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Figure 1. PhysGaussian is a unified simulation-rendering pipeline based on 3D Gaussians and continuum mechanics.

Abstract

We introduce PhysGaussian, a new method that seamlessly
integrates physically grounded Newtonian dynamics within
3D Gaussians to achieve high-quality novel motion synthe-
sis. Employing a custom Material Point Method (MPM),
our approach enriches 3D Gaussian kernels with physically
meaningful kinematic deformation and mechanical stress
attributes, all evolved in line with continuum mechanics
principles. A defining characteristic of our method is the
seamless integration between physical simulation and vi-
sual rendering: both components utilize the same 3D Gaus-
sian kernels as their discrete representations. This negates
the necessity for triangle/tetrahedron meshing, marching
cubes, “cage meshes,” or any other geometry embedding,
highlighting the principle of “what you see is what you sim-
ulate (WS2).” Our method demonstrates exceptional ver-
satility across a wide variety of materials—including elastic
entities, plastic metals, non-Newtonian fluids, and granular
materials—showcasing its strong capabilities in creating di-
verse visual content with novel viewpoints and movements.
Our project page is at: https://xpandora.github.
io/PhysGaussian/.

* indicates equal contributions.

1. Introduction

Recent strides in Neural Radiance Fields (NeRFs) have
showcased significant advancements in 3D graphics and
vision [24]. Such gains have been further augmented by
the cutting-edge 3D Gaussian Splatting (GS) framework
[16]. Despite many achievements, a noticeable gap re-
mains in the application towards generating novel dynam-
ics. While there exist endeavors that generate new poses for
NeRFs, they typically cater to quasi-static geometry shape
editing tasks and often require meshing or embedding vi-
sual geometry in coarse proxy meshes such as tetrahedra
[12, 28,47, 51].

Meanwhile, the traditional physics-based visual content
generation pipeline has been a tedious multi-stage process:
constructing the geometry, making it simulation-ready (of-
ten through techniques like tetrahedralization), simulating
it with physics, and finally rendering the scene. This se-
quence, while effective, introduces intermediary stages that
can lead to discrepancies between simulation and final vi-
sualization. Even within the NeRF paradigm, a similar
trend is observed, as the rendering geometry is embedded
into a simulation geometry. This division, in essence, con-
trasts with the natural world, where the physical behavior
and visual appearance of materials are intrinsically inter-
twined. Our overarching philosophy seeks to align these
two facets by advocating for a unified representation of a
material substance, employed for both simulation and ren-
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dering. In essence, our approach champions the principle of
“what you see is what you simulate” (WS?) [25], aiming for
a more coherent integration of simulation, capturing, and
rendering.
Building towards this goal, we introduce PhysGaussian:
physics-integrated 3D Gaussians for generative dynamics.
This novel approach empowers 3D Gaussians to encapsu-
late physically sound Newtonian dynamics, including real-
istic behaviors and inertia effects inherent in solid materi-
als. More specifically, we impart physics to 3D Gaussian
kernels, endowing them with kinematic attributes such as
velocity and strain, along with mechanical properties like
elastic energy, stress, and plasticity. Notably, through con-
tinuum mechanics principles and a custom Material Point
Method (MPM), PhysGaussian ensures that both physical
simulation and visual rendering are driven by 3D Gaus-
sians. This eradicates the necessity for any embedding
mechanisms, thus eliminating any disparity or resolution
mismatch between the simulated and the rendered.
We present PhysGaussian’s versatile adeptness in syn-
thesizing generative dynamics across various materials,
such as elastic objects, metals, non-Newtonian viscoplastic
substances (e.g. foam or gel), and granular mediums (e.g.
sand or soil). To summarize, our contributions include
e Continuum Mechanics for 3D Gaussian Kinematics:
We introduce a continuum mechanics-based strategy tai-
lored for evolving 3D Gaussian kernels and their associ-
ated spherical harmonics in physical Partial Differential
Equation (PDE)-driven displacement fields.

¢ Unified Simulation-Rendering Pipeline: We present an
efficient simulation and rendering pipeline with a unified
3D Gaussian representation. Eliminating the extra effort
for explicit object meshing, the motion generation process
is significantly simplified.

¢ Versatile Benchmarking and Experiments: We con-
duct a comprehensive suite of benchmarks and experi-
ments across various materials. Enhanced by real-time
GS rendering and efficient MPM simulations, we achieve
real-time performance for scenes with simple dynamics.

2. Related Work

Radiance Fields Rendering for View Synthesis. Radi-
ance field methods have gained considerable interest in re-
cent years due to their extraordinary ability to generate
novel-view scenes and their great potential in 3D recon-
struction. The adoption of deep learning techniques has
led to the prominence of neural rendering and point-based
rendering methods, both of which have inspired a multi-
tude of subsequent works. On the one hand, the NeRF
framework employs a fully-connected network to model
one scene [24]. The network takes spatial position and
viewing direction as inputs and produces the volume den-
sity and radiance color. These outputs are subsequently uti-

lized in image generation through volume rendering tech-
niques. Building upon the achievements of NeRF, further
studies have focused on enhancing reconstruction quality
and improving training speeds [1, 7, 20, 26, 40, 46]. On the
other hand, researchers have also investigated differentiable
point-based methods for real-time rendering of unbounded
scenes. Among the current investigations, the state-of-the-
art results are achieved by the recently published 3D Gaus-
sian Splatting framework [16]. Contrary to prior implicit
neural representations, GS employs an explicit and unstruc-
tured representation of one scene, offering the advantage
of straightforward extension to post-manipulation. More-
over, its fast visibility-aware rendering algorithm also en-
ables real-world dynamics generations.

Dynamic Neural Radiance Field. An inherent evolution
of the NeRF framework entails the integration of a tem-
poral dimension to facilitate the representation of dynamic
scenes. For example, both Pumarola et al. [30] and Park
et al. [27] decompose time-dependent neural fields into
an inverse displacement field and canonical time-invariant
neural fields. In this context, the trajectory of query rays
is altered by the inverse displacement field and then po-
sitioned within the canonical space. Subsequent stud-
ies have adhered to the aforementioned design when ex-
ploring applications related to NeRF deformations, such
as static scene editing and dynamic scene reconstruction
[5, 19,21, 28,31, 32,51]. Additionally, Liu et al. [21], Qiao
et al. [31], Yuan et al. [51] have contributed to the incorpo-
ration of physics-based deformations into the NeRF frame-
work. However, the effectiveness of these methodologies
relies on the usage of exported meshes derived from NeRFs.
To circumvent this restriction, explicit geometric represen-
tations have been explored for forward displacement mod-
eling [16, 46]. In particular, Chen et al. [6], Luiten et al.
[22], Wu et al. [45], Yang et al. [48, 49] directly manipulate
NeRF fields. Li et al. [ 18] extends this approach by includ-
ing physical simulators to achieve more dynamic behaviors.
In this study, we leverage the explicit 3D Gaussian Splat-
ting ellipsoids as a unified representation for both physics
and graphics. In contrast to previous dynamic GS frame-
works, which either maintain the shapes of Gaussian kernels
or learn to modify them, our approach uniquely leverages
the first-order information from the displacement map (de-
formation gradient) to assist dynamic simulations. In this
way, we are able to deform the Gaussian kernels and seam-
lessly integrate the simulation within the GS framework.

Material Point Method. The Material Point Method
(MPM) is a widely used simulation framework for a broad
range of multi-physics phenomena [10]. The inherent capa-
bility of the MPM system allows for topology changes and
frictional interactions, making it suitable for simulating var-
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Figure 2. Method Overview. PhysGaussian is a unified simulation-rendering pipeline that incorporates 3D Gaussian splatting representa-
tion and continuum mechanics to generate physics-based dynamics and photo-realistic renderings simultaneously and seamlessly.

ious materials, including but not limited to elastic objects,
fluids, sand, and snow [13, 17, 39]. MPM can also be ex-
panded to simulate objects that possess codimensional char-
acteristics [15]. In addition, the efficacy of utilizing GPU(s)
to accelerate MPM implementations has also been demon-
strated in [8, 11, 33, 44]. Owing to its well-documented ad-
vantages, we employ the MPM to support the latent phys-
ical dynamics. This choice allows us to efficiently import
dynamics into various scenarios with a shared particle rep-
resentation alongside the Gaussian Splatting framework.

3. Method Overview

We propose PhysGaussian (Fig. 2), a unified simulation-
rendering framework for generative dynamics based on con-
tinuum mechanics and 3D GS. Adopted from Kerbl et al.
[16], we first reconstruct a GS representation of a static
scene, with an optional anisotropic loss term to regularize
over-skinny kernels. These Gaussians are viewed as the dis-
cretization of the scene to be simulated. Under our novel
kinematics, we directly splat the deformed Gaussians for
photo-realistic renderings. For better physics compliance,
we also optionally fill the internal regions of objects. We
detail these in this section.

3.1. 3D Gaussian Splatting

3D Gaussian Splatting method [16] reparameterizes NeRF
[24] using a set of unstructured 3D Gaussian kernels
{zp,0p, Ap,Cp}pep, where x,, 0, Ap, and C, represent
the centers, opacities, covariance matrices, and spherical
harmonic coefficients of the Gaussians, respectively. To
render a view, GS projects these 3D Gaussians onto the im-
age plane as 2D Gaussians, differing from traditional NeRF
techniques that emit rays from the camera. The final color

of each pixel is computed as

k—1
C = ZakSH(dk;Ck) Hl(lfaj). (1)
i
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Here o, represents the z-depth ordered effective opacities,
i.e., products of the 2D Gaussian weights and their over-
all opacities o; dj stands for the view direction from the
camera to x;. Per-view optimizations are performed us-
ing L; loss and SSIM loss. This explicit representation of
the scene not only significantly accelerates training and ren-
dering speeds, but also enables direct manipulation of the
NeRF scene. The data-driven dynamics are supported by
making x,, A, time-dependent [45] and minimizing ren-
dering losses over videos. In Sec. 3.1, we show that this
time-dependent evolution can be given by the continuum
deformation map.

3.2. Continuum Mechanics

Continuum mechanics describes motions by a time-
dependent continuous deformation map * = ¢(X,1)
between the undeformed material space Q° and the de-
formed world space ! at time ¢. The deformation gradient
F(X,t) = Vx¢(X,t) encodes local transformations in-
cluding stretch, rotation, and shear [2]. The evolution of the
deformation ¢ is governed by the conservation of mass and
momentum. Conservation of mass ensures that the mass
within any infinitesimal region B? € QU remains constant
over time:

/B: p(x,t) E/BQ plo(z,1),0), )

where B! = ¢(B?,t) and p(x,t) is the density field char-
acterizing material distribution. Denoting the velocity field
with v(, t), the conservation of momentum is given by

p(x, t)o(z,t) =V - o(z,1) + £, 3)



ﬁmg%(FE)FET is the Cauchy stress ten-
sor associated with a hyperelastic energy density ¥ (F’), and
f is the external force per unit volume [2, 14]. Here the
total deformation gradient can be decomposed into an elas-
tic part and a plastic part F' = F'¥ F'* to support permanent
rest shape changes caused by plasticity. The evolution of
F¥ follows some specific plastic flow such that it is always
constrained within a predefined elastic region [2].

where o0 =

3.3. Material Point Method

Material Point Method (MPM) solves the above governing
equations by combining the strengths of both Lagrangian
particles and Eulerian grids [14, 39]. The continuum is
discretized by a collection of particles, each representing
a small material region. These particles track several time-
varying Lagrangian quantities such as position x,, veloc-
ity v, and deformation gradient F},. The mass conserva-
tion in Lagrangian particles ensures the constancy of total
mass during movement. Conversely, momentum conserva-
tion is more natural in Eulerian representation, which avoids
mesh construction. We follow Stomakhin et al. [39] to in-
tegrate these representations using C'! continuous B-spline
kernels for two-way transfer. From time step t" to t" 1, the
momentum conservation, discretized by the forward Euler
scheme, is represented as

B (0] —vp) = = X, VO SER(EPEP Vwy, + £ (4)
Here ¢ and p represent the fields on the Eulerian grid and
the Lagrangian particles respectively; w;, is the B-spline
kernel defined on ¢-th grid evaluated at :c;‘; VpO is the
initial representing volume, and At is the time step size.
The updated grid velocity field vf“ is transferred back
onto particle to vg*l, updating the particles’ positions to
xptt = ' + Atop . We track F¥ rather than both
F and F” [37], which is updated by FIF’"“ = (I+
AtVv,)EEF™ = (I 4+ Aty v?HVwZOT)FpE’" and reg-
ularized by an additional return mapping to support plastic-
ity evolution: FP"+! « Z(FF 1), Different plasticity
models define different return mappings. We refer to the
supplemental document for details of the simulation algo-
rithm and different return mappings.

3.4. Physics-Integrated 3D Gaussians

We treat Gaussian kernels as discrete particle clouds for
spatially discretizing the simulated continuum. As the con-
tinuum deforms, we let the Gaussian kernels deform as well.
However, for a Gaussian kernel defined at X, in the ma-
terial space, Gp(X) = e~ 3(X—Xp)T AN (X =X5) the de-
formed kernel under the deformation map ¢ (X, t),

Gy(a,t) = e 307 @D-X)TA 07 @0-X) (5

is not necessarily Gaussian in the world space, which vio-
lates the requirements of the splatting process. Fortunately,
if we assume particles undergo local affine transformations
characterized by the first-order approximation

Op(X 1) = @) + Fp(X — X,), (©)
the deformed kernel becomes Gaussian as desired:
Gp(a:,t) = 67%(mpr)T(FpAle:)il(zfmp). (7)
This transformation naturally &,
provides a time-dependent

version of ¢, and A, for the
3D GS framework:

xp(t) = ¢(Xp, 1),
ay(t) = Fp(t)Apr(t)T-

X1, A (@1, a;)
Q 2 o)

®

In summary, given the 3D GS of a static scene
{X,,Ap,0p,Cp}, we use simulation to dynamize the scene
by evolving these Gaussians to produce dynamic Gaussians
{z,(t), ap(t),op,Cp}. Here we assume that the opacity and
the coefficients of spherical harmonics are invariant over
time, but the harmonics will be rotated as discussed in the
next section. We also initialize other physical quantities in
Eq. (4): the representing volume of each particle Vp0 is ini-
tialized as background cell volume divided by the number
of contained particles; the mass m,, is then inferred from
user-specified density p, as m, = ppV;,O. To render these
deformed Gaussian kernels, we use the splatting from the
original GS framework [16]. It should be highlighted that
the integration of physics into 3D Gaussians is seamless:
on the one hand, the Gaussians themselves are viewed as
the discretization of the continuum, which can be simulated
directly; on the other hand, the deformed Gaussians can be
directly rendered by the splatting procedure, avoiding the
need for commercial rendering software in traditional ani-
mation pipelines. Most importantly, we can directly simu-
late scenes reconstructed from real data, achieving WS2.

3.5. Evolving Orientations of Spherical Harmonics

Rendering the world-space
3D Gaussians can already
obtain high-quality results.
However, when the ob-
ject undergoes rotations,
the spherical harmonic bases are still represented in the ma-
terial space, resulting in varying appearances even if the
view direction is fixed relatively to the object. The solution
is simple: when an ellipsoid is rotated over time, we rotate
the orientations of its spherical harmonics as well. How-
ever, the bases are hard-coded inside the GS framework. We
equivalently achieve this evolution by applying inverse rota-
tion on view directions. This effect is illustrated in the inset




figure. We remark that the rotation of view directions is not
considered in Wu et al. [45]. Chen et al. [6] tackles this
issue in the Point-NeRF framework, but requires tracking
of surface orientation. In our framework, the local rotation
is readily obtained in the deformation gradient F},. Denote
f°(d) as a spherical harmonic basis in material space, with
d being a point on the unit sphere (indicating view direc-
tion). The polar decomposition, F,, = RS, leads us to
the rotated harmonic basis:

fi(d) = f°(R"d). 9)

3.6. Incremental Evolution of Gaussians

We also propose an alternative way for Gaussian kinemat-
ics that better fits the updated Lagrangian framework, which
avoids the dependency on the total deformation gradient
F'. This approach also paves the way for physical mate-
rial models that do not rely on employing F' as the strain
measure. Following conventions from computational fluid
dynamics [4, 23], the update rule for the world-space co-
variance matrix a can also be derived by discretizing the
rate form of kinematics @ = (Vv)a + a(Vv)T:

a'tt = a + At(Voyal + alVol). (10)

This formulation facilitates the incremental update of the
Gaussian kernel shapes from time step " to t"*! with-
out the need to obtain Fj,. The rotation matrix IR, of each
spherical harmonics basis can be incrementally updated in
a similar manner. Starting from Rg = I, we extract the
rotation matrix R+ from (I 4 Atv,) R} using the polar
decomposition.

3.7. Internal Filling

The internal structure is occluded by the object’s surface,
as the reconstructed Gaussians tend to distribute near the
surface, resulting in inaccurate behaviors of volumetric ob-
jects. To fill particles into the void internal region, inspired
by Tang et al. [42], we borrow the 3D opacity field from 3D
Gaussians

d(@) =3, opexp (—3(x — @) A (@ —xp)).  (11)

This continuous field is

Condition 1 Condition 2
discretized onto a 3D x .
grid. To achieve ro-
bust internal filling, we ), A »
s ne the con v
first define the concept /o o

. . . . x
of “intersection” within
@ External Grid Internal Grid Ray

the opacity field, guided
by a user-defined threshold oy;,. Specifically, we consider it
an intersection when a ray passes from a lower opacity grid
(0; < o) to a higher opacity one (o; > oyp,). Based on
this definition, we identify candidate grids by casting rays

along 6 axes and checking intersections (condition 1). Rays
originating from internal cells will always intersect with the
surface. To further refine our selection of candidate grids,
we employ an additional ray to assess the intersection num-
ber (condition 2), thus ensuring greater accuracy.
Visualization of these internal particles is also crucial
as they may get exposed due to large deformation. Those
filled particles inherit o,,, C, from their closet Gaussian ker-
nels. Each particle’s covariance matrix is initialized as

diag(r2,72,72), where r is the particle radius calculated

from its volume: 7, = (3V}/ 47)%. Alternatively, one may
also consider employing generative models for internal fill-
ing, potentially leading to more realistic results.

3.8. Anisotropy Regularizer

The anisotropy of Gaussian kernels increases the efficiency
of 3D representation while over-skinny kernels may point
outward from the object surface under large deformations,
leading to unexpected plush artifacts. We propose the fol-
lowing training loss during 3D Gaussian reconstruction:

Laniso = % Z max{max(S,)/ min(S,),r}—r, (12)

peEP

where S, are the scalings of 3D Gaussians [16]. This loss
essentially constrains that the ratio between the major axis
length and minor axis length does not exceed 7. If desired,
this term can be added to the training loss.

4. Experiments

In this section, we show the versatility of our approach
across a wide range of materials. We also evaluate the ef-
fectiveness of our method across a comprehensive suite of
benchmarks.

4.1. Evaluation of Generative Dynamics

Datasets We evaluate our method for generating diverse
dynamics using several sources of input. In addition to the
synthetic data (sofa suite) generated by BlenderNeRF [34],
we utilize fox, plane, and ruins from the datasets of Instant-
NGP [26], Nerfstudio [41] and the DroneDeploy NeRF
[29], respectively. Furthermore, we collect two real-world
datasets (referred to as toast and jam) with an iPhone. Each
scene contains 150 photos. The initial point clouds and
camera parameters are obtained using COLMAP [35, 36].

Simulation Setups We build upon the MPM from Zong
et al. [53]. To generate novel physics-based dynamics of
a 3D Gaussian scene, we manually select a simulation re-
gion and normalize it to a cube with edge length 2. The
internal particle filling can be performed before simulation.
The cuboid simulation domain is discretized by a 3D dense
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Figure 3. Material Versatility. We demonstrate exceptional versatility of our approach across a wide variety of examples: fox (elastic
entity), plane (plastic metal), toast (fracture), ruins (granular material), jam (viscoplastic material), and sofa suite (collision).

grid. We selectively modify the velocities of specific parti-
cles to induce controlled movement. The remaining parti-
cles follow natural motion patterns governed by the estab-
lished physical laws. All our experiments are performed on
a 24-core 3.50GHz Intel 19-10920X machine with a Nvidia
RTX 3090 GPU.

Results We simulate a wide range of physics-based dy-
namics. For each type of dynamics, we visualize one ex-

ample with its initial scene and deformation sequence, as
shown in Fig. 3. Additional experiments are included in
the supplemental document. The dynamics include: Elas-
ticity refers to the property where the rest shape of the
object remains invariant during deformation, representing
the simplest form of daily-life dynamics. Metal can un-
dergo permanent rest shape changes, which follows von-
Mises plasticity model. Fracture is naturally supported by
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Figure 4. Comparisons. For each benchmark case, we select one
test viewpoint and visualize all comparisons. We zoom in on some
regions to highlight the ability of our method to maintain high-
fidelity rendering quality after deformations. We use a black back-
ground to avoid the interference of the background.

MPM simulation, where large deformations can cause parti-
cles to separate into multiple groups. Sand follows Druker-
Prager plasticity model [17], which can capture granular-
level frictional effects among particles. Paste is modeled
as viscoplastic non-Newtonian fluid, adhering to Herschel-
Bulkley plasticity model [52]. Collision is another key fea-
ture of MPM simulation, which is automatically handled by
grid time integration. Explicit MPM can be highly opti-
mized to run on GPUs. We highlight that some of the cases
can achieve real-time based on the 1/24-s frame duration:
plane (30 FPS), toast (25 FPS) and jam (36 FPS). While uti-
lizing FEM may further accelerate the elasticity simulation,
it will involve an additional step of mesh extraction and lose
the generalizability of MPM in inelasticity simulation.

4.2. Lattice Deformation Benchmarks

Dataset Due to the absence of ground truth for post-
deformation, we utilize BlenderNeRF [34] to synthesize
several scenes, applying bending and twisting with the lat-
tice deformation tool. For each scene, we create 100 multi-
view renderings of the undeformed state for training, and
100 multi-view renderings of each deformed state to serve

Ground Truth Ours Fixed Cov.

Rigid Cov. Fixed Harmonics

Figure 5. Ablation Studies. Non-extensible Gaussians can lead to
severe visual artifacts during deformations. Although direct ren-
dering the deformed Gaussian kernels can already obtain good re-
sults, additional rotations on spherical harmonics can improve the
rendering quality.

as ground truth for the deformed NeRFs. The lattice defor-
mations are set as input to all methods for fair comparisons.

Comparisons We compare our method with several state-
of-the-art NeRF frameworks that support manual deforma-
tions: 1) NeRF-Editing [51] deforms NeRF using an ex-
tracted surface mesh, 2) Deforming-NeRF [47] utilizes a
cage mesh for deformation, and 3) PAC-NeRF [18] manip-
ulates individual initial particles.

We show qualitative results in Fig. 4 and quantitative re-
sults in Tab. 1. NeRF-Editing uses NeuS [43] as the scene
representation, which is more suited for surface reconstruc-
tions rather than high-fidelity renderings. Consequently, its
rendering quality is inherently lower than that of 3DGS.
Furthermore, the deformation highly depends on the pre-
cision of the extracted surface mesh and the dilated cage
mesh — an overly tight mesh might not encompass the en-
tire radiance field, while an excessively large one could re-
sult in a void border, as observed in the twisting stool and
plant examples. Deforming-NeRF, on the other hand, pro-
vides clear renderings and potentially leads to enhanced re-
sults if higher-resolution deformation cages are provided.
However, it employs a smooth interpolation from all cage
vertices, thus filtering out fine local details and failing to
match lattice deformations. PAC-NeRF is designed for
simpler objects and textures in system identification tasks.
While offering flexibility through its particle representation,
it does not achieve high rendering fidelity. Our method
utilizes both zero-order information (the deformation map)
and first-order information (the deformation gradient) from
each lattice cell. It outperforms the other methods across all
cases, as high rendering qualities are well preserved after
deformations. Although not primarily designed for editing
tasks, this comparison showcases our method’s significant
potential for realistic editing of static NeRF scenes.

Ablation Studies We further conduct several ablation
studies on these benchmark scenes to validate the neces-
sity of the kinematics of Gaussian kernels and spherical
harmonics: 1) Fixed Covariance only translates the Gaus-
sian kernels. 2) Rigid Covariance only applies rigid trans-
formations on the Gaussians, as assumed in Luiten et al.
[22]. 3) Fixed Harmonics does not rotate the orientations



Table 1. We synthesize a lattice deformation benchmark dataset
to compare with baselines and conduct ablation studies to validate
our design choices. PSNR scores are reported (higher is better).
Our method outperforms the others across all cases.

Test Case Wolf Stool Plant

Deformation Operator Bend Twist Bend Twist Bend Twist
NeRF-Editing [51] 26.74 2437 2500 21.10 19.85 19.08
Deforming-NeRF [47] 21.65 21.72 2232 21.16 17.90 18.63
PAC-NeRF [18] 2691 2527 2183 2126 1850 17.78
Fixed Covariance 26.77 26.02 2994 2531 2395 23.09
Rigid Covariance 26.84 26.16 3028 2570 24.09 23.53
Fixed Harmonics 26.83 26.02 30.87 2575 25.09 23.69
Ours 2696 26.46 31.15 26.15 25.81 23.87
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Figure 6. Internal filling enables more realistic simulation results.
Our method also supports flexible control of dynamics via material
parameters. A larger Young’s modulus F indicates higher stiffness
while a larger poission ratio v leads to better volume preservation.

of spherical harmonics, as assumed in Wu et al. [45].

Here we visualize one example in Fig. 5. We can ob-
serve that Gaussians will not properly cover the surface af-
ter deformation if they are non-extensible, leading to severe
visual artifacts. Enabling the rotation of spherical harmon-
ics can slightly improve the consistency with the ground
truth. We include quantitative results on all test cases in
Tab. 1, which shows that all these enhancements are needed
to achieve the best performance of our method.

4.3. Additional Qualitative Studies

Internal Filling Typically, the 3D Gaussian splatting
framework focuses on the surface appearance of objects and
often fails to capture their internal structure. Consequently,
the interior of the modeled object remains hollow, resem-
bling a mere shell. This is usually not true in the real world,
leading to unrealistic simulation results. To address this
challenge, we introduce an internal filling method leverag-
ing a reconstructed density field, which is derived from the
opacity of Gaussian kernels. Fig. 6 showcases our simula-
tion results with varying physical parameters. Objects de-
void of internal particles tend to collapse when subjected to
gravity forces, irrespective of the material parameters used.
In contrast, our approach assisted by internal filling allows
for nuanced control over object dynamics, effectively ad-
justing to different material characteristics.

Ours NeRF-Editing

Stretch Stretch

Figure 7. Volume Conservation. Compared to the geometry-
based editing method [51], our physics-based method is able to
capture volumetric behaviors, leading to more realistic dynamics.
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Figure 8. Anisotropy Regularizer. We introduce an anisotropy
constraint for Gaussian kernels, effectively enhancing the fidelity
of the Gaussian-based representation under dynamic conditions.

Volume Conservation Existing approaches to NeRF ma-
nipulation focus primarily on geometric adjustments with-
out incorporating physical properties. A key attribute of
real-world objects is their inherent ability to conserve vol-
ume during deformation. In Fig. 7, we conduct a com-
parison study between our method and NeRF-Editing [51],
which utilizes surface As-Rigid-As-Possible (ARAP) defor-
mation [38]. Unlike NeRF-Editing, our approach accurately
captures and maintains the volume of the deformed objects.

Anisotropy Regularizer 3D Gaussian models inherently
represent anisotropic ellipsoids. However, excessively slen-
der Gaussian kernels can lead to burr-like visual artifacts,
especially pronounced during large deformations To tackle
this issue, we introduce an additional regularization loss
Eq. (12) to constrain anisotropy. As demonstrated in Fig. 8,
this additional loss function effectively mitigates the arti-
facts induced by extreme anisotropy.

5. Discussion

Conclusion This paper introduces PhysGaussian, a uni-
fied simulation-rendering pipeline that generates physics-
based dynamics and photo-realistic renderings simultane-
ously and seamlessly.

Limitation In our framework, the evolution of shadows
is not considered, and material parameters are manually
set. Automatic parameter assignment could be derived from
videos by combining GS segmentation [3, 50] with a dif-
ferentiable MPM simulator. Additionally, incorporating



geometry-aware 3DGS reconstruction methods [9] could
enhance generative dynamics. Future work will also ex-
plore handling more versatile materials like liquids and in-
tegrating more intuitive user controls, possibly leveraging
advancements in Large Language Models (LLMs).
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Appendix
A. MPM Algorithm

In MPM, a continuum body is discretized into a set of La-
grangian particles p, and time is discretized into a sequence
of time steps t = 0,t', 2, .... Here we take a fixed stepsize
At, so t"™ = nAt.

At each time step, masses and momentums on particles
are first transferred to grid nodes. Grid velocities are then
updated using forward Euler’s method and transferred back
to particles for subsequent advection. Let m,,, xy;, v, F',
7,', and C} denote the mass, position, velocity, deforma-
tion gradient, Kirchhoff stress, and affine momentum on
particle p at time ¢,,. Let m;, ' and v} denote the mass,
position, and velocity on grid node ¢ at time ¢". Here, par-
ticle masses are invariant due to mass conservation law. Let
mj, 7 and v;' denote the mass, position, and velocity on
grid node ¢ at time t". We summarize the explicit MPM
algorithm as follows:

1. Transfer Particles to Grid. Transfer mass and momen-
tum from particles to grids as

_ n
m; = E wipm]m
p
_ n
- § :wipmp (vp
P

We adopt the APIC scheme [13] for momentum transfer.
2. Grid Update. Update grid velocities based on forces at

the next timestep by

At

m;

(13)
+Cy (:ci — w"))

p

v;"'H =] "Vw Vo

ip'p +Atg'

(14)
p

3. Transfer Grid to Particles. Transfer velocities back to
particles and update particle states.

+1 _ n+1
v, = Z v W,
i
ar:;,‘+1 =z, + At'v"+1
Cn+1 — Z w? n+1 .’En)T
p A.’L’2 b + Zp % P ’
71+1 Z vn-‘rlvwn T,
FE,lr — (I—|—V’v"+1)FE’n,
FE n+l __ Z(FE [r)
n+l _ E,n+1
T, =T1(F, ).

(15)
Here b is the B-spline degree, and Ax is the Eulerian grid
spacing. The computation of the return map Z and the
Kirchhoff stress 7 is outlined in Appendix B. We refer
the readers to [14] for the detailed derivations from the
continuous conservation law to its MPM discretization.



Table 2. Model Settings.

Scene Figure Constitutive Model
Vasedeck Fig. 1  Fixed corotated
Ficus Fig.2  Fixed corotated
Fox Fig. 3  Fixed corotated
Plane Fig. 3 von Mises
Toast Fig.3  Fixed corotated
Ruins Fig.3  Drucker-Prager
Jam Fig. 3 Herschel-Bulkley
Sofa Suite Fig. 3 Fixed corotated
Materials Fig. 6  Fixed corotated
Microphone Fig.7  Neo-Hookean
Bread Fig.9  Fixed corotated
Cake Fig. 9  Herschel-Bulkley
Can Fig.9  von Mises
Wolf Fig. 9  Drucker-Prager
Table 3. Material Parameters.
Notation Meaning Relation to E/, v
E Young’s modulus  /
v Poisson’s ratio /
I Shear modulus W= @
A Lamé modulus A= m
K Bulk modulus K= ﬁ

B. Elasticity and Plasticity Models

We adopt the constitutive models used in [53]. We list the
models used for each scene in Tab. 2 and summarize all the
parameters needed in discussing the constitutive models in
Tab. 3.

In all plasticity models used in our work, the deformation
gradient is multiplicatively decomposed into F' = FFFP
following some yield stress condition. A hyperelastic con-
stitutive model is applied to F¥ to compute the Kirch-
hoff stress 7. For a pure elastic continuum, we simply take
FF=F.

B.1. Fixed Corotated Elasticity
The Kirchhoff stress 7 is defined as
r=2u(FF — R)FFT 4+ \(J-1)J,  (16)

where R = UV 7 and FF = UXV7 is the singular value
decomposition of elastic deformation gradient. J is the de-
terminant of F'¥ [13].

B.2. StVK Elasticity
The Kirchhoff stress 7 is defined as

T =U (2ue + Asum(e)1) V7T,
where € = log(X) and F¥ = UZVT [17].

a7

12

B.3. Neo-Hookean Elasticity
The Kirchhoff stress 7 is defined as

7= uw(FEFET — I) +log(J)I, (18)
where J is the determinant of F'Z [13].

B.4. Drucker-Prager Plasticity

The return mapping of Drucker-Prager plasticity for sand
[17]is, given F = UXVT and € = log(X),

Fr=Uz(®m)VY, (19)
1, sum(e) > 0,
Z(®) =< % 8y <0, and sum(e) < 0,

exp (e — &YI\%H) , otherwise.
(20)
and

~ dX 1) sum/(e 2 sin
Here 6y = ||€]| + o dAF2) sum(e) +2’2L mie) o = \/ggisiniff,
¢y is the friction angle. é = dev(e).
B.5. von Mises Plasticity

Similar to Drucker-Prager plasticity, given F = UXV7T
and € = log(X),

Z(%) = {

and 6y = [|€[|p — 5. Here 7y is the yield stress.

FE-Uz(m)VvT,

3, 0y <0,

exp (e — 67”—;‘) , otherwise, @D

B.6. Herschel-Bulkley Plasticity

We follow Yue et al. [52] and take the simple case where

h = 1. Denote s = dev(7") and s"! = ||s"4!||. The
yield condition is ®(s) = s — /20y < 0. Ifit s violated,

we modify 5" by

A A 2 n
_ trial trial - 1 — .
s§=s (s \/;UY>/( +2uAt>

trial

s can then be recovered as s = s - Hz‘TIH Define b? =

FEFET The Kirchhoff stress T is computed as
=3 (2= 1) I+ pdev [det(b”) 7567

C. Additional Evaluations

We present additional evaluations of our method in Fig. 9.
The vasedeck data is from the Nerf dataset [24] and the oth-
ers are synthetic data, generated using BlenderNeRF [34].
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Figure 9. Additional Evaluation. Examples from top to bottom are: vasedeck (elastic entity), bread (fracture), cake (viscoplastic material),

can (metal) and wolf (granular material).
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