

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING TO REASON EFFICIENTLY WITH DIS-COUNTED REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

Large reasoning models (LRMs) often consume excessive tokens, inflating computational cost and latency. We challenge the assumption that longer responses improve accuracy. By penalizing reasoning tokens using a discounted reinforcement learning setup (interpretable as a small token cost) and analyzing Blackwell optimality in restricted policy classes, we encourage concise yet accurate reasoning. Experiments confirm our theoretical results that this approach shortens chains of thought while preserving accuracy.

1 INTRODUCTION

Large reasoning models (LRMs) increasingly solve math and code problems by emitting intermediate reasoning tokens before a final answer (Jaech et al., 2024). Reinforcement learning (RL) post training (Sutton & Barto, 2018) improves accuracy but can lengthen responses (Liu et al., 2025a), raising inference cost and latency. Our desire is to train LRMs that reason effectively and efficiently, more concise reasoning with no loss in accuracy.

Longer chains of thought (Wei et al., 2022), are not free: they inflate compute and memory (quadratic attention and a growing key value (KV) cache), slow inference and reduce serving throughput. Moreover, the role of length in accuracy is contested (Shao et al., 2024; Liu et al., 2025b; Lu et al., 2025; Fatemi et al., 2025) with many claiming there is an inherent tradeoff between length and accuracy. In this work we show that, up to a regime determined by the model class and problem instance, there is no tradeoff between accuracy and path length. Namely, one can reduce response length up to a certain instance dependent threshold without seeing a drop in accuracy. After the response length dips below this threshold, then accuracy begins to dip.

We model verifier based reasoning as a finite horizon Markov decision process (MDP) (Puterman, 2014) with a binary terminal reward. We then train with a discount factor $\gamma < 1$. This design is motivated by Blackwell optimality (Blackwell, 1962; Puterman, 2014; Grand-Clément & Petrik, 2023): near $\gamma = 1$, discounting should preserve accuracy while preferring shorter successful trajectories. In practice, we only apply discounting to the environment (correctness) reward. The amount of discounting depends only on reasoning length, leaving intrinsic formatting/shaping rewards undiscounted. Practically, we discount only reasoning tokens, regularize with a KL penalty to a moving reference policy (Peters et al., 2010) and ensure token budgets across methods are comparable for fair comparisons. Our contributions can be summarized as follows:

- Within any fixed (possibly restricted) policy class Π , we show that Blackwell optimal policies (optimal for all γ sufficiently close to 1) *simultaneously* maximize undiscounted success and, among accuracy maximizers, minimize expected trajectory length. Thus, up to a regime determined by the class, there is no tradeoff between accuracy and path length. Our result calls into question the claim that there is a tradeoff between accuracy and response length and establishes that one can shorten response length up to an instance dependent quantity as hypothesized by Lee et al. (2025)
- For finite Π , a Blackwell factor $\gamma_{bw} < 1$ exists such that γ optimal policies are constant for all $\gamma \in (\gamma_{bw}, 1)$ and equal the Blackwell optimal set. We bound how close to 1 the discount must be to maintain accuracy while shortening average response length. This clarifies how to choose γ when the deployment class is restricted.

054 • Using group relative policy optimization (GRPO) (Shao et al., 2024) with the discounted
 055 objective, we substantially reduce mean response length on GSM8K, MATH and additional
 056 math benchmarks while matching the undiscounted pass@1 baseline, in line with
 057 the shortest path prediction at fixed success probability.

059 Efficient reasoning has been pursued via: (i) *RL with length based penalties*, which adds per token
 060 or per step penalties during policy optimization (Arora & Zanette, 2025; Su & Cardie, 2025; Ling
 061 et al., 2025; Xiang et al., 2025); (ii) *curated data approaches*, which fine tune on variable length
 062 or compressed traces to internalize concise reasoning (Fatemi et al., 2025; Hammoud et al., 2025;
 063 Qiao et al., 2025; Lu et al., 2025; Zhao et al., 2025; Shrivastava et al., 2025; Dai et al., 2025);
 064 and (iii) *prompt control*, which prompts the model to reason more concisely Aggarwal & Welleck
 065 (2025); Dumitru et al. (2025); Wu et al. (2025). We propose and analyze plain old discounting
 066 as a principled, instance aware mechanism. In finite horizon MDPs with binary terminal reward,
 067 maximizing the discounted correctness reward and minimizing expected path length coincide as
 068 the discount factor approaches one. Moreover, a small per step negative reward in this setting is
 069 equivalent to discounting (Bertsekas, 2012). See Sui et al. (2025) for a broader overview of efficient
 070 reasoning methods.

071 2 SETTING AND NOTATION

073 We model reasoning as a finite horizon discounted Markov decision process (MDP) which is given
 074 by the tuple $M = (\mathcal{S}, \mathcal{A}, P, r, H, \gamma, \mu)$. Here \mathcal{S} and \mathcal{A} are finite state and action spaces, $P : \mathcal{S} \times \mathcal{A} \rightarrow$
 075 $\Delta(\mathcal{S})$ is the transition kernel, $r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is a bounded reward (verifier), $H \in \mathbb{N}$ is the horizon,
 076 $\gamma \in [0, 1]$ is the discount factor,¹ and $\mu \in \Delta(\mathcal{S})$ is the distribution over initial states (questions)
 077 where $\Delta(\mathcal{S})$ is the set of probability distributions over states.

078 A (possibly nonstationary) policy $\pi = (\pi_t)_{t=1}^H$ consists of maps $\pi_t(\cdot | s) \in \Delta(\mathcal{A})$ for each t . Fixing
 079 the start state, s , a policy (or language model) induces a distribution $\mathbb{P}_{\pi, s}$ over trajectories
 080 $S_1, A_1, R_1, \dots, S_H, A_H, R_H, S_{H+1}, \quad A_t \sim \pi_t(\cdot | S_t), \quad R_t = r(S_t, A_t), \quad S_{t+1} \sim P(S_t, A_t)$.

082 The (discounted) state value function of π is

$$083 \quad v_{\gamma}^{\pi}(s) = \mathbb{E}_{\pi, s} \left[\sum_{t=1}^H \gamma^{t-1} R_t \right],$$

086 where $\mathbb{E}_{\pi, s}$ is the expectation corresponding to $\mathbb{P}_{\pi, s}$. The μ weighted return is

$$087 \quad J_{\gamma}(\pi) = \int v_{\gamma}^{\pi}(s) \mu(ds).$$

090 2.1 LANGUAGE MODELING

091 In language modeling, actions are vocabulary tokens and states are token sequences. The next state
 092 is the current sequence with the chosen token appended:

$$094 \quad S_{t+1} = P(S_t, A_t) = S_t A_t$$

095 where we write xy for the concatenation of x and y . The special action eos ends the episode and
 096 moves to an absorbing terminal state. After taking eos, the process remains in an absorbing state with
 097 zero reward for the remainder of the horizon. If eos is not emitted by time H , we deterministically
 098 transition to a terminal state that triggers the verifier.

099 In RL with verifiable rewards (RLVR) (Lambert et al., 2024), the verifier returns 1 if and only if the
 100 sequence at emission of eos contains a correct final answer and 0 otherwise:

$$101 \quad r(S_t, \text{eos}) = \mathbb{I}\{\text{S}_t \text{ contains a correct answer}\}, \quad r(S_t, a) = 0 \text{ for } a \neq \text{eos}.$$

102 Under this reward, the undiscounted finite horizon return equals the success probability. We there-
 103 fore define the (Pass@1) accuracy of π as

$$104 \quad \text{Acc}(\pi) := J_1(\pi) = \int \mathbb{P}_{\pi, s}(\text{correct within } H) \mu(ds),$$

106 i.e., the fraction of prompts (under μ) for which the first generated solution is verified correct.

107 ¹We use $\gamma \in [0, 1]$ for analysis; when defining *accuracy* we also consider $\gamma = 1$ in finite horizon.

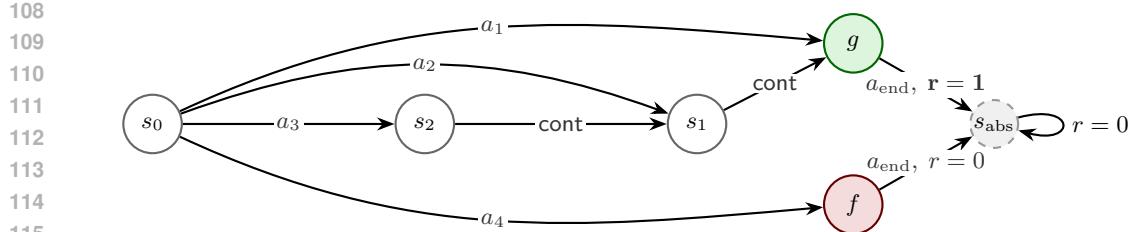


Figure 1: A finite-horizon MDP illustrating the conflict between success probability and discounting. **Green** (g) indicates the goal state ($r = 1$), while **Red** (f) indicates failure ($r = 0$).

3 BLACKWELL OPTIMALITY AND OUR MAIN THEORETICAL RESULTS

To formalize maximizing accuracy while minimizing mean response length, we use a stronger notion of optimality than is standard in reinforcement learning: the notion introduced by Blackwell (1962), henceforth Blackwell optimality (Puterman, 2014; Grand-Clément & Petrik, 2023). A policy is Blackwell optimal if it is optimal for all discount factors sufficiently close to one. This is relevant because the optimal policy in RLVR at $\gamma = 1$ maximizes accuracy (formally, the average reward criterion), while—as we show below—the optimal policy for $\gamma < 1$ is the one that reaches the goal via the shortest path. If a policy is optimal both for $\gamma < 1$ (near one) and for $\gamma = 1$, then it simultaneously maximizes accuracy and minimizes mean response length. *The missing proofs of all our results can be found in our appendix.*

Why Blackwell optimality? Discounting with $\gamma < 1$ breaks ties between equally accurate policies by preferring earlier success, but if γ is not sufficiently close to 1 it may instead prefer a shorter yet less accurate policy. The following example, with a restricted stochastic three-policy class, illustrates both effects. We consider restricted stochastic policy classes as this is a simplified model of softmax policy classes which are standard when analyzing policy gradient methods (Sutton & Barto, 2018).

Proposition 3.1. *Fix $p \in (0, 1)$ and $0 < q_1 < q_2 < 1$, and consider the MDP in Figure 1 with horizon $H \geq 4$ and deterministic initial state s_0 . Let the restricted policy class be $\Pi = \{\pi_1, \pi_2, \pi_3\}$, where at s_0 : for $i \in \{1, 2\}$, π_i selects a_3 with probability q_i and a_2 with probability $1 - q_i$, and π_3 selects a_1 with probability p and a_4 with probability $1 - p$. Let $\tau(\pi)$ denote the time step at which a_{end} is taken under policy π . Then*

$$J_1(\pi_1) = J_1(\pi_2) = 1, \quad \mathbb{E}[\tau(\pi_i)] = 3 + q_i \quad (i = 1, 2), \quad J_1(\pi_3) = p, \quad \tau(\pi_3) = 2.$$

For all $\gamma \in [0, 1)$,

$$J_\gamma(\pi_i) = (1 - q_i)\gamma^2 + q_i\gamma^3 \quad (i = 1, 2), \quad J_\gamma(\pi_3) = p\gamma.$$

Thus there exists a threshold $\gamma' \in (p, 1)$ such that for every $\gamma > \gamma'$, π_1 is both an optimal policy in Π and a shortest path policy. This example motivates Blackwell optimality: it selects the shortest policy among success maximizers (as $\gamma \uparrow 1$), while excluding policies that become optimal only by sacrificing success probability at smaller γ .

We establish that, under mild assumptions, such a shortest path policy exists in the setting commonly considered for post training language models on reasoning problems. Moreover, adapting the results of Grand-Clément & Petrik (2023), we show that finding a Blackwell optimal policy reduces to solving an ordinary discounted MDP with an appropriate discount factor. We now introduce the formal definition of a Blackwell optimal policy. Recall that we assume finite horizon $H < \infty$, finite state and action sets, and bounded rewards.

Definition 3.2. Given $\gamma \in [0, 1)$, a policy $\pi \in \Pi$ is γ discount optimal if $J_\gamma(\pi) \geq J_\gamma(\pi')$ for all $\pi' \in \Pi$. We call $\Pi_\gamma^* \subset \Pi$ the set of γ discount optimal policies.

Definition 3.3 (Blackwell (1962)). A policy π is Blackwell optimal if there exists a $\gamma \in [0, 1)$ such that $\pi \in \Pi_\gamma^*$ for all $\gamma' \in [\gamma, 1)$. We call Π_{bw}^* the set of Blackwell optimal policies.

162 Note that our definition of optimality is with respect to both an MDP instance M and a policy class
 163 Π , whereas the usual notions of optimality (and the existence of an optimal policy) (Puterman, 2014;
 164 Bertsekas, 2019; Szepesvári, 2022) depend only on the MDP M .
 165

166 **3.1 MAIN THEORETICAL RESULTS**
 167

168 We adapt classical Blackwell arguments (Blackwell, 1962; Zwick & Paterson, 1996; Puterman,
 169 2014; Grand-Clément & Petrik, 2023) to the case where the admissible class is restricted.
 170

171 **Assumption 3.4** (Finite policy class). The admissible class Π is finite: $|\Pi| < \infty$.
 172

173 **Theorem 3.5.** *Given a finite horizon MDP M , under Assumption 3.4, there exists $\gamma' \in [0, 1)$ and a
 174 nonempty set $\Pi_{\text{bw}}^* \subseteq \Pi$ such that for all $\gamma \in (\gamma', 1)$,*
 175

$$\underset{\pi \in \Pi}{\operatorname{argmax}} J_\gamma(\pi) = \Pi_{\text{bw}}^*.$$

176 Theorem 3.5 guarantees that when considering a restricted finite policy class of softmax distributions,
 177 a Blackwell optimal policy is guaranteed to exist. This establishes that there exists a policy
 178 that is discounted optimal for all γ sufficiently close to 1; hence it is Blackwell optimal (and, in
 179 particular, average optimal). We now introduce the Blackwell discount factor, first introduced by
 180 Grand-Clément & Petrik (2023).
 181

182 **Definition 3.6.** The Blackwell discount factor is

$$\gamma_{\text{bw}} := \inf \left\{ \gamma \in [0, 1] : \Pi_{\gamma'}^* = \Pi_{\text{bw}}^* \forall \gamma' \in (\gamma, 1) \right\},$$

185 where $\Pi_{\gamma}^* = \arg \max_{\pi \in \Pi} J_{\gamma}(\pi)$.
 186

187 At a high level, the Blackwell discount factor γ_{bw} guarantees that any policy that is discount optimal
 188 for $\gamma \in [\gamma_{\text{bw}}, 1)$ is also Blackwell optimal. This reduces finding a Blackwell optimal policy to
 189 solving for a discount optimal policy. We now state a result that shows that for an arbitrary finite
 190 restricted policy class Π , the Blackwell discount factor exists.

191 **Lemma 3.7.** *Given a finite horizon MDP M , under Assumption 3.4, the Blackwell factor γ_{bw} exists
 192 and satisfies $\gamma_{\text{bw}} < 1$.*
 193

194 *Proof.* Theorem 3.5 ensures that Π_{γ}^* is constant for all γ sufficiently close to 1, so the infimum in
 195 Definition 3.6 is well defined and strictly less than 1. \square
 196

197 The next lemma establishes that for finite horizon problems, a Blackwell optimal policy must also
 198 be optimal for the undiscounted objective.
 199

200 **Lemma 3.8.** *A Blackwell optimal policy is also optimal in the undiscounted problem.*
 201

202 *Proof.* Suppose π is Blackwell optimal: $\pi \in \Pi_{\text{bw}}^*$. Then for any policy π' we have $J_{\gamma}(\pi) - J_{\gamma}(\pi') \geq 0$
 203 for all $\gamma \in [\gamma_{\text{bw}}, 1)$. Therefore since $J_1(\pi)$ is well defined for finite horizon MDPs,
 204

$$\lim_{\gamma \rightarrow 1} J_{\gamma}(\pi) - J_{\gamma}(\pi') \geq 0.$$

206 We also know that $J_{\gamma}(\pi) - J_{\gamma}(\pi')$ is a polynomial and therefore continuous. Thus, it must be that
 207 $J_{\gamma=1}(\pi) - J_{\gamma=1}(\pi') \geq 0$, i.e. π is also optimal in the undiscounted problem. \square
 208

209 Now we assume the reward function in our finite horizon MDP M is a deterministic binary verifier
 210 rewards.
 211

212 **Assumption 3.9.** There exists a termination action $a_{\text{term}} \in \mathcal{A}$ (e.g., eos), an absorbing state $s_{\text{abs}} \in$
 213 \mathcal{S} , and a goal set $G \subseteq \mathcal{S}$ such that for all $s \in \mathcal{S}$:

- 214 1. $r(s, a) = 0$ for all $a \neq a_{\text{term}}$;
- 215 2. taking a_{term} transitions to the absorbing state, i.e. $P(s_{\text{abs}} | s, a_{\text{term}}) = 1$;

216 3. the terminal reward is deterministic and binary, $r(s, a_{\text{term}}) = \mathbb{I}\{s \in G\} \in \{0, 1\}$. More-
 217 over, the absorbing state yields no further reward and transitions to itself: for all $a \in \mathcal{A}$,

218
$$r(s_{\text{abs}}, a) = 0, \quad P(s_{\text{abs}} \mid s_{\text{abs}}, a) = 1.$$

219 Let $\tau \leq H$ be the (first) absorption time. Define the success probability and (conditional) successful
 220 path length

221
$$p(\pi) = \mathbb{P}_{\pi, \mu}(\text{success within } H), \quad L(\pi) = \mathbb{E}_{\pi, \mu}[\tau \mid \text{success}],$$

222 with the convention that $L(\pi)$ is only evaluated when $p(\pi) > 0$. Call π a *shortest path policy* if it
 223 maximizes $p(\pi)$ and, among all maximizers of p , minimizes $L(\pi)$. If $p_{\star} := \max_{\pi} p(\pi) = 0$, the
 224 shortest path condition reduces to the first criterion.

225 **Theorem 3.10.** *In finite-horizon MDPs with a deterministic binary terminal verifier reward (Assumption 3.9), every Blackwell optimal policy is a shortest path policy:*

226
$$\Pi_{\text{bw}}^* \subseteq \operatorname{argmin}_{\pi \in \Pi_{\max p}} L(\pi), \quad \text{where} \quad \Pi_{\max p} = \operatorname{argmax}_{\pi \in \Pi} p(\pi).$$

227 Theorem 3.10 establishes the main result of this paper: Blackwell optimal policies are both accuracy
 228 maximizing and have the shortest mean response length within the class of accuracy maximizing
 229 ($\gamma = 1$) policies. Combined with Theorem 3.5, we obtain that a Blackwell optimal policy exists
 230 for finite restricted policy classes. While the theoretical results of this section hold for discounting,
 231 similar conclusions can be drawn for methods that assign a negative reward proportional to the
 232 response length via showing this negative length penalty in finite horizon MDPs with deterministic
 233 binary verifier rewards is equivalent to discounting (Bertsekas, 2012). Thus our results also imply
 234 methods that assign negative rewards proportional to the length (Arora & Zanette, 2025; Liu et al.,
 235 2025c; Xiang et al., 2025; Su & Cardie, 2025; She et al., 2025; Dumitru et al., 2025) also enjoy
 236 similar guarantees when correctly implemented.

237 In order to see why Theorem 3.10 holds, we give a short proof sketch below. Taking the Taylor
 238 expansion, Lemma A.15, of $J_{\gamma}(\pi^*) - J_{\gamma}(\pi)$ we get that their difference is approximately

239
$$p(\pi^*) - p(\pi) - (1 - \gamma)(p(\pi^*)(L(\pi^*) - 1) - p(\pi)(L(\pi) - 1)) + O((1 - \gamma)^2).$$

240 Since π^* is a Blackwell optimal policy it must be optimal for all γ arbitrarily close to one. Thus if
 241 some π had $p(\pi) > p(\pi^*)$, the leading term $p(\pi^*) - p(\pi) < 0$ would make $J_{\gamma}(\pi^*) - J_{\gamma}(\pi) < 0$
 242 for γ close enough to 1, which contradicts the definition of Blackwell optimality (Definition 3.3).
 243 Therefore $\pi^* \in \arg \max_{\pi \in \Pi} p(\pi)$. Moreover, among policies with $p(\pi) = p(\pi^*)$, the first term
 244 cancels and optimality for $\gamma \rightarrow 1$ forces $L(\pi^*) \leq L(\pi)$ meaning π^* minimizes successful path
 245 length among success maximizers.

246 **3.2 SOFTMAX TRAINING, GREEDY DEPLOYMENT**

247 We now consider a common setting in language model post training and deep reinforcement learning
 248 where we use softmax policies for training and then evaluate (or deploy) the greedified policy
 249 (Haarnoja et al., 2018). This setting is important as our experimental setup will train softmax poli-
 250 cies and evaluate their greedified variants. We fix a deterministic tie breaking rule on \mathcal{A} and define
 251 the greedification map on the states

252
$$\text{Greed}(\pi, s) \in \arg \max_{a \in \mathcal{A}} \pi(a \mid s) \quad \forall s \in \mathcal{S}.$$

253 The deployment class is the image $\Sigma := \{\text{Greed}(\pi, \cdot) : \pi \in \Pi_s\}$, a subset of the *deterministic*
 254 *stationary* policies on the finite horizon MDP M . Each $\sigma \in \Sigma$ corresponds one-to-one to a deter-
 255 ministic nonstationary policy. In our appendix, we also provide a bound on the Blackwell discount
 256 factor of the policy class Σ for completeness, see Theorem A.12 for more details.

257 **4 TRAINING METHODOLOGY**

258 Guided by the theory in the previous section, we translate discounting into a practical training recipe
 259 for efficient reasoning with language models. Our design has four components:

270 1. **Discount only the environment (correctness) reward.** We apply a discount factor $\gamma \in$
 271 $(0, 1)$ to the environment reward but not to the learner’s intrinsic formatting/shaping reward.
 272 This preserves the incentive to produce well structured outputs while encouraging shorter,
 273 more efficient chains of reasoning.

274 2. **KL regularization to a changing reference policy.** We use KL regularization against a
 275 reference model that is updated over training, following standard practice in policy gradient
 276 methods (Peters et al., 2010; Mei et al., 2020; Vieillard et al., 2020; Vaswani et al., 2022).
 277 This viewpoint aligns with relative entropy policy search (Peters et al., 2010) and has also
 278 been adopted in recent language model alignment work (Gorbatovski et al., 2025).

279 3. **Discount only reasoning tokens.** Discounting is applied exclusively to tokens used for
 280 reasoning; we do not discount tokens required for prompt adherence, formatting, or final
 281 answer presentation.

282 4. **Comparable token budgets across methods.** To ensure fairness, we make token budgets
 283 across methods comparable: since discounting shortens reasoning traces, we increase the
 284 number of rollouts for discounted methods so that the total tokens processed—and hence
 285 training accuracy—are comparable to the undiscounted baseline.

287 **Objective.** Because both the correctness and formatting signals are computed only at the end of
 288 the trajectory, we use a sequence level return. Let $m_t \in \{0, 1\}$ indicate whether token t is part of
 289 the reasoning span and define the number of reasoning tokens $K(\tau) \triangleq \sum_t m_t$. Let $r^e(\tau)$ be the
 290 environment/correctness reward and $r^f(\tau)$ the formatting/shaping reward, both evaluated at the end
 291 of the rollout τ . We discount only the environment reward as a function of reasoning length:

$$R(\tau) = \gamma^{K(\tau)} r^e(\tau) + r^f(\tau). \quad (1)$$

294 The learner then optimizes

$$\mathbb{E}_{S_1 \sim \mu, \tau \sim \pi(S_1)} [R(\tau)] - \beta \text{KL}(\pi \mid \pi'), \quad (2)$$

295 where π' is a reference policy that changes over training (defined below) and $\beta > 0$ sets the regu-
 296 larization strength. Equation (1) applies discounting only through $K(\tau)$, leaving formatting tokens
 297 undiscounted, in accordance with the Blackwell optimality perspective.

300 **Implementation details.** (i) *Reasoning mask.* The indicator m_t isolates tokens that perform latent
 301 computation (chain of thought or tool use) from tokens required for formatting or final answer
 302 emission. (ii) *Reference updates.* The reference $\pi' = \pi_{\text{ref}}^{(u)}$ is updated periodically (e.g., at epoch
 303 or fixed step boundaries) to stabilize learning while allowing the target policy to improve. (iii)
 304 *Comparable budgets.* We report results under matched token budgets; if discounted training yields
 305 fewer reasoning tokens per generation, we increase generations to equalize total tokens seen before
 306 comparing accuracy. We now elaborate on each component.

308 4.1 EXTRINSIC VERSUS INTRINSIC REWARD

310 Extrinsic reward comes from the environment, whereas intrinsic reward is assigned by the learner
 311 to its own experience, usually to speed up learning or exploration (Singh et al., 2010; Barto, 2012;
 312 Linke et al., 2020). The goal of maximizing correctness is extrinsic, since it comes from the en-
 313 vironment. By contrast, formatting rewards that encourage the learner to emit correctly structured
 314 reasoning and answer tags are intrinsic: they help the agent structure its reasoning and format the
 315 answer in a way that satisfies the verifier. Only the correctness reward is necessary to learn an op-
 316 timal policy, but intrinsic rewards can guide the learner toward behaviors beneficial for learning.
 317 Since we care about learning Blackwell optimal policies, we discount only the extrinsic correctness
 318 reward and leave intrinsic formatting rewards undiscounted. Popular frameworks that allow dis-
 319 counting, such as ByteDance’s Volcano Engine Reinforcement Learning for LLMs library (Sheng
 320 et al., 2025), discount both extrinsic and intrinsic rewards.

321 4.2 KL REGULARIZATION

323 Discounting strongly nudges the model to shorten its answers. If the policy moves too fast, it can
 324 *collapse*: it learns to stop early and forgets how to reason. We add a KL penalty to a *moving*

reference policy to keep updates small—like a trust region—so the objective changes gradually. The reference policy is not fixed: we periodically refresh it to the current policy so the anchor follows progress without allowing a single large drift. More specifically, every u training steps we perform

$$\pi_{\text{ref}} \leftarrow \text{stop_grad}(\pi),$$

the details of which can be found in Gorbatovski et al. (2025) or in the TRL library (von Werra et al., 2020).

4.3 WHAT TO DISCOUNT

Discounting is applied only to reasoning (thinking) tokens:

$$K(\tau) = \sum_{t=1}^{|\tau|} m_t, \quad m_t = \mathbb{I}\{\text{token } t \text{ lies in the reasoning span}\}.$$

In our experiments, we delineate the reasoning spans using explicit tags injected by prompting (e.g., `<reasoning> ... </reasoning>`). Tokens required for prompt adherence, formatting and the final answer segment have $m_t = 0$ and thus are not discounted. Empirically, discounting the entire response slightly hurt accuracy (about a 0.5%–1.0% drop on GSM8K): the model would occasionally drop formatting tags required by the verifier or respond with an answer that was too short (e.g., dropping zeros from long integers).

4.4 COMPARABLE TOKENS

Discounted policies produce shorter traces, so for the same number of epochs (or passes over prompts) they experience fewer transitions/samples than undiscounted policies. This can make discounted methods look worse simply because they saw less data, not because the objective is inferior. To keep comparisons fair, whenever this discrepancy mattered during training we adjusted the number of generations: either increasing generations for the discounted method or, when more sensible, decreasing generations for the undiscounted method so that the total samples/tokens observed were comparable.

In some settings, the discounted method still matched the undiscounted baseline despite seeing fewer samples—an informative robustness result. In others, we ensured sample counts were comparable to make a fair judgment.

Practical notes. (i) *Choosing γ .* In light of the Blackwell analysis, we select γ as far from 1 as possible while preserving undiscounted training accuracy². This can be accomplished via a simple bisection search, adjusting γ until accuracy matches (or begins to dip below) the undiscounted training accuracy. (ii) *Updating the reference policy.* We choose the update frequency via ablations—namely, we find the best update frequency and β that maximize the undiscounted model’s accuracy and apply the same values to the discounted methods. (iii) *No algorithmic change required.* Any policy optimization algorithm—e.g., REINFORCE (Williams, 1992) and variants (such as REINFORCE Leave One Out (Ahmadian et al., 2024))—can be used with Equation (2); our contribution is training with the discounted return in Equation (1) together with the masking and budgeting rules above. In what follows, we employ GRPO as our policy optimization method.

5 NUMERICAL EXPERIMENTS

We empirically validate our theoretical prediction that discounting incentivizes efficient reasoning in large language models. Recall from Theorem 3.10 that in deterministic verifier MDPs, a Blackwell optimal policy prioritizes correctness and, among equally correct strategies, minimizes expected trajectory length. Our experiments test whether this pattern appears in practice when post training language models using GRPO.

²In our empirical setup, we first tune the hyperparameters to maximize the performance of the undiscounted method, then apply discounting with these hyperparameters.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Dataset	Model	Undisc. Pass@1	Undisc. Len	Disc. Pass@1	Disc. Len
GSM8K	Qwen2.5 7B-Instruct	91.06	217.60	91.07	170.08
	Llama 3 8B-Instruct	80.87	125.43	81.07	108.67
MATH	Qwen2.5 7B-Instruct	64.80	491.32	64.55	384.96
	Llama 3 8B-Instruct	24.48	328.43	24.75	257.73

Table 1: GSM8K and MATH: Pass@1 and mean response length (tokens) for discounted vs. undiscounted GRPO. Averaged over 3 training seeds and 10 evaluation seeds per model; evaluation seeds are fixed across methods for paired comparisons.

Setup. We finetune and evaluate four instruction tuned models: Qwen2.5 7B-Instruct and Qwen2.5 14B-Instruct (Yang et al., 2025), Llama 3 8B-Instruct (Grattafiori et al., 2024) and Phi-4 (Abdin et al., 2024), post trained via GRPO with and without discounting. The undiscounted case ($\gamma = 1$) optimizes correctness only, whereas $\gamma < 1$ additionally rewards shorter successful trajectories. We evaluate on grade school math (GSM8K) (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021) for Qwen2.5 7B and Llama 3 8B. We then train the larger Qwen2.5 14B and Phi-4 models on a subset of the DeepScaleR math dataset (Luo et al., 2025) and evaluate on AMC 2023, AIME 2025, MINERVA (Lewkowycz et al., 2022) and OLYMPIAD (He et al., 2024) to test generality. We report Pass@1 and mean response length. Pass@1 is the fraction of problems for which the first generated solution (one sample per prompt) is judged correct by the verifier. In our setting, the average Pass@1 is the accuracy.

Implementation and benchmarking. We use Hugging Face TRL for GRPO fine tuning and vLLM (Kwon et al., 2023) for inference. At inference, we use greedy decoding (temperature $\nu = 0$), consistent with Theorem A.12. We select Qwen2.5 7B-Instruct and Llama 3 8B-Instruct as established baselines for sanity checking our implementation and verify that our reimplementations meet or exceed published numbers on GSM8K and MATH. For Qwen2.5 7B-Instruct we compare against VERL’s official baselines; for Llama 3 8B-Instruct we follow Roux et al. (2025). Minor differences may arise because we average over multiple training and evaluation seeds, whereas some prior reports use single seed estimates. For GSM8K we limit completion length to 786 tokens; for MATH to 2048 tokens; and for DeepScaleR to 4096 tokens.

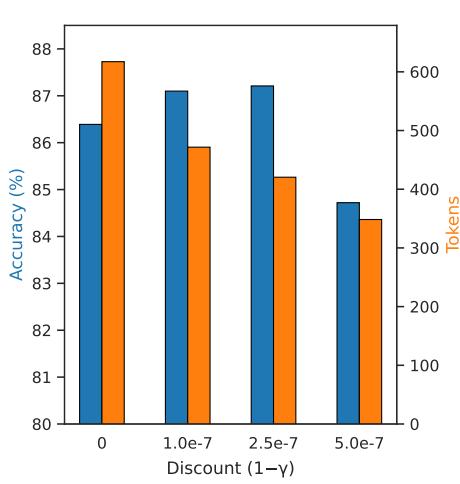


Figure 2: GSM8K accuracy (blue, left) and tokens (orange, right) vs. discount ($1 - \gamma$).

Variance control and reporting. To obtain stable estimates, we repeat each training run with 3 random training seeds and, for each trained model, evaluate with 10 independent sampling seeds on GSM8K and MATH; we report averages over 3×10 runs per condition and fix evaluation seeds across methods for paired comparisons. For AMC 2023, AIME 2025, MINERVA and OLYMPIAD, we average over five evaluation seeds per model. This matters because RL style post training and decoding introduce variance (Patterson et al., 2024; He & Lab, 2025) and single seed reporting can be misleading for both Pass@1 and length statistics. When sweeping γ , we select and report a single discounted configuration per model/dataset using the following criterion: among all discounted settings whose training Pass@1 matches or exceeds that of the undiscounted run, we choose the one with the shortest mean response length. All tabled metrics are then computed on the evaluation seeds for the selected configuration.

Main results. Tables 1 and 2 show that, on average over seeds, discounted models match the accuracy of undiscounted ones while producing shorter responses. For example, on GSM8K, discounting

432 433 434 435 436 437 438 439 440 441	432 433 434 435 436 437 438 439 440 441	Model	Dataset	Undisc. Pass@1	Undisc. Len	Disc. Pass@1	Disc. Len
Phi-4	AMC 2023	51.00	1134.30	61.00	716.29		
	AIME 2025	14.00	1263.87	19.33	800.09		
	MINERVA	28.46	553.74	29.85	318.10		
	OLYMPIAD	36.91	1059.92	35.67	707.64		
Qwen2.5 14B-Instruct	AMC 2023	50.00	737.47	59.50	582.31		
	AIME 2025	10.00	891.43	10.67	699.56		
	MINERVA	27.21	522.14	27.43	437.31		
	OLYMPIAD	35.13	797.57	34.76	684.02		

442
443 Table 2: Pass@1 and mean response length (tokens) for undiscounted vs. discounted GRPO. Averages over 5
444 evaluation seeds per model.

445
446 reduces mean response length by 22% for Qwen2.5 7B-Instruct and by 13% for Llama 3 8B-Instruct
447 with an insignificant change in Pass@1. This aligns with Theorem 3.10, which predicts shortest path
448 behavior at fixed success probability. The trend holds for the larger models evaluated on datasets
449 distinct from their training set. Specifically, the DeepScaleR math dataset does not contain problems
450 from OLYMPIAD, MINERVA, or AIME 2025; however, it does include problems from AMC prior
451 to 2023. Across architectures and datasets, we consistently observe that discounting enforces length
452 minimization subject to maintaining accuracy.

453
454 **Effect of the discount factor.** We run additional experiments with Qwen3 1.7B (Yang et al., 2025)
455 on GSM8K to examine performance as a function of γ . For these runs, we increase the completion
456 length limit to 1536 because outputs were frequently clipped for being too long. As shown in
457 Figure 2, varying γ confirms the predicted tradeoff: smaller γ reliably shortens responses but can
458 reduce accuracy. Theory explains this: for γ close to 1, policies first maximize correctness; overly
459 aggressive discounting shifts probability toward shorter trajectories even when that harms success.

460 6 CONCLUSIONS AND FUTURE WORK

461
462 We studied efficient reasoning in verifier based MDPs through the lens of Blackwell optimality
463 (Blackwell, 1962; Grand-Clément & Petrik, 2023). Within restricted policy classes, we showed that
464 for γ sufficiently close to 1 there exists a Blackwell optimal policy that maximizes undiscounted suc-
465 cess and, among accuracy maximizers, minimizes expected trajectory length. For softmax training
466 with greedy deployment, the induced deterministic deployment class is finite and admits a bounded
467 Blackwell discount factor; we provide an explicit upper bound on how close to 1 the discount must
468 be. Guided by this theory, we proposed a practical recipe: discount only the environment reward as a
469 function of reasoning tokens, keep intrinsic formatting rewards undiscounted, add KL regularization
470 to a moving reference policy (Peters et al., 2010) and ensure comparable token budgets. Empirically,
471 discounted GRPO matches Pass@1 accuracy while substantially shortening responses across
472 math benchmarks. Our theoretical results extend to methods that introduce small per token penalties
473 in finite horizon MDPs with binary rewards (verifiers) (Bertsekas, 2012), suggesting that several
474 length penalty methods (Arora & Zanette, 2025; Su & Cardie, 2025; Xiang et al., 2025) recover the
475 same accuracy then length ordering in the near undiscounted regime when properly implemented.
476 This further sheds light on adapting to the inherent token complexity of a given question (Lee et al.,
477 2025): choosing γ within the Blackwell region steers the learner toward the shortest successful tra-
478 jectories allowed by the class without sacrificing accuracy. Some of our empirical results suggest
479 that discounted methods can achieve higher accuracy with shorter reasoning traces. An interesting
480 avenue for future work is to investigate whether shorter, more compressed reasoning improves gen-
481 eralization on reasoning tasks. As argued in Hutter (2007), compression (or prediction) is linked to
482 improved generalization; whether this extends to compressed reasoning traces remains open. An-
483 other direction is to study whether methods that promote longer reasoning (Liu et al., 2025b) can
484 be combined with methods that shorten reasoning: longer reasoning promotes path finding, while
485 shorter reasoning promotes path compression. A pipeline that first uses longer traces to discover
reasoning policies and then compresses them (akin to distillation (Hinton et al., 2015)) may yield stronger

486 REFERENCES
487

488 Marah Abdin, Jyoti Aneja, Harkirat Behl, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar,
489 Michael Harrison, Russell J Hewett, Mojan Javaheripi, Piero Kauffmann, et al. Phi-4 techni-
490 cal report. *arXiv preprint arXiv:2412.08905*, 2024.

491 Pranjal Aggarwal and Sean Welleck. L1: Controlling how long a reasoning model thinks with
492 reinforcement learning. *arXiv preprint arXiv:2503.04697*, 2025.

493 Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Olivier Pietquin,
494 Ahmet Üstün, and Sara Hooker. Back to basics: Revisiting reinforce-style optimization for learn-
495 ing from human feedback in llms. In *Annual Meeting of the Association for Computational
496 Linguistics*, 2024.

497 Daman Arora and Andrea Zanette. Training language models to reason efficiently. *arXiv preprint
498 arXiv:2502.04463*, 2025.

499 Andrew G Barto. Intrinsic motivation and reinforcement learning. In *Intrinsically motivated learn-
500 ing in natural and artificial systems*. Springer, 2012.

500 Dimitri Bertsekas. *Dynamic programming and optimal control: Volume I*. Athena scientific, 3
501 edition, 2012.

502 Dimitri Bertsekas. *Reinforcement learning and optimal control*. Athena Scientific, 2019.

503 David Blackwell. Discrete dynamic programming. *The Annals of Mathematical Statistics*, 1962.

504 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
505 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
506 solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.

507 Muzhi Dai, Chenxu Yang, and Qingyi Si. S-grpo: Early exit via reinforcement learning in reasoning
508 models. *arXiv preprint arXiv:2505.07686*, 2025.

509 Razvan-Gabriel Dumitru, Darius Peteleaza, Vikas Yadav, and Liangming Pan. Conciserl:
510 Conciseness-guided reinforcement learning for efficient reasoning models. *arXiv preprint
511 arXiv:2505.17250*, 2025.

512 Mehdi Fatemi, Banafsheh Rafiee, Mingjie Tang, and Kartik Talamadupula. Concise reasoning via
513 reinforcement learning. *arXiv preprint arXiv:2504.05185*, 2025.

514 Alexey Gorbatovski, Boris Shaposhnikov, Alexey Malakhov, Nikita Surnachev, Yaroslav Aksenov,
515 Ian Maksimov, Nikita Balagansky, and Daniil Gavrilov. Learn your reference model for real good
516 alignment. In *International Conference on Learning Representations*, 2025.

517 Julien Grand-Clément and Marek Petrik. Reducing Blackwell and average optimality to discounted
518 Mdp's via the Blackwell discount factor. *Advances in Neural Information Processing Systems*, 36:
519 52628–52647, 2023.

520 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
521 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
522 of models. *arXiv preprint arXiv:2407.21783*, 2024.

523 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
524 maximum entropy deep reinforcement learning with a stochastic actor. In *International confer-
525 ence on machine learning*, 2018.

526 Hasan Abed Al Kader Hammoud, Kumail Alhamoud, Abed Hammoud, Elie Bou-Zeid, Marzyeh
527 Ghassemi, and Bernard Ghanem. Train long, think short: Curriculum learning for efficient rea-
528 soning. *arXiv preprint arXiv:2508.08940*, 2025.

529 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Thai, Junhao Shen, Jinyi Hu, Xu Han,
530 Yujie Huang, Yuxiang Zhang, et al. Olympiadbench: A challenging benchmark for promoting agi
531 with olympiad-level bilingual multimodal scientific problems. In *Annual Meeting of the Associa-
532 tion for Computational Linguistics*, 2024.

540 Horace He and Thinking Machines Lab. Defeating nondeterminism in llm inference. *Thinking*
 541 *Machines Lab: Connectionism*, 2025.

542

543 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 544 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *arXiv*
 545 *preprint arXiv:2103.03874*, 2021.

546

547 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.

548

549 Marcus Hutter. Universal algorithmic intelligence: A mathematical top→ down approach. In *Arti-*
550 ficial general intelligence. Springer, 2007.

551

552 Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
 553 Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. *arXiv*
 554 *preprint arXiv:2412.16720*, 2024.

555

556 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 557 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 558 serving with pagedattention. In *Symposium on Operating Systems Principles*, 2023.

559

560 Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
 561 man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
 562 in open language model post-training. *arXiv preprint arXiv:2411.15124*, 2024.

563

564 Ayeong Lee, Ethan Che, and Tianyi Peng. How well do llms compress their own chain-of-thought?
 565 a token complexity approach. *arXiv preprint arXiv:2503.01141*, 2025.

566

567 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay Ra-
 568 masesh, Ambrose Slone, Cem Anil, Imanol Schlag, Theo Gutman-Solo, et al. Solving quantitative
 569 reasoning problems with language models. *Advances in Neural Information Processing Systems*,
 570 2022.

571

572 Zehui Ling, Deshu Chen, Hongwei Zhang, Yifeng Jiao, Xin Guo, and Yuan Cheng. Fast on
 573 the easy, deep on the hard: Efficient reasoning via powered length penalty. *arXiv preprint*
574 arXiv:2506.10446, 2025.

575

576 Cam Linke, Nadia M Ady, Martha White, Thomas Degris, and Adam White. Adapting behavior via
 577 intrinsic reward: A survey and empirical study. *Journal of artificial intelligence research*, 2020.

578

579 Mingjie Liu, Shizhe Diao, Jian Hu, Ximing Lu, Xin Dong, Hao Zhang, Alexander Bukharin,
 580 Shaokun Zhang, Jiaqi Zeng, Makesh Narsimhan Sreedhar, et al. Scaling up rl: Unlocking di-
 581 verse reasoning in llms via prolonged training. *arXiv preprint arXiv:2507.12507*, 2025a.

582

583 Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
 584 Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
arXiv preprint arXiv:2505.24864, 2025b.

585

586 Wei Liu, Ruochen Zhou, Yiyun Deng, Yuzhen Huang, Junteng Liu, Yuntian Deng, Yizhe Zhang,
 587 and Junxian He. Learn to reason efficiently with adaptive length-based reward shaping. *arXiv*
588 preprint arXiv:2505.15612, 2025c.

589

590 Jinghui Lu, Haiyang Yu, Siliang Xu, Shiwei Ran, Guozhi Tang, Siqi Wang, Bin Shan, Teng Fu,
 591 Hao Feng, Jingqun Tang, et al. Prolonged reasoning is not all you need: Certainty-based adaptive
 592 routing for efficient llm/mllm reasoning. *arXiv preprint arXiv:2505.15154*, 2025.

593

594 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Tang, Manan Roongta, Colin Cai,
 595 Jeffrey Luo, Tianjun Zhang, Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing
 596 o1-preview with a 1.5b model by scaling rl, 2025. Notion Blog.

597

598 Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global convergence
 599 rates of softmax policy gradient methods. In *International Conference on Machine Learning*
(ICML), 2020.

594 Andrew Patterson, Samuel Neumann, Martha White, and Adam White. Empirical design in rein-
 595forcement learning. *Journal of Machine Learning Research*, 2024.

596

597 Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In *AAAI Con-
 598ference on Artificial Intelligence*, 2010.

599

600 Martin L Puterman. *Markov decision processes: Discrete stochastic dynamic programming*. John
 Wiley & Sons, 2014.

601

602 Ziqing Qiao, Yongheng Deng, Jiali Zeng, Dong Wang, Lai Wei, Guanbo Wang, Fandong Meng,
 603 Jie Zhou, Ju Ren, and Yaoxue Zhang. Concise: Confidence-guided compression in step-by-step
 604 efficient reasoning. *arXiv preprint arXiv:2505.04881*, 2025.

605

606 Nicolas Le Roux, Marc G Bellemare, Jonathan Lebensold, Arnaud Bergeron, Joshua Greaves,
 607 Alex Fréchette, Carolyne Pelletier, Eric Thibodeau-Laufer, Sándor Toth, and Sam Work. Ta-
 608 pered off-policy reinforce: Stable and efficient reinforcement learning for llms. *arXiv preprint
 arXiv:2503.14286*, 2025.

609

610 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 611 Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
 612 cal reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

613

614 Jianshu She, Zuhao Li, Zhemin Huang, Qi Li, Peiran Xu, Haonan Li, and Qirong Ho. Hawkeye:
 615 Efficient reasoning with model collaboration. *arXiv preprint arXiv:2504.00424*, 2025.

616

617 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
 618 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *European
 Conference on Computer Systems*, 2025.

619

620 Vaishnavi Shrivastava, Ahmed Awadallah, Vidhisha Balachandran, Shivam Garg, Harkirat Behl,
 621 and Dimitris Papailiopoulos. Sample more to think less: Group filtered policy optimization for
 622 concise reasoning. *arXiv preprint arXiv:2508.09726*, 2025.

623

624 Satinder Singh, Richard L Lewis, Andrew G Barto, and Jonathan Sorg. Intrinsically motivated
 625 reinforcement learning: an evolutionary perspective. *IEEE Transactions on Autonomous Mental
 Development*, 2010.

626

627 Jinyan Su and Claire Cardie. Thinking fast and right: Balancing accuracy and reasoning length with
 628 adaptive rewards. *arXiv preprint arXiv:2505.18298*, 2025.

629

630 Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
 631 Andrew Wen, Shaochen Zhong, Na Zou, et al. Stop overthinking: A survey on efficient reasoning
 632 for large language models. *arXiv preprint arXiv:2503.16419*, 2025.

633

634 Richard S Sutton and Andrew G Barto. *Reinforcement learning: An introduction*. The MIT Press,
 2018.

635

636 Csaba Szepesvári. *Algorithms for reinforcement learning*. Springer Nature, 2022.

637

638 Sharan Vaswani, Olivier Bachem, Simone Totaro, Robert Müller, Shivam Garg, Matthieu Geist,
 639 Marlos C Machado, Pablo Samuel Castro, and Nicolas Le Roux. A general class of surrogate
 640 functions for stable and efficient reinforcement learning. In *International Conference on Artificial
 Intelligence and Statistics*, 2022.

641

642 Nino Vieillard, Tadashi Kozuno, Bruno Scherrer, Olivier Pietquin, Remi Munos, and Matthieu Geist.
 643 Leverage the average: an analysis of KL regularization in reinforcement learning. In *Advances in
 644 Neural Information Processing Systems*, 2020.

645

646 Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush, Nathan
 647 Lambert, Shengyi Huang, Kashif Rasul, and Quentin Gallouédec. TRL: Transformer reinforce-
 648 ment learning. <https://github.com/huggingface/trl>, 2020.

649

650 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 651 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 652 Neural Information Processing Systems*, 2022.

648 Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
 649 learning. *Machine learning*, 1992.
 650

651 Tong Wu, Chong Xiang, Jiachen T Wang, G Edward Suh, and Prateek Mittal. Effectively controlling
 652 reasoning models through thinking intervention. *arXiv preprint arXiv:2503.24370*, 2025.

653 Violet Xiang, Chase Blagden, Rafael Rafailov, Nathan Lile, Sang Truong, Chelsea Finn, and Nick
 654 Haber. Just enough thinking: Efficient reasoning with adaptive length penalties reinforcement
 655 learning. *arXiv preprint arXiv:2506.05256*, 2025.

656 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 657 Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint
 658 arXiv:2505.09388*, 2025.

660 Kai Zhao, Yanjun Zhao, Jiaming Song, Shien He, Lusheng Zhang, Qiang Zhang, and Tian-
 661 jiao Li. Saber: Switchable and balanced training for efficient llm reasoning. *arXiv preprint
 662 arXiv:2508.10026*, 2025.

663 Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. *Theoretical
 664 Computer Science*, 1996.

666 A OMITTED PROOFS

667 **Proposition A.1.** Fix $p \in (0, 1)$ and $0 < q_1 < q_2 < 1$, and consider the MDP in Figure 1 with
 668 horizon $H \geq 4$ and deterministic initial state s_0 . Let the restricted policy class be $\Pi = \{\pi_1, \pi_2, \pi_3\}$,
 669 where at s_0 : for $i \in \{1, 2\}$, π_i selects a_3 with probability q_i and a_2 with probability $1 - q_i$, and π_3
 670 selects a_1 with probability p and a_4 with probability $1 - p$. Let $\tau(\pi)$ denote the time step at which
 671 a_{end} is taken under policy π . Then
 672

$$673 \quad J_1(\pi_1) = J_1(\pi_2) = 1, \quad \mathbb{E}[\tau(\pi_i)] = 3 + q_i \quad (i = 1, 2), \quad J_1(\pi_3) = p, \quad \tau(\pi_3) = 2.$$

674 For all $\gamma \in [0, 1]$,

$$675 \quad J_\gamma(\pi_i) = (1 - q_i)\gamma^2 + q_i\gamma^3 \quad (i = 1, 2), \quad J_\gamma(\pi_3) = p\gamma.$$

676 Thus there exists a threshold $\gamma' \in (p, 1)$ such that for every $\gamma > \gamma'$, π_1 is both an optimal policy in
 677 Π and a shortest path policy.
 678

679 *Proof.* Under π_i for $i \in \{1, 2\}$, the process terminates successfully with reward 1 at time $\tau = 3$ if a_2
 680 is chosen (probability $1 - q_i$) and at time $\tau = 4$ if a_3 is chosen (probability q_i). Hence $J_1(\pi_i) = 1$,
 681 $\mathbb{E}[\tau(\pi_i)] = 3(1 - q_i) + 4q_i = 3 + q_i$, and
 682

$$683 \quad J_\gamma(\pi_i) = (1 - q_i)\gamma^2 + q_i\gamma^3.$$

684 Under π_3 , a_{end} is taken at $\tau(\pi_3) = 2$ and yields reward 1 iff a_1 was chosen at $t = 1$, which occurs
 685 with probability p , hence $J_\gamma(\pi_3) = p\gamma$ and $J_1(\pi_3) = p$.
 686

687 For $\gamma < 1$,

$$688 \quad J_\gamma(\pi_1) - J_\gamma(\pi_2) = [(1 - q_1)\gamma^2 + q_1\gamma^3] - [(1 - q_2)\gamma^2 + q_2\gamma^3] = (q_2 - q_1)\gamma^2(1 - \gamma) > 0,$$

689 so discounting always prefers π_1 over π_2 . Now consider
 690

$$691 \quad \phi(\gamma) := J_\gamma(\pi_1) - J_\gamma(\pi_3) = (1 - q_1)\gamma^2 + q_1\gamma^3 - p\gamma = \gamma((1 - q_1)\gamma + q_1\gamma^2 - p).$$

692 Let $f(\gamma) := (1 - q_1)\gamma + q_1\gamma^2 - p$. Then
 693

$$694 \quad f'(\gamma) = (1 - q_1) + 2q_1\gamma \geq 1 - q_1 > 0,$$

695 so f is strictly increasing on $[0, 1]$. Moreover,
 696

$$697 \quad f(p) = (1 - q_1)p + q_1p^2 - p = -q_1p(1 - p) < 0, \quad f(1) = 1 - p > 0,$$

698 so there exists a unique $\gamma_{\text{th}} \in (p, 1)$ with $f(\gamma_{\text{th}}) = 0$, i.e. $\phi(\gamma_{\text{th}}) = 0$. For $\gamma > \gamma_{\text{th}}$ we have
 699 $f(\gamma) > 0$ and hence $J_\gamma(\pi_1) > J_\gamma(\pi_3)$, while $J_\gamma(\pi_1) > J_\gamma(\pi_2)$ holds for all $\gamma < 1$. Thus for every
 700 $\gamma > \gamma_{\text{th}}$, π_1 is γ -optimal in Π ; since $J_1(\pi_1) = J_1(\pi_2) = 1 > p = J_1(\pi_3)$ and $\mathbb{E}[\tau(\pi_1)] = 3 + q_1 <$
 701 $3 + q_2 = \mathbb{E}[\tau(\pi_2)]$, π_1 is also a shortest path policy among accuracy maximizers. \square

We adapt classical Blackwell arguments (Zwick & Paterson, 1996; Puterman, 2014; Grand-Clément & Petrik, 2023) to the case where the admissible class is restricted. Throughout this section we assume finite horizon $H < \infty$, finite state and action sets and bounded rewards. For a policy π and $\gamma \in [0, 1]$, define the (discounted) value

$$v_\gamma^\pi(s) := \mathbb{E}_{\pi,s} \left[\sum_{t=1}^H \gamma^{t-1} R_t \right], \quad J_\gamma(\pi) := \int v_\gamma^\pi(s) \mu(ds).$$

We first handle a finite admissible class and then specialize to greedy deployment policies induced by a softmax training class.

Assumption A.2 (Finite policy class). The admissible class Π is finite: $|\Pi| < \infty$.

Definition A.3. Given $\gamma \in [0, 1]$, a policy $\pi \in \Pi$ is γ discount optimal if $J_\gamma(\pi) \geq J_\gamma(\pi')$ for all $\pi' \in \Pi$. We call $\Pi_\gamma^* \subset \Pi$ the set of γ discount optimal policies.

Definition A.4. A policy π is Blackwell optimal if there exists a $\gamma \in [0, 1]$ such that $\pi \in \Pi_{\gamma'}^*$ for all $\gamma' \in [\gamma, 1]$. We call Π_{bw}^* the set of Blackwell optimal policies.

Lemma A.5. For any $\pi, \pi' \in \Pi$, the difference $\Delta_{\pi, \pi'}(\gamma) := J_\gamma(\pi) - J_\gamma(\pi')$ is a polynomial in γ of degree at most $H - 1$. Consequently it has finitely many roots in $[0, 1)$ unless it is identically zero.

Proof. Linearity of expectation yields $J_\gamma(\pi) = \sum_{t=1}^H \gamma^{t-1} c_t(\pi)$ with $c_t(\pi) := \mathbb{E}_{\pi, \mu}[R_t]$, which is independent of γ . Subtracting $J_\gamma(\pi')$ and applying the fundamental theorem of algebra to $\sum_{t=1}^H \gamma^{t-1} (c_t(\pi) - c_t(\pi'))$ yields the result. \square

Theorem A.6. Under Assumption A.2, there exists $\gamma' \in [0, 1)$ and a nonempty set $\Pi_{\text{bw}}^* \subseteq \Pi$ such that for all $\gamma \in (\gamma', 1)$,

$$\operatorname{argmax}_{\pi \in \Pi} J_\gamma(\pi) = \Pi_{\text{bw}}^*.$$

Proof. By Lemma A.5, each pairwise difference $\Delta_{\pi, \pi'}(\gamma)$ is a polynomial of degree at most $H - 1$. For each ordered pair (π, π') with $\Delta_{\pi, \pi'} \not\equiv 0$, let $Z_{\pi, \pi'} = \{\gamma \in [0, 1) : \Delta_{\pi, \pi'}(\gamma) = 0\}$, which is finite. Define $\Gamma = \bigcup_{(\pi, \pi') : \Delta_{\pi, \pi'} \not\equiv 0} Z_{\pi, \pi'}$, which is finite. Set $\gamma' = \max \Gamma$ (or 0 if $\Gamma = \emptyset$). For any $\gamma \in (\gamma', 1)$ and any pair π, π' , either $\Delta_{\pi, \pi'} \equiv 0$ or it has no zeros in $(\gamma', 1)$, hence it has constant sign on that interval. Therefore all pairwise comparisons between $J_\gamma(\pi)$ and $J_\gamma(\pi')$ are fixed on $(\gamma', 1)$. It follows that Π_γ^* is constant on $(\gamma', 1)$; denote this common set by Π_{bw}^* . Nonemptiness follows from finiteness of Π . \square

Definition A.7. The Blackwell discount factor is

$$\gamma_{\text{bw}} := \inf \left\{ \gamma \in [0, 1) : \Pi_\gamma^* = \Pi_{\text{bw}}^* \quad \forall \gamma' \in (\gamma, 1) \right\},$$

where $\Pi_\gamma^* = \operatorname{argmax}_{\pi \in \Pi} J_\gamma(\pi)$.

Lemma A.8. Under Assumption A.2, the Blackwell factor γ_{bw} exists and satisfies $\gamma_{\text{bw}} < 1$.

Proof. Theorem A.6 ensures that Π_γ^* is constant for all γ sufficiently close to 1, so the infimum in Definition A.7 is well defined and strictly less than 1. \square

A.1 SOFTMAX TRAINING, GREEDY DEPLOYMENT

Let Π_s be the (possibly infinite) class of softmax policies used during training. We use the standard *time-augmented, stationary, infinite-horizon* representation of the finite-horizon problem with horizon H . Define the augmented state space:

$$\tilde{\mathcal{S}} = \{(s, t) : s \in \mathcal{S}, t \in \{1, \dots, H\}\} \cup \{\text{absorb}\},$$

and the stationary transition kernel \tilde{P} and rewards \tilde{r} by

$$\tilde{P}((s', t+1) | (s, t), a) = P(s' | s, a) \quad (t < H),$$

$$\tilde{P}(\text{absorb} | (s, H), a) = 1, \quad \tilde{P}(\text{absorb} | \text{absorb}, a) = 1,$$

$$\tilde{r}((s, t), a) = r(s, a) \quad (t \leq H), \quad \tilde{r}(\text{absorb}, a) = 0.$$

The initial distribution on augmented states is $\tilde{\mu}$ with $\tilde{\mu}((s, 1)) = \mu(s)$ and zero elsewhere. A (possibly nonstationary) finite-horizon policy $\pi = (\pi_t)_{t=1}^H$ induces the stationary policy

$$\tilde{\pi}(a \mid (s, t)) = \pi_t(a \mid s) \quad (t \leq H), \quad \tilde{\pi}(\cdot \mid \text{absorb}) \text{ arbitrary.}$$

We fix a deterministic tie breaking rule on \mathcal{A} and define the greedification map on augmented states

$$\text{Greed}(\pi, (s, t)) \in \arg \max_{a \in \mathcal{A}} \pi_t(a \mid s) \quad \forall (s, t) \in \mathcal{S} \times \{1, \dots, H\}.$$

The deployment class is the image $\Sigma := \{\text{Greed}(\pi, \cdot) : \pi \in \Pi_s\}$, a subset of the *deterministic stationary* policies on the augmented MDP $\tilde{M} = (\tilde{\mathcal{S}}, \mathcal{A}, \tilde{P}, \tilde{r}, \tilde{\mu})$. Each $\sigma \in \Sigma$ corresponds one-to-one to a deterministic nonstationary policy on the original depth- H decision tree.

Lemma A.9. *The set Σ is finite. In particular, if N_{nodes} is the number of reachable decision nodes up to depth H in the original tree, then $|\Sigma| \leq |\mathcal{A}|^{N_{\text{nodes}}}$.*

Proof. Finite states and finite horizon imply a finite reachable decision tree. A greedy policy assigns exactly one action to each reachable node (equivalently, to each reachable augmented state (s, t) with $t \leq H$), so the number of labelings is at most $|\mathcal{A}|^{N_{\text{nodes}}}$. \square

For any policy class Π , let $\gamma_{\text{bw}}(\Pi)$ denote the Blackwell discount factor given that class in the (augmented) stationary MDP. By Theorem A.6 with $\Pi \leftarrow \Sigma$, we obtain:

Corollary A.10. *There exists $\gamma_{\text{bw}}(\Sigma) < 1$ and a nonempty set $\Sigma_{\text{bw}}^* \subseteq \Sigma$ such that $\arg \max_{\pi \in \Sigma} J_\gamma(\pi) = \Sigma_{\text{bw}}^*$ for all $\gamma \in (\gamma_{\text{bw}}(\Sigma), 1)$.*

Setup For a stationary deterministic policy π on $(\tilde{\mathcal{S}}, \mathcal{A})$, let P_π and r_π be the induced transition matrix and reward vector on $\tilde{\mathcal{S}}$. Define the μ -weighted discounted return through the augmented value equation

$$v_\gamma^\pi = r_\pi + \gamma P_\pi v_\gamma^\pi, \quad J_\gamma(\pi) = \tilde{\mu}^\top v_\gamma^\pi,$$

so that, for any finite-horizon policy and its image under time-augmentation, the objectives coincide: $J_\gamma(\text{finite-horizon } \pi) = J_\gamma(\text{stationary } \tilde{\pi})$ for all $\gamma \in [0, 1]$. For a polynomial $p(X) = \sum_{k=0}^N a_k X^k$, write the coefficient extractor $[X^k]p = a_k$.

For π, π' in the admissible class Π (we will take $\Pi = \Sigma$), set

$$\gamma_\mu(\pi, \pi') := \max \left\{ \gamma \in [0, 1] : \tilde{\mu}^\top (v_\gamma^\pi - v_\gamma^{\pi'}) = 0 \right\},$$

with the convention $\gamma_\mu(\pi, \pi') = 0$ if the above set is empty or if $J_\gamma(\pi) - J_\gamma(\pi') \equiv 0$ on $[0, 1]$. We aim to upper bound

$$\bar{\gamma} = \max_{\pi, \pi' \in \Pi} \gamma_\mu(\pi, \pi').$$

(If one restricts to a subclass $\Pi' \subseteq \Pi$, replace Π by Π' everywhere; the bound below only becomes easier.)

Assumption A.11. There exists $m \in \mathbb{N}$ such that for any $(s, a, s') \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}$,

$$P(s'|s, a) = \frac{n(s, a, s')}{m}$$

with $n(s, a, s') \in \mathbb{Z}_{\geq 0}$, $n(s, a, s') \leq m$ and

$$r(s, a) = \frac{w(s, a)}{m}$$

with $w(s, a) \in \mathbb{Z}$ and $|w(s, a)| \leq r_\infty$.

The augmented kernel \tilde{P} and rewards \tilde{r} inherit this structure. Let $D_{\tilde{\mu}} = \min\{t \in \mathbb{N}_{>0} : t \tilde{\mu} \in \mathbb{Z}^{\tilde{\mathcal{S}}}\}$ be the least positive integer such that $t \tilde{\mu}$ is integer-valued.

810 **Theorem A.12.** *Under Assumption A.11, for any rational $\mu \in \Delta(\mathcal{S})$ define*

$$812 \quad N = 2|\tilde{\mathcal{S}}| - 1, \quad L_\mu = 2D_{\tilde{\mu}}|\tilde{\mathcal{S}}| r_\infty m^{2|\tilde{\mathcal{S}}|} 4^{|\tilde{\mathcal{S}}|}, \quad \eta_\mu = \frac{1}{2N^{N/2+2} (L_\mu + 1)^N}.$$

813 *Then, with $\bar{\gamma} = \max_{\pi, \pi' \in \Sigma} \gamma_\mu(\pi, \pi')$,*

$$814 \quad \bar{\gamma} < 1 - \eta_\mu.$$

815 *Proof.* All objects are on the augmented state space $\tilde{\mathcal{S}}$. By Cramer's rule (Lemma A.1 of Grand-
816 Clément & Petrik (2023)), for any deterministic π we have

$$820 \quad v_\gamma^\pi(s) = \frac{n(\gamma, s, \pi)}{d(\gamma, \pi)}, \quad d(\gamma, \pi) = \det(I - \gamma P_\pi), \quad n(\gamma, s, \pi) = \det(M(\gamma, s, \pi)),$$

821 where $M(\gamma, s, \pi)$ is formed by replacing the s -th column of $I - \gamma P_\pi$ by r_π . Writing $\bar{n}(\gamma, \pi) :=$
822 $\sum_{s \in \tilde{\mathcal{S}}} \tilde{\mu}(s) n(\gamma, s, \pi)$, we get

$$825 \quad J_\gamma(\pi) = \frac{\bar{n}(\gamma, \pi)}{d(\gamma, \pi)}, \quad J_\gamma(\pi) - J_\gamma(\pi') = \frac{p(\gamma)}{d(\gamma, \pi)d(\gamma, \pi')},$$

826 with

$$827 \quad p(\gamma) := \bar{n}(\gamma, \pi) d(\gamma, \pi') - \bar{n}(\gamma, \pi') d(\gamma, \pi).$$

828 By Lemma A.2 of Grand-Clément & Petrik (2023), $d(\gamma, \pi) > 0$ on $[0, 1]$ and by Lemma A.3,
829 $p(1) = 0$. Since $\deg \bar{n} \leq |\tilde{\mathcal{S}}| - 1$ and $\deg d \leq |\tilde{\mathcal{S}}|$, we have $\deg p \leq N := 2|\tilde{\mathcal{S}}| - 1$.

830 By Proposition A.6 of Grand-Clément & Petrik (2023), $m^{|\tilde{\mathcal{S}}|} n(\cdot, s, \pi)$ has integer coefficients and

$$835 \quad \sum_{k=0}^N \left| [X^k] (m^{|\tilde{\mathcal{S}}|} n(\cdot, s, \pi)) \right| \leq |\tilde{\mathcal{S}}| r_\infty m^{|\tilde{\mathcal{S}}|} 2^{|\tilde{\mathcal{S}}|}.$$

836 Thus $m^{|\tilde{\mathcal{S}}|} D_{\tilde{\mu}} \bar{n}(\cdot, \pi) = \sum_s (D_{\tilde{\mu}} \tilde{\mu}(s)) m^{|\tilde{\mathcal{S}}|} n(\cdot, s, \pi)$ has integer coefficients and coefficient-sum at
837 most $D_{\tilde{\mu}} |\tilde{\mathcal{S}}| r_\infty m^{|\tilde{\mathcal{S}}|} 2^{|\tilde{\mathcal{S}}|}$. By Proposition A.5 of Grand-Clément & Petrik (2023), $m^{|\tilde{\mathcal{S}}|} d(\cdot, \pi)$ has
838 integer coefficients and

$$841 \quad \sum_{k=0}^N \left| [X^k] (m^{|\tilde{\mathcal{S}}|} d(\cdot, \pi)) \right| \leq m^{|\tilde{\mathcal{S}}|} 2^{|\tilde{\mathcal{S}}|}.$$

842 Applying Proposition A.7 of Grand-Clément & Petrik (2023) to the two products defining $p(\gamma)$ and
843 summing, we obtain that

$$844 \quad \tilde{p}(\gamma) := m^{2|\tilde{\mathcal{S}}|} D_{\tilde{\mu}} p(\gamma)$$

845 has integer coefficients and

$$849 \quad \sum_{k=0}^N \left| [X^k] \tilde{p} \right| \leq 2 (D_{\tilde{\mu}} |\tilde{\mathcal{S}}| r_\infty m^{|\tilde{\mathcal{S}}|} 2^{|\tilde{\mathcal{S}}|}) \cdot (m^{|\tilde{\mathcal{S}}|} 2^{|\tilde{\mathcal{S}}|}) = L_\mu.$$

850 The degree of \tilde{p} is at most N and \tilde{p} shares roots with p . By Theorem A.8 in Grand-Clément & Petrik
851 (2023), any two distinct roots of an integer-coefficient degree- N polynomial with coefficient-sum
852 $\leq L_\mu$ are at distance at least $\eta_\mu = [2N^{N/2+2} (L_\mu + 1)^N]^{-1}$. If the set in the definition of $\gamma_\mu(\pi, \pi')$
853 is empty, then $\gamma_\mu(\pi, \pi') = 0$ and the claim holds trivially. Otherwise, 1 and $\gamma_\mu(\pi, \pi') \in [0, 1]$ are
854 distinct roots, hence $\gamma_\mu(\pi, \pi') \leq 1 - \eta_\mu$. Maximizing over $\pi, \pi' \in \Sigma$ gives $\bar{\gamma} < 1 - \eta_\mu$. \square

855 **Corollary A.13.** *For any $\Sigma' \subseteq \Sigma$, the same bound holds with $\bar{\gamma}$ replaced by $\max_{\pi, \pi' \in \Sigma'} \gamma_\mu(\pi, \pi')$.*

856 **Assumption A.14.** There exists a termination action $a_{\text{term}} \in \mathcal{A}$ (e.g., eos), an absorbing state
857 $s_{\text{abs}} \in \mathcal{S}$, and a goal set $G \subseteq \mathcal{S}$ such that for all $s \in \mathcal{S}$:

- 858 1. $r(s, a) = 0$ for all $a \neq a_{\text{term}}$;
- 859 2. taking a_{term} transitions to the absorbing state, i.e. $P(s_{\text{abs}} \mid s, a_{\text{term}}) = 1$;

864 3. the terminal reward is deterministic and binary, $r(s, a_{\text{term}}) = \mathbb{I}\{s \in G\} \in \{0, 1\}$. More-
 865 over, the absorbing state yields no further reward and transitions to itself: for all $a \in \mathcal{A}$,

866
$$r(s_{\text{abs}}, a) = 0, \quad P(s_{\text{abs}} \mid s_{\text{abs}}, a) = 1.$$

868 Let $\tau \leq H$ be the (first) absorption time. Define the success probability and (conditional) successful-
 869 path length

870
$$p(\pi) = \mathbb{P}_{\pi, \mu}(\text{success within } H), \quad L(\pi) = \mathbb{E}_{\pi, \mu}[\tau \mid \text{success}],$$

872 with the convention that $L(\pi)$ is only evaluated when $p(\pi) > 0$. Call π a *shortest-path policy* if it
 873 maximizes $p(\pi)$ and, among all maximizers of p , minimizes $L(\pi)$. If $p_* := \max_{\pi} p(\pi) = 0$, the
 874 shortest-path condition reduces to the first criterion.

875 **Lemma A.15.** *Let $\varepsilon = 1 - \gamma$. For every policy π ,*

876
$$J_{\gamma}(\pi) = \mathbb{E}_{\pi, \mu}[\gamma^{\tau-1} \mathbf{1}\{\text{success}\}] = p(\pi) \left(1 - \varepsilon(L(\pi) - 1)\right) + R_{\pi}(\varepsilon),$$

878 with remainder satisfying the uniform bound $|R_{\pi}(\varepsilon)| \leq C_H \varepsilon^2$, where $C_H := \frac{1}{2}(H-1)(H-2)$.

880 *Proof.* Since the reward is 1 only upon successful termination at time τ ,

881
$$J_{\gamma}(\pi) = \mathbb{E}_{\pi, \mu}[\gamma^{\tau-1} \mathbf{1}\{\text{success}\}] = p(\pi) \mathbb{E}[(1 - \varepsilon)^{\tau-1} \mid \text{success}],$$

883 where $\varepsilon = 1 - \gamma$. For any integer $n \in \{0, \dots, H-1\}$, Taylor's theorem gives that for some
 884 $\xi \in (0, \varepsilon)$,

885
$$(1 - \varepsilon)^n = 1 - n\varepsilon + \frac{1}{2}n(n-1)(1 - \xi)^{n-2}\varepsilon^2,$$

886 which, since $\xi \in [0, 1)$, implies

887
$$|(1 - \varepsilon)^n - (1 - n\varepsilon)| \leq \frac{1}{2}n(n-1)\varepsilon^2.$$

889 Setting $n = \tau - 1 \in \{0, \dots, H-1\}$ and conditioning on success yields

890
$$\mathbb{E}[(1 - \varepsilon)^{\tau-1} \mid \text{success}] = 1 - \varepsilon(L(\pi) - 1) + \mathbb{E}[\delta_{\tau-1}(\varepsilon) \mid \text{success}],$$

892 with $|\delta_{\tau-1}(\varepsilon)| \leq \frac{1}{2}(\tau-1)(\tau-2)\varepsilon^2 \leq C_H \varepsilon^2$. Define $R_{\pi}(\varepsilon) := p(\pi) \mathbb{E}[\delta_{\tau-1}(\varepsilon) \mid \text{success}]$ to
 893 conclude. \square

894 **Theorem A.16.** *In finite-horizon MDPs with a deterministic binary terminal verifier reward (Assumption A.14), every Blackwell optimal policy is a shortest path policy:*

895
$$\Pi_{\text{bw}}^* \subseteq \underset{\pi \in \Pi_{\max p}}{\operatorname{argmin}} L(\pi), \quad \text{where} \quad \Pi_{\max p} = \underset{\pi \in \Pi}{\operatorname{argmax}} p(\pi).$$

900 *Proof.* Let $\pi^* \in \Pi_{\text{bw}}^*$. For any $\pi \in \Pi$ and $\varepsilon = 1 - \gamma$, Lemma A.15 gives

901
$$J_{\gamma}(\pi^*) - J_{\gamma}(\pi) = \underbrace{p(\pi^*) - p(\pi)}_{(A)} - \varepsilon \underbrace{(p(\pi^*)(L(\pi^*) - 1) - p(\pi)(L(\pi) - 1))}_{(B)} + \underbrace{R_{\pi^*}(\varepsilon) - R_{\pi}(\varepsilon)}_{(C)},$$

904 with $|(C)| \leq 2C_H \varepsilon^2$. If $p(\pi) > p(\pi^*)$, then for sufficiently small $\varepsilon > 0$ the RHS is negative,
 905 contradicting optimality of π^* for γ arbitrarily close to 1. Hence $p(\pi^*) \geq p(\pi)$ for all π , i.e.,
 906 $\pi^* \in \Pi_{\max p}$.

907 Now fix any $\pi \in \Pi_{\max p}$ so that $p(\pi) = p(\pi^*) = p_*$. If $L(\pi) < L(\pi^*)$ then $(B) = p_*(L(\pi^*) -$
 908 $L(\pi)) > 0$ and for small enough ε the negative term $-\varepsilon(B)$ dominates the $O(\varepsilon^2)$ remainder, again
 909 contradicting optimality. Therefore $L(\pi^*) \leq L(\pi)$ for all $\pi \in \Pi_{\max p}$.

910 The same argument applies with Π replaced by any subclass (e.g., the finite deployment class Σ). \square

913 **Corollary A.17.** *In the time-augmented reasoning MDP, the Blackwell-optimal deployed policies
 914 satisfy*

915
$$\Sigma_{\text{bw}}^* = \arg \min_{\sigma \in \Sigma_{\max p}} L(\sigma), \quad \Sigma_{\max p} := \arg \max_{\sigma \in \Sigma} p(\sigma).$$

916 *Equivalently, for γ sufficiently close to 1, the γ -discounted optimal policies in Σ are exactly the
 917 shortest successful-path policies.*