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ABSTRACT

In this work, we formulate and study the problem of image-editing detection and
attribution: given a base image and a suspicious image, detection seeks to de-
termine whether the suspicious image was derived from the base image using an
AI editing model, while attribution further identifies the specific editing model
responsible. Existing methods for detecting and attributing AI-generated images
are insufficient for this problem, as they focus on determining whether an image
was AI-generated/edited rather than whether it was edited from a particular base
image. To bridge this gap, we propose EditTrack, the first framework for this
image-editing detection and attribution problem. Building on four key observa-
tions about the editing process, EditTrack introduces a novel re-editing strategy
and leverages carefully designed similarity metrics to determine whether a suspi-
cious image originates from a base image and, if so, by which model. We evaluate
EditTrack on five state-of-the-art editing models across six datasets, demonstrat-
ing that it consistently achieves accurate detection and attribution, significantly
outperforming five baselines.

1 INTRODUCTION

Recent advances in AI editing models (OpenAI, 2024; Couairon et al., 2023; Deng et al., 2025)
enable users to transform existing images into high-quality outputs guided by natural language in-
structions. While such techniques empower non-expert users to modify images according to their
preferences and greatly enhance the diversity of synthetic visual content, their misuse in copyright
infringement and deepfake creation raises serious societal concerns. For example, a user might
request an editing model to ‘turn the dog in the artwork into a cat’, producing a cat artwork that
preserves the original artistic style while replacing the dog. The user could then claim ownership of
this edited image, infringing upon the copyright of the original artist (Akers, 2024). Similarly, a user
might prompt the model to ‘replace the person in the photo with Donald Trump’, thereby generating
a deepfake image depicting him in inappropriate contexts or scenes.

At the center of these societal concerns lies the image-editing detection and attribution problem:
given a base image and a suspicious image, detection determines whether the suspicious image was
derived from the base using an AI editing model, while attribution further identifies the specific
model responsible. A tool addressing this problem has broad practical applications. For example, an
artist could use it to verify whether a suspicious image (e.g., the cat artwork above) was generated
from their original work (e.g., the dog artwork) using AI, and further attribute the edit to a partic-
ular model. Similarly, forensic analysts and law enforcement agencies could determine whether a
deepfake (e.g., the example above) was created from a specific base image and identify the editing
model, thereby aiding cybercrime investigations and tracing back to the criminals.

Existing methods (Sun et al., 2024; Sha et al., 2024) for detecting and attributing AI-generated
images are insufficient for our problem. These approaches focus on determining whether an image
was generated by AI and, if so, identifying the specific model. While they can be adapted to detect
whether a suspicious image has been AI-edited, they cannot establish whether it was derived from
a given base image. Furthermore, although attribution methods can in principle be extended to
identify the editing model once a suspicious image has been detected as derived from a base image,
their effectiveness is limited because they overlook the unique characteristics introduced by the
editing process relative to the base image, as our experiments demonstrate.
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To bridge this gap, we propose EditTrack, the first framework to explicitly address the image-editing
detection and attribution problem. Given a base–suspicious image pair, EditTrack first determines
whether the suspicious image was derived from the base image using an AI editing model. If so, it
further attributes the editing to the responsible model within a set of candidate editing models.

EditTrack is built on four key observations of the AI-assisted editing process: (1) robustness, mean-
ing that an editing model produces similar edited images when given the same base image with
semantically similar editing prompts; (2) stability, meaning that an edited image remains similar if
it is edited again by the same model with a semantically similar editing prompt; (3) variety, meaning
that different editing models produce distinct edited images even when provided with the same base
image and editing prompt; and (4) dissimilarity, meaning that if a suspicious image is not originally
derived from a base image, no editing model will be able to reproduce it from that base image.

Based on these observations, EditTrack evaluates a base–suspicious image pair by testing whether
the suspicious image was edited from the base using a candidate model through a re-editing proce-
dure. Specifically, we apply the candidate model to re-edit both the base and suspicious images with
a prompt that encodes the differences between them. If the suspicious image truly originates from
the base via this model, the re-edited images should closely resemble the suspicious image; other-
wise, they should diverge. To quantify this similarity, we adopt six complementary metrics across
three categories–structural, semantic, and pixel-level similarity–each capturing distinct facets of
image correspondence. We then combine these metrics by framing detection and attribution as a
multi-class classification task, where the classifier takes the similarity features of a base–suspicious
pair as input and outputs a label indicating either the responsible editing model or that the suspicious
image was not derived from the base.

We conduct a comprehensive evaluation across five state-of-the-art image editing models and mul-
tiple datasets that cover diverse scenarios. While EditTrack is, to the best of our knowledge, the
first framework to directly address the image-editing detection and attribution problem, we also
adapt several existing techniques for comparison. Our results show that: (1) EditTrack consistently
achieves high detection and attribution accuracy across editing models and datasets, and (2) Edit-
Track significantly outperforms all baselines. We further validate our design through ablation studies
on key components of EditTrack.

2 RELATED WORK

AI-generated image detection and attribution: AI-generated image detection aims to determine
whether an image has been created or edited by AI. Existing techniques fall into two categories:
passive and proactive. Passive detection methods (Sun et al., 2024; Sha et al., 2024) typically iden-
tify subtle artifacts or statistical irregularities in AI-generated images, such as inconsistent noise
patterns, unnatural textures, or distorted anatomical features (e.g., hands and teeth) that AI models
often leave behind. Although these methods can be applied to detect AI-edited images, they do not
reveal any information about the original base image. Specifically, given a base–suspicious image
pair, these methods can only determine whether the suspicious image has been AI-edited, but not
whether it was derived from the given base image. While attribution methods could, in principle,
be extended to identify the editing model once a suspicious image is confirmed to originate from a
base image, their effectiveness is limited. This limitation arises because they do not account for the
unique characteristics introduced by the editing process relative to the base image, as demonstrated
by our experiments.

Proactive detection methods (Jiang et al., 2024) embed watermarks into AI-generated images, en-
abling later detection by verifying whether the watermark can be extracted. Such methods can, in
principle, be applied to image editing detection: the owner of a base image embeds a watermark, and
if the watermark is later recovered from a suspicious image, the image can be flagged as edited from
the base. However, image watermarks are not robust to AI editing (Zhao et al., 2024). In practice, the
watermark embedded in the base image often becomes undetectable after editing, as confirmed by
our experiments with the state-of-the-art WAM method (Sander et al., 2025), leading to unreliable
detection. Moreover, watermark-based attribution (Jiang et al., 2024) would require each editing
model to embed a distinct watermark into the images it generates or edits. This approach depends
on cooperation among model providers, which is generally impractical.
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Preventing AI-assisted image editing: To mitigate the misuse of AI-assisted image editing, one
line of defense focuses on preventing editing models from successfully editing a base image. These
approaches (Salman et al., 2023; Choi et al., 2025; Wan et al., 2024) add carefully crafted, human-
imperceptible perturbations to base images so that, when edited, the perturbations disrupt the process
and produce low-quality or unusable edited images. However, such perturbations can be easily
removed by adaptive techniques (Nie et al., 2022; Sandoval-Segura et al., 2023; Xue & Chen, 2024),
leaving editing still feasible. Our work is complementary to this direction: instead of preventing
edits in advance, we target scenarios where edited images have already been produced. By enabling
reliable detection and attribution, our method provides a post-hoc mechanism to trace AI-assisted
image editing and mitigate its harms.

3 PROBLEM FORMULATION

AI-assisted image editing: Image editing generally refers to modifying an image–referred to as
the base image Ib–to meet a user’s needs. With recent advances in AI, this process is increasingly
automated by editing models. Specifically, an editing model M takes a base image Ib and an editing
prompt pe as input, where pe specifies the desired modifications to Ib, and produces an edited image
Ie that reflects the requested changes. Formally, we define AI-assisted image editing as follows:
Definition 1 (AI-assisted Image Editing). Given a base image Ib and an editing prompt pe, an editing
model M produces an edited image Ie that reflects the requested changes, i.e., Ie = M(Ib, pe).

Note that the form of the editing prompt pe may vary across editing models. For example,
DiffEdit (Couairon et al., 2023) requires both a description of the base image and a description
of the desired edited image as the editing prompt, which it then uses to generate a mask that high-
lights the regions of the base image to be modified. In contrast, Step1X-Edit (Liu et al., 2025)
does not require a description of the base image; instead, it only uses a description of the intended
modifications as the editing prompt.

Image-editing detection and attribution: Given a base image Ib, a suspicious image Is, and a set
of candidate editing models S = {M1,M2, . . . ,Mn}, image-editing detection aims to determine
whether Is was derived from Ib using any model in S. Once detection confirms editing, image-
editing attribution further seeks to identify the specific model responsible. Formally, Is is considered
an edited version of Ib if an editing model M′ ∈ S and an editing prompt p′e can be found such
that Is = M′(Ib, p

′
e), and the editing is attributed to M′. The set S is necessary, as attribution is

inherently limited to known candidate models. For example, S may consist of widely used open-
source or closed-source editing models, though our method is applicable to any such set. Formally,
we define the image-editing detection and attribution problems as follows:
Definition 2 (Image-Editing Detection). Given a base image Ib and a suspicious image Is, image
editing detection is to determine whether Is was derived from Ib using some editing model.
Definition 3 (Image-Editing Attribution). Given a base image Ib, a suspicious image Is, and a set
of candidate editing models S = {M1,M2, . . . ,Mn}, image editing attribution is to identify the
specific model in S that generated Is from Ib, once Is has been detected as an edited version of Ib.

In this work, we propose EditTrack to address the image-editing detection and attribution problem.
EditTrack operates without requiring access to the parameters of candidate editing models, making it
applicable to both closed-source and open-source settings. Moreover, it does not rely on the editing
prompts used to produce the edited images.

4 EDITTRACK

4.1 OVERVIEW

A straightforward but computationally prohibitive solution: To address the image-editing de-
tection and attribution problem, a straightforward solution based on the above definitions is to search
for an editing prompt p′e for each candidate editing model Mi ∈ S, where i = 1, 2, . . . , n. If such
an editing prompt p′e can be found that satisfies Is = Mi(Ib, p

′
e), then the suspicious image Is is

detected as edited from the base image Ib, and the editing is attributed to model Mi. However, this
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approach is impractical due to the immense complexity of the search. Specifically, the prompt space
is discrete, the vocabulary is large, and editing prompts can be arbitrarily long, making the search
intractable in practice. As a result, even if Is was indeed edited from Ib, the method may fail simply
because such an editing prompt cannot be found in practice.

Our EditTrack: Instead of searching an editing prompt p′e like in the above straightforward so-
lution, we make four key observations about AI-assisted image editing, which form the basis of
EditTrack. Specifically, given a base image Ib and a suspicious image Is, we first generate an edit-
ing prompt p′e using a captioning model by comparing the differences between Is and Ib. We then
apply each candidate editing model in S to Ib and Is with p′e as the editing prompt to generate two
re-edited images. If Is was indeed derived from Ib by a particular model Mi, the re-edited images
from Mi should be highly similar to Is, whereas those from other models should be comparatively
dissimilar. A follow-up challenge for EditTrack is quantifying the similarity between a re-edited
image and a suspicious image. To address this, we select six metrics to measure the similarity
between each re-edited image and the suspicious image Is, resulting in 12n features for a given
base–suspicious image pair, where n is the number of candidate editing models. To integrate these
features for detection and attribution, we train an (n+ 1)-class classifier that takes the 12n features
of a base-suspicious image pair as input and outputs a label, indicating either a specific candidate
editing model or the non-edited case.

4.2 EXTRACTING FEATURES

Four observations: We make four key observations about AI-assisted image editing, which we
empirically validate in our experiments. For clarity, we present them as follows:
Observation 1 (Robustness). Suppose a suspicious image Is is derived from a base image Ib using
an editing prompt pe and an editing model M. Robustness means that if pe is replaced with a
semantically similar prompt p′e, then M generates an edited image that remains highly similar to
Is, i.e.,

Is = M(Ib, pe) ≈ M(Ib, p
′
e) for pe ≈ p′e, (1)

where the notation ≈ indicates that two images or prompts are similar.
Observation 2 (Stability). Suppose a suspicious image Is is derived from a base image Ib using an
editing prompt pe and an editing model M. Stability means that if we apply M again to Is with a
semantically similar prompt p′e, the resulting re-edited image remains highly similar to Is. In other
words, once M generates Is from (Ib, pe), the editing process has converged at Is, i.e.,

Is = M(Ib, pe) ≈ M(Is, p
′
e) for pe ≈ p′e. (2)

Observation 3 (Variety). Given a base image Ib and an editing prompt pe, variety means that
different editing models produce edited images that exhibit distinct variations, i.e.,

Mi(Ib, pe) ̸≈ Mj(Ib, pe) for i ̸= j, (3)

where the notation ̸≈ indicates that two images are comparably dissimilar.
Observation 4 (Dissimilarity). Suppose a suspicious image Is is not derived from a base image Ib
by an editing model M. Dissimilarity means that even when M is given Ib together with an editing
prompt p′e designed to capture the differences between Ib and Is, the resulting edited image remains
dissimilar to Is, i.e.,

Is ̸≈ M(Ib, p
′
e). (4)

Producing re-edited images: Our EditTrack builds on these observations. Given a base-suspicious
image pair (Ib, Is) and a set of n candidate editing models S = {M1,M2, . . . ,Mn}, we generate
two re-edited images using each candidate model. Since the true editing prompt pe that may have
produced Is from Ib is unavailable, we construct a proxy prompt p′e using a captioning model (e.g.,
BLIP-2 in our experiments). Specifically, the captioning model generates descriptions pb and ps
for Ib and Is, respectively, and we form p′e as: “Do the image editing task; original prompt: {pb},
editing prompt: {ps}.” For each candidate editing model Mi, we produce two re-edited images: one
by applying p′e to the base image Ib, yielding Iirb = Mi(Ib, p

′
e), and the other by applying p′e to the

suspicious image Is, yielding Iirs = Mi(Is, p
′
e).
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If Is is not edited from Ib by any model, then according to Observation 4, the re-edited images
from all candidate models will be comparatively dissimilar to Is. However, if Is is indeed edited
from Ib by model Mi, i.e., Is = Mi(Ib, pe), then according to Observations 1 and 2, its re-edited
images Iirb and Iirs should both be highly similar to Is. In contrast, by Observations 1 and 3, re-
edited images Ijrb generated by other models Mj (j ̸= i) based on Ib are comparatively dissimilar
to Is. Specifically, we have Ijrb = Mj(Ib, p

′
e) ≈ Mj(Ib, pe) ̸≈ Mi(Ib, pe) = Is. In addition,

by Observations 2 and 3, re-edited images Ijrs generated by other models Mj (j ̸= i) based on Is
are also comparatively dissimilar to Is. Specifically, we have Ijrs = Mj(Is, p

′
e) ̸≈ Mi(Is, p

′
e) =

Mi(Mi(Ib, pe), p
′
e) ≈ Mi(Ib, pe) = Is.

a     dog        in  …   

a     cat        in  …   

By Structure

By Semantics

By PixelImage Pair

Structural 
Similarity

Semantic 
Similarity

Pixel-value
Similarity

Figure 1: Three similarity categories.

Therefore, if there exists a candidate model Mi

whose re-edited images Iirb and Iirs both ex-
hibit strong similarity to the suspicious image
Is, while the re-edited images of other models
do not, we conclude that Is was edited from Ib
and attribute the editing to Mi.

Extracting image similarity as features: An-
other crucial aspect of our method is quanti-
fying the similarity between a re-edited image
and the suspicious image. To address this chal-
lenge, we adopt six similarity metrics spanning
three categories: structural similarity (2 met-
rics), semantic similarity (2 metrics), and pixel-value similarity (2 metrics), each capturing different
facets of similarity. Figure 1 illustrates three categories.

• Structural similarity: These metrics focus on the geometric and spatial layout of images,
measuring how the overall structure or composition of two images aligns, independent of
color, texture, or style. In this category, we consider structural distance (Tumanyan et al.,
2022) and pHash (Zauner, 2010).

• Semantic similarity: These metrics capture the high-level conceptual content of images,
measuring whether two images depict the same objects, scenes, or ideas, even when their
visual appearances differ. In this category, we use the widely adopted CLIP score (Radford
et al., 2021) and LPIPS (Zhang et al., 2018) to assess semantic similarity.

• Pixel-value similarity: These metrics evaluate low-level visual correspondence, focusing
on pixels, colors, and textures. They assess whether the basic visual properties of objects
are consistent across two images. To do so, we first compute the image histogram for each
image, which is a graphical representation that shows the distribution of pixel intensity
values, and then quantify similarity using Intersection score (Swain & Ballard, 1991) and
Bhattacharyya distance (Kailath, 2003).

Validating the four observations: To empirically validate our observations, we conduct re-editing
experiments using two editing models: Step1X-Edit (Liu et al., 2025) and EditAR (Mu et al., 2025).
We construct 50 positive base-suspicious pairs (Ib, Is), where each suspicious image Is is derived
from its corresponding base image Ib using Step1X-Edit with an editing prompt pe, and 100 negative
pairs in which Is is unrelated to Ib. We design four groups of re-editing experiments, corresponding
to the legends in Figure 2: (1) “Positive, Base, Step1X-Edit”: re-editing the base image in each
positive pair via Step1X-Edit using our p′e; (2) “Positive, Suspicious, Step1X-Edit”: re-editing the
suspicious image in each positive pair via Step1X-Edit using p′e; (3) “Positive, Base, EditAR”: re-
editing the base image in each positive pair via EditAR using pe; and (4) “Negative, Base, Step1X-
Edit”: re-editing the base image in each negative pair via Step1X-Edit using p′e. For each group,
we compute the similarity between every re-edited image and its corresponding suspicious image.
Figure 2 presents the distribution of similarity scores across the six metrics.

The results are consistent with our four observations. First, the distributions for “Positive, Base,
Step1X-Edit” consistently show high similarity, supporting Observation 1. Second, the distribu-
tions for “Positive, Suspicious, Step1X-Edit” also show high similarity, aligning with Observation 2.
Third, the distributions for “Positive, Base, EditAR” exhibit lower similarity than the previous two
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Figure 2: Validation of the four observations. ↑ / ↓ indicate that higher / lower values correspond to
greater similarity.

cases, validating Observation 3. Finally, the distributions for “Negative, Base, Step1X-Edit” gener-
ally show the lowest similarity, consistent with Observation 4.

4.3 TRAINING A MULTI-CLASS CLASSIFIER

Binary classifiers achieve limited performance: A natural approach to the image-editing detec-
tion and attribution problem is to train a binary classifier that distinguishes positive from negative
base-suspicious image pairs, which we denote as EditTrack-Bin. For each candidate editing model
Mi ∈ S, we collect positive pairs (Ib, Is) where Is is derived from Ib via Mi. For each such pair,
we generate two re-edited images using a candidate editing model, compute the six similarity met-
rics between each re-edited image and Is, and aggregate them into a 12-dimensional feature vector
labeled as ‘positive.’ Repeating this process across all n candidate models yields n positive train-
ing samples per such pair. Likewise, for negative pairs (Ib, Is), where Is is not edited from Ib, we
extract the same 12 features with each candidate model, producing n negative training samples per
pair. These samples are then combined to train the binary classifier.

At test time, given a base-suspicious image pair, we repeat this process with each of the n candidate
editing models, producing n 12-dimensional test inputs x1, x2, . . . , xn, where xi corresponds to
Mi. We apply the binary classifier to each xi. If any are classified as positive, the pair is detected as
positive, and attribution is made to the model Mi∗ whose corresponding input xi∗ has the highest
probability of being positive under the classifier.

To capture variety across editing models, we can also train a separate binary classifier for each
candidate editing model (denoted as EditTrack-Bin-Multiple), aiming to distinguish positive pairs
generated by Mi from negatives. At test time, the i-th classifier evaluates the corresponding xi; if
any classifier returns positive, attribution is assigned to the model Mi∗ whose classifier outputs the
highest probability of being positive.

However, our experiments show that such binary-classifier approaches yield inaccurate detection
and attribution. The core limitation is that they treat editing models in isolation, rather than jointly
reasoning over all candidates when making a prediction.

Training an (n + 1)-class classifier: To overcome the limitations of binary classification, our
EditTrack trains an (n + 1)-class classifier. For each positive pair (Ib, Is) generated by candidate
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editing model Mi, we apply all n candidate editing models to produce two re-edited images each,
yielding 2n re-edited images. From these, we compute the six similarity scores between each re-
edited image and Is, resulting in a 12n-dimensional feature vector. We assign label i to this feature
vector, indicating that the pair was generated by Mi. Negative pairs are processed in the same
way, with their 12n-dimensional feature vectors assigned label 0. Each training sample therefore
consists of a 12n-dimensional feature vector and a label from {0, 1, . . . , n}, which together are used
to train the (n + 1)-class classifier. At test time, a base-suspicious image pair is represented as a
12n-dimensional feature vector using the same procedure, and the classifier predicts a label i∗. If
the predicted label i∗ is non-zero, the pair is deemed positive and attributed to the corresponding
editing model Mi∗ .

5 EVALUATION

5.1 EXPERIMENTAL SETUP

Editing models: We evaluate five state-of-the-art image editing models, including four diffusion-
based models (DiffEdit (Couairon et al., 2023), FireFlow (Deng et al., 2025), StableFlow (Avrahami
et al., 2025), and Step1X-Edit (Liu et al., 2025)) and one autoregressive-based model (EditAR (Mu
et al., 2025)). All editing models are implemented using their official repositories and default con-
figurations. All experiments are conducted on a single 80GB A100 GPU.

Training and testing datasets: We construct datasets containing both positive pairs and negative
pairs for training and testing. Each pair consists of a base image and a suspicious image. Table 1
summarizes the datasets. We use all training datasets to train the classifier and evaluate performance
separately on each testing dataset.

Table 1: Summary of our datasets.

Dataset #Train #Train in total #Test

Positive pairs Flickr2K 60 per model 600 50 per model
WikiArt 60 per model 50 per model

Negative pairs

MSCOCO 200

600

100
Artwork 200 100
Inter4K 200 100

Unrelated - 100

A positive pair means that the suspi-
cious image is generated by editing
the base image using an image edit-
ing model. For the training dataset,
we randomly sample (1) 60 images
from Flickr2K (Yang, 2024) and (2)
60 images from WikiArt (Hugging-
Face, 2022), yielding 120 base im-
ages. For each base image, we manu-
ally design an editing prompt, which
is then used by the five different image editing models to generate the corresponding suspicious
images. Some image pairs and corresponding editing prompts are provided in Figure 4 and 5 in the
Appendix. The testing dataset is constructed in the same way, using another 50 base images from
Flickr2K and WikiArt, respectively.

A negative pair means that the suspicious image is not edited from the base image. For training,
we construct three datasets, in which each base-suspicious image pair depicts similar objects with
closely related semantics: (1) images from the same category in MSCOCO (Lin et al., 2014); (2)
artwork images with similar styles from Artvee (Artvee, 2024) and the Van Gogh Museum (Gogh,
2024); (3) two frames of a video from Inter4K (Stergiou & Poppe, 2022). Each dataset contains
200 negative base-suspicious pairs. For testing, we construct an additional 100 negative pairs from
each dataset, where the suspicious images are not AI-edited. To further evaluate cases in which the
suspicious image is AI-edited but unrelated to the base image, we create (4) an unrelated dataset
consisting of 100 negative pairs. In this dataset, suspicious images are randomly sampled from the
testing positive pairs, while base images are randomly sampled from the testing negative pairs.

Compared methods: We first construct baselines using state-of-the-art vision-language models
(VLMs). Specifically, we prompt QWen2.5-VL (Bai et al., 2025) with a base-suspicious image pair
to determine whether the suspicious image is edited from the base image. To enable attribution, we
additionally provide an example pair for each candidate editing model and ask QWen to attribute
the suspicious image through its in-context learning capability, denoted as QWen-Prompting. We
also fine-tune QWen on our training datasets and evaluate the fine-tuned model on both detection
and attribution tasks, denoted as QWen-FT. Similarly, we fine-tune LLaVa-v1.5-7B (HuggingFace,

7
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Table 2: Detection accuracy results across methods and datasets.

Method Positive Pairs Negative Pairs Overall Acc.
Flickr2K WikiArt MSCOCO Artwork Inter4K Unrelated

QWen-Prompting 0.084 0.108 1.000 1.000 0.930 1.000 0.490
QWen-FT 0.052 0.040 1.000 1.000 1.000 1.000 0.470
LLaVa-FT 0.972 0.984 0.120 0.030 0.090 0.010 0.571
WAM 0.652 0.664 0.960 1.000 0.960 0.970 0.798
GRE 0.532 0.680 0.790 0.710 0.900 0.370 0.644
EditTrack-Bin 0.996 0.992 0.970 0.590 0.610 1.000 0.904
EditTrack-Bin-Multiple 0.976 0.940 1.000 0.990 0.950 1.000 0.970
EditTrack 0.984 0.972 1.000 0.980 0.980 1.000 0.983

2023), denoted as LLaVa-FT. However, since our prompting setup requires 12 input images for attri-
bution, which exceeds LLaVa’s maximum token limit, evaluating LLaVa-Prompting is not feasible.
In addition, we extend the state-of-the-art watermarking method WAM (Sander et al., 2025) as a
baseline for the detection task by embedding a watermark into base images and predicting a pair to
be positive if the bitwise similarity between the watermark extracted from the suspicious image and
the ground-truth watermark exceeds a threshold (0.5 in our experiments). We also extend GRE (Sun
et al., 2024), a state-of-the-art method for detecting and attributing AI-generated or edited images,
to our setting. In this case, we train an (n+ 1)-class ResNet-18 classifier using our labeled positive
and negative suspicious images as the training data. Finally, we include the two additional variants
of our approach described in Section 4.3, denoted as EditTrack-Bin and EditTrack-Bin-Multiple.

Evaluation metrics: We report both detection accuracy and attribution accuracy. For testing pos-
itive pairs, detection accuracy is defined as the fraction of pairs in which the suspicious image is
correctly identified as edited from the base image, while for testing negative pairs it is defined as the
fraction correctly classified as not edited from the base image. Attribution accuracy for testing posi-
tive pairs is defined as the fraction of pairs in which the suspicious image is correctly attributed to the
editing model that generated it. Note that attribution accuracy for negative pairs is the same as de-
tection accuracy, and thus we omit it for negative pairs. We also report overall detection/attribution
accuracy, computed as the average accuracy of correctly detecting or attributing each pair across all
testing positive and negative datasets.

Parameter settings: Unless otherwise specified, we use the default settings and hyperparameters
for all image editing models and baseline methods. In our EditTrack, the multi-class classifier is
implemented as a three-layer MLP, with the hidden layer dimension set to 30, trained for 1,000
epochs using a learning rate of 0.001, a batch size of 16, and a dropout rate of 0.1.

5.2 MAIN RESULTS

Table 3: Attribution accuracy results across methods
and datasets. “-” indicates this method is not applicable
for the attribution task.

Method Positive Pairs Overall Acc.
Flickr2K WikiArt

QWen-Prompting 0.004 0.008 0.440
QWen-FT 0.000 0.000 0.444
LLaVa-FT 0.224 0.208 0.148
WAM - - -
GRE 0.332 0.428 0.519
EditTrack-Bin 0.436 0.356 0.572
EditTrack-Bin-Multiple 0.864 0.812 0.903
EditTrack 0.976 0.952 0.976

Table 2 and 3 report the detection and at-
tribution results of all methods across dif-
ferent datasets. A detailed breakdown of
each method’s performance across edit-
ing models is provided in Tables 5–11 in
the Appendix. First, we observe that di-
rectly prompting or fine-tuning pre-trained
VLMs yields limited performance on the
image-editing detection and attribution
task. Specifically, QWen-Prompting per-
forms poorly on positive pairs, achieving
only about 10% detection accuracy and at-
tribution accuracy close to 0. QWen-FT
also fails to accurately detect and attribute
positive pairs, even after fine-tuning on our
training datasets; and LLaVa-FT inaccurately detects and attributes a large portion of negative pairs.

Second, adapting existing AI-generated image detection and attribution methods to our setting also
yields limited performance. Specifically, WAM shows partial robustness against several diffusion-
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based editing models but is completely ineffective against the autoregressive editing model EditAR,
leading to low detection accuracy on positive pairs. GRE exhibits poor performance across both pos-
itive and negative pairs because it overlooks the unique characteristics introduced during the editing
process as well as the relationship between the suspicious image and its corresponding base image.
Moreover, GRE particularly fails on our unrelated dataset. Third, EditTrack-Bin and EditTrack-
Bin-Multiple achieve reasonably good detection performance but remain suboptimal since they treat
editing models in isolation; when applied to the more challenging attribution task, they become in-
creasingly inaccurate. Overall, we find that EditTrack consistently and substantially outperforms all
baselines, achieving high detection and attribution accuracy across both positive and negative pairs.

5.3 ABLATION STUDIES

Impact of re-edited images: The features used in EditTrack are derived from two groups of re-
edited images: re-editing the base images and re-editing the suspicious images. Figure 3a illustrates
the contribution of each group by reporting overall detection and attribution accuracy. “Suspicious-
only” indicates that only features from re-edited suspicious images are used, “Base-only” indicates
that only features from re-edited base images are used, and “Combined” indicates that features from
both groups are used, which is the default configuration of EditTrack. The results demonstrate that
both sources of features provide complementary information, and leveraging them together yields
the best performance for EditTrack.

Detection Attribution0.0

0.2

0.4

0.6

0.8

1.0

O
ve

ra
ll 

Ac
cu

ra
cy

Suspicious-only
Base-only
Combined

(a) Re-edited Images

1 2 3 4 5 6
Number of Used Similarity Metrics

0.75

0.80

0.85

0.90

0.95

O
ve

ra
ll 

Ac
cu

ra
cy

Detection
Attribution

(b) Similarity Metrics

Figure 3: Ablation studies.

Impact of similarity metrics: Our Edit-
Track employs six similarity metrics: Bhat-
tacharyya distance, intersection score, LPIPS,
CLIP score, pHash, and structural distance.
Figure 3b illustrates the impact of incremen-
tally adding each metric to EditTrack by report-
ing overall detection and attribution accuracy.
The “Number of Used Similarity Metrics” de-
notes that only the first k metrics are used to
train and test the classifier. The results show
that each additional metric contributes to im-
proving the performance of EditTrack.

Attribution to an unseen editing model: In this scenario, we evaluate EditTrack when positive
pairs can be created by an editing model that was not included during training. Specifically, we
consider four candidate editing models as seen during training, while treating the fifth model (Fire-
Flow) as unseen; the training dataset excludes positive pairs from FireFlow. Accordingly, we train a
5-class classifier using EditTrack. To enable attribution to an unseen editing model, we introduce a
threshold τ for the ‘non-edited’ label: given a base–suspicious image pair, if the ‘non-edited’ label
has the highest probability, the pair is classified as ‘non-edited’ only if this probability exceeds τ ;
otherwise, it is classified as ‘edited by unseen model.’ We reserve 20% of the training negative pairs
as a validation set and select τ such that the detection accuracy on these validation negative pairs
is 0.9. We then evaluate detection and attribution performance on our test datasets. As shown in
Table 4 in the Appendix, even for an unseen model, EditTrack achieves a detection accuracy of 0.91
and an attribution accuracy of 0.83.

6 CONCLUSION AND FUTURE WORK

In this work, we propose EditTrack, the first framework for detecting and attributing AI-assisted
image editing. Our approach shows that capturing the artifacts introduced during the editing pro-
cess through a re-editing procedure enables accurate detection of whether a suspicious image is
derived from a base image via an editing model, and further allows attribution to the specific model
responsible. This re-editing-based method outperforms existing AI-generated image detection and
attribution techniques when adapted to this setting. An interesting direction for future work is to
extend EditTrack to text and video, investigating the feasibility of detecting and attributing whether
a suspicious text or video has been edited from a base version using AI models.

9
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7 ETHICS STATEMENT

Our work, EditTrack, aims to address the growing concerns surrounding the misuse of AI-assisted
image editing, specifically copyright infringement and the proliferation of deepfakes. While our
framework provides a powerful tool for detection and attribution, which can be beneficial for artists
and forensic analysts, we acknowledge that its capabilities could also be misused. For instance, it
might be adapted to trace the origin of benign edits, potentially infringing on user privacy. We have
carefully considered these ethical implications and designed EditTrack to operate without requiring
access to the original editing prompts or model parameters, thereby limiting its data collection re-
quirements and protecting user privacy. Our method is a post-hoc mechanism intended for scenarios
where edited images have already been produced, providing a way to mitigate harm after the fact
rather than preemptively preventing creative use of these tools. We commit to making our work
available in a manner that promotes responsible use and discourages malicious applications.

8 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed descriptions of our methodology, experimental setup,
and evaluation. The EditTrack framework is presented in Section 4, covering the four key obser-
vations, the re-editing procedure, and the selection of similarity metrics and classifier. Section 5.1
describes the experimental setup, including the five open-source AI editing models, the construction
of training and testing datasets, and the hyperparameter settings for our classifier. The evaluation
metrics and results across all methods and datasets are reported in Tables 2 and 3, with additional
results provided in the Appendix. Our results can be reproduced using this information together
with publicly available resources. We will also release our code and datasets.
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Table 4: Detailed attribution results of EditTrack when testing dataset includes an unseen editing
model (FireFlow). Each row shows results for an editing model, which is used for producing the
suspicious images in positive pairs. Each column indicates an output class of attribution. “Non-edit”
indicates the suspicious image in the pair was not edited from the base image. “Unseen” indicates
the suspicious image in the pair was edited from the base image using an unseen model.

Editing Model DiffEdit StableFlow Step1X-Edit EditAR Non-edited Unseen

DiffEdit 1.00 0 0 0 0 0

StableFlow 0 0.90 0.08 0 0 0.02

Step1X-Edit 0.03 0 0.81 0.01 0.02 0.13

EditAR 0 0 0 0.98 0.01 0.01

Negative Pairs 0 0 0.0075 0 0.7825 0.21

FireFlow (Unseen) 0 0 0.02 0.06 0.09 0.83

Table 5: Detailed attribution results of EditTrack. Each cell represents the fraction of positive pairs
generated by an editing model or negative pairs (rows) that are attributed to an editing model or
classified as non-edited (columns).

Editing Model DiffEdit FireFlow StableFlow Step1X-Edit EditAR Non-edited

DiffEdit 1.00 0 0 0 0 0

FireFlow 0 0.99 0 0 0 0.01

StableFlow 0 0.01 0.95 0.04 0.01 0

Step1X-Edit 0 0 0.01 0.88 0.01 0.1

EditAR 0 0 0 0 1 0

Negative Pairs 0 0.0025 0 0.0075 0 0.99

Table 6: Detailed attribution results of QWen-Prompting.

Editing Model DiffEdit FireFlow StableFlow Step1X-Edit EditAR Non-edited

DiffEdit 0.01 0.01 0 0 0.16 0.82

FireFlow 0 0 0 0 0.01 0.99

StableFlow 0 0.01 0 0 0.04 0.95

Step1X-Edit 0 0.05 0 0 0.16 0.79

EditAR 0 0.01 0 0 0.02 0.97

Negative Pairs 0 0.01 0 0 0.0075 0.9825

A USE OF LLMS

We use large language models to aid or polish writing at the sentence level, such as fixing grammar
and re-wording sentences. LLMs were not involved in designing methods, conducting experiments,
or drawing conclusions. No sensitive or proprietary data were shared with LLMs.
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Table 7: Detailed attribution results of QWen-FT.

Editing Model DiffEdit FireFlow StableFlow Step1X-Edit EditAR Non-edited

DiffEdit 0.01 0.01 0 0 0.16 0.82

FireFlow 0 0 0 0 0.01 0.99

StableFlow 0 0.01 0 0 0.04 0.95

Step1X-Edit 0 0.05 0 0 0.16 0.79

EditAR 0 0.01 0 0 0.02 0.97

Negative Pairs 0 0.01 0 0 0.0075 0.9825

Table 8: Detailed attribution results of LLaVa-FT.

Editing Model DiffEdit FireFlow StableFlow Step1X-Edit EditAR Non-edited

DiffEdit 0.23 0.22 0.09 0.28 0.16 0.02

FireFlow 0.16 0.25 0.16 0.23 0.18 0.02

StableFlow 0.21 0.16 0.16 0.28 0.16 0.03

Step1X-Edit 0.23 0.23 0.08 0.26 0.18 0.02

EditAR 0.2 0.17 0.21 0.22 0.18 0.02

Negative Pairs 0.22 0.195 0.0975 0.2475 0.1775 0.0625

Table 9: Detailed attribution results of GRE.

Editing Model DiffEdit FireFlow StableFlow Step1X-Edit EditAR Non-edited

DiffEdit 0.54 0.02 0.03 0.04 0.02 0.35

FireFlow 0.07 0.44 0.02 0.06 0.01 0.4

StableFlow 0.07 0.02 0.51 0.03 0.02 0.35

Step1X-Edit 0.13 0.14 0.07 0.12 0.07 0.47

EditAR 0.14 0.11 0.06 0 0.29 0.4

Negative Pairs 0.06 0.1 0.085 0.03 0.0325 0.6925

Table 10: Detailed attribution results of EditTrack-Bin.

Editing Model DiffEdit FireFlow StableFlow Step1X-Edit EditAR Non-edited

DiffEdit 0.45 0.28 0.05 0.21 0.01 0

FireFlow 0.29 0.40 0.01 0.18 0.12 0

StableFlow 0.51 0.22 0.08 0.16 0.03 0

Step1X-Edit 0.32 0.22 0.02 0.36 0.05 0.03

EditAR 0.13 0.09 0.01 0.08 0.69 0

Negative Pairs 0.045 0.07 0.0075 0.04 0.045 0.7925
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Table 11: Detailed attribution results of EditTrack-Bin-Multiple.

Editing Model DiffEdit FireFlow StableFlow Step1X-Edit EditAR Non-edited

DiffEdit 0.93 0 0 0 0.07 0

FireFlow 0 0.92 0 0.01 0.01 0.06

StableFlow 0.01 0.07 0.72 0.05 0.14 0.01

Step1X-Edit 0.02 0.11 0.06 0.64 0.05 0.12

EditAR 0 0 0 0 0.98 0.02

Negative Pairs 0 0.0025 0.0025 0.01 0 0.985

(a) Flickr2K (b) WikiArt (c) MSCOCO (d) Artwork (e) Inter4K (f) Unrelated

Figure 4: Image pair samples from different datasets. The first row shows base images, and the
second row shows their corresponding suspicious images.

(a) Base Image (b) DiffEdit (c) FireFlow (d) StableFlow (e) Step1X-Edit (f) EditAR

Figure 5: Image samples generated using different editing models. The first column shows the base
images. The editing prompts are: first row-“Do the image editing task; origin prompt: two elephants
playfully interact while splashing through a muddy waterhole in a lush, green landscape, editing
prompt: two rhinoceros playfully interact while splashing through a muddy waterhole in a lush,
green landscape”; second row-“Do the image editing task; origin prompt: a space shuttle launches
dramatically amidst billowing smoke and towering clouds against a clear sky, editing prompt: a
helicopter rises swiftly amidst swirling dust and towering clouds against a clear sky”.
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