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ABSTRACT

This work presents a new dynamic and fully-connected layer (DFC) that general-
izes existing layers and is free from hard inductive biases. Then, it describes how
to factorize the DFC weights efficiently. Using the Einstein notation’s convention
as framework, we define the DFC as a fully connected layer with the weight ten-
sor created as a function of the input. DFC is the non-linear extension of the most
general case of linear layer for neural network, and therefore all major neural net-
work layers, from convolution to self-attention, are particular cases of DFCs. A
stack of DFCs interleaved by non-linearities defines a new super-class of neural
networks: Formers. DFC has four major characteristics: i) it is dynamic, ii) it is
spatially adaptive, iii) it has a global receptive field, and iv) it mixes all the avail-
able channels’ information. In their complete form, DFCs are powerful layers
free from hard inductive biases, but their use is limited in practice by their pro-
hibitive computational cost. To overcome this limitation and deploy DFC in real
computer vision applications, we propose to use the CP Decomposition, show-
ing that it is possible to factorize the DFC layer into smaller, manageable blocks
without losing any representational power. Finally, we propose ChoP’D Former,
an architecture making use of a new decomposition of the DFC layer into five
sequential operations, each incorporating one characteristic of the original DFC
tensor. Chop’D Former leverages dynamic gating and integral image, achieves
global spatial reasoning with constant time complexity, and has a receptive field
that can adapt depending on the task. Extensive experiments demonstrate that our
ChoP’D Former is competitive with state-of-the-art results on three well-known
CV benchmarks, namely Large-Scale Classification, Object Detection, and In-
stance Segmentation, suppressing the need for expensive architecture search and
hyperparameter optimization.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) have served as the undiscussed cornerstone of Computer
Vision (CV) for the past decade thanks to convolutions, which, despite the hard inductive bi-
ases of locally connected and shared weights, are able to summarize spatial content very effi-
ciently (Krizhevsky et al., 2017; Simonyan & Zisserman, 2014; He et al., 2016; Howard et al.,
2017; Tan & Le, 2019). Nevertheless, in the 2020s, with the availability of more abundant comput-
ing resources, the role of convolutions has been challenged by the advent of Transformers (Vaswani
et al., 2017; Dosovitskiy et al., 2020) and a new “spatial-mixing” module, called Self-Attention,
characterized by lighter inductive biases and high complexity.

The success of Vision Transformers (ViT) has long been attributed to Self-Attention. However,
new findings have recently questioned this narrative. For example, d’Ascoli et al. (2021); Wu et al.
(2021); Liu et al. (2021b) highlight the importance of convolutional biases in Transformers for CV.
Liu et al. (2022); Yu et al. (2022) demonstrate how macro design choices and training procedures
alone can be sufficient to achieve competitive performance regardless of the specific spatial module
used. Finally, Cordonnier et al. (2019); Han et al. (2021) comment on the close link between convo-
lution and Self-Attention formulations, hence blurring the line between these seemingly orthogonal
operators. Here, we take a new step toward bridging the gap between CNNs and Transformers by
providing a unifying and intuitive formulation that clarifies spatial modules’ role in modern archi-
tectures and links existing work together.
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First, we use Einstein’s tensor notation combined with tensor CP Decomposition to provide a practi-
cal yet principled analysis of existing literature. In essence, the principal ingredients in deep learning
architectures are multi-dimensional operations that can naturally be written as decomposed tensor
expressions. Here, the Einstein notation provides an elegant way to analyze neural network operators
by highlighting differences among layers with an intuitive notation that simplifies multi-dimensional
matrix algebra (Kolda & Bader, 2009; Panagakis et al., 2021; Hayashi et al., 2019) with no compro-
mises in formal accuracy. Under this lens, we formalize a generalization of existing layers with a
new dynamic, spatially adaptive, and fully connected building block for Neural Networks (the DFC)
that represents the general – but computationally complex – operation of extracting the complete set
of interactions within the input.

Second, we use DFCs to define a super-class of neural networks, which we call Formers, where the
dense and heavy DFC operators are used to create hierarchical representations of the input images.
Then, to target real-world applications, usually bounded by tight computational budgets, we explore
the use of CP Decomposition to decrease Formers’ complexity and integrate different inductive
biases in their design. In this light, we show that Transformers’ architectures can be seen as one of
the possible instances of Formers and go a step further by proposing a new ChoP’D Former variant.
ChoP’D Former leverages CP Decomposition, dynamic gating, and integral images to “chop” the
general but prohibitively complex DFC into a sequence of efficient transformations that have the
potential to retain its full representational power. In particular, we identify five specific modules
that can model the dynamicity with respect to the input, the adaptivity with respect to the spatial
positions, and the long-range interactions via a dynamic receptive field with an overall complexity
independent of the number of input tokens.

Finally, this new perspective allows us to justify the empirical success of (Trans)Formers and dis-
entangle the contributions of each of their characteristics. To do so, we programmatically compare
different layers and CP-Decomposed architectures on various small-scale and large-scale CV tasks.
Our experiments indicate that CP-Decomposed DFC layers can effectively approximate the full DFC
at a significantly reduced cost, considerably outperforming its simplified variants. In conclusion, our
contributions can be summarized as follows:

• We provide a unifying view on building blocks for neural networks that generalizes and compares
existing methods via Einstein’s notation and CP Decomposition, with a notation that deals with
multi-dimensional tensor expressions without resorting to heavy tensor algebra.

• We show how to use a complete tensor operator that is spatially adaptive, fully connected, and
dynamic (DFC) to create general neural networks, which we dub “Formers”.

• We connect our formulation to existing architectures by showing how Transformer and its variants
can be seen as a stack of CP-Decomposed DFC operands for neural networks.

• We propose ChoP’D Former, a new variant of Former architecture, which is able to approximate
the full DFC with a complexity comparable to a convolution with a small kernel, and is able to
match, if not improve, SoTA performance on several benchmarks, including large scale classifica-
tion, object detection, and instance segmentation.

2 EINSTEIN NOTATION FOR NEURAL NETWORKS

At their core, neural networks – and deep learning architectures in particular – are commonly built
as a sequence of tensor operations (i.e., building blocks) interleaved by point-wise non-linearities.
Tremendous interest has been dedicated to the form of such building blocks (e.g., “MLP”, “Con-
volution”, “Residual Block”, “Dense Block”, “Deformable Conv”, “Attention”, “Dynamic-Conv”,
etc.) as these are the critical components to extract various meaningful information from the input.
In this section, we present a general form of a neural network layer and showcase how the Einstein
summation convention can be used as an alternative, short-hand, and self-contained way to represent
and relate building blocks for neural networks.

2.1 BACKGROUND

Einstein notation. In the rest of the paper, we adopt the notation of Laue et al. (2020). Tensors are
denoted with uppercase letters and indices to the dimensions of the tensors are denoted in lowercase
subscripts. For instance Xijk ∈ RI×J×K is a three-dimensional tensor of size I×J ×K with three
modes (or dimensions) indexed by i ∈ [1, I], j ∈ [1, J ], and k ∈ [1,K]. Using the Einstein notation,
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any multiplication among tensors can be written as: Cs3 =
∑

(s1∪s2)\s3 As1Bs2 where s1, s2, and
s3 are the index sets of the left argument, the right argument, and the result tensor, respectively. The
summation is only relevant for inner products and is made explicit by underlining tensor indexes.
As a representative example to illustrate our notation, we review a set of common operations among
tensors. Given the tensors of order two Y,X ∈ RI×J , their Hadamard product can be written as
Zij = XijYij and is equivalent to the algebraic notation Z = X ⊙ Y . Similarly, their matrix-
product can be written as Zij = XikYkj and is equivalent to the algebraic notation Z = XY ⊤.
Given the tensors of order one Y ∈ RI and X ∈ RJ , their outer product creates a tensor Z ∈ RI×J

as Zij = XiYj . It is equivalent to the algebraic expression Z = Y ⊤X .

CP Decomposition. The CP Decomposition also referred to as CANDECOMP/PARAFAC or
polyadic decomposition, is used to express the factorization of a multi-dimensional tensor as a linear
combination of components with rank one, and thus generalizes the concept of matrix singular value
decomposition (SVD) to tensors (Kolda & Bader, 2009). For example, let Xijk ∈ RI×J×K be
a three-dimensional tensor, then we can define the CP Decomposition Xijk ≈ U1

irU
2
jrU

3
kr as the

approximation of the original tensor from a set of three factor matrices [U1
ar, U

2
br, U

3
cr]. The rank of

the tensor Xijk is defined as the smallest number of R components needed to generate an equality
in the CP Decomposition. Note that we call a CP Decomposition canonical whenever R is equal to
the rank of Xijk.

2.2 THE DYNAMIC FULLY CONNECTED LAYER FOR NEURAL NETWORKS

A neural network layer is a function f that takes as input a tensor Xmc composed of m ∈ [1,M ]
spatial positions (or tokens) with c ∈ [1, C] features (or channels) and produces as output a tensor
Ynd composed of n ∈ [1, N ] tokens with d ∈ [1, D] channels:

Ynd = f(Xmc) (1)

In the following, we start by considering the special case where f is a linear function before intro-
ducing the more general dynamic fully-connected layer.

Linear Layers. The most general instantiation of a linear neural network layer is the Fully-
Connected layer (FC):

Ynd = XmcWmncd, (2)

parametrized by a four-dimensional weight tensor Wmncd used to mix all spatial and channels in-
formation in the input. The complexity is O(M ·N · C ·D) which makes the FC layer computationally
expensive, if not prohibitive, in CV tasks. However, complexity can be reduced by using priors such
as weight sharing and local processing. Using the Einsum notation, we show in the Appendix that
the convolutional layer, its depth-wise and point-wise variants, and the average pooling layer are
special cases of the FC layer.

Dynamic Layers. A non-linear generalization of the FC layer can be obtained by turning the
weight tensor into a function g of the input: Wmncd = g(Xmc). To illustrate that the tensor Wmncd

is not constant anymore but the result of a dynamic construction mechanism, we now consider a
“batch” of input instances Ximc created as a stack of I inputs [X1

mc, X
2
mc, ..., X

I
mc] and the corre-

sponding batch of output instances Yind both indexed by the new instance dimension i ∈ [1, I]. We
call such a layer a Dynamic Fully-Connected layer (DFC):

Yind = XimcWimncd with Wimncd = [g(X1
mc), . . . , g(X

I
mc)]. (3)

As in the FC layer, the DFC generates the output by mixing all spatial and channels information.
On top of that, DFC is spatially adaptive, i.e. weights are not shared across spatial positions and
dynamic or instance adaptive, i.e. it processes each input differently. We wish to stress the rela-
tionship between FC and DFC: i) every instance of FC is also an instance of DFC (i.e. DFC where
function g is constant) and ii) there are instances of DFC that are not FC (i.e. DFC where function
g is non-constant). Therefore FC is a special case of DFC. Again, a number of well-known neural
network layers can be framed as simplified cases of DFC. We show in the Appendix and using the
Einstein notation that this is the case for Self-Attention (Vaswani et al., 2017; Wang et al., 2018),
Dynamic Convolution (Wu et al., 2019; Hu et al., 2018), Deformable Convolution (Dai et al., 2017;
Zhu et al., 2019).
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Figure 1: Part (a): Overview of Building Blocks Characteristics. The tensor Wimncd is a repre-
sentation of a general neural network layer and each of its dimensions is associated with one charac-
teristic that can be used to describe existing building blocks. For example, a Convolution layer has
Token and Channel mixing, but is not Dynamic nor Adaptive. DFC incorporates all possible char-
acteristics in its formulation. Part (b): Overview of CP Decomposition. Incorporating additional
characteristics in a layer has the side-effect of increasing the dimensions of the underlying parame-
ter tensors. CP decomposition can be used as a tool to approximate the parameter tensor structure
while decreasing its complexity. Figure reports examples for a Fully Connected layer (blue), Self-
Attention matrix (cyan), DFC layer (green).

As visible in Figure 1, DFC represents a general way to leverage the complete range of interactions
of the input and serves as a generalization of existing layers. However, the usage of the DFC is
severely limited in practice because of the dense structure of its weights and its high complexity,
which is equal to the complexity of the FC layer plus the complexity of the function g. Consequently,
the question that naturally arises is: “Is it possible to use these layers efficiently in a neural network
without using any strong prior on their weights?”. Next, instead of relying on sharing and grouping
strategies, we propose to use CP Decomposition as a mean to decrease DFC complexity.

2.3 “FORMERS” ARCHITECTURES VIA CP DECOMPOSITION

In this section, we describe how to create efficient DFC networks. We use the CP Decomposition as
the mathematical backbone to define and design compact and lightweight DFC Neural Networks, in
which each layer approximates the behavior of a DFC layer and implements spatial reasoning with
a complexity independent of the number of input positions, thus achieving an overall complexity
comparable to a standard convolutional layer with a small kernel.
Formers. A Former is a general architecture that models hierarchical non-linear interactions by
stacking a series of blocks

Yind = σ(XimcWimncd +Bnd). (4)
including a DFC layer with parameters Wimncd, a matrix of biases Bnd, and a non-linear element-
wise function σ (e.g. GeLU or ReLU). In the following, we call DFC layer the linear operation
inside the non-linearity, DFC block the DFC layer plus non-linearity, and Former an architecture
consisting of one or multiple DFC blocks. As discussed in Section 2.2, the use of a parameters
tensor Wimncd makes the DFC block general, but also its computation heavy.
Formers CP Decomposition. To overcome this limitation, we propose to factorize the weights of
the DFC layer through its CP Decomposition:

Wimncd = U1
i rU

2
mrU

3
n rU

4
c rU

5
d r + ϵimncd (5)

which represents the full tensor Wimncd as a linear combination of lower-dimensional factor matri-
ces plus an approximation error ϵimncd dependent on the choice of R. Typically, lower R implies
larger errors, while for R ≥ rank(Wimncd) the error is zero, and the CP Decomposition is exact.

Hence, we can define the Formers CP Decomposition by replacing the DFC layer in equation 4
with equation 5 and rearranging terms as

Yind = σ(((((XimncU
4
cr)imnrU

2
mr)inrU

3
nr)inrU

1
ir)inrU

5
dr +Bnd) (6)

where Ximnc is the result of unfolding the input Ximc with a global receptive field of size N for
all N output positions1. Equation 6 acts as a low-complexity substitute of equation 4 and can be

1In general, we define as “unfolding with receptive field K” the operation of rearranging the input as a
collection of N sliding patches of size K.
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easily learned end-to-end as a sequence of fully differentiable building blocks for neural networks.
In practice, as apparent from the superscripts of the U matrices in equation 6, we identify five
individual – and specific – operations inside a DFC block: i) U4

cr: a channel-mixing layer embedding
the C input channels into the R-space described by the CP Decomposition; ii) U2

mr: a spatial layer
mixing spatial information with a global receptive field, implemented as depth-wise convolution; iii)
U3
nr: a gating layer ensuring spatial adaptivity by modulating spatial information; iv) U1

ir: a gating
layer generating a dynamic response conditioned on the input Ximc; v) U5

dr: a channel-mixing
layer which combines the R channels to create D output channels. Replacing DFC layers with the
CP Decomposition of equation 6 reduces drastically the memory needed to store the weights from
O(M ·N · C ·D) to O(L ·R), L = max(M,N,C,D). It also reduces its computational complexity as the
sum of its sequence of operations: O(M · C ·R) + O(M ·N ·R) + O(N ·R) + O(R) + O(N ·D ·R), plus
the complexity of the function used to create matrix U1

ir.

Equation 6 is the most general representation of the CP-Decomposed Former, derived directly from
applying the CP Decomposition to equation 4. Intriguingly, particular cases of equation 6 can be
derived by making assumptions on the factor matrices, thus generating alternative Formers architec-
tures characterized by different inductive biases and complexities. Next, we showcase two particular
approximation cases of equation 6: the Transformers, characterized by heavy computational require-
ments, and the Chop’D Former, our new efficient variant.

Transformer. The Transformer (Vaswani et al., 2017) is one of the most well-established and
recognized designs for neural networks. The architecture is built from a cascade of inverted residual
bottleneck blocks, including a multi-headed self-attention block, two channel-mixing layers, and
a GeLU non-linearity2. As introduced above, the transformer block is also a particular case of
equation 6 as

Yind = σ(((Ximnc U
4
cr)imnrU

123
imnr)inrU

5
dr +Bnd)

= σ((((((Ximnc W
1
cr)imnrW

2
rr)imnr)U

123
imnr)inrV

2
dr)inrV

1
dr +Bnd) (7)

where σ is a GeLU nonlinearity, the matrices U4
cr and U5

dr are the channel-mixing layers of the
inverted bottleneck, and the remaining U1

ir, U2
mr, U3

nr are combined together into a single U123
imnr, to

create a dynamic spatial mixing layer with global receptive field. Moreover, the U123
imnr is assumed

to be built via a self-attention mechanism only for a subset H of the R channels and then repeated
across the r dimension. In other words, equation 7 is a CP Decomposition for a DFC block with
three extra assumptions on its factor matrices3. Under a similar light, it is easy to recognize how
variants of the transformer block can be analogously framed as CP-Decomposed Formers, under a
different set of assumptions for the DFC layer factor matrices. This design can process input of
various sizes but has two main disadvantages when compared with equation 6. First, it requires
higher memory requirements since the parameter tensor U123

imnr has to be generated (and also stored
in memory) all at once. Second, its computational complexity is: O(M · C ·R) + O(M ·N ·R) +
O(N ·D ·R), plus the complexity of the self-attention mechanism used to create the tensor U123

imnr.
Moreover, as in equation 6 equation, its complexity scales quadratically with the number of tokens
used, which can be computationally really expensive even in the case of moderately sized inputs.

ChoP’D Formers. From the discussions above, it might seem that equation 6 is a good candidate
for an efficient implementation of DFC neural networks. However, in cases where the spatial size
is large compared to the number of channels (i.e. L = M or L = N), the factor matrices U2

mr and
U3
nr of equation 6 act as computation bottlenecks. In fact, implementing the factor matrix U2

mr
as a depth-wise convolution with a global receptive field requires a number of parameters directly
proportional to the number of spatial positions. Similarly, the gating layer U3

nr has to allocate a
parameter for each of the tokens considered. For these reasons, the application of equation 6 is
limited to cases where the spatial size of the data is known in advance and small enough to fit in
memory. To overcome such limitations, we propose the following modification for equation 6.

First, we replace the operator U2
mr with a more efficient spatial mixing module based on Summed-

Area Table (SAT). SAT, also known as an integral image, is a data structure that can be used to
perform fast image filtering (Crow, 1984; Viola & Jones, 2004) and enables the computation of

2Without lack of generality, we omit at this stage the Layernorm (LN) applied before every block and the
residual connections, which are used after every block (Wang et al., 2017).

3(i) U4
cr = W 1

crW
2
rr; (ii) U5

dr = V 1
drV

2
rr; (iii) U

123

imnr = U
123

imnh = softmax(QimchKinch).
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Figure 2: A Former Architecture is a stack of DFC layers, in practice often decomposed in a
sequence of smaller blocks. Although many alternative decompositions exist for the tensor Wimncd,
they do not come all with the same complexity and inductive bias. The original Transformer has a
spatial mixing module that is burdened by a quadratic complexity O(N2), unpractical in many real
cases. In contrast, our “ChoP’D-Former” token mixer comes with a complexity that is independent
of the number of tokens considered.

pooling operations on a receptive field of arbitrary size with a constant computational cost. Ad-
ditionally, SAT can be used to implement a pooling operation on a learned receptive field (Zhang
et al., 2019). Thus, we propose to decompose the contribution of the factor matrix U2

mr as follows:

U2
mr = PmrgErg (8)

where Pmrg is a collection of G fully differentiable pooling layers with learnable receptive field, and
Erg is the set of learnable weights used to combine their contribution. The advantages are two-fold:
i) the model is able to actively learn the optimal receptive field, opting for global or local reasoning
for the task at hand, and ii) spatial mixing can be performed at constant computational cost even
when the receptive field is global.

Another key modification consists in reducing the memory and computational requirements of the
spatial adaptive operators. Specifically, we propose to combine the effect of the two gating U1

ir and
U3
nr into a single operator as

U13
inr = U1

irU
3
nr = ϕ(Ximc), (9)

where the function ϕ, parametrized via a small CNN, generates dynamic and spatially adaptive
weights conditioned on the input Ximc. To further limit complexity, the input of ϕ can be down-
sampled to a pre-defined fixed size, and then the output can be upsampled to match the original
resolution, e.g., by interpolation4. As a result, the complexity of this spatial adaptive operation is
again constant with respect to the number of spatial positions N . This allows our formulation to
achieve global reasoning with a complexity independent of the number of spatial positions, a drastic
improvement when compared with the spatial reasoning module of transformers (i.e. self-attention)
and equation 6, both of which have quadratic complexity with respect to the number of tokens. Fi-
nally, we can introduce our proposed CP-Decomposed Formers with learnable Pooling, or ChoP’D
Former for short, by replacing equation 8 and equation 9 in equation 6 as

Yind = σ(((((Ximnc U
4
cr)imnrPmrg)inrg)Erg)inrU

13
inr)inrU

5
dr +Bnd). (10)

This formulation, also illustrated in Figure 2, is a CP Decomposition for a DFC block with two
extra assumptions on its factor matrices. We recognize several desirable properties: firstly, it can be
applied to inputs of arbitrary resolutions without compromises on the size of the receptive field, and
secondly, when the number of spatial positions is higher than the number of channels, the overall
computational complexity is reduced from O(M ·N) to O(M).

3 RELATED WORK

Link between Attention and Convolutions. Han et al. (2021) comments on how the design of local
self-attention resembles a dynamic and depth-wise convolution with no weight sharing. Cordonnier
et al. (2019) provides proof that a multi-head self-attention layer with a sufficient number of heads is
at least as expressive as any convolutional layer. Pérez et al. (2019) shows that transformers are Tur-
ing complete. We explore the relationship between these seemingly opposed processing paradigms
when interpreted as dynamic layers (Section 2.2, Appendix), and extend this line of research by pro-
viding a general framework to compare building blocks as well as architecture designs Section 2.3).

4The resizing functions are assumed to be absorbed into ϕ for the sake of notation simplicity.
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Dynamic Neural Network Layers. The idea of using a layer whose weights are adaptive to the
input can be traced back to early CNNs using max-pooling (Jarrett et al., 2009). Dynamic convo-
lutions emerged multiple times in the context of low-level vision (Jia et al., 2016; Mildenhall et al.,
2018; Xia et al., 2020) as well as high-level vision (Ha et al., 2016; Chen et al., 2020; Wu et al.,
2019). The dynamic component is also a neglected feature of attention mechanisms (Vaswani et al.,
2017; Hu et al., 2018), and we identify it here as the key to unlocking non-linear behavior.
Tensor Decomposition for Neural Networks. Tensor Decomposition is an active area of research
dedicated to the study of low-rank approximation for multi-dimensional arrays and has applications
in a variety of fields, ranging from psychology to CV (Kolda & Bader, 2009; Panagakis et al., 2021).
Tensor decomposition techniques have been used to reparameterize neural network layers in or-
der to speed up their inference (Chrysos et al., 2021; 2022; Ma et al., 2019).Lebedev et al. (2014)
and Novikov et al. (2015) used CP Decomposition to speed up spatial static convolutional and FC
layers. Kossaifi et al. (2020) extended this idea to spatio-temporal static convolutional kernels. Dif-
ferently from these works, we focus on non-linear dynamic layers and extend this trend of research
by investigating a tensor decomposition for a ”Dynamic Fully Connected” layer (Section 2.3).
Tensor Notation for Neural Networks. Einstein notation’s convention provides an intuitive no-
tation for tensor manipulations. In machine learning, it can be used as an alternative to tensor
algebra (Panagakis et al., 2021; Hayashi et al., 2019). Recently, the Einstein notation has gained
traction as a practical way to improve code readability (Rogozhnikov, 2021; Rocktäschel, 2018) and
enable efficient tensor calculus (Laue et al., 2020). Here (Section 2.2, 2.3 and Appendix) we use
the Einstein notation as a way to compare building blocks for neural networks.
Summed Area Tables for Neural Networks. Summed Area Tables (SAT) is an established algo-
rithm in CV (Crow, 1984; Viola & Jones, 2004) that is able to provide the sum of values within an
arbitrary subset of a grid in constant time. Recently, SAT has been used to accelerate large-kernel
convolution in a dense prediction network for Human Pose Estimation (Zhang et al., 2019) and
dynamic large-kernel convolutions in language tasks (Lioutas & Guo, 2020). Similarly in Trans-
formers, SAT enabled fast computation of a linearized attention variant (Zheng et al., 2022) and a
parameter-free method to adapt size of the area to attend (Li et al., 2019). As described in Sec-
tion 2.3, we leverage SAT to achieve an efficient CP Decomposition for a DFC layer and show its
application in Formers for CV.

4 EXPERIMENTS

In this section, we report the experimental evaluation of Chop’D Former in a wide range of CV
tasks. We start by comparing our CP-Decomposed DFC layer of equation 10 against other possible
variants in a pre-existing network to assess the contribution of individual components in a controlled
setting. Then, we extend our findings to more complex cases by stacking several of such blocks to
create architectures with different inductive biases.

Puzzle Reconstruction The DFC layer acts as a non-linear extension of an FC layer. It has four
main characteristics: being dynamic, being spatially adaptive, having a global receptive field, and
mixing all the channel information. To isolate the contribution of each of these characteristics to the
overall performance, we compare a DFC layer against its simplified variants: i) a fully connected
layer (not dynamic), ii) a convolutional layer (not dynamic, local receptive field), iii) a spatial layer
represented by a depth-wise convolution (not dynamic, local receptive field, no channel mixing),
iv) a pooling layer (not dynamic, local receptive field, no channel mixing, weights all ones) and v)
a channel-mixing layer represented by a point-wise convolution (not dynamic, no spatial mixing).
Moreover, we compare its formulation with our efficient CP-Decomposed DFC variant in equa-
tion 10 which, we recall, is capable to approximate the full DFC weight tensor Wimncd via CP
Decomposition. Figure 3 (right) shows the breakdown of different layers in terms of complexity,
characteristics, and size of the weight parameter tensors. To compare methods, we use the small-
scale but challenging task of “puzzle reconstruction”, where a four-layers encoder-decoder network
is used to reconstruct an image from a “cut and shuffled” version of itself. Specifically, we ob-
tain input and ground-truth pairs by dividing each sample of the MNIST dataset into 16 different
patches, randomly rotating each piece, and shuffling their relative position before stitching them
back together. Some examples of input and ground through pairs are visible in Figure 4. We test
the ability of different layers to enrich the representation of a network, by placing them between the
encoder and the decoder used in an image-to-image translation task. Figure 3 (left) reports valida-
tion curves for the compared methods using PSNR as the performance metric, which is a common
metric used to assess pixel accuracy (higher is better). Results demonstrate that a DFC layer is able
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input and output tokens, C,D input and output channels, H convolutional groups, K convolutional ker-
nel size, R the CP decomposition size. We assume: M = N , C = D, K < N , H < C, R < C. Comparisons
among Layers of Neural Networks - left. PSNR validation curves show how our CP-DFC method
is capable to approximate a general DFC layer performance.

Input Channel-mix
Wcd

Convolutional
Wkcd

DFC-CP Layer
≈Winmcd

DFC Layer
Winmcd

GT

Figure 4: Qualitative Comparison on MNIST dataset. Augmenting the size of the weights tensor
boosts output quality. Our DFC variant (DFC-CP) uses global receptive field and dynamic weights
prediction and is able to generate clean outputs and sharp digits. Moreover, it uses CP decomposition
to reduce complexity, performing on par with the computationally expensive DFC layer.

to leverage the entire content of the encoded features while adapting its weights depending on the
input. Although DFC achieves the best performance, it is also the layer with the highest complexity.
Notably, our CP-Decomposed DFC layer approximates DFC behavior at a fraction of the compu-
tational cost. The other layers, which are simplified cases of DFC, have lower complexity but also
exhibit significantly lower performance.

Classification, Segmentation, Detection We extend the previous section by scaling up our analy-
sis to different classes of architectures consisting of a stack of the compared layers, and three large-
scale well-known CV applications: Image Classification on the ImageNet dataset, Object Detection,
and Segmentation on the COCO dataset. In a similar spirit as before, we compare side-by-side four
types of architectures created by progressively silencing various characteristics of the DFC layer.
We use Former (i.e. a stack of DFC layers), MLP (i.e. a stack of FC layers), CNNs (i.e. a stack of
Convolutions), and Linear Network (i.e. a stack of Channel-mixing Layers). To separate the contri-
bution of macro design choices and building blocks, we fix an overall network design. Specifically,
following the best practice of Liu et al. (2021b), we use a 4-stages hierarchical network with a stage
compute ratio of 1:1:3:1. We build each stage as a stack of layers and GeLU non-linearities. We
explore two different sizes: 15M parameters and 28M parameters. Given the well-known correlation
between network complexity and final performance, we roughly match FLOPs and parameters count
across methods with two strategies: i) we control for each method the number of overall features
used at every stage, and ii) we use CP Decomposition to separate the tensors of weights into smaller
matrices.5 Table 1 reports the performance of Chop’D Former of equation 10 against its simplified
variants: first, a CP-Decomposed MLP which drops the characteristic of dynamic weights but still
achieves global reasoning via a spatial layer; then, two variants of CP-Decomposed CNNs (Lebe-
dev et al., 2014; Howard et al., 2017) which drop global reasoning in favor of local processing.
The first variant uses depth-wise convolutions as spatial layers, while the other uses non-adaptive
average pooling to mix spatial information. Lastly, as a lower bound for performance, we use a
CP-Decomposed linear network which is only able to process spatial information through the four
pooling layers across stages. Results clearly show a performance progression that closely mimics
the small-scale scenario and is consistent across tasks and architecture sizes. Remarkably, the linear
network can generalize relatively well across tasks, even if its spatial receptive field is only 1 pixel

5We refer to supplementary materials for implementation details, and training hyperparameters.
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Layer Architecture Complexity Classification Detection Segmentation

Type Weights P(M) F(G) T1 T5 v2 Real APb APb
50 APb

75 APm APm50 APm75

DFC-CP ≈ Wimncd Former (Chop’D) 15 2.4 80.9 95.4 69.6 86.6 40.1 61.4 43.8 37.1 58.6 39.6
28 4.5 82.0 95.6 70.6 86.7 42.4 63.6 46.7 38.7 60.5 41.6

FC -CP ≈ Wmncd MLP 15 2.4 78.5 93.2 66.5 85.0 - - - - - -
28 4.5 80.7 95.2 69.1 86.0 - - - - - -

Conv-CP ≈ Wkcd CNN (Dw-Conv) 15 2.4 78.9 94.4 67.6 85.2 38.7 60.1 41.9 35.8 57.0 38.2
28 4.5 80.9 95.1 69.2 86.0 41.5 63.0 45.6 38.2 60.2 41.0

Conv-CP ≈ Pkcd CNN (Pool) 15 2.4 78.5 94.0 67.0 84.8 38.0 59.5 41.3 35.5 56.6 37.6
28 4.5 80.6 95.0 68.8 85.8 40.7 62.6 44.4 37.3 59.7 39.8

Linear-CP ≈ Wcd Linear 15 2.4 73.9 91.4 60.9 80.8 29.7 50.4 31.0 28.9 47.7 30.4
28 4.5 76.3 92.7 63.7 82.6 30.9 52.0 32.5 30.0 49.5 31.6

Table 1: Comparisons among CP decomposition for different Class of Architectures on Large
scale classification on Imagenet and Detection and Segmentation on COCO using Mask-RCNN
and a 1× training schedule. Chop’D Former approximates via CP decomposition DFC layers and
outperforms less complex Neural Networks. Note that MLP cannot process the input of variable
sizes and thus cannot be used as the backbone for Detection and Segmentation tasks.

Architecture Classification

Name Type Token-Mixer Adaptivity
(i, n)

Receptive
Field

Params
(M)

Flops
(G)

T1

CoAtNet-0 (Dai et al., 2021) Hybrid Conv/MBConv/Global-SA i,n 3x3/Global 25 4.2 81.6
Poolformer-S36 (Yu et al., 2022) CNN Pooling - 3x3 31 5.0 81.4
ConvNext-T (Liu et al., 2022) CNN Depthwise-Conv - 7x7 29 4.5 82.1
RSB-ResNet-50 (Wightman et al., 2021) CNN Convolution - 3x3 26 4.1 79.8
Swin-T (Liu et al., 2021b) DCNN Local-Self Attention (SA) i, n 7x7 29 4.5 81.3
GFNet-H-S Rao et al. (2021) MLP FFT n Global 32 4.6 81.5
gMLP-S Liu et al. (2021a) Former Gated-MLP i, n Global 20 4.5 79.6
Deit-S (Touvron et al., 2021) Former Global-SA i, n Global 22 4.6 79.8
Chop’D Former - S Former Gated-SAT i, n Global 28 4.5 82.0

Table 2: Comparisons with other architectures for Large Scale Classification. Methods are trained
on Imagenet-1K input image size 224 x 224 and have complexity between 4 and 5 GFLOPS.

wide (∼ 74 T1, ∼ 30APb and ∼ 29APm for the smallest of the two sizes). As apparent from the
table, the CNNs achieve better results, but the use of spatial information is still limited by local
processing and shared response among spatial positions and instances. Interestingly, forcing a static
global receptive field is not helpful, as shown by the fact that the MLP network does not signifi-
cantly outperform the CNNs. Moreover, the MLP network cannot process inputs of various sizes
and cannot be used as a backbone for detection and segmentation tasks. On the contrary, our Chop’D
Former network approximates a set of DFC layers, calibrates its weights according to the input, and
can integrate long-range interactions, outperforming CNNs variants by a large margin on both the
15M and 28M parameter variants. Chop’D Former gains an impressive +2 and +1.1 T1 in Clas-
sification. Similarly, Chop’D Former boosts results by +1.4 and +0.9APb in detection and +1.3
and +0.5APm in segmentation. Comparisons against state-of-the-art networks of comparable size
are presented in Table 2 and expanded in the supplementary material. Without bells and whistles,
Chop’D Former remains competitive against various architectural designs and offers a good trade-
off between complexity and accuracy. It maintains a minimal gap with the best-performing method
(−0.1 T1) and vastly outperforms other established Former architectural variants (+2.2 T1).

5 CONCLUSION

This work presents a new general layer for neural networks, “the DFC”, a non-linear generalization
for an FC layer, and a new architecture design, “the Former”, built as a stack of DFC blocks. A DFC
is dynamic, spatially adaptive, and fully connected but demands high computational requirements
for deployment in real-case scenarios. To use Former architectures in CV applications, we propose to
look through the lens of a unifying framework, based on CP Decomposition and Einstein notation,
able to disentangle the individual characteristics of DFCs into separate components. Hence, we
cast Transformers and their variants as CP-Decomposed Formers using different assumptions on
the factor matrices and, consequently, distinct inductive biases. Then, we propose the Chop’D
Former, a new hierarchical backbone for CV that approximates DFC blocks via CP Decomposition,
leveraging the entire range of interactions via five sequential operations, including a spatial-mixing
module with cost independent of the number of input positions. Lastly, we empirically demonstrate
how each characteristic of DFC contributes to the overall performance, and we show that our CP-
Decomposed (a.k.a Chop’D) Former can achieve state-of-the-art results on various CV benchmarks.
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