
A dataset D = [D1,D2, · · · ,DN] of N tasks.

Output: The learned f∗
θ

1: Initialize the Target Critic Qφt
= Qφ;

2: for all task = 1, 2, · · · , N do
3: for all iteration s = 1, 2, · · · ,MaxIteration do
4: Sample a mini-batch with B images {xi}Bi=1;
5: Obtain the best action abest by the Actor with Eqs. (14–15);
6: Obtain UCL loss Lucl with Eqs. (5–6);
7: Update fθ using SGD and obtain fθs , fθs+1

;
8: Obtain the predicted reward Rs,i with Eq. (7);
9: Update the Actor πϕ using SGD;

10: Obtain ground-truth reward Rs,i
gt with Eqs. (8–10);

11: Obtain the target reward Rs+1,i with Eq. (12);
12: Obtain the continual TD-error Lcritic with Eq. (13);
13: Update the Critic Qφ using SGD;
14: Update the target Critic Qφt using EMA with Eq. (11);
15: end for
16: end for
17: return the found best f∗

θ .

B MORE IMPLEMENTATION DETAILS AND DISCUSSIONS

Details of Actor and Critic. The structures of our Actor and Critic networks are the same as in
DrQv2 (Yarats et al., 2021), where the Actor has a 1-layer trunk network (Linear+Layernorm+Tanh)
with one 3-layer MLP head and the Critic has a 1-layer trunk network with two 3-layer MLP heads.
The Critic is trained by clipped double Q-learning (Van Hasselt et al., 2016; Fujimoto et al., 2018) to
alleviate the over-estimation problem, where two MLP heads represent two Q-functions Qφ1

, Qφ2

which separately predict the rewards R1
s,i, R

2
s,i. Then the final predicted reward Rs,i of Eq. (7) is

obtained by: Rs,i = min{R1
s,i, R

2
s,i}.

Discussions on Comparing AUDR with Other Possible Methods. The core idea of our AUDR
is to adaptively rectify the update direction during training. In this work, the instantiated “update
direction” is based on the mixup ratio (of AUDR) or the penalty loss weight (of AUDR+DER),
which is a pre-defined hyper-parameter of the original method (LUMP or DER). In addition to our
AUDR, there are three possible approaches to adjusting the update direction during training:
(1) Directly using a learnable parameter (through a MLP layer) to represent the update directions.
The main drawback of this method lies in the slight change of the action value between two steps,
which has already been discussed in Sec. 4.3.
(2) Finding the best hyper-parameters by meta-learning (Maclaurin et al., 2015) or reinforcement
learning (Cubuk et al., 2019). Different from their objectives of finding the best hyper-parameter
combination by training the models several times (each has a whole training process), our AUDR
is an online method to adaptively rectify the hyper-parameter (i.e., the update direction) and thus
the hyper-parameter is continuously changing during training instead of fixed. Concretely, those
hyper-parameter search methods focus on finding an optimal policy for a neural network to solve
a specific task (i.e., the best hyper-parameter has fixed value once found). When transferring them
to the UCL setting, they would search the action space to find the best (but fixed) ratio. Since each
exploration step requires a whole training process, the computation cost of their schema is enormous

13

Under review as a conference paper at ICLR 2023

1

3

5

7

9

11

72

74

76

78

80

82

Finetune DER AUDR+DER

F
o

rg
et

ti
n

g

A
cc

u
ra

cy

Method

Accuracy Forgetting

1

2

3

4

5

6

88

89

90

91

92

93

Finetune DER AUDR+DER

F
o

rg
et

ti
n

g

A
cc

u
ra

cy

Methods

Accuracy Forgetting

(a) Results for our AUDR+DER on Split CIFAR-10. (a) Results for our AUDR+DER on Split CIFAR-100.

1

3

5

7

9

11

69

70

71

72

73

74

Finetune DER AUDR+DER

F
o

rg
et

ti
n

g

A
cc

u
ra

cy

Method

Accuracy Forgetting

(b) Results for our AUDR+DER on Split Tiny-ImageNet.

Figure 4: Results for our AUDR+DER on the other two datasets.

training iterations

L
o
ss

𝐿𝑎𝑐𝑡𝑜𝑟

L
o
ss

L
o
ss

Split CIFAR-10

Split CIFAR-100

Split Tiny-ImageNet

Figure 5: Visualization of Actor Loss during training.

(e.g., 10 trials will lead to 10 times training complexity). The online schema of our AUDR with the
Actor-Critic architecture is instead only in need of one whole training process to adjust the mixup
ratio at each step, which is significantly more efficient.
(3) Learning task-specific prompts (Wang et al., 2022) to be used in the test phase. Differently, the
extra Actor-Critic module of our AUDR is removed during testing which is more applicable and
resource-saving in real-world application scenarios (e.g., large-scale pre-training).

C MORE EXPERIMENTAL RESULTS

We provide a re-designed version of our AUDR in our main paper and present the experimental
results on Split CIFAR-10 (see Figure 3b). For a more comprehensive study, we provide the results
of our AUDR+DER on Split CIFAR-100 and Split Tiny-ImageNet in Figure 4. We can observe that
our AUDR+DER achieves better performance than the competitors in all cases.

14

Under review as a conference paper at ICLR 2023

Table 4: More results for our AUDR over Split-CIFAR-10. ∗ denotes that our model is trained with
300 epochs per task (otherwise 200 epochs by default).

(a) Different Actor-Critic layers.

Split CIFAR-10

Method Accuracy Forgetting

None 91.00 2.92
2-layer 91.47 3.55
4-layer 93.29 1.72
6-layer 93.69 1.61

(b) Longer epochs for 20 actions.

Split CIFAR-10

Method Accuracy Forgetting

Nact=5 92.92 2.32
Nact=10 93.29 1.72
Nact=20 92.62 2.94
Nact=20∗ 93.60 2.61

(c) Training with BarlowTwins.

Split CIFAR-10

Method Accuracy Forgetting

Finetune 87.72 4.08
DER 88.67 2.41
LUMP 90.31 1.13
AUDR-BT 91.53 1.98

Table 5: Detailed ablation studies. “Max Accuracy” denotes the maximum accuracy on each task
over Spilt-CIFAR-10 during training.

Method Max Accuracy Overall

Task 1 Task 2 Task 3 Task 4 Task5 Accuracy Forgetting

Lmem 92.90 83.10 88.45 92.45 94.50 89.83 0.55
Lcur + Lmem 97.25 91.60 92.81 95.60 96.08 93.29 1.72

D VISUALIZATION OF ACTOR LOSS

To verify the training stability of the Actor-Critic architecture applied in our AUDR, we present
the plot of the training loss of the Actor in Figure 5. It can be seen that minimizing the actor
loss Lactor is generally stable during training and finally converges on all datasets. Note that there
are relatively large fluctuations during training, which is normal since the distribution of data is
constantly changing across sequential tasks.

E FURTHER EVALUATION

Different Actor-Critic Architectures. We present more results for different Actor-Critic architec-
tures in Table 4a. The MLP-based modules of both Actor and Critic are set to have the same number
of layers (0, 2, 4, or 6). We can observe that larger MLP used for Actor/Critic indeed has stronger
learning ability and thus leads to better results.

Training AUDR with More Epochs. As shown in Table 3b of our main paper, when the number of
epochs is limited (e.g., 200 epochs per task), training our AUDR with a larger action space becomes
more difficult and thus suffers from performance degradation. To make further verification, we train
our model with 20 actions for more (i.e., 300) epochs and present the new results in Table 4b. We
find that it leads to better performance, which confirms our assertion.

Training AUDR with Barlow-Twins. To show the generalization ability of our AUDR, we change
the SimSiam loss with another unsupervised learning loss Barlow-Twins (Zbontar et al., 2021), and
then denote our method as AUDR-BT. Experimental results are shown in Table 4c. The results of
the competitors are directly copied from LUMP (Madaan et al., 2021). We can observe that our
AUDR-BT still achieves the best accuracy on Split CIFAR-10.

More Detailed Ablation Study. We provide more detailed results about the ablation study for
training our AUDR with only Lmem in Table 5. It achieves a much lower overall forgetting rate
due to the lower maximum accuracy (i.e., Max Accuracy) on each task. However, it performs
significantly worse than training our AUDR with Lcur + Lmem in terms of overall accuracy.

15

