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Abstract
Logical reasoning of text requires identifying001
critical logical structures in the text and per-002
forming inference over them. Existing methods003
for logical reasoning mainly focus on contex-004
tual semantics of text while struggling to explic-005
itly model the logical inference process. In this006
paper, we not only put forward a logic-driven007
context extension framework but also propose a008
logic-driven data augmentation algorithm. The009
former follows a three-step reasoning paradigm,010
and each step is respectively to extract logical011
expressions as elementary reasoning units, sym-012
bolically infer the implicit expressions follow-013
ing equivalence laws and extend the context to014
validate the options. The latter augments lit-015
erally similar but logically different instances016
and incorporates contrastive learning to better017
capture logical information, especially logical018
negative and conditional relationships. We con-019
duct experiments on two benchmark datasets,020
ReClor and LogiQA. The results show that our021
method achieves state-of-the-art performance022
on both datasets, and even surpasses human023
performance on the ReClor dataset.024

1 Introduction025

Recent years have witnessed a growing interest026

in logical reasoning of text, which learns to un-027

derstand a given text in logical level and perform028

logical inference to deduce implications from as-029

serted ones (McCarthy, 1989; Nilsson, 1991). As a030

significant component of human reading compre-031

hension, it is essential in many application scenar-032

ios, such as negotiation and debate. And several033

datasets have been proposed as benchmarks for this034

task (Williams et al., 2017; Habernal et al., 2017;035

Yu et al., 2020; Liu et al., 2020).036

An example of logical reasoning problems is037

shown in Figure 1, which takes a context descrip-038

tion, a question and four options as the input, and039

aims to identify the option that logically follows the040

context. The main challenge to solve such a prob-041

lem is to uncover the logical propositional structure042

Logical Symbols :
𝜶 : have keyboarding skills 
𝜷 : be able to use a compute
𝜸 : be able to write your essays using 
a word processing program

Extend the Implicit Logical Expressions by Laws: 

Context:  
If you have no keyboarding skills at all, you will not be able to use a 
computer. And if you are not able to use a computer, you will not be 
able to write your essays using a word processing program.
Question：
If above statements are true, which one of the following must be true?
Options：
A. If you are not able to write your essays using a word processing 

program, you have no keyboarding skills.
B. If you are able to write your essays using a word processing 

program, you have at least some keyboarding skills.
C. If you are not able to write your essays using a word processing 

program, you are not able to use a computer.
D. If you have some keyboarding skills, you will be able to write 

your essays using a word processing program.

Logical Expressions :
(¬ 𝜶®¬ 𝜷 )
(¬ 𝜷®¬ 𝜸 )

(¬ 𝜶®¬ 𝜷 )    ⇒ (𝜷® 𝜶 )
(¬ 𝜷®¬ 𝜸 )    ⇒ (𝜸® 𝜷 )
(¬ 𝜶®¬ 𝜷 ) Ù (¬ 𝜷®¬ 𝜸 ) ⇒ (¬ 𝜶®¬ 𝜸 )
(𝜷® 𝜶 ) Ù (𝜸® 𝜷 )   ⇒ (𝜸® 𝜶 )

(¬ 𝜸®¬ 𝜶 )

(𝜸	® 𝜶 )

(𝜶® 𝜸 )

(¬ 𝜸®¬ 𝜷 )

Contrapostion
Contrapostion
Transitive Law
Transitive Law

Figure 1: A logical reasoning example from ReClor
dataset (Yu et al., 2020). To find the answer, it needs to
extract logical symbols, identify logical expressions and
perform logical inference to extend the implicit logical
expressions. The underlined phrases represent logical
symbols. The colored rectangles are corresponding log-
ical expressions of each option.

among the text and perform logical inference over 043

them, which are beyond the capability of contextual 044

pre-trained models (Liu et al., 2019; Yang et al., 045

2019; Lan et al., 2020) without such logical anno- 046

tations. They usually treat logical reasoning as a 047

traditional reading comprehension task and match 048

the given context with candidate answers, without 049

modeling the discrete logical inference process ex- 050

plicitly (Yu et al., 2020). Recently, Huang et al. 051

(2021) utilizes discourse information to unwrap 052

the logical structure and propose a discourse-aware 053

graph network to learn discourse-based contextual 054

embeddings for logical reasoning. However, it is 055

still entangled in enhancing contextual representa- 056
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tion while ignoring explicit logical inference.057

In responding to these issues, we propose a three-058

step paradigm for logical reasoning based on sym-059

bolic logic information. Firstly, we identify the060

elementary components for reasoning from the con-061

text as the logical expressions, like (¬α → ¬β), to062

uncover the logical relationships between logical063

symbols. Then we perform logical inference fol-064

lowing equivalence laws to extend the implicit ones065

from these identified logical expressions. Thirdly,066

candidate options can be validated by comparing067

themselves with all obtained logical expressions.068

We propose a logic-driven context extension069

framework to integrate these three reasoning steps,070

namely logic identification to parse the context071

into logical expressions, logic extension to infer072

implicit logical expressions and logic verbaliza-073

tion for answer prediction. To combine the inter-074

pretability of symbolic inference with anti-noise075

of continuous representation, we follow a neural-076

symbolic paradigm (Besold et al., 2017; Garcez077

et al., 2019) which conducts logic identification078

and extension in a symbolic manner and utilizes079

the pre-trained model as the backbone of logic ver-080

balization. In practice, we verbalize implicit logical081

expressions into natural language and feed them082

as an extended context into a pre-trained model to083

match the answer. Moreover, to encourage the pre-084

trained model to better capture logical information,085

we further propose a logic-driven data augmenta-086

tion algorithm. Specifically, it constructs challeng-087

ing instances with literally similar but logically dif-088

ferent contexts by modifying logical expressions.089

Contrastive learning (Chen et al., 2020) is used090

for encouraging our model to distinguish different091

contexts to better capture negative and conditional092

relationships in logical expressions.093

The experiments are conducted on two challeng-094

ing logical reasoning datasets, ReClor (Yu et al.,095

2020) and LogiQA (Liu et al., 2020). Results show096

that our system achieves state-of-the-art perfor-097

mance on both datasets, and even surpasses human098

performance on ReClor. Further results also show099

the effectiveness of both logic-driven context exten-100

sion framework and data augmentation algorithm,101

and demonstrate the generalizability of our system.102

2 Task and Background103

2.1 Task Definition104

We study the problem of logical reasoning of105

text on a multiple-choice question answering task.106

The task is described as following: given a con- 107

text c, a question q, and four associated options 108

{o1, o2, o3, o4}, we aim to select the most appro- 109

priate option as the answer oa. 110

2.2 Base Model 111

In this paper, we follow the leading methods on the 112

leaderboards to take pre-trained models as our base 113

model, e.g., RoBERTa (Liu et al., 2019). It concate- 114

nates the context, the question and each option as 115

an input and encodes the sequence for calculating 116

its score. Given four options, four concatenated 117

sequences are constructed to calculate four scores, 118

and the one with the highest score is chosen as the 119

answer. Specifically, the concatenated sequence is 120

formulated as [CLS] c [SEP ] q || o [SEP ], where 121

c is the context and q || o is the concatenation 122

of the question and each option. The represen- 123

tations of special token [CLS] in four sequences 124

are fed into a linear layer with a softmax func- 125

tion to get the probability distribution of options as 126

P ({o1, o2, o3, o4}|c, q). The cross entropy loss is 127

calculated as Eq. 1, where oa is the correct option. 128

LA = −
∑

logP (oa|c, q) (1) 129

Although promising results have been reported 130

(Yu et al., 2020), pre-trained models for logical rea- 131

soning directly encode the triplet of context, ques- 132

tion and options, which mainly leverage contex- 133

tual semantics but struggle to model the symbolic 134

inference process explicitly. Thus we propose a 135

framework on top of a pre-trained model to extract 136

logical expressions in the text and symbolically 137

perform logical inference to predict the answer. 138

3 Logic-Driven Context Extension 139

In this section, we present a logic-driven context 140

extension framework for logical reasoning of text, 141

which is illustrated in Figure 2. The framework is 142

divided into three steps as follows. It first identifies 143

the logical symbols and expressions explicitly men- 144

tioned in the context and options (§ 3.1). Then it 145

performs interpretable logical inference over them 146

to extend the logical expressions implicit in the 147

context (§ 3.2). Finally, it verbalizes the extended 148

logical expressions related to each option as an 149

extended context and utilizes it in the pre-trained 150

model to match the answer (§ 3.3). 151

3.1 Logic Identification 152

In order to perform logical reasoning, we first need 153

to identify the elementary reasoning components 154
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Context:
If you have no keyboarding skills at all, you will not 
be able to use a computer. And if you are not able to 
use a computer, you will not be able to write your 
essays using a word processing program.

Options:
A. If you are not able to write your essays using a 

word processing program, you have no 
keyboarding skills. 

B. If you are able to write your essays using a 
word processing program, you have at least 
some keyboarding skills. 

C. If you are not able to write your essays using a 
word processing program, you are not able to 
use a computer. 

D. If you have some keyboarding skills, you will 
be able to write your essays using a word 
processing program.    

symbol α symbol β

symbol γ

Implicit Logical Expressions:
( ¬ α® ¬ β ) ⇒ ( β® α )
( ¬ β® ¬ " ) ⇒ ( "® β )
( ¬ α® ¬ β ) Ù ( ¬ β® ¬ " ) ⇒ ( ¬ α® ¬ " )
( β® α ) Ù ( "® β ) ⇒ ( "® α )

Extended Logical Expressions related 
to each option:
A. ( ¬ α® ¬ " ) ; 
B. ( β® α ) ; ( "® β ) ; ( "® α ) ;
C. ( ¬ α® ¬ " ) ;
D. ( β® α ) ; ( "® β ) ; ( "® α ) ;

Logical Expressions 
in the context:
( ¬ α® ¬ β ) ;
( ¬ β® ¬ " ) ;

Logical Expressions 
in each option:
A. ( ¬ "® ¬ α ) ;
B. ( "® α ) ;
C. ( ¬ "® ¬ β ) ;
D. ( α® " ) ;

Extended contexts of each option:
A. If you do not have keyboarding skills, then 

you will not be able to write your essays …
B. If you are able to use a computer, then you 

will have keyboarding skills. If you are … . If 
you are able to write your essays … , then you 
will have keyboarding skills. 

C. If you do not have keyboarding skills, then 
you will not be able to write your essays …

D. If you are able to use a computer, then you 
will have keyboarding skills. If you are …

Logic Identification Logic Extension

Pre-trained Encoder

[CLS] c [SEP]  q || #! [EXT]  $! [SEP]
……

score ℎ!

Logic Verbalization

Figure 2: The overall architecture of logic-driven context extension framework. c, q, oi and ei are the context,
question, i-th option and the extended context for i-th option, respectively. The texts in green mean that the option
B is matched against its extended context which has the highest score.

as logical expressions to uncover the logical rela-155

tionships between logical symbols. We identify the156

existing logical expressions for each sentence in the157

context and each option. To show the format of the158

logical expression, we introduce some notations:159

(1) {α, β, γ, ...}: the logical symbols, which are160

the basic constituents in the context to consti-161

tute the logical expressions, such as the “have162

keyboarding skills” in Figure 2.163

(2) {¬,→}: the logical connective set. ¬ means164

the negation operation upon a specific logical165

symbol and → acts as a conditional relation-166

ship between two logical symbols.167

(3) {(α → β), ...}: the logical expressions, which168

are composed of logical symbols and connec-169

tives. (α → β) means that α is the condition170

of β.171

To ensure the generalizability of our framework172

without annotated logic forms, we design a fairly173

simple logical identification approach using an off-174

the-shelf constituency parser (Joshi et al., 2018)175

and several common keywords of logical semantics.176

We first employ the constituency parser to extract177

constituents including noun phrases and gerundial178

phrases as basic symbols. The logical symbols in179

each sentence are combined by logical connectives180

to constitute logical expressions as follow-up. If181

any negative word (e.g., “not”, “unable”) is in or182

immediately before a logical symbol α, we add the183

negation connective ¬ before α as a new symbol184

¬ α. Then if there is a conditional relationship185

between two symbols α and β in a sentence, we186

construct the corresponding logical expression as187

(α → β). We simply recognize the conditional188

relationship between α and β as (α → β) accord- 189

ing to conditional indicators (e.g., “if α, then β”, 190

“β since α”) and whether an active voice occurs 191

between α and β. The detailed negative and condi- 192

tional keywords are listed in Appendix A with the 193

whole identification procedure summarized as an 194

algorithm. As shown in Figure 2, given the context 195

with two sentences, we can extract three logical 196

symbols {α, β, γ} and identify two existing logical 197

expressions as (¬α → ¬β) and (¬β → ¬γ). 198

3.2 Logic Extension 199

In addition to the logical expressions explicitly 200

mentioned in the context, there are still some other 201

implicit ones that we need to logically infer and ex- 202

tend. We combine the identified logical expressions 203

existing in all sentences of the context as a logi- 204

cal expression set S , and perform logical inference 205

over them to further extend the implicit expressions 206

according to logical equivalence laws. Here we fol- 207

low two most applicable logical equivalence laws 208

involving implication and negation in propositional 209

logic, including contraposition (Russel et al., 2013) 210

and transitive law (Zhao et al., 1997): 211

Contraposition : 212

(α → β) =⇒ (¬β → ¬α) (2) 213

Transitive Law : 214

(α → β) ∧ (β → γ) =⇒ (α → γ) (3) 215

Then the extended implicit logical expressions 216

form an extension set of the current logical expres- 217

sion set S as SE . As in Figure 2, the set of existing 218

logical expressions is S = {(¬α → ¬β), (¬β → 219

¬γ)} and the logic extension set is SE = {(β → 220

α), (γ → β), (¬α → ¬γ), (γ → α)}. 221
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3.3 Logic Verbalization222

After inferring the extended logical expression set223

SE , we verbalize them into natural language for bet-224

ter utilization of the pre-trained model considering225

that symbolic logic is more difficult to be encoded.226

We first select the related expressions from SE for227

each option. A logical expression is regarded as re-228

lated to an option if it has the same logical symbols229

with the option judged by the text overlapping and230

whether a negation connective exists. For example,231

(¬α → ¬γ) in Figure 2 is related to option C be-232

cause they both contain ¬γ. Then we transform all233

logical expressions related to the option at symbolic234

space into natural language by filling them into a235

template and concatenate them into a sentence. We236

take such a sentence as an extended context for this237

option. For simplicity, we only adopt the If-Then238

statements as the verbalization template, which is239

one of the most common patterns of logical rea-240

soning, but we make some adjustments according241

to the tense and singular/plural. Specifically, the242

template is designed as shown in Table 1.

Logic (¬α → ¬γ)
Template If do not α, then will not γ.
Extended
context

If you do not have keyboarding
skills, then you will not be able to
write your essays using a word pro-
cessing program.

Table 1: An example of verbalizing a logical expression
into text.

243
We feed extended contexts into the pre-trained244

model to match the options and predict the answer.245

We take an extended context as the sentence e, and246

introduce a special token [EXT ] to represent con-247

text extension. Then we reformulate the input se-248

quence as [CLS] c [SEP ] q || o [EXT ] e [SEP ]249

for encoding and feed the [CLS] representation250

into a classification layer to get each option’s score251

and find the most appropriate answer.252

4 Logic-Driven Data Augmentation253

In order to make the pre-trained model put more fo-254

cus on logical information in the context, especially255

logical negative and conditional relationships, we256

further introduce a logic-driven data augmenta-257

tion algorithm. Inspired by SimCLR (Chen et al.,258

2020), we augment challenging instances with lit-259

erally similar but logically different contexts built260

by modifying logical expressions. It then adopts261

contrastive learning and encourages our model to 262

distinguish logically correct context supporting the 263

answer. We first introduce the background of Sim- 264

CLR and then describe our logic-driven contrastive 265

learning. 266

SimCLR As a paradigm of self-supervised repre- 267

sentation learning by comparing different samples, 268

contrastive learning (Wu et al., 2018; He et al., 269

2020a) aims to make the representations of similar 270

samples be mapped close together, while that of 271

dissimilar samples be further away in the encoding 272

space. The goal can be described as following. 273

s(f(x), f(x+)) ≫ s(f(x), f(x−)) (4) 274

x+ is a positive sample similar to the data point x 275

while x− is a negative sample dissimilar to x. f(·) 276

is an encoder to learn a representation and the s(·) 277

is a similarity function of two representations. Over 278

this, SimCLR (Chen et al., 2020) builds a classifier 279

to distinguish positive from negative samples and 280

learns to capture what makes two samples different. 281

Logic-Driven Contrastive Learning In our 282

question answering setting, we alter the score func- 283

tion from measuring the similarity between two 284

representations towards calculating the score that 285

the question can be solved by the correct answer 286

under a given context: 287

s
′
(c+, q, oa) ≫ s

′
(c−, q, oa) (5) 288

where (c+, q, oa) and (c−, q, oa) are the positive 289

and negative sample, c+ and c− are the positive 290

and negative context, respectively, and s
′

is the 291

score function. The contrastive loss can be formu- 292

lated as a classification loss for predicting the most 293

plausible context that supports the answer: 294

LC = −
∑

log
exp(s

′
(+))

exp(s′(+)) + exp(s′(−))
(6) 295

where s
′
(+) and s

′
(−) are short for s

′
(c+, q, oa) 296

and s
′
(c−, q, oa) respectively. 297

Aware of symbolic logical expressions, we can 298

construct logical negative samples including neg- 299

ative contexts that are literally similar but logical 300

dissimilar to the positive one. We take the original 301

context to construct the positive sample. Then we 302

generate a negative sample by modifying the exist- 303

ing logical expressions in the context and verbaliz- 304

ing the modified logical expressions into a negative 305

context as § 3.3. During the modification opera- 306

tions, we randomly choose a logical expression and 307
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randomly delete, reverse or negate such an expres-308

sion. The delete, reverse or negate operations are309

respectively to delete a logical expression in the310

context, reverse the conditional order of a logical311

expression and negate a logical symbol in a logical312

expression. The constructing procedure of a logi-313

cal negative sample is illustrated in Figure 3. Then314

the model can be trained to better capture logical315

information, especially negative and conditional316

relationships in logical expressions.

(!"#$%&$, '(%)$*"#,	-#).%/)

(0 → 2), (2 → 3), …

Logic Identification 

Randomly delete, reverse or negate 
a logical expression

(!"#$%&$!, '(%)$*"#, -#).%/)

delete (2 → 3), …
reverse (2 → 0), (2 → 3), …

negate (0 → ¬2), (2 → 3), …
(¬0 → 2), (2 → 3), …

Logic Verbalization

Figure 3: Procedure to construct a logical negative
sample.

317
In the logic-driven data augmentation algorithm,318

our framework is trained with a combined loss as319

L = LA + LC . And the classification of positive320

and negative context for the correct answer is also321

implemented in the logic-driven context extension322

framework.323

5 Experiments324

5.1 Experimental Dataset325

Our experiments are conducted on two challenging326

datasets ReClor (Yu et al., 2020) and LogiQA (Liu327

et al., 2020) that cover diverse and complicated328

logical reasoning skills, to investigate the general329

effectiveness of our system. ReClor is built upon330

standardized exams including GMAT and LSAT.331

As there are some biased instances that can be332

solved without knowing contexts and questions,333

ReClor splits the unbiased instances from the test334

data as the HARD set to fully assess the logical335

reasoning ability. The other biased ones are taken336

as the EASY set. LogiQA comes from the Na-337

tional Civil Servants Examination of China and is338

professionally translated into an English version.339

ReClor consists of 6, 138 questions and is di-340

vided into training, validation and test sets with341

4, 638, 500 and 1, 000 data points. The test set is342

further split into EASY set and HARD set with343

440 and 560 data points. LogiQA contains 8, 678 344

questions and is split into 7, 376/651/651 samples 345

for training, validation and testing. Each question 346

is collected with a context and four answer options, 347

in which only one is correct. The implementation 348

details of experiments are given in Appendix B. 349

5.2 Overall Performance 350

We compare our systems with several baseline mod- 351

els and human performance. 352

Baseline Models The compared baseline pre- 353

trained models include BERT (Devlin et al., 2019), 354

RoBERTa (Liu et al., 2019), ALBERT (Lan et al., 355

2020) and DeBERTa (He et al., 2020b). We 356

also compare our model with DAGN (Huang 357

et al., 2021), an available state-of-the-art method 358

on the leaderboard which proposes a discourse- 359

aware graph network for logical reasoning taking 360

RoBERTa-large as the backbone. 361

Our Systems LReasonerRoBERTa is our proposed 362

logic-driven reasoner taking RoBERTa as the 363

backbone model, which utilizes both logic-driven 364

context extension framework and data augmen- 365

tation algorithm. We also build our LReasoner 366

on top of two more powerful pre-trained mod- 367

els ALBERT and DeBERTa as LReasonerALBERT 368

and LReasonerDeBERTa, respectively. Besides, 369

LReasonerEnsemble is an ensemble of DeBERTa, 370

LReasonerALBERT and LReasonerDeBERTa. 371

Human Performance Yu et al. (2020) and Liu et al. 372

(2020) report human performance as the average 373

scores of graduate or post-graduate students over 374

randomly chosen test samples. 375

The evaluation results are shown in Table 2. We 376

have several findings: 377

- Our systems outperform all baseline models 378

on both datasets by a considerable margin. 379

LReasonerEnsemble even surpasses the human per- 380

formance on both EASY and HARD sets of 381

ReClor. This indicates the effectiveness of our 382

method for logical reasoning. 383

- Compared to the corresponding baseline mod- 384

els including RoBERTa, ALBERT and DeBERTa, 385

our LReasonerRoBERTa, LReasonerALBERT and 386

LReasonerDeBERTa consistently perform better. It 387

demonstrates that our method is robust to be ef- 388

fective for logical reasoning based on different 389

pre-trained models, even the most recent state-of- 390

the-art ones. 391

- Our models generate large improvement on both 392

HARD and EASY sets of ReClor compared with 393
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Model
ReClor LogiQA

Val Test EASY HARD Val Test

BERT (Devlin et al., 2019)∗ 53.8 49.8 72.0 32.3 33.8 32.1
RoBERTa (Liu et al., 2019)∗ 62.6 55.6 75.5 40.0 35.9 35.3
ALBERT (Lan et al., 2020) 70.2 66.5 76.6 58.6 38.9 37.6
DeBERTa (He et al., 2020b) 74.4 68.9 83.4 57.5 44.4 41.5
DAGN (Huang et al., 2021) 65.8 58.3 75.9 44.5 36.9 39.3

LReasonerRoBERTa 66.2 62.4 81.4 47.5 38.1 40.6
LReasonerALBERT 73.2 70.7 81.1 62.5 41.6 41.2
LReasonerDeBERTa 74.6 71.8 83.4 62.7 45.8 43.3

LReasonerEnsemble 78.0 76.1 87.0 67.5 45.8 45.0

Human Performance∗ - 63.0 57.1 67.2 - 86.0

Table 2: Experimental results (accuracy %) of different models on ReClor and LogiQA. The results in bold are the
best performance of each column except for LReasonerEnsemble and Human Performance. ∗ indicates that the results
of ReClor and LogicQA are taken from (Yu et al., 2020) and (Liu et al., 2020).

baseline models. This observation verifies that394

our model is capable of improving logical rea-395

soning ability on both biased and unbiased data.396

5.3 Further Analysis397

Ablation Study To dive into the effectiveness of398

different components in our logic-driven reasoner,399

we conduct an ablation study which takes RoBERTa400

as our backbone model on ReClor validation and401

test sets. As shown in Table 3, RoBERTa+CE and402

RoBERTa+DA both outperform the baseline model403

RoBERTa and perform worse than our final system404

RoBERTa+CE+DA. It indicates that both logic-405

driven context extension framework and data aug-406

mentation algorithm can boost the performance of407

question answering involving logical reasoning.

Model Val Test EASY HARD

RoBERTa 62.6 55.6 75.5 40.0
+ CE 65.2 58.3 78.6 42.3
+ DA 65.8 61.0 80.9 45.4
+ CE + DA 66.2 62.4 81.4 47.5

Table 3: Ablation study of our system. CE
and DA are respectively our logic-driven context
extension framework and data augmentation algorithm.
RoBERTa+CE+DA is our proposed LReasonerRoBERTa.

408

Comparison of Negative Sample Construction409

Strategies To further analyze the effectiveness410

of our logical negative samples in logic-driven con-411

trastive learning, we compare several different neg-412

ative sample construction strategies in contrastive413

learning on top of RoBERTa for ReClor.414

From Table 4, we can find that all models with415

contrastive learning outperform the model without416

Model Test EASY HARD

RoBERTa (w/o CLR) 55.6 75.5 40.0
RoBERTa (w/ CLR-RS) 58.2 79.3 41.6
RoBERTa (w/ CLR-RD) 58.9 78.9 43.2
RoBERTa (w/ CLR-L) 61.0 80.9 45.4

Table 4: Comparison of different negative sample con-
struction approaches. CLR represents contrastive learn-
ing. RS means randomly selecting a context from in-
batch data while RD means randomly deleting a sen-
tence from the original context. L denotes our logical
negative sample construction method in logic-driven
contrastive learning.

it, which demonstrates that contrastive learning can 417

help to better predict the answer. Our logic-driven 418

contrastive learning RoBERTa(w/ CLR-L) performs 419

best. It reveals that logical negative samples are 420

more effective than negative samples constructed 421

by other methods which make the model better 422

capture the logical negative and conditional rela- 423

tionships in the context for logical reasoning. 424

Evaluation of Logic Identification To evaluate 425

the performance of our symbolic logic identifica- 426

tion method, we randomly sample 50 instances 427

from the validation set and manually annotate the 428

logical symbols and expressions as labels. We re- 429

port the recall of logical symbol and logical ex- 430

pression identification as 65.9% and 48.9%, respec- 431

tively. We can see that our generic logic parsing 432

method which operates in an unsupervised manner 433

achieves relatively reliable performance. Unsuper- 434

vised and generic logic parsing is an essential future 435

direction that is expected to be further studied to 436

enhance the performance of the overall system. 437
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Context : Everyone sitting in the clubhouse of the golf course today at ten o' clock had just registered for a beginner' s golf lesson. Gerald, 
Robert, and Shirley were sitting in the clubhouse this morning at ten o' clock. No accomplished golfer would register for a beginner' s golf 
lesson.
Question : If the statements above are true, which one of the following must also be true on the basis of them?
Options :  (Answer : C)
A. Gerald, Robert, and Shirley were the only people who registered for a beginner‘s golf lesson this morning. ( 𝛾® Others ) 
B. None of the people sitting in the clubhouse this morning at ten o' clock had ever played golf. ( α® ¬ Others ) 
C. Neither Gerald nor Shirley is an accomplished golfer. ( 𝛾®¬ 𝜂 ) 
D. Everyone sitting in the clubhouse this morning at ten o' clock registered only for a beginner's golf lesson. ( α® Others ) 
Logical Symbols &
Expressions

α : sitting in the clubhouse of the golf course today at ten o‘ clock;      β :  registered for a beginner‘ s golf lesson ;          
𝛾 : Gerald, Robert, and Shirley; 𝜂: accomplished golfer ; 
α® β ; 𝛾® α ; 𝜂® ¬ β ;

Extending the 
Implicit Logical 
Expressions

( α® β ) ⇒ (¬ β® ¬ α ) ;  ( 𝛾® α )  ⇒ (¬ α® ¬ 𝛾 ) ;   ( 𝜂®¬ β ) ⇒ ( β®¬ 𝜂 ) ;
( α® β ) Ù ( 𝛾® α ) ⇒ ( 𝛾® β ) ;            (¬ β®¬ α ) Ù (¬ α®¬ 𝛾 ) ⇒ (¬ β®¬ 𝛾 ) ;
( α® β ) Ù ( β®¬ 𝜂 ) ⇒ ( α®¬ 𝜂 ) ;    ( 𝜂® ¬ β ) Ù (¬ β® ¬ α ) ⇒ ( 𝜂® ¬ α ) ;
( 𝛾® β ) Ù ( β® ¬ 𝜂 ) ⇒ ( 𝛾® ¬ 𝜂 ) ;     ( 𝜂® ¬ α ) Ù (¬ α® ¬ 𝛾 ) ⇒ ( 𝜂® ¬ 𝛾 ) ;

Implicit Logical 
Expressions related 
to each option

A. ( 𝛾® β ) ; ( 𝛾® ¬ 𝜂 ) ; B. ( α® ¬ 𝜂 ) ;
C. ( 𝛾® β ) ; ( 𝛾®¬ 𝜂 ) ;                          D. ( α® ¬ 𝜂 ) ;

Figure 4: A ReClor case of the reasoning process of LReasonerALBERT. Phrases underlined denote other symbols
(called Others) different from the logical symbols in context and bold tokens make them different.

Case Study A ReClor case is presented in Fig-438

ure 4 to show the reasoning process of our system.439

At first, the logical symbols are correctly extracted440

from the context and the logical expressions are441

identified based on them considering logical nega-442

tive and conditional relationships. Then we extend443

the logical expressions by inferring implicit ones444

in the context. For each option, we recognize its445

logical expression and find the related extended ex-446

pressions. We verbalize them into the text to feed447

into the pre-trained model as an extended context448

to compute a matching score. Finally, we take op-449

tion C which exactly matches an extended implicit450

logical expression as the most plausible answer.451

Detailed Analysis of Different Reasoning Types452

As ReClor integrates various types of logical rea-453

soning skills, we can detailedly investigate the per-454

formance of our system LReasonerALBERT on dif-455

ferent logical reasoning types compared to the base-456

line model ALBERT. We analyze the improvements457

brought by our system, and point out challenges to458

shed a light on future directions.459

As shown in Table 5, our model is generally ef-460

fective on most reasoning types compared to the461

baseline model, especially Implication, Most462

Strongly Supported. These questions em-463

phasize the ability of inference over logical units.464

Specifically, Implication needs to infer the465

conclusion that logically follows a set of premises466

while Most Strongly Supported aims to467

find the statement that is most strongly supported468

by a stimulus. This observation verifies the effec-469

tiveness of our system to model logical deduction.470

Reasoning Type Base Ours

Necessary Assumptions (11.0%) 73.7 76.3 (↑)
Sufficient Assumptions (3.6%) 70.0 70.0 (−)
Strengthen (9.0%) 69.1 70.2 (↑)
Weaken (10.6%) 64.6 59.3 (↓)
Evaluation (1.6%) 69.2 69.2 (−)
Implication (6.2%) 43.8 54.3 (↑)
Conclusion/Main Point (3.1%) 80.6 77.8 (↓)
Most Strongly Supported (6.7%) 58.9 71.4 (↑)
Explain or Resolve (8.0%) 60.7 67.9 (↑)
Principle (5.7%) 72.3 76.9 (↑)
Dispute (2.5%) 63.3 80.0 (↑)
Technique (3.8%) 75.0 80.6 (↑)
Role (3.7%) 78.1 68.8 (↓)
Identify a Flaw (11.3%) 65.0 71.8 (↑)
Match Flaws (4.9%) 61.3 61.3 (−)
Match the Structure (2.7%) 56.7 86.7 (↑)
Others (5.5%) 68.5 72.6 (↑)

Table 5: Results of different reasoning types. Numbers
in parentheses are percentages of different types. Base
is the ALBERT while Ours means our LReasonerALBERT.
↑, ↓ and − respectively mean that our performance is
better, worse than and equal to the baseline ALBERT.

Besides, Implication is precisely the reason- 471

ing ability investigated by NLI tasks, which reveals 472

that our model would also be effective in NLI. 473

However, there still exists some reasoning types 474

that are challenging for our system, such as Match 475

flaws and Weaken. Weaken aims to find the 476

opposite statement that weakens the argument. 477

Match flaws is even more challenging as it re- 478

quires analyzing the flaw that conflicts with the 479

complete logical chain in the context, and finding 480

an option exhibiting the same flaw. Therefore, how 481

to model the different degrees of a logical state- 482
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ment, and abstract the complete logical chain for483

flaw identification, are interesting future directions.484

5.4 Generalizability Discussion485

Our logic-driven reasoner not only embodies its486

superiority in ReClor and LogiQA, but also can be487

generalized to other datasets and task formats. To488

demonstrate this, we evaluate our framework on489

a widely studied extractive QA task SQuAD (Ra-490

jpurkar et al., 2016), which covers diverse skills491

instead of just explicit logical reasoning, such as492

reasoning of lexical variation, commonsense and493

causal relations (Sugawara and Aizawa, 2016).494

As shown in Table 6, our framework is effective495

on SQuAD compared to both RoBERTa-base and496

RoBERTa-large, which manifests the generalizabil-497

ity of our logic-driven reasoner.

Model EM F1

RoBERTa-base∗ 83.0 90.4
LReasonerRoBERTa-base 85.6 91.7

RoBERTa-large∗ 88.9 94.6
LReasonerRoBERTa-large 89.3 94.8

Table 6: Dev. set results of our framework compared to
RoBERTa (both base and large models) on SQuAD. ∗

denotes the results come from (Liu et al., 2019).

498

6 Related Work499

In recent years, there has been a surge in NLP500

research towards complex reasoning, such as rea-501

soning for commonsense knowledge (Huang et al.,502

2019), numerical calculation (Dua et al., 2019) or503

multi-hop aggregation (Yang et al., 2018). Com-504

pare to these widely studied reasoning tasks, logi-505

cal reasoning is also an essential and challenging506

capability but is relatively unexplored. Natural Lan-507

guage Inference (NLI) (Dagan et al., 2005; Bow-508

man et al., 2015; Williams et al., 2018; Khot et al.,509

2018) is a typical task requiring logical reason-510

ing, which aims to determine whether a hypothesis511

can be reasonably entailed from a premise. How-512

ever, these NLI datasets mainly handle the task at513

sentence-level and are limited to only a few logical514

reasoning types, such as entailment, contradiction,515

and neutral. To promote a deeper passage-level516

logical reasoning ability, several QA datasets have517

been proposed. LogiQA (Liu et al., 2020) is col-518

lected from the National Civil Servants Examina-519

tion of China covering 5 logical reasoning types.520

Yu et al. (2020) propose ReClor dataset from the521

GMAT and LSAT tests which examines 17 types 522

of logical reasoning. In this paper, we take both 523

ReClor and LogiQA as the testbed to investigate 524

diverse and complicated logical reasoning skills. 525

Pre-trained language models (Devlin et al., 2019; 526

Liu et al., 2019; Yang et al., 2019; Lan et al., 2020) 527

have been widely adopted for various reasoning 528

tasks and achieve promising performance. How- 529

ever, they directly encode the given texts to predict 530

the output while failing to identify the symbolic 531

logical structure and perform explicit logical infer- 532

ence for logical reasoning of text. Semantic parsers 533

(Reddy et al., 2016; Singh et al., 2020) are usually 534

employed for converting texts to logical forms, and 535

graph neural networks (Fang et al., 2019; Huang 536

et al., 2021) and neural module networks (Gupta 537

et al., 2019) also have been attempted to partly 538

imitate the human reasoning process. But these 539

neural methods may not be easily generalized to 540

our desired propositional logical schema without 541

annotations and still perform an implicit inference. 542

To circumvent these limitations and utilize the su- 543

perior performance of neural models, we take inspi- 544

ration from neuro-symbolic reasoning (Wang et al., 545

2018; Arabshahi et al., 2020) to integrate symbolic 546

inference and neural representation. We design an 547

explicit three-step logical reasoning paradigm and 548

propose a logic-driven reasoning system to generi- 549

cally identify the logical structure and perform in- 550

terpretable logical inference in a symbolic module 551

while taking a pre-trained model as the backbone. 552

7 Conclusion and Future Work 553

In this paper, we focus on the task of logical reason- 554

ing of text. Following a three-step logical reasoning 555

paradigm, we first propose a neuro-symbolic logic- 556

driven context extension framework. It identifies 557

logical expressions as elementary units of logical 558

inference and symbolically deduces the implicitly 559

mentioned expressions, and verbalizes them as an 560

extended context into a pre-trained model to match 561

the answer. We also introduce a logic-driven data 562

augmentation algorithm, which augments literally 563

similar but logically different instances and em- 564

ploys contrastive learning to help our model better 565

capture logical information. Experimental results 566

confirm the general effectiveness of our LReasoner, 567

and it even surpasses human performance on the 568

ReClor dataset. In the future, we will explore to 569

model different logical reasoning types and directly 570

incorporate symbolic logic into the model structure. 571
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A Details of Logic Identification 754

We design a generic logic identification approach 755

that uses an off-the-shelf constituency parser and 756

most common keywords of logical semantics (to- 757

tally no more than 20). We employ the constituency 758

parser to extract constituents as basic symbols. We 759

regard literally similar constituents with an overlap 760

rate over 60% as the same symbol if they also have 761

consistent degree modifiers, such as “only”, “most”, 762

“least”, etc. 763

We define a set of negative words for identifying 764

logical negation, including {“not”, “n’t”, “unable”, 765

“no”, “few”, “little”, “neither”, “none of ”}. And 766

the full set of conditional indicators for recognizing 767

the logical conditional relationship between α and 768

β as (α → β) is {“if α, then β”, “α in order for 769

β”, “α thus β”, “β due to α”, “β owing to α”, 770

“β since α”, “¬β unless α”}. The detailed parsing 771

procedure is illustrated in Algorithm 1. 772

B Implementation Details 773

We take RoBERTa-large (Liu et al., 2019), 774

ALBERT-xxlarge-v2 (Lan et al., 2020) and 775

DeBERTa-xlarge (He et al., 2020b) as our back- 776

bones and implement them using Huggingface 777

(Wolf et al., 2019). We use a batch size of 8 and 778

fine-tune for 10 epochs. The AdamW (Loshchilov 779

and Hutter, 2017) with β1 = 0.9 and β2 = 0.98 is 780

taken as the optimizer and the learning rate is 1e-5. 781

We use a linear learning rate scheduler with 10% 782

warmup proportion. We automatically evaluate our 783

model on validation set to choose parameters that 784

achieve the highest accuracy. We select at most 785
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Algorithm 1 Logic Identification Algorithm
Input: A sentence in the context or an option t to
be parsed, a set of logical negative keywords N
and a set of logical conditional indicators C.
Output: A logical expressions set S parsed from
the input t.

1: Initializing S := {}
2: Extracting constituents from the input t.
3: Recognizing literally similar constituents as

the same symbol and obtain all logical symbols
as {α, β, ...}.

4: for symbol a in {α, β, ...} do
5: if ∃ ni ∈ N is in or immediately before the

logical symbol a then
6: Adding the negation connective ¬ before

a as ¬a.
7: Replacing the original symbol with the

negative one as a := ¬a.
8: end if
9: end for

10: for symbol a in {α, β, ...} do
11: for symbol b in {α, β, ...} do
12: if a ̸= b and ( ∃ ci ∈ C is between two

logical symbols a and b or an active voice
occurs between a and b ) then

13: Obtaining a logical expression a → b.
14: Appending a → b to the logical expres-

sion set S.
15: end if
16: end for
17: end for
18: return The logical expressions set S.

two extended logical expressions related to each786

option to construct the extended context for ReClor787

and select at most three for LogiQA. We train our788

proposed systems and other comparison models on789

two NVIDIA Tesla V100 GPUs. 1790

1All our codes are submitted as supplementary material
and will be released.
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