
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING TO REASON EFFICIENTLY WITH DIS-
COUNTED REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large reasoning models (LRMs) often consume excessive tokens, inflating com-
putational cost and latency. We challenge the assumption that longer responses
improve accuracy. By penalizing reasoning tokens using a discounted reinforce-
ment learning setup (interpretable as a small token cost) and analyzing Blackwell
optimality in restricted policy classes, we encourage concise yet accurate reason-
ing. Experiments confirm our theoretical results that this approach shortens chains
of thought while preserving accuracy.

1 INTRODUCTION

Large reasoning models (LRMs) increasingly solve math and code problems by emitting interme-
diate reasoning tokens before a final answer (Jaech et al., 2024). Reinforcement learning (RL) post
training (Sutton & Barto, 2018) improves accuracy but can lengthen responses (Liu et al., 2025a),
raising inference cost and latency. Our desire is to train LRMs that reason effectively and efficiently,
more concise reasoning with no loss in accuracy.

Longer chains of thought (Wei et al., 2022), are not free: they inflate compute and memory (quadratic
attention and a growing key value (KV) cache), slow inference and reduce serving throughput.
Moreover, the role of length in accuracy is contested (Shao et al., 2024; Liu et al., 2025b; Lu et al.,
2025; Fatemi et al., 2025) with many claiming there is an inherent tradeoff between length and accu-
racy. In this work we show that, up to a regime determined by the model class and problem instance,
there is no tradeoff between accuracy and path length. Namely, one can reduce response length up to
a certain instance dependent threshold without seeing a drop in accuracy. After the response length
dips below this threshold, then accuracy begins to dip.

We model verifier based reasoning as a finite horizon Markov decision process (MDP) (Puterman,
2014) with a binary terminal reward. We then train with a discount factor γ < 1. This design is mo-
tivated by Blackwell optimality (Blackwell, 1962; Puterman, 2014; Grand-Clément & Petrik, 2023):
near γ = 1, discounting should preserve accuracy while preferring shorter successful trajectories.
In practice, we only apply discounting to the environment (correctness) reward. The amount of
discounting depends only on reasoning length, leaving intrinsic formatting/shaping rewards undis-
counted. Practically, we discount only reasoning tokens, regularize with a KL penalty to a moving
reference policy (Peters et al., 2010) and ensure token budgets across methods are comparable for
fair comparisons. Our contributions can be summarized as follows:

• Within any fixed (possibly restricted) policy class Π, we show that Blackwell optimal poli-
cies (optimal for all γ sufficiently close to 1) simultaneously maximize undiscounted suc-
cess and, among accuracy maximizers, minimize expected trajectory length. Thus, up to a
regime determined by the class, there is no tradeoff between accuracy and path length. Our
result calls into question the claim that there is a tradeoff between accuracy and response
length and establishes that one can shorten response length up to an instance dependent
quantity as hypothesized by Lee et al. (2025)

• For finite Π, a Blackwell factor γbw < 1 exists such that γ optimal policies are constant for
all γ ∈ (γbw, 1) and equal the Blackwell optimal set. We bound how close to 1 the discount
must be to maintain accuracy while shortening average response length. This clarifies how
to choose γ when the deployment class is restricted.
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• Using group relative policy optimization (GRPO) (Shao et al., 2024) with the discounted
objective, we substantially reduce mean response length on GSM8K, MATH and addi-
tional math benchmarks while matching the undiscounted pass@1 baseline, in line with
the shortest path prediction at fixed success probability.

Efficient reasoning has been pursued via: (i) RL with length based penalties, which adds per token
or per step penalties during policy optimization (Arora & Zanette, 2025; Su & Cardie, 2025; Ling
et al., 2025; Xiang et al., 2025); (ii) curated data approaches, which fine tune on variable length
or compressed traces to internalize concise reasoning (Fatemi et al., 2025; Hammoud et al., 2025;
Qiao et al., 2025; Lu et al., 2025; Zhao et al., 2025; Shrivastava et al., 2025; Dai et al., 2025);
and (iii) prompt control, which prompts the model to reason more concisely Aggarwal & Welleck
(2025); Dumitru et al. (2025); Wu et al. (2025). We propose and analyze plain old discounting
as a principled, instance aware mechanism. In finite horizon MDPs with binary terminal reward,
maximizing the discounted correctness reward and minimizing expected path length coincide as
the discount factor approaches one. Moreover, a small per step negative reward in this setting is
equivalent to discounting (Bertsekas, 2012). See Sui et al. (2025) for a broader overview of efficient
reasoning methods.

2 SETTING AND NOTATION

We model reasoning as a finite horizon discounted Markov decision process (MDP) which is given
by the tuple M = (S,A, P, r,H, γ, µ). Here S andA are finite state and action spaces, P : S×A →
∆(S) is the transition kernel, r : S × A → R is a bounded reward (verifier), H ∈ N is the horizon,
γ ∈ [0, 1) is the discount factor,1 and µ ∈ ∆(S) is the distribution over initial states (questions)
where ∆(S) is the set of probability distributions over states.

A (possibly nonstationary) policy π = (πt)
H
t=1 consists of maps πt(· | s) ∈ ∆(A) for each t. Fixing

the start state, s, a policy (or language model) induces a distribution P π,s over trajectories
S1, A1, R1, . . . , SH , AH , RH , SH+1, At ∼ πt(· | St), Rt = r(St, At), St+1 ∼ P (St, At).

The (discounted) state value function of π is

vπγ (s) = Eπ,s

[
H∑
t=1

γt−1Rt

]
,

where Eπ,s is the expectation corresponding to P π,s. The µ weighted return is

Jγ(π) =

∫
vπγ (s)µ(ds).

2.1 LANGUAGE MODELING

In language modeling, actions are vocabulary tokens and states are token sequences. The next state
is the current sequence with the chosen token appended:

St+1 = P (St, At) = StAt

where we write xy for the concatenation of x and y. The special action eos ends the episode and
moves to an absorbing terminal state. After taking eos, the process remains in an absorbing state with
zero reward for the remainder of the horizon. If eos is not emitted by time H , we deterministically
transition to a terminal state that triggers the verifier.

In RL with verifiable rewards (RLVR) (Lambert et al., 2024), the verifier returns 1 if and only if the
sequence at emission of eos contains a correct final answer and 0 otherwise:

r(St, eos) = I{St contains a correct answer}, r(St, a) = 0 for a ̸= eos.
Under this reward, the undiscounted finite horizon return equals the success probability. We there-
fore define the (Pass@1) accuracy of π as

Acc(π) := J1(π) =

∫
P π,s

(
correct within H

)
µ(ds),

i.e., the fraction of prompts (under µ) for which the first generated solution is verified correct.
1We use γ ∈ [0, 1) for analysis; when defining accuracy we also consider γ = 1 in finite horizon.
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Figure 1: A finite-horizon MDP illustrating the conflict between success probability and discounting. Green
(g) indicates the goal state (r = 1), while Red (f ) indicates failure (r = 0).

3 BLACKWELL OPTIMALITY AND OUR MAIN THEORETICAL RESULTS

To formalize maximizing accuracy while minimizing mean response length, we use a stronger notion
of optimality than is standard in reinforcement learning: the notion introduced by Blackwell (1962),
henceforth Blackwell optimality (Puterman, 2014; Grand-Clément & Petrik, 2023). A policy is
Blackwell optimal if it is optimal for all discount factors sufficiently close to one. This is relevant
because the optimal policy in RLVR at γ = 1 maximizes accuracy (formally, the average reward
criterion), while—as we show below—the optimal policy for γ < 1 is the one that reaches the
goal via the shortest path. If a policy is optimal both for γ < 1 (near one) and for γ = 1, then it
simultaneously maximizes accuracy and minimizes mean response length. The missing proofs of all
our results can be found in our appendix.

Why Blackwell optimality? Discounting with γ < 1 breaks ties between equally accurate poli-
cies by preferring earlier success, but if γ is not sufficiently close to 1 it may instead prefer a shorter
yet less accurate policy. The following example, with a restricted stochastic three-policy class, illus-
trates both effects. We consider restricted stochastic policy classes as this is a simplified model of
softmax policy classes which are standard when analyzing policy gradient methods (Sutton & Barto,
2018).

Proposition 3.1. Fix p ∈ (0, 1) and 0 < q1 < q2 < 1, and consider the MDP in Figure 1 with
horizon H ≥ 4 and deterministic initial state s0. Let the restricted policy class be Π = {π1, π2, π3},
where at s0: for i ∈ {1, 2}, πi selects a3 with probability qi and a2 with probability 1− qi, and π3

selects a1 with probability p and a4 with probability 1 − p. Let τ(π) denote the time step at which
aend is taken under policy π. Then

J1(π1) = J1(π2) = 1, E[τ(πi)] = 3 + qi (i = 1, 2), J1(π3) = p , τ(π3) = 2 .

For all γ ∈ [0, 1),

Jγ(πi) = (1− qi)γ
2 + qiγ

3 (i = 1, 2), Jγ(π3) = p γ .

Thus there exists a threshold γ′ ∈ (p, 1) such that for every γ > γ′, π1 is both an optimal policy in
Π and a shortest path policy. This example motivates Blackwell optimality: it selects the shortest
policy among success maximizers (as γ ↑ 1), while excluding policies that become optimal only by
sacrificing success probability at smaller γ.

We establish that, under mild assumptions, such a shortest path policy exists in the setting commonly
considered for post training language models on reasoning problems. Moreover, adapting the results
of Grand-Clément & Petrik (2023), we show that finding a Blackwell optimal policy reduces to
solving an ordinary discounted MDP with an appropriate discount factor. We now introduce the
formal definition of a Blackwell optimal policy. Recall that we assume finite horizon H <∞, finite
state and action sets, and bounded rewards.

Definition 3.2. Given γ ∈ [0, 1), a policy π ∈ Π is γ discount optimal if Jγ(π) ≥ Jγ(π
′) for all

π′ ∈ Π. We call Π⋆
γ ⊂ Π the set of γ discount optimal policies.

Definition 3.3 (Blackwell (1962)). A policy π is Blackwell optimal if there exists a γ ∈ [0, 1) such
that π ∈ Π⋆

γ′ for all γ′ ∈ [γ, 1). We call Π⋆
bw the set of Blackwell optimal policies.

3
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Note that our definition of optimality is with respect to both an MDP instance M and a policy class
Π, whereas the usual notions of optimality (and the existence of an optimal policy) (Puterman, 2014;
Bertsekas, 2019; Szepesvári, 2022) depend only on the MDP M .

3.1 MAIN THEORETICAL RESULTS

We adapt classical Blackwell arguments (Blackwell, 1962; Zwick & Paterson, 1996; Puterman,
2014; Grand-Clément & Petrik, 2023) to the case where the admissible class is restricted.

Assumption 3.4 (Finite policy class). The admissible class Π is finite: |Π| <∞.

Theorem 3.5. Given a finite horizon MDP M , under Assumption 3.4, there exists γ′ ∈ [0, 1) and a
nonempty set Π⋆

bw ⊆ Π such that for all γ ∈ (γ′, 1),

argmax
π∈Π

Jγ(π) = Π⋆
bw.

Theorem 3.5 guarantees that when considering a restricted finite policy class of softmax distribu-
tions, a Blackwell optimal policy is guaranteed to exist. This establishes that there exists a policy
that is discounted optimal for all γ sufficiently close to 1; hence it is Blackwell optimal (and, in
particular, average optimal). We now introduce the Blackwell discount factor, first introduced by
Grand-Clément & Petrik (2023).

Definition 3.6. The Blackwell discount factor is

γbw := inf
{
γ ∈ [0, 1) : Π⋆

γ′ = Π⋆
bw ∀ γ′ ∈ (γ, 1)

}
,

where Π⋆
γ = argmaxπ∈Π Jγ(π).

At a high level, the Blackwell discount factor γbw guarantees that any policy that is discount optimal
for γ ∈ [γbw, 1) is also Blackwell optimal. This reduces finding a Blackwell optimal policy to
solving for a discount optimal policy. We now state a result that shows that for an arbitrary finite
restricted policy class Π, the Blackwell discount factor exists.

Lemma 3.7. Given a finite horizon MDP M , under Assumption 3.4, the Blackwell factor γbw exists
and satisfies γbw < 1.

Proof. Theorem 3.5 ensures that Π⋆
γ is constant for all γ sufficiently close to 1, so the infimum in

Definition 3.6 is well defined and strictly less than 1.

The next lemma establishes that for finite horizon problems, a Blackwell optimal policy must also
be optimal for the undiscounted objective.

Lemma 3.8. A Blackwell optimal policy is also optimal in the undiscounted problem.

Proof. Suppose π is Blackwell optimal: π ∈ Π⋆
bw. Then for any policy π′ we have Jγ(π)−Jγ(π′) ≥

0 for all γ ∈ [γbw, 1). Therefore since J1(π) is well defined for finite horizon MDPs,

lim
γ→1

Jγ(π)− Jγ(π
′) ≥ 0 .

We also know that Jγ(π) − Jγ(π
′) is a polynomial and therefore continuous. Thus, it must be that

Jγ=1(π)− Jγ=1(π
′) ≥ 0, i.e. π is also optimal in the undiscounted problem.

Now we assume the reward function in our finite horizon MDP M is a deterministic binary verifier
rewards.

Assumption 3.9. There exists a termination action aterm ∈ A (e.g., eos), an absorbing state sabs ∈
S, and a goal set G ⊆ S such that for all s ∈ S:

1. r(s, a) = 0 for all a ̸= aterm;

2. taking aterm transitions to the absorbing state, i.e. P (sabs | s, aterm) = 1;

4
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3. the terminal reward is deterministic and binary, r(s, aterm) = I{s ∈ G} ∈ {0, 1}. More-
over, the absorbing state yields no further reward and transitions to itself: for all a ∈ A,

r(sabs, a) = 0, P (sabs | sabs, a) = 1.

Let τ ≤ H be the (first) absorption time. Define the success probability and (conditional) successful
path length

p(π) = Pπ,µ(success within H), L(π) = Eπ,µ[τ | success],

with the convention that L(π) is only evaluated when p(π) > 0. Call π a shortest path policy if it
maximizes p(π) and, among all maximizers of p, minimizes L(π). If p⋆ := maxπ p(π) = 0, the
shortest path condition reduces to the first criterion.

Theorem 3.10. In finite-horizon MDPs with a deterministic binary terminal verifier reward (As-
sumption 3.9), every Blackwell optimal policy is a shortest path policy:

Π⋆
bw ⊆ argmin

π∈Πmax p

L(π), where Πmax p = argmax
π∈Π

p(π).

Theorem 3.10 establishes the main result of this paper: Blackwell optimal policies are both accuracy
maximizing and have the shortest mean response length within the class of accuracy maximizing
(γ = 1) policies. Combined with Theorem 3.5, we obtain that a Blackwell optimal policy exists
for finite restricted policy classes. While the theoretical results of this section hold for discounting,
similar conclusions can be drawn for methods that assign a negative reward proportional to the
response length via showing this negative length penalty in finite horizon MDPs with deterministic
binary verifier rewards is equivalent to discounting (Bertsekas, 2012). Thus our results also imply
methods that assign negative rewards proportional to the length (Arora & Zanette, 2025; Liu et al.,
2025c; Xiang et al., 2025; Su & Cardie, 2025; She et al., 2025; Dumitru et al., 2025) also enjoy
similar guarantees when correctly implemented.

In order to see why Theorem 3.10 holds, we give a short proof sketch below. Taking the Taylor
expansion, Lemma A.15, of Jγ(π⋆)− Jγ(π) we get that their difference is approximately

p(π⋆)− p(π)− (1− γ)(p(π⋆)(L(π⋆)− 1)− p(π)(L(π)− 1)) +O
(
(1− γ)2

)
.

Since π⋆ is a Blackwell optimal policy it must be optimal for all γ arbitrarily close to one. Thus if
some π had p(π) > p(π⋆), the leading term p(π⋆) − p(π) < 0 would make Jγ(π

⋆) − Jγ(π) < 0
for γ close enough to 1, which contradicts the definition of Blackwell optimality (Definition 3.3).
Therefore π⋆ ∈ argmaxπ∈Π p(π). Moreover, among policies with p(π) = p(π⋆), the first term
cancels and optimality for γ → 1 forces L(π⋆) ≤ L(π) meaning π⋆ minimizes successful path
length among success maximizers.

3.2 SOFTMAX TRAINING, GREEDY DEPLOYMENT

We now consider a common setting in language model post training and deep reinforcement learn-
ing where we use softmax policies for training and then evaluate (or deploy) the greedified policy
(Haarnoja et al., 2018). This setting is important as our experimental setup will train softmax poli-
cies and evaluate their greedified variants. We fix a deterministic tie breaking rule on A and define
the greedification map on the states

Greed(π, s) ∈ argmax
a∈A

π(a | s) ∀s ∈ S .

The deployment class is the image Σ := {Greed(π, ·) : π ∈ Πs}, a subset of the deterministic
stationary policies on the finite horizon MDP M . Each σ ∈ Σ corresponds one-to-one to a deter-
ministic nonstationary policy. In our appendix, we also provide a bound on the Blackwell discount
factor of the policy class Σ for completeness, see Theorem A.12 for more details.

4 TRAINING METHODOLOGY

Guided by the theory in the previous section, we translate discounting into a practical training recipe
for efficient reasoning with language models. Our design has four components:

5
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1. Discount only the environment (correctness) reward. We apply a discount factor γ ∈
(0, 1) to the environment reward but not to the learner’s intrinsic formatting/shaping reward.
This preserves the incentive to produce well structured outputs while encouraging shorter,
more efficient chains of reasoning.

2. KL regularization to a changing reference policy. We use KL regularization against a
reference model that is updated over training, following standard practice in policy gradient
methods (Peters et al., 2010; Mei et al., 2020; Vieillard et al., 2020; Vaswani et al., 2022).
This viewpoint aligns with relative entropy policy search (Peters et al., 2010) and has also
been adopted in recent language model alignment work (Gorbatovski et al., 2025).

3. Discount only reasoning tokens. Discounting is applied exclusively to tokens used for
reasoning; we do not discount tokens required for prompt adherence, formatting, or final
answer presentation.

4. Comparable token budgets across methods. To ensure fairness, we make token budgets
across methods comparable: since discounting shortens reasoning traces, we increase the
number of rollouts for discounted methods so that the total tokens processed—and hence
training accuracy—are comparable to the undiscounted baseline.

Objective. Because both the correctness and formatting signals are computed only at the end of
the trajectory, we use a sequence level return. Let mt ∈ {0, 1} indicate whether token t is part of
the reasoning span and define the number of reasoning tokens K(τ) ≜

∑
t mt. Let re(τ) be the

environment/correctness reward and rf (τ) the formatting/shaping reward, both evaluated at the end
of the rollout τ . We discount only the environment reward as a function of reasoning length:

R(τ) = γK(τ) re(τ) + rf (τ). (1)

The learner then optimizes

ES1∼µ, τ∼π(S1) [R(τ)]− β KL (π | π′) , (2)

where π′ is a reference policy that changes over training (defined below) and β > 0 sets the regu-
larization strength. Equation (1) applies discounting only through K(τ), leaving formatting tokens
undiscounted, in accordance with the Blackwell optimality perspective.

Implementation details. (i) Reasoning mask. The indicator mt isolates tokens that perform latent
computation (chain of thought or tool use) from tokens required for formatting or final answer
emission. (ii) Reference updates. The reference π′ = π

(u)
ref is updated periodically (e.g., at epoch

or fixed step boundaries) to stabilize learning while allowing the target policy to improve. (iii)
Comparable budgets. We report results under matched token budgets; if discounted training yields
fewer reasoning tokens per generation, we increase generations to equalize total tokens seen before
comparing accuracy. We now elaborate on each component.

4.1 EXTRINSIC VERSUS INTRINSIC REWARD

Extrinsic reward comes from the environment, whereas intrinsic reward is assigned by the learner
to its own experience, usually to speed up learning or exploration (Singh et al., 2010; Barto, 2012;
Linke et al., 2020). The goal of maximizing correctness is extrinsic, since it comes from the en-
vironment. By contrast, formatting rewards that encourage the learner to emit correctly structured
reasoning and answer tags are intrinsic: they help the agent structure its reasoning and format the
answer in a way that satisfies the verifier. Only the correctness reward is necessary to learn an op-
timal policy, but intrinsic rewards can guide the learner toward behaviors beneficial for learning.
Since we care about learning Blackwell optimal policies, we discount only the extrinsic correctness
reward and leave intrinsic formatting rewards undiscounted. Popular frameworks that allow dis-
counting, such as ByteDance’s Volcano Engine Reinforcement Learning for LLMs library (Sheng
et al., 2025), discount both extrinsic and intrinsic rewards.

4.2 KL REGULARIZATION

Discounting strongly nudges the model to shorten its answers. If the policy moves too fast, it can
collapse: it learns to stop early and forgets how to reason. We add a KL penalty to a moving

6
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reference policy to keep updates small—like a trust region—so the objective changes gradually. The
reference policy is not fixed: we periodically refresh it to the current policy so the anchor follows
progress without allowing a single large drift. More specifically, every u training steps we perform

πref ← stop grad(π) ,

the details of which can be found in Gorbatovski et al. (2025) or in the TRL library (von Werra et al.,
2020).

4.3 WHAT TO DISCOUNT

Discounting is applied only to reasoning (thinking) tokens:

K(τ) =

|τ |∑
t=1

mt, mt = I{token t lies in the reasoning span}.

In our experiments, we delineate the reasoning spans using explicit tags injected by prompting (e.g.,
<reasoning> · · · </reasoning>). Tokens required for prompt adherence, formatting and
the final answer segment have mt = 0 and thus are not discounted. Empirically, discounting the
entire response slightly hurt accuracy (about a 0.5%–1.0% drop on GSM8K): the model would
occasionally drop formatting tags required by the verifier or respond with an answer that was too
short (e.g., dropping zeros from long integers).

4.4 COMPARABLE TOKENS

Discounted policies produce shorter traces, so for the same number of epochs (or passes over
prompts) they experience fewer transitions/samples than undiscounted policies. This can make dis-
counted methods look worse simply because they saw less data, not because the objective is inferior.
To keep comparisons fair, whenever this discrepancy mattered during training we adjusted the num-
ber of generations: either increasing generations for the discounted method or, when more sensible,
decreasing generations for the undiscounted method so that the total samples/tokens observed were
comparable.

In some settings, the discounted method still matched the undiscounted baseline despite seeing fewer
samples—an informative robustness result. In others, we ensured sample counts were comparable
to make a fair judgment.

Practical notes. (i) Choosing γ. In light of the Blackwell analysis, we select γ as far from 1 as
possible while preserving undiscounted training accuracy2. This can be accomplished via a sim-
ple bisection search, adjusting γ until accuracy matches (or begins to dip below) the undiscounted
training accuracy. (ii) Updating the reference policy. We choose the update frequency via abla-
tions—namely, we find the best update frequency and β that maximize the undiscounted model’s
accuracy and apply the same values to the discounted methods. (iii) No algorithmic change required.
Any policy optimization algorithm—e.g., REINFORCE (Williams, 1992) and variants (such as RE-
INFORCE Leave One Out (Ahmadian et al., 2024))—can be used with Equation (2); our contribu-
tion is training with the discounted return in Equation (1) together with the masking and budgeting
rules above. In what follows, we employ GRPO as our policy optimization method.

5 NUMERICAL EXPERIMENTS

We empirically validate our theoretical prediction that discounting incentivizes efficient reasoning in
large language models. Recall from Theorem 3.10 that in deterministic verifier MDPs, a Blackwell
optimal policy prioritizes correctness and, among equally correct strategies, minimizes expected
trajectory length. Our experiments test whether this pattern appears in practice when post training
language models using GRPO.

2In our empirical setup, we first tune the hyperparameters to maximize the performance of the undiscounted
method, then apply discounting with these hyperparameters.
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Dataset Model Undisc. Pass@1 Undisc. Len Disc. Pass@1 Disc. Len

GSM8K Qwen2.5 7B-Instruct 91.06 217.60 91.07 170.08
Llama 3 8B-Instruct 80.87 125.43 81.07 108.67

MATH Qwen2.5 7B-Instruct 64.80 491.32 64.55 384.96
Llama 3 8B-Instruct 24.48 328.43 24.75 257.73

Table 1: GSM8K and MATH: Pass@1 and mean response length (tokens) for discounted vs. undiscounted
GRPO. Averaged over 3 training seeds and 10 evaluation seeds per model; evaluation seeds are fixed across
methods for paired comparisons.

Setup. We finetune and evaluate four instruction tuned models: Qwen2.5 7B-Instruct and Qwen2.5
14B-Instruct (Yang et al., 2025), Llama 3 8B-Instruct (Grattafiori et al., 2024) and Phi-4 (Abdin
et al., 2024), post trained via GRPO with and without discounting. The undiscounted case (γ = 1)
optimizes correctness only, whereas γ < 1 additionally rewards shorter successful trajectories. We
evaluate on grade school math (GSM8K) (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021)
for Qwen2.5 7B and Llama 3 8B. We then train the larger Qwen2.5 14B and Phi-4 models on a
subset of the DeepScaleR math dataset (Luo et al., 2025) and evaluate on AMC 2023, AIME 2025,
MINERVA (Lewkowycz et al., 2022) and OLYMPIAD (He et al., 2024) to test generality. We report
Pass@1 and mean response length. Pass@1 is the fraction of problems for which the first generated
solution (one sample per prompt) is judged correct by the verifier. In our setting, the average Pass@1
is the accuracy.

Implementation and benchmarking. We use Hugging Face TRL for GRPO fine tuning and
vLLM (Kwon et al., 2023) for inference. At inference, we use greedy decoding (temperature ν = 0),
consistent with Theorem A.12. We select Qwen2.5 7B-Instruct and Llama 3 8B-Instruct as estab-
lished baselines for sanity checking our implementation and verify that our reimplementations meet
or exceed published numbers on GSM8K and MATH. For Qwen2.5 7B-Instruct we compare against
VERL’s official baselines; for Llama 3 8B-Instruct we follow Roux et al. (2025). Minor differences
may arise because we average over multiple training and evaluation seeds, whereas some prior re-
ports use single seed estimates. For GSM8K we limit completion length to 786 tokens; for MATH
to 2048 tokens; and for DeepScaleR to 4096 tokens.
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Figure 2: GSM8K accuracy (blue, left) and tokens
(orange, right) vs. discount (1− γ).

Variance control and reporting. To obtain sta-
ble estimates, we repeat each training run with 3
random training seeds and, for each trained model,
evaluate with 10 independent sampling seeds on
GSM8K and MATH; we report averages over 3×10
runs per condition and fix evaluation seeds across
methods for paired comparisons. For AMC 2023,
AIME 2025, MINERVA and OLYMPIAD, we aver-
age over five evaluation seeds per model. This mat-
ters because RL style post training and decoding in-
troduce variance (Patterson et al., 2024; He & Lab,
2025) and single seed reporting can be misleading
for both Pass@1 and length statistics. When sweep-
ing γ, we select and report a single discounted con-
figuration per model/dataset using the following cri-
terion: among all discounted settings whose train-
ing Pass@1 matches or exceeds that of the undis-
counted run, we choose the one with the shortest
mean response length. All tabled metrics are then
computed on the evaluation seeds for the selected
configuration.

Main results. Tables 1 and 2 show that, on average over seeds, discounted models match the accu-
racy of undiscounted ones while producing shorter responses. For example, on GSM8K, discounting
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Model Dataset Undisc. Pass@1 Undisc. Len Disc. Pass@1 Disc. Len

Phi-4 AMC 2023 51.00 1134.30 61.00 716.29
AIME 2025 14.00 1263.87 19.33 800.09
MINERVA 28.46 553.74 29.85 318.10
OLYMPIAD 36.91 1059.92 35.67 707.64

Qwen2.5 14B-Instruct AMC 2023 50.00 737.47 59.50 582.31
AIME 2025 10.00 891.43 10.67 699.56
MINERVA 27.21 522.14 27.43 437.31
OLYMPIAD 35.13 797.57 34.76 684.02

Table 2: Pass@1 and mean response length (tokens) for undiscounted vs. discounted GRPO. Averages over 5
evaluation seeds per model.

reduces mean response length by 22% for Qwen2.5 7B-Instruct and by 13% for Llama 3 8B-Instruct
with an insignificant change in Pass@1. This aligns with Theorem 3.10, which predicts shortest path
behavior at fixed success probability. The trend holds for the larger models evaluated on datasets
distinct from their training set. Specifically, the DeepScaleR math dataset does not contain problems
from OLYMPIAD, MINERVA, or AIME 2025; however, it does include problems from AMC prior
to 2023. Across architectures and datasets, we consistently observe that discounting enforces length
minimization subject to maintaining accuracy.

Effect of the discount factor. We run additional experiments with Qwen3 1.7B (Yang et al., 2025)
on GSM8K to examine performance as a function of γ. For these runs, we increase the completion
length limit to 1536 because outputs were frequently clipped for being too long. As shown in
Figure 2, varying γ confirms the predicted tradeoff: smaller γ reliably shortens responses but can
reduce accuracy. Theory explains this: for γ close to 1, policies first maximize correctness; overly
aggressive discounting shifts probability toward shorter trajectories even when that harms success.

6 CONCLUSIONS AND FUTURE WORK

We studied efficient reasoning in verifier based MDPs through the lens of Blackwell optimality
(Blackwell, 1962; Grand-Clément & Petrik, 2023). Within restricted policy classes, we showed that
for γ sufficiently close to 1 there exists a Blackwell optimal policy that maximizes undiscounted suc-
cess and, among accuracy maximizers, minimizes expected trajectory length. For softmax training
with greedy deployment, the induced deterministic deployment class is finite and admits a bounded
Blackwell discount factor; we provide an explicit upper bound on how close to 1 the discount must
be. Guided by this theory, we proposed a practical recipe: discount only the environment reward as a
function of reasoning tokens, keep intrinsic formatting rewards undiscounted, add KL regularization
to a moving reference policy (Peters et al., 2010) and ensure comparable token budgets. Empiri-
cally, discounted GRPO matches Pass@1 accuracy while substantially shortening responses across
math benchmarks. Our theoretical results extend to methods that introduce small per token penalties
in finite horizon MDPs with binary rewards (verifiers) (Bertsekas, 2012), suggesting that several
length penalty methods (Arora & Zanette, 2025; Su & Cardie, 2025; Xiang et al., 2025) recover the
same accuracy then length ordering in the near undiscounted regime when properly implemented.
This further sheds light on adapting to the inherent token complexity of a given question (Lee et al.,
2025): choosing γ within the Blackwell region steers the learner toward the shortest successful tra-
jectories allowed by the class without sacrificing accuracy. Some of our empirical results suggest
that discounted methods can achieve higher accuracy with shorter reasoning traces. An interesting
avenue for future work is to investigate whether shorter, more compressed reasoning improves gen-
eralization on reasoning tasks. As argued in Hutter (2007), compression (or prediction) is linked to
improved generalization; whether this extends to compressed reasoning traces remains open. An-
other direction is to study whether methods that promote longer reasoning (Liu et al., 2025b) can
be combined with methods that shorten reasoning: longer reasoning promotes path finding, while
shorter reasoning promotes path compression. A pipeline that first uses longer traces to discover
strategies and then compresses them (akin to distillation (Hinton et al., 2015)) may yield stronger
reasoning policies.
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A OMITTED PROOFS

Proposition A.1. Fix p ∈ (0, 1) and 0 < q1 < q2 < 1, and consider the MDP in Figure 1 with
horizon H ≥ 4 and deterministic initial state s0. Let the restricted policy class be Π = {π1, π2, π3},
where at s0: for i ∈ {1, 2}, πi selects a3 with probability qi and a2 with probability 1− qi, and π3

selects a1 with probability p and a4 with probability 1 − p. Let τ(π) denote the time step at which
aend is taken under policy π. Then

J1(π1) = J1(π2) = 1, E[τ(πi)] = 3 + qi (i = 1, 2), J1(π3) = p , τ(π3) = 2 .

For all γ ∈ [0, 1),

Jγ(πi) = (1− qi)γ
2 + qiγ

3 (i = 1, 2), Jγ(π3) = p γ .

Thus there exists a threshold γ′ ∈ (p, 1) such that for every γ > γ′, π1 is both an optimal policy in
Π and a shortest path policy.

Proof. Under πi for i ∈ {1, 2}, the process terminates successfully with reward 1 at time τ = 3 if a2
is chosen (probability 1− qi) and at time τ = 4 if a3 is chosen (probability qi). Hence J1(πi) = 1,
E[τ(πi)] = 3(1− qi) + 4qi = 3 + qi, and

Jγ(πi) = (1− qi)γ
2 + qiγ

3 .

Under π3, aend is taken at τ(π3) = 2 and yields reward 1 iff a1 was chosen at t = 1, which occurs
with probability p, hence Jγ(π3) = p γ and J1(π3) = p.

For γ < 1,

Jγ(π1)− Jγ(π2) =
[
(1− q1)γ

2 + q1γ
3
]
−
[
(1− q2)γ

2 + q2γ
3
]
= (q2 − q1) γ

2 (1− γ) > 0 ,

so discounting always prefers π1 over π2. Now consider

ϕ(γ) := Jγ(π1)− Jγ(π3) = (1− q1)γ
2 + q1γ

3 − pγ = γ
(
(1− q1)γ + q1γ

2 − p
)
.

Let f(γ) := (1− q1)γ + q1γ
2 − p. Then

f ′(γ) = (1− q1) + 2q1γ ≥ 1− q1 > 0,

so f is strictly increasing on [0, 1]. Moreover,

f(p) = (1− q1)p+ q1p
2 − p = −q1p(1− p) < 0, f(1) = 1− p > 0,

so there exists a unique γth ∈ (p, 1) with f(γth) = 0, i.e. ϕ(γth) = 0. For γ > γth we have
f(γ) > 0 and hence Jγ(π1) > Jγ(π3), while Jγ(π1) > Jγ(π2) holds for all γ < 1. Thus for every
γ > γth, π1 is γ-optimal in Π; since J1(π1) = J1(π2) = 1 > p = J1(π3) and E[τ(π1)] = 3+ q1 <
3 + q2 = E[τ(π2)], π1 is also a shortest path policy among accuracy maximizers.
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We adapt classical Blackwell arguments (Zwick & Paterson, 1996; Puterman, 2014; Grand-Clément
& Petrik, 2023) to the case where the admissible class is restricted. Throughout this section we
assume finite horizon H <∞, finite state and action sets and bounded rewards. For a policy π and
γ ∈ [0, 1), define the (discounted) value

vπγ (s) := Eπ,s

[ H∑
t=1

γt−1Rt

]
, Jγ(π) :=

∫
vπγ (s)µ(ds).

We first handle a finite admissible class and then specialize to greedy deployment policies induced
by a softmax training class.
Assumption A.2 (Finite policy class). The admissible class Π is finite: |Π| <∞.
Definition A.3. Given γ ∈ [0, 1), a policy π ∈ Π is γ discount optimal if Jγ(π) ≥ Jγ(π

′) for all
π′ ∈ Π. We call Π⋆

γ ⊂ Π the set of γ discount optimal policies.

Definition A.4. A policy π is Blackwell optimal if there exists a γ ∈ [0, 1) such that π ∈ Π⋆
γ′ for

all γ′ ∈ [γ, 1). We call Π⋆
bw the set of Blackwell optimal policies.

Lemma A.5. For any π, π′ ∈ Π, the difference ∆π,π′(γ) := Jγ(π)−Jγ(π
′) is a polynomial in γ of

degree at most H − 1. Consequently it has finitely many roots in [0, 1) unless it is identically zero.

Proof. Linearity of expectation yields Jγ(π) =
∑H

t=1 γ
t−1 ct(π) with ct(π) := Eπ,µ[Rt], which

is independent of γ. Subtracting Jγ(π
′) and applying the fundamental theorem of algebra to∑H

t=1 γ
t−1

(
ct(π)− ct(π

′)
)

yields the result.

Theorem A.6. Under Assumption A.2, there exists γ′ ∈ [0, 1) and a nonempty set Π⋆
bw ⊆ Π such

that for all γ ∈ (γ′, 1),
argmax

π∈Π
Jγ(π) = Π⋆

bw.

Proof. By Lemma A.5, each pairwise difference ∆π,π′(γ) is a polynomial of degree at most H − 1.
For each ordered pair (π, π′) with ∆π,π′ ̸≡ 0, let Zπ,π′ = {γ ∈ [0, 1) : ∆π,π′(γ) = 0}, which is
finite. Define Γ =

⋃
(π,π′):∆π,π′ ̸≡0 Zπ,π′ , which is finite. Set γ′ = maxΓ (or 0 if Γ = ∅). For any

γ ∈ (γ′, 1) and any pair π, π′, either ∆π,π′ ≡ 0 or it has no zeros in (γ′, 1), hence it has constant
sign on that interval. Therefore all pairwise comparisons between Jγ(π) and Jγ(π

′) are fixed on
(γ′, 1). It follows that Π⋆

γ is constant on (γ′, 1); denote this common set by Π⋆
bw. Nonemptiness

follows from finiteness of Π.

Definition A.7. The Blackwell discount factor is

γbw := inf
{
γ ∈ [0, 1) : Π⋆

γ′ = Π⋆
bw ∀ γ′ ∈ (γ, 1)

}
,

where Π⋆
γ = argmaxπ∈Π Jγ(π).

Lemma A.8. Under Assumption A.2, the Blackwell factor γbw exists and satisfies γbw < 1.

Proof. Theorem A.6 ensures that Π⋆
γ is constant for all γ sufficiently close to 1, so the infimum in

Definition A.7 is well defined and strictly less than 1.

A.1 SOFTMAX TRAINING, GREEDY DEPLOYMENT

Let Πs be the (possibly infinite) class of softmax policies used during training. We use the stan-
dard time-augmented, stationary, infinite-horizon representation of the finite-horizon problem with
horizon H . Define the augmented state space:

S̃ = {(s, t) : s ∈ S, t ∈ {1, . . . ,H}} ∪ {absorb},

and the stationary transition kernel P̃ and rewards r̃ by

P̃
(
(s′, t+1) | (s, t), a

)
= P (s′ | s, a) (t < H),

P̃ (absorb | (s,H), a) = 1, P̃ (absorb | absorb, a) = 1,

14
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r̃
(
(s, t), a

)
= r(s, a) (t ≤ H), r̃(absorb, a) = 0.

The initial distribution on augmented states is µ̃ with µ̃((s, 1)) = µ(s) and zero elsewhere. A
(possibly nonstationary) finite-horizon policy π = (πt)

H
t=1 induces the stationary policy

π̃(a | (s, t)) = πt(a | s) (t ≤ H), π̃(· | absorb) arbitrary.

We fix a deterministic tie breaking rule on A and define the greedification map on augmented states

Greed(π, (s, t)) ∈ argmax
a∈A

πt(a | s) ∀(s, t) ∈ S × {1, . . . ,H}.

The deployment class is the image Σ := {Greed(π, ·) : π ∈ Πs}, a subset of the deterministic
stationary policies on the augmented MDP M̃ = (S̃,A, P̃ , r̃, µ̃). Each σ ∈ Σ corresponds one-to-
one to a deterministic nonstationary policy on the original depth-H decision tree.

Lemma A.9. The set Σ is finite. In particular, if Nnodes is the number of reachable decision nodes
up to depth H in the original tree, then |Σ| ≤ |A|Nnodes .

Proof. Finite states and finite horizon imply a finite reachable decision tree. A greedy policy assigns
exactly one action to each reachable node (equivalently, to each reachable augmented state (s, t) with
t ≤ H), so the number of labelings is at most |A|Nnodes .

For any policy class Π, let γbw(Π) denote the Blackwell discount factor given that class in the
(augmented) stationary MDP. By Theorem A.6 with Π← Σ, we obtain:

Corollary A.10. There exists γbw(Σ) < 1 and a nonempty set Σ⋆
bw ⊆ Σ such that

argmaxπ∈Σ Jγ(π) = Σ⋆
bw for all γ ∈ (γbw(Σ), 1).

Setup For a stationary deterministic policy π on (S̃,A), let Pπ and rπ be the induced transition
matrix and reward vector on S̃ . Define the µ-weighted discounted return through the augmented
value equation

vπγ = rπ + γPπv
π
γ , Jγ(π) = µ̃⊤vπγ ,

so that, for any finite-horizon policy and its image under time-augmentation, the objectives coincide:
Jγ(finite-horizon π) = Jγ(stationary π̃) for all γ ∈ [0, 1). For a polynomial p(X) =

∑N
k=0 akX

k,
write the coefficient extractor [Xk]p = ak.

For π, π′ in the admissible class Π (we will take Π = Σ), set

γµ(π, π
′) := max

{
γ ∈ [0, 1) : µ̃⊤(vπγ − vπ

′

γ

)
= 0

}
,

with the convention γµ(π, π
′) = 0 if the above set is empty or if Jγ(π)− Jγ(π

′) ≡ 0 on [0, 1). We
aim to upper bound

γ̄ = max
π,π′∈Π

γµ(π, π
′).

(If one restricts to a subclass Π′ ⊆ Π, replace Π by Π′ everywhere; the bound below only becomes
easier.)

Assumption A.11. There exists m ∈ N such that for any (s, a, s′) ∈ S ×A× S ,

P (s′|s, a) = n(s, a, s′)

m

with n(s, a, s′) ∈ Z≥0, n(s, a, s
′) ≤ m and

r(s, a) =
w(s, a)

m

with w(s, a) ∈ Z and |w(s, a)| ≤ r∞.

The augmented kernel P̃ and rewards r̃ inherit this structure. Let Dµ̃ = min{t ∈ N>0 : t µ̃ ∈ ZS̃}
be the least positive integer such that t µ̃ is integer-valued.
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Theorem A.12. Under Assumption A.11, for any rational µ ∈ ∆(S) define

N = 2|S̃| − 1, Lµ = 2Dµ̃ |S̃| r∞ m2|S̃| 4|S̃|, ηµ =
1

2N N/2+2 (Lµ + 1)N
.

Then, with γ̄ = maxπ,π′∈Σ γµ(π, π
′),

γ̄ < 1− ηµ.

Proof. All objects are on the augmented state space S̃. By Cramer’s rule (Lemma A.1 of Grand-
Clément & Petrik (2023)), for any deterministic π we have

vπγ (s) =
n(γ, s, π)

d(γ, π)
, d(γ, π) = det(I − γPπ), n(γ, s, π) = det

(
M(γ, s, π)

)
,

where M(γ, s, π) is formed by replacing the s-th column of I − γPπ by rπ . Writing n̄(γ, π) :=∑
s∈S̃ µ̃(s)n(γ, s, π), we get

Jγ(π) =
n̄(γ, π)

d(γ, π)
, Jγ(π)− Jγ(π

′) =
p(γ)

d(γ, π)d(γ, π′)
,

with
p(γ) := n̄(γ, π) d(γ, π′)− n̄(γ, π′) d(γ, π).

By Lemma A.2 of Grand-Clément & Petrik (2023), d(γ, π) > 0 on [0, 1) and by Lemma A.3,
p(1) = 0. Since deg n̄ ≤ |S̃| − 1 and deg d ≤ |S̃|, we have deg p ≤ N := 2|S̃| − 1.

By Proposition A.6 of Grand-Clément & Petrik (2023), m|S̃|n(·, s, π) has integer coefficients and

N∑
k=0

∣∣∣[Xk]
(
m|S̃|n(·, s, π)

)∣∣∣ ≤ |S̃| r∞ m|S̃| 2|S̃|.

Thus m|S̃|Dµ̃ n̄(·, π) =
∑

s

(
Dµ̃µ̃(s)

)
m|S̃|n(·, s, π) has integer coefficients and coefficient-sum at

most Dµ̃ |S̃| r∞ m|S̃| 2|S̃|. By Proposition A.5 of Grand-Clément & Petrik (2023), m|S̃|d(·, π) has
integer coefficients and

N∑
k=0

∣∣∣[Xk]
(
m|S̃|d(·, π)

)∣∣∣ ≤ m|S̃| 2|S̃|.

Applying Proposition A.7 of Grand-Clément & Petrik (2023) to the two products defining p(γ) and
summing, we obtain that

p̃(γ) := m2|S̃|Dµ̃ p(γ)

has integer coefficients and

N∑
k=0

∣∣ [Xk]p̃
∣∣ ≤ 2

(
Dµ̃ |S̃| r∞ m|S̃| 2|S̃|) · (m|S̃|2|S̃|) = Lµ.

The degree of p̃ is at most N and p̃ shares roots with p. By Theorem A.8 in Grand-Clément & Petrik
(2023), any two distinct roots of an integer-coefficient degree-N polynomial with coefficient-sum
≤ Lµ are at distance at least ηµ =

[
2N N/2+2 (Lµ+1)N

]−1
. If the set in the definition of γµ(π, π′)

is empty, then γµ(π, π
′) = 0 and the claim holds trivially. Otherwise, 1 and γµ(π, π

′) ∈ [0, 1) are
distinct roots, hence γµ(π, π

′) ≤ 1− ηµ. Maximizing over π, π′ ∈ Σ gives γ̄ < 1− ηµ.

Corollary A.13. For any Σ′ ⊆ Σ, the same bound holds with γ̄ replaced by maxπ,π′∈Σ′ γµ(π, π
′).

Assumption A.14. There exists a termination action aterm ∈ A (e.g., eos), an absorbing state
sabs ∈ S, and a goal set G ⊆ S such that for all s ∈ S:

1. r(s, a) = 0 for all a ̸= aterm;

2. taking aterm transitions to the absorbing state, i.e. P (sabs | s, aterm) = 1;
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3. the terminal reward is deterministic and binary, r(s, aterm) = I{s ∈ G} ∈ {0, 1}. More-
over, the absorbing state yields no further reward and transitions to itself: for all a ∈ A,

r(sabs, a) = 0, P (sabs | sabs, a) = 1.

Let τ ≤ H be the (first) absorption time. Define the success probability and (conditional) successful-
path length

p(π) = Pπ,µ(success within H), L(π) = Eπ,µ[τ | success],
with the convention that L(π) is only evaluated when p(π) > 0. Call π a shortest-path policy if it
maximizes p(π) and, among all maximizers of p, minimizes L(π). If p⋆ := maxπ p(π) = 0, the
shortest-path condition reduces to the first criterion.
Lemma A.15. Let ε = 1− γ. For every policy π,

Jγ(π) = Eπ,µ

[
γτ−11{success}

]
= p(π)

(
1− ε (L(π)− 1)

)
+Rπ(ε),

with remainder satisfying the uniform bound |Rπ(ε)| ≤ CH ε2, where CH := 1
2 (H − 1)(H − 2).

Proof. Since the reward is 1 only upon successful termination at time τ ,

Jγ(π) = Eπ,µ

[
γτ−11{success}

]
= p(π)E

[
(1− ε)τ−1 | success

]
,

where ε = 1 − γ. For any integer n ∈ {0, . . . ,H − 1}, Taylor’s theorem gives that for some
ξ ∈ (0, ε),

(1− ε)n = 1− nε+ 1
2n(n− 1)(1− ξ)n−2ε2,

which, since ξ ∈ [0, 1), implies∣∣(1− ε)n − (1− nε)
∣∣ ≤ 1

2n(n− 1)ε2.

Setting n = τ − 1 ∈ {0, . . . ,H − 1} and conditioning on success yields

E
[
(1− ε)τ−1 | success

]
= 1− ε (L(π)− 1) + E[δτ−1(ε) | success] ,

with |δτ−1(ε)| ≤ 1
2 (τ − 1)(τ − 2)ε2 ≤ CHε2. Define Rπ(ε) := p(π)E[δτ−1(ε) | success] to

conclude.

Theorem A.16. In finite-horizon MDPs with a deterministic binary terminal verifier reward (As-
sumption A.14), every Blackwell optimal policy is a shortest path policy:

Π⋆
bw ⊆ argmin

π∈Πmax p

L(π), where Πmax p = argmax
π∈Π

p(π).

Proof. Let π⋆ ∈ Π⋆
bw. For any π ∈ Π and ε = 1− γ, Lemma A.15 gives

Jγ(π
⋆)− Jγ(π) = p(π⋆)− p(π)︸ ︷︷ ︸

(A)

−ε
(
p(π⋆)(L(π⋆)− 1)− p(π)(L(π)− 1)

)︸ ︷︷ ︸
(B)

+Rπ⋆(ε)−Rπ(ε)︸ ︷︷ ︸
(C)

,

with |(C)| ≤ 2CHε2. If p(π) > p(π⋆), then for sufficiently small ε > 0 the RHS is negative,
contradicting optimality of π⋆ for γ arbitrarily close to 1. Hence p(π⋆) ≥ p(π) for all π, i.e.,
π⋆ ∈ Πmax p.

Now fix any π ∈ Πmax p so that p(π) = p(π⋆) = p⋆. If L(π) < L(π⋆) then (B) = p⋆(L(π
⋆) −

L(π)) > 0 and for small enough ε the negative term −ε (B) dominates the O(ε2) remainder, again
contradicting optimality. Therefore L(π⋆) ≤ L(π) for all π ∈ Πmax p.

The same argument applies with Π replaced by any subclass (e.g., the finite deployment class Σ).

Corollary A.17. In the time-augmented reasoning MDP, the Blackwell-optimal deployed policies
satisfy

Σ⋆
bw = arg min

σ∈Σmax p

L(σ), Σmax p := argmax
σ∈Σ

p(σ).

Equivalently, for γ sufficiently close to 1, the γ-discounted optimal policies in Σ are exactly the
shortest successful-path policies.
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