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Abstract

The tensor nuclear norm represents the low-rank property of tensor slices under1

a transformation. Finding a good transformation is crucial for the tensor nuclear2

norm. However, existing transformations are either fixed and not adaptable to3

the data, leading to ineffective results, or they are nonlinear and non-invertible,4

which prevents theoretical guarantees for the transformed tensor nuclear norm.5

Besides, some transformations are too complex and computationally expensive. To6

address these issues, this paper first proposes a fast data-adaptive and learnable7

column-orthogonal transformation learning framework with an exact recoverable8

theoretical guarantee. Extensive experiments have validated the effectiveness of9

the proposed models and theories.10

1 Introduction11

In real-life scenarios, many high-dimensional tensor data, such as hyperspectral images (HSIs),12

multispectral images (MSIs), and multi-frame videos, exhibit strong low-rank properties. Leveraging13

such low-rank structures of tensor data is crucial for solving tensor data restoration tasks, including14

but not limited to tensor completion (TC) [1, 2] and tensor robust principal component analysis15

(TRPCA) [3, 4]. Numerous methods have achieved outstanding results in practical applications by16

exploiting the low-rank property of tensors, such as video processing [5, 6], hyperspectral denoising17

[7, 8, 9], classification [10, 11].18

There are various definitions of tensor rank, which differ from the rank used for matrices [12, 1].19

Two well-known types of tensor decomposition are based on the CANDECOMP/PARAFAC (CP)20

and Tucker decompositions, which define the CP rank and Tucker rank, respectively [12]. These21

decompositions have been widely studied and have demonstrated competitive performance in low-22

rank tensor recovery. Computing the CP rank is known to be NP-hard, and a clear convex surrogate for23

this rank has not been established. On the other hand, computing the Tucker rank involves unfolding24

tensors along each mode into matrices, which may result in the loss of intrinsic high-order interactive25

information. In addition to these two ranks, the tensor tubal rank is also commonly used for tensor26

decomposition [13]. This rank is computed via tensor singular value decomposition (t-SVD), which27

was initially derived from a novel definition of the tensor-tensor (t-t) product [14]. Unlike other28

methods, t-SVD can operate on an integral third-order tensor without reshaping it into matrices, by29

using the discrete Fourier transform (DFT). For a third-order tensor A ∈ Rn1×n2×n3 , assuming that30

its third mode has a low-rank property, the transformed tensor A can be obtained as follows:31

A = A×3 L, (1)

where ×3 denotes mode-3 tensor product [12], and L ∈ Rn3×n3 is corresponding DFT matrix which32

satisfies LLT = LTL = n3I . Then the definition of the tensor tubal rank of A is rankt(A) =33
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Table 1: The characteristics of different transformed TNN.
Methods TNN DCTNN UTNN WTNN CTNN FTNN S2NTNN Q-rank SALTS Ours

[2] [28] [30] [29] [32] [31] [23] [24] [25]
Transform FFT DCT Unitary Wavelet Couple Framelet DNN Unitary Unitary COM
Learnable? % % % % % % " " " "

Theory? " " " " % % % " % "
Speed Moderate Moderate Moderate Moderate Slow Slow Fast Very slow Very slow Fast∑n3

i=1 rank(A(:, :, i)), where A(:, :, i) is the frontal slice of A. Since the minimization of the tubal34

rank is an NP-hard problem. Zhang et al. [15] built a convex surrogate of the tensor tubal rank,35

named the tensor nuclear norm (TNN) by summing the matrix nuclear norm of each frontal slice36

under DFT. Thus the DFT-transformed TNN is defined as:37

‖A‖∗ =

n3∑
i=1

‖A(:, :, i)‖∗ =

n3∑
i=1

‖A(k)‖∗. (2)

Based on the DFT transformed TNN, Zhang and Aeron [2] and Lu et al. [3] give the exact recovery38

theorem for TC and TRPCA task by minimizing the TNN norm, respectively. Since then, many39

variants of DFT transformed TNN are proposed, such as weight TNN [16], partial sum of TNN40

(PSTNN) [17], Schatten-p norm TNN [18], p-shrinkage TNN [19], and many others [20, 21, 22].41

Referring to Eq. (1), if we substitute the DFT matrix with another transform matrix/operator L,42

we can obtain a transformed tensor and corresponding induced TNN norms that differ from those43

obtained using DFT. Hence, a crucial question arises: what type of transform matrix/operator is44

appropriate? Intuitively, a suitable transform operator should satisfy the following three criteria:45

1) Data adaptation. The design of transform operators must depend on the data to better46

utilize its characteristics, which is a recent viewpoint. Works such as S2NTNN [23], Q-rank47

[24], and SALTS [25] have employed various methods to learn transform matrices from48

data. S2NTNN uses deep neural networks, Q-rank introduces a new algebraic definition,49

and SALTS uses SVD decomposition. Although only Q-rank has theoretical guarantees,50

updating the transform matrix and tensor recovery are independent processes that take a51

long time, making it impractical for real-world tasks.52

2) Theoretical guarantee Theoretical guarantees are crucial for both models and algorithms.53

Currently, the exact recoverable guarantees are based on fixed linear invertible transforms,54

such as DFT, discrete cosine transform (DCT) [26, 27, 28], wavelet transformation [29], and55

unitary transformation [30], but they lack adaptability to data. In addition, there are fixed56

complex transforms that do not have recoverable theoretical guarantees, such as framelet57

transform [31], and coupe transform [32].58

3) Good Performance Good transforms should improve restoration performance.59

To achieve these objectives, this paper leverages the tensor structure and exploits the low-rank60

property of the third mode of the tensor to learn an adaptive column-orthogonal matrix (COM)61

transform for each data instance. Specifically, we model the low-rank tensor to be restored as the62

product of a smaller-sized factor tensor and a COM. This modeling approach effectively captures the63

low-rank structure of the tensor and facilitates the learning of the COM transform. Moreover, due to64

the reduced size of the factor tensor compared to the original tensor, our proposed model achieves65

accelerated computation. Additionally, we provide theoretical guarantees for the recoverability of66

our proposed model. To facilitate comparison, we present some classical transform-based tensor67

nuclear norm (TNN) approaches in Table 1. It can be observed from the table that only our modeling68

approach can stand out by simultaneously considering data adaptability, theoretical guarantees, and69

computational efficiency. In summary, this article first presents an efficient learnable transformed70

tensor nuclear norm (TNN) model with recoverable theoretical guarantees.71

2 Notations and Preliminaries72

2.1 Notations73

In this paper, we denote tensors by boldface Euler script letters, e.g., A. Matrices are denoted74

by boldface capital letters, e.g., A; vectors are denoted by boldface lowercase letters, e.g., a, and75

scalars are denoted by lowercase letters, e.g., a. We denote In as the n × n identity matrix. For a76

3-order tensor A ∈ Rn1×n2×n3 , the frontal slice A(:, :, i) is denoted compactly as A(i). The tube77
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is denoted as A(i, j, :). The mode-n unfolding matrix of A is denoted as A(n) = unfoldn(A), and78

foldn(A(n)) = A, where foldn is the inverse of unfolding operator. The mode-n product of a tensor79

X ∈ RI1×I2×I3 and a matrix A ∈ RJn×In is denoted as Y := X ×n A (see definition in [12]).80

Some norms of vector, matrix and tensor are used. We denote the ‖A‖1 =
∑
ijk |aijk|, the infinity81

norm as ‖A‖∞ = maxijk |aijk| and the Frobenius norm as ‖A‖F =
√∑

ijk |aijk|2, respectively.82

2.2 Adaptive Transformation83

For a third-order tensor A ∈ Rn1×n2×n3 , assuming that its third mode has low-rank property, it can84

be factorized as85

A = U ×3 V, (3)

where ×3 denotes mode-3 tensor product, U ∈ Rn1×n2×r3 , V ∈ Rn3×r3(r3 ≤ n3) satisfying86

VTV = I and r3 = Rank(A(3)). According to low-rank tensor decomposition (3), we have.87

U = A×3 VT ⇐⇒ U(3) = U(3)V
TV = A(3)V. (4)

Therefore, if we regard U as a transformed tensor A, then VT can be regarded as the transform88

matrix L, and V is the inverse transform of VT . Then we denote the TNN under the COM learned89

from the data as the Adaptive TNN (ATNN), which can be reformulated as:90

‖A‖∗ =

r3∑
k=1

‖A(k)‖∗ =

R∑
k=1

‖(A×3 LT )(k)‖∗, s.t.A = A×3 LT ×3 L. (5)

91

Remark 1 It should be noted that comparing Eq. (5) and Eq. (2), it can be seen that ATNN has faster92

solution efficiency than DFT-transformed TNN since the transformed tensor under COM transform93

has fewer slices. The stronger the low rank of the tensor, that is, the lower the r3/n3 value, the94

higher the solution efficiency of ATNN can be obtained. However, since we want to ensure that the95

information of A with a rank of Rank(A(3)) before and after the transform will not be lost, i.e.,96

A = A×3 LT ×3 L is established, the condition r3 ≥ Rank(A(3)) must hold.97

2.3 T-product and T-SVD98

Here, we give the definitions of t-product and t-SVD based on COM transform.99

For A ∈ Rn1×n2×n3 ,B ∈ Rn2×n4×n3 , the COM LT transformed tensor of A,B are A = A×LT ∈100

Rn1×n2×R,B = B × LT ∈ Rn2×n4×R, respectively, via Eq. (1), then we define101

A = bdiag(A) =


A

(1)

A
(2)

. . .

A
(R)

 ,A = bfold
(
A
)
. (6)

102

Definition 1 (T-product) Let A ∈ Rn1×n2×n3 ,B ∈ Rn2×n4×n3 and COM LT ∈ Rr3×n3 , (r3 ≤103

n3) satisfying LTL = IR, then the t-product under transform LT is defined as104

C = A ∗L B = bfold(bdiag(A)bdiag(B))×3 L = bfold(AB)×3 L ∈ Rn1×n4×n3 , (7)

where A = A×3 LT ∈ Rn1×n2×r3 and B = B ×3 LT ∈ Rn2×n4×r3 .105

According to the Definition 1, we have C = A ∗L B ⇐⇒ C = AB since bfold(C) = C =106

C ×3 LT = bfold(AB)×3 L×3 LT = bfold(AB)×3 (LTL) = bfold(AB).107

The t-product enjoys many similar properties to the matrix-matrix product. For example, the t-product108

is associate, i.e., A ∗ (B ∗ C) = (A ∗B) ∗ C. We also need some other concepts on tensors.109

Definition 2 (Transpose) The transpose of a tensor A ∈ Rn1×n2×n3 is the tensor AT ∈110

Rn2×n1×n3 obtained by transposing each of the frontal slices.111
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Definition 3 (Identity tensor) A third-order tensor A ∈ Rn×n×n3 is called identity tensor if it112

satisfies that each frontal slice is identity matrix, i.e., A(i) = I for all i = 1, · · · , n3.113

Definition 4 (Orthogonal tensor) A third-order tensor Q ∈ Rn×n×n3 is called orthogonal tensor114

if it satisfies that QT ∗L Q = Q ∗L QT = I .115

Definition 5 (F-diagonal tensor) A tensor is called f-diagonal if each of its frontal slices is a diago-116

nal matrix.117

Theorem 1 (T-SVD) Let A ∈ Rn1×n2×n3 . Then it can be factorized as118

A = U ∗L S ∗L VT , (8)
where U ∈ Rn1×n1×n3 , V ∈ Rn2×n2×n3 are orthogonal, and S ∈ Rn1×n2×n3 is f-diagonal.119

By replacing DFT transform with COM transform LT , we can prove the above Theorem [3].120

Definition 6 (Tensor tubal rank [14] & TNN [3]) For A ∈ Rn1×n2×n3 , the tensor tubal rank,121

denoted as rankt(A), is defined as the number of nonzero singular tubes of S, where S is from the122

t-SVD of A = U ∗L S ∗L VT . We can write123

rankt(A) = #{i,S(i, i, :) 6= 0}. (9)
And its tensor nuclear norm (TNN) is defined as124

‖A‖∗ =
∑
i

‖S(i, i, :)‖1 = ‖S‖1. (10)

Using the t-product definition, we can get A = U ∗L S ∗L VT ⇐⇒ A = U S VT , thus we have125

‖A‖∗ = ‖S‖1 = ‖S‖∗ = ‖A‖∗ = ‖A‖∗ (11)
by combing Eq. (5), Eq. (6) and Eq. (10).126

3 Tensor Recovery via ATNN Minimization127

3.1 Models128

The observed tensor and the tensor that needs to be recovered are denoted as Y and X 0, respectively.129

For the tensor completion (TC), the observation Y has the support set Ω ∼ Ber(ρ), i.e., PΩ(Y) =130

PΩ(X 0). For the tensor robust principal component analysis (TRPCA), the observation Y is131

corrupted with a sparse component E0 (which may represent foreground and sparse noise), denoted132

as Y = X 0 + E0.133

If the COM LT satisfying Eq. (5) is known, we can obtain the following two models:134

(TRPCA) : max
X ,S

‖X ×3 LT ‖∗ + λ‖S‖1, s.t. Y = X + E,

(TC) : max
X
‖X ×3 LT ‖∗, s.t. PΩ(Y) = PΩ(X ).

(12)

Actually, it is often not possible to obtain LT that satisfies Eq. (5) in advance. Recall Eq. (5), where135

the constraint A = A×3 LT ×3 L shows that the information of A after the change and inverse136

change will not be lost, as long as L is obtained from the SVD decomposition of X , Eq. (5) can be137

satisfied. Hence, we can learn a suitable COM L from the data. By decomposing X as X = M×3 L138

and setting M = X ×3 LT , we can obtain the following alternative model to Eq. (12):139

(TRPCA) : max
M,S,L

‖M‖∗ + λ‖E‖1, s.t. Y = M×3 L + E,LTL = I,

(TC) : max
M,L

‖M‖∗, s.t. PΩ(Y) = PΩ(M×3 L),LTL = I.
(13)

3.2 Incoherence Conditions140

The incoherence condition is one of the most vital theoretical tools in low-rank recovery [33, 3, 4].141

Below, we define e̊i as the tensor column basis and the tensor incoherence conditions similar to [3].142

Definition 7 (Tensor Incoherence Conditions) For X 0 ∈ Rn1×n2×n3 with t-SVD rank R, it has143

the skinny t-SVD X 0 = U ∗L S ∗L VT . Then X 0 is said to satisfy the tensor incoherence conditions144

with parameter µ if145

max
i∈[1,n1]

‖UT ∗L e̊i‖F ≤
√
µR

n1
, max
j∈[1,n2]

‖VT ∗L e̊j‖F ≤
√
µR

n2
, ‖U ∗L VT ‖F ≤

√
µR

n1n2
. (14)
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Algorithm 1 ADMM for solving ATNN-RPCA model (13)

Input: Observation Y ∈ Rn1×n2×n3 , λ = 1/
√

max(n1, n2),µ = 1/‖Y‖∗, ρ = 1.25, µm = 1e7µ,
and the column number of learnable COM matrix r3.

1: Initialize Λ = E = O, M = bdiag(U) and L = V, where U ,V is the low-rank tensor
decomposition of among mode-3, i.e., unfold3(Y) = (U)×3 L

2: while not convergence do
3: Update M := SVD1/µ((Y − E + Λ/µ)×3 LT ).
4: Update L := BDT , where [B,C,D] = svd(unfold3(Y − E + Λ/µ)T unfold3(bfold(U))).
5: Update X := M×3 L
6: Update E := Sλ/µ(Y −X + Λ/µ).
7: Update multipliers Λ := Λ + µ(Y −X − E) ;
8: Let µ = min{ρµ, µm}.
9: end while
Output: recovered tensors X = M×3 L and E .

3.3 Main results146

We now demonstrate that both the model (12) and (13) possess exact recovery capability.147

Theorem 2 (TRPCA Theorem) Consider ATNN-based TRPCA model (12) and (13). Suppose that148

X 0 ∈ Rn×n×n3 obeys the tensor incoherence conditions (14) and E0’s support set, denoted as Ω0, is149

uniformly distributed among all sets of cardinality m. Then, there exist universal constants c1, c2 > 0150

such that (X 0,E0) is the unique solution to model (12) and (13) when λ = 1/
√
n with probability at151

least 1− c1(nn3)−c2 , provided that152

rankt(X 0) ≤ ρrµ−1n log−2(n) and m ≤ ρsn2n3, (15)

where ρr, ρs > 0 are some numerical constants.153

Theorem 3 (TC Theorem) Consider ATNN-based TC model (12) and (13). Suppose that X 0 ∈154

Rn×n×n3 obeys the tensor incoherence conditions (14) and Ω ∼ Ber(p). Then, there exist universal155

constants c0, c1, c2 > 0 such that X 0 is the unique solution to model model (12) and (13) with156

probability at least 1− c1(nn3)−c2 , provided that157

p ≥ c0µRn−1 log2(n). (16)

Remark 2 It should be noted that although the model (12) and (13) are slightly different, they are the158

same in the proof of the exact recoverable theory. Assume that the optimal values of models (12) and159

(13) are (X̂ , Ê) and (M̂, L̂, Ê), respectively. A recoverable theory of model (12) requires proving160

(X̂ , Ê) = (X 0,E0) under the given L in advance. A recoverable theory of model (13) requires161

proving (M̂×3 L̂, Ê) = (X 0,E0) under the final learned L̂.162

3.4 Solving Algorithm163

This subsection derives efficient algorithms for solving the ATNN-based TRPCA and TC problem164

via the Alternating Direction Method of Multipliers (ADMM) framework [34].165

We first write the augmented Lagrangian function of the TRPCA problem in Eq. (13) as:166

min
M,E,Λ,LT L=I

‖M‖∗ + λ‖E‖1 +
µ

2
‖Y −M×3 L− E + Λ/µ‖2F , (17)

where µ is the penalty parameter and Λ is the lagrange multiplier.167

Due to page limitation, we provide Algorithm 1 for solving Eq. (17) using the soft-thresholding168

operator Sτ(·) [35] and the singular value soft-thresholding operator SVDτ(·) [36]. Additionally, for169

the ATNN-TC model (13), we provide Algorithm 2 directly. For more detailed information, please170

refer to the supplementary material.171
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Algorithm 2 ADMM for solving ATNN-TC model (13)
Input: Observation Y ∈ Rn1×n2×n3 with support set Ω, µ = 0.1, ρ = 1.05, µm = 1e7µ, and the

column number of learnable COM matrix r3.
1: Similar initialization with Algorithm 1.
2: while not convergence do
3: Update M,L,X ,Λ via the similar way in Algorithm 1.
4: Update E := PΩ(Y −X + Λ/µ), where PΩ is projection operator.
5: Let µ = min{ρµ, µm}.
6: end while
Output: recovered tensors X = M×3 L.

3.5 Computational Complexity Analysis172

As depicted in Algorithm 1 and 2, each iteration of the algorithm involves updating M through small-173

scale SVD computations, updating L through small-scale SVD computation, updating E through soft174

thresholding operations, and some matrix multiplications. For a third-order tensor X ∈ Rn1×n2×n3 ,175

the time complexity of the soft threshold operator is O(n1n2n3), the time complexity of solving L is176

O(n3r
2
3), and the time complexity of solving M isO(r3n1n

2
2). Thus, the overall time complexity of177

Algorithm 1 and 2 is O(r3n1n
2
2 + n3r

2
3 + n1n2n3). Similarly, for the DFT-transformed TRPCA and178

TC models, the time complexity is O(n3n1n
2
2 + n1n2n3). By comparing the two time complexities179

mentioned above, it can be observed that their ratio is positively correlated with r3/n3. Therefore,180

as the low-rank property of the tensor in the third dimension becomes stronger, the acceleration181

capability of the proposed algorithm in this paper also becomes stronger.182

4 Experiments183

In this section, we present numerical experiments to validate the main results stated in Theorems 2184

and 3. Following the suggestion of Theorem 2, we set λ = 1/
√

max{n1, n2} for the TRPCA task in185

all experiments. However, it should be noted that further performance improvements can be achieved186

by carefully tuning the value of λ. The suggested value in the theory provides a useful guideline in187

practical applications. All simulations were conducted on a PC equipped with an Intel(R) Core(TM)188

i5-10600KF 4.10GHz CPU, 32 GB memory, and a GeForce RTX 3080 GPU with 10 GB memory.189

4.1 Simulated Experiments190

In this section, we will verify the correct recovery guarantee of Theorem 2 and 3 on randomly191

generated problems. We generate a tensor with tubal rank R as a product X 0 = P ∗LQT , where P192

and Q are n×R× n tensors with entries independently sampled from N (0, 1/n) distribution and193

the COM L ∈ Rr3×n is generated by orthogonalizing the random matrix with entries independently194

sampled from N (0, 1). For the TRPCA task, the support set Ω (with size m) of E0 with independent195

Bernoulli±1 entries is chosen uniformly at random, and the observation tensor is set as: Y = X 0+E0.196

For the TC tasks, the observation Y is set as Y = PΩ(X 0).197

Next, we investigate how the tubal rank of X 0 and the sparsity of E0 (and missing ratio of X 0198

) affect the performance of model (12) and (13). We consider n = 50 and two values of r3, i.e.,199

r3 = 5, 20. We vary the sparsity ρsof E0 as [0.01 : 0.01 : 0.5], the missing ratio ρ of X 0 as200

[0.01 : 0.02 : 0.99], and tubal rank of X 0 as [1 : 1 : 50], respectively. For each combination of201

(R, ρs) and (R, ρ), we perform 10 test instances and declare a trial successful if the recovered tensor202

X̂ satisfies ‖X̂ −X 0‖F /|X 0‖F ≤ 0.01. The fraction of successful recoveries are plotted in Figure203

1. From Figure 1, we observe that there is a significant region where the recovery is correct for both204

models. Furthermore, two notable phenomena can be observed from the figure:205

1) The phase transition diagram in the first row of Figure 1 closely resembles the second row,206

indicating that even if we don’t know the correct COM L in the model (12), we can learn207

the COM L through model (13).208

2) The phase transition diagram of r3 = 5 is much better than that of r3 = 20 for both TRPCA209

and TC tasks, which shows that it is necessary to consider the low-rank property of mode 3.210
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Table 2: Quantitative comparison of all RPCA-based competing methods under salt-and-pepper noise
with the variance of 0.6. The best and second results are highlighted in bold italics and underline.

Methods WDC PaviaU Beans Cloth
PSNR SSIM Times PSNR SSIM Times PSNR SSIM Times PSNR SSIM Times

RPCA 32.08 0.5223 28.99 24.98 0.8264 6.59 17.88 0.5920 17.92 18.47 0.5418 18.28
SNN 26.02 0.7178 136.2 31.34 0.9492 121.1 16.14 0.5238 176.2 16.77 0.5297 176.7
KBR 22.64 0.6438 167.2 20.91 0.4477 58.63 20.26 0.4162 252.1 20.91 0.5454 162.9
TNN 19.619 0.3728 419.2 17.09 0.2345 120.2 20.39 0.2572 322.4 15.51 0.1744 324.8

CTNN 17.21 0.2036 485.7 15.38 0.1163 130.7 15.64 0.1218 363.4 14.55 0.1162 353.9
CTV 33.85 0.9454 170.2 31.91 0.8872 41.85 29.35 0.7770 103.8 27.33 0.7721 102.2

TCTV 32.12 0.9090 815.2 29.62 0.8554 172.5 32.85 0.9204 641.3 27.36 0.7534 627.9
Ours 39.82 0.9913 21.34 35.31 0.9721 5.32 29.46 0.9108 29.22 27.53 0.8563 19.30

Table 3: Quantitative comparison of all competing methods under missing ratio with 0.95. The best
and second results are highlighted in bold italics and underline, respectively.

Methods WDC PaviaU Beans Cloth
PSNR SSIM Times PSNR SSIM Times PSNR SSIM Times PSNR SSIM Times

LRMC 18.53 0.4623 24.38 15.17 0.2834 2.93 15.96 0.3972 7.61 13.11 0.1902 10.95
HaLRTC 22.09 0.6676 54.37 18.87 0.3912 30.34 20.62 0.4542 64.48 19.01 0.3570 92.65

KBR 31.42 0.9022 1589 29.92 0.8591 725.7 26.06 0.7208 1253 24.14 0.6422 1292
TNN 30.01 0.8824 1019 26.43 0.7126 207.9 26.10 0.6712 419.2 23.46 0.6012 441.2

CTNN 33.36 0.9432 378.9 31.69 0.9172 114.4 27.61 0.8041 129.6 25.71 0.7362 136.2
UTNN 27.89 0.8652 487.6 21.80 0.5982 156.3 17.28 0.4131 116.6 16.27 0.3183 117.9
FTNN 34.87 0.5320 4376 32.56 0.9092 1263 28.48 0.8143 1587 25.25 0.7253 2054
OITNN 32.92 0.9396 838.2 28.46 0.8142 292.4 27.28 0.7442 448.6 24.06 0.6516 391.8
TCTV 33.33 0.9391 2116 31.81 0.8960 861.4 31.77 0.9143 1570 28.38 0.8442 1488

S2NTNN 37.36 0.9749 168.7 35.15 0.9431 40.78 27.44 0.7589 104.2 31.28 0.8679 113.2
Ours 38.06 0.9793 232.4 33.94 0.9293 58.34 28.83 0.8164 156.3 25.81 0.7146 142.4

0.01 0.1 0.2 0.3 0.4 0.5
sparsity

1

10

20

30

40

50

tu
ba

l r
an

k 
R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 0.2 0.3 0.4 0.5
sparsity

1

10

20

30

40

50

tu
ba

l r
an

k 
R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.2 0.4 0.6 0.8 0.99
missing ratio

1

10

20

30

40

50

tu
ba

l r
an

k 
R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.2 0.4 0.6 0.8 0.99
missing ratio

1

10

20

30

40

50

tu
ba

l r
an

k 
R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TRPCA under r3 = 5 TRPCA under r3 = 20 TC under r3 = 5 TC under r3 = 20

0.01 0.1 0.2 0.3 0.4 0.5
sparsity

1

10

20

30

40

50

tu
ba

l r
an

k 
R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 0.2 0.3 0.4 0.5
sparsity

1

10

20

30

40

50

tu
ba

l r
an

k 
R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.2 0.4 0.6 0.8 0.99
missing ratio

1

10

20

30

40

50

tu
ba

l r
an

k 
R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.2 0.4 0.6 0.8 0.99
missing ratio

1

10

20

30

40

50

tu
ba

l r
an

k 
R

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

TRPCA under r3 = 5 TRPCA under r3 = 20 TC under r3 = 5 TC under r3 = 20

Figure 1: TRPCA and TC phase transition diagrams for varying tubal ranks of X 0 and sparsities of
E0 or missing ratio of X 0. The first and second rows show the phase transition diagrams based on
models (13) and (12), respectively, under different r3 settings.

4.2 Real Experiments211

To validate the effectiveness of the proposed ATNN model in tensor recovery task, we conducted212

experiments on various datasets, including hyperspectral images (HSI), multispectral images (MSI),213

color video images, and surveillance videos. Due to page limitations, we have included the results of214

robustness analysis, parameter settings for robustness, convergence verification, and more detailed215

experimental outcomes in the Supplementary Material.216

For comprehensive comparison, we have included additional state-of-the-art methods except those217

listed in Table 1. These methods include CTV [42] and TCTV [4] for the TRPCA task, LRMC [33],218

HaLRTC [1], UTNN [29], and OITNN [43] for the TC task, and GODEC [37], DECOLOR [38],219

OMoGMF [39], RegL1 [40], and PRMF [41] for background modeling. Before conducting this220

experiment, the gray value of each band was normalized into [0, 1] via the max-min formula.221
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Table 4: AUC comparison of all competing methods on all video sequences in the Li dataset. The best
and second results in each video sequence are highlighted in bold italics and underline, respectively.

Methods data Time /s
airp. boot. shop. lobb. esca. curt. camp. wate. foun. Average

RPCA [33] 0.8721 0.9168 0.9445 0.9130 0.9050 0.8722 0.8917 0.8345 0.9418 0.8991 2.37
GODEC [37] 0.9001 0.9046 0.9187 0.8556 0.9125 0.9131 0.8693 0.9370 0.9099 0.9023 0.64

DECOLOR [38] 0.8627 0.8910 0.9462 0.9241 0.9077 0.8864 0.8945 0.8000 0.9443 0.8952 8.29
OMoGMF [39] 0.9143 0.9238 0.9478 0.9252 0.9112 0.9049 0.8877 0.8958 0.9419 0.9170 3.92

RegL1 [40] 0.8977 0.9249 0.9423 0.8819 0.4159 0.8899 0.8871 0.8920 0.9194 0.8501 10.74
PRMF [41] 0.8905 0.9218 0.9415 0.8818 0.9065 0.8806 0.8865 0.8799 0.9166 0.9006 13.68
CTV [42] 0.9178 0.9107 0.9541 0.9337 0.9148 0.8710 0.8814 0.9386 0.9383 0.9180 10.28
TNN [2] 0.5218 0.5694 0.6605 0.6311 0.5981 0.5823 0.5464 0.6642 0.5781 0.5947 16.87

CTNN [28] 0.6859 0.6176 0.6835 0.6613 0.6582 0.6988 0.5881 0.5272 0.5450 0.6295 17.39
ATNN 0.9185 0.9227 0.9484 0.9362 0.9158 0.9162 0.8912 0.9152 0.9456 0.9233 2.32

Table 5: Quantitative comparison of all competing methods on color video under missing ratio with
0.95. The best and second results are highlighted in bold italics and underline, respectively.

Methods Akiyo Foreman Carphone News
PSNR SSIM Times PSNR SSIM Times PSNR SSIM Times PSNR SSIM Times

LRMC 10.81 0.2626 8.06 8.79 0.1192 7.21 11.57 0.2713 6.92 13.27 0.3660 13.41
HaLRTC 17.66 0.5327 61.04 15.55 0.3336 44.87 14.20 0.3448 42.46 16.43 0.4890 87.63

KBR 29.76 0.9118 689.2 23.97 0.7193 668.2 26.49 0.8164 798.2 26.42 0.8480 1043
TNN 31.94 0.9343 217.5 23.15 0.6052 181.5 26.27 0.7658 493.6 28.56 0.8660 249.6

CTNN 28.63 0.8463 192.0 22.13 0.5779 152.7 25.06 0.7263 196.2 25.59 0.7740 174.7
UTNN 21.72 0.7237 172.4 16.51 0.2587 167.6 20.24 0.5394 202.7 21.21 0.7060 162.6
FTNN 30.74 0.9252 1258 22.97 0.6781 1123 25.43 0.7778 1335 28.77 0.8770 1494
OITNN 32.68 0.9533 397.5 23.89 0.7206 296.7 27.14 0.8340 472.3 29.43 0.9010 322.3
TCTV 33.41 0.9542 874.8 26.69 0.8071 821.4 29.10 0.8747 1103 30.65 0.9170 772.2

S2NTNN 33.16 0.9520 168.7 23.57 0.6091 83.98 27.33 0.8093 100.7 29.11 0.8872 90.61
Ours 33.74 0.9574 95.89 24.16 0.6252 78.21 27.44 0.7773 80.11 29.72 0.9021 78.94

4.2.1 Hyperspectral and Multispectral Image Recovery222

Two HSI images, i.e., WDC 1 and PaviaU 2 datasets are used. The sizes of the two data are223

256× 256× 191 and 256× 256× 93, respectively. Two MSI images in CAVE dataset 3, i.e., Cloth224

and Beans are used. The size of the two data is 512× 512× 31.225

For the TRPCA task, we conducted experiments with six different levels of salt and pepper noise226

variance: 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6. Table 2 reports the performance metrics of each method227

under a variance of 0.6, demonstrating that our ATNN outperforms all competing methods. Notably,228

our method achieves superior performance despite only utilizing the low-rank property of tensors,229

surpassing the performance of CTV and TCTV, which additionally exploit the local smoothness and230

low-rank property of images. Furthermore, our method exhibits comparable computational efficiency231

to RPCA, indicating that the introduction of the learnable COM matrix effectively reduces the time232

complexity of the model. To better visualize the comparison, we choose three bands of HSI to form a233

pseudo-color image to show four representative competing methods’ visual restoration performance,234

as shown in Figure 2. From the images, it is evident that our proposed ATNN model can effectively235

remove noise and preserve more detailed information.236

For the TC task, since all the methods achieve very accurate recovery results when the sample ratio237

(SR) is high, we test four different SRs: 0.01, 0.05, 0.1 and 0.2. The metric of each tested algorithm238

under an SR of 0.05 is placed in Table 3. As can be seen from the metrics in the table, our proposed239

method excels in recovery performance and running time.240

4.2.2 Background Modeling from Surveillance Video241

The aim of this task is to separate the background and foreground from Surveillance Video. We242

choose nine video sequences in Li dataset 4 with the known foreground of size 144× 176× 20 for243

testing, as shown in Table 4. It can be seen from the table that our proposed model is far ahead in244

1https://engineering.purdue.edu/~biehl/MultiSpec/
2https://www.ehu.eus/ccwintco/index.php/
3https://www.cs.columbia.edu/CAVE/databases/multispectral/
4http://perception.i2r.a-star.edu.sg/bkmodel/bkindex.html
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Clean: PSNR/SSIM Noisy: 6.43/0.021 RPCA: 29.64/0.932 TNN: 19.85/0.355 CTV: 33.57/0.943 ATNN: 37.47/0.985

Figure 2: Denoised images of all competing methods with bands 58-27-9 as R-G-B under sparse
noise with missing percent is 0.6 on simulated WDC dataset.

Clean: PSNR/SSIM Observed: 6.24/0.014 TNN: 31.66/0.935 OITNN: 32.60/0.958 S2NTNN: 35.27/0.966 ATNN: 35.52/0.971

Figure 3: Recovered images of all competing methods under sample ratio of 0.05 on the 10th frame
of Akiyo data.

terms of evaluation metrics and running time. Even compared to the CTV model that simultaneously245

utilizes local smoothness and low-rank priors, our method outperforms it. It is worth noting that246

although tensor-based models have a higher performance ceiling than matrix-based models due to247

their ability to capture more complex structures, for TNN regularization, if the variation matrix is not248

well defined, the results can even be worse than matrix-based methods. This further highlights the249

necessity of learning the transform matrix.250

4.2.3 Color Video Completion251

We selected four color video sequences, namely Akiyo, Foreman, Carphone, and Mobile, from the252

open-source YUV video dataset5. To ensure efficient comparison, we considered the first 100 frames253

of each color video sequence. As the color video is represented as a fourth-order tensor in RGB254

format with dimensions 144×176×3×100, we reshaped it into a tensor of size 144×176×300. We255

adopted similar sample ratio (SR) settings as mentioned in Subsection 4.2.1. The performance metrics256

of all competing methods are presented in Table 5. It is evident that our proposed model consistently257

ranks within the top three, outperforming TCTV even under the Akiyo dataset. In comparison to258

other TNN models with fixed transform matrices, our model exhibits superior performance and259

remarkable computational efficiency. Furthermore, we provided the recovered images of some260

competing methods in Figure 3 for better visual comparison. For the convenience of observation, we261

have enlarged a part of the picture and placed the repair indicator below the picture. It can be seen262

that our proposed ATNN model has a strong ability to preserve the local information of the data.263

5 Conclusion264

In this paper, we introduce an efficient and learnable transformed tensor nuclear norm (TNN) model265

with a provable recovery guarantee. Our approach leverages the low-rank property of the third266

mode of the tensor to represent the tensor to be repaired as a combination of a small-sized tensor267

and a column-orthogonal matrix. The column-orthogonal matrix serves as an adaptively learned268

transform matrix derived from the data. By employing the nuclear norm on the small-sized tensor,269

our model achieves higher computational efficiency compared to existing methods. Additionally,270

we provide a theoretical framework that guarantees exact recovery for our proposed model with a271

column-orthogonal transform matrix. Extensive experimental results demonstrate the effectiveness of272

our approach and the validity of our theoretical findings.273

Limitations There are two shortcomings in our work. Firstly, the recoverable theory does not274

explain how the low-rank property of the third dimension of the tensor affects the model’s restoration275

performance. Secondly, the ATNN model only learns the low-rank property of the tensor, without276

incorporating image priors. These two points will be the focus of our future research.277

5http://trace.eas.asu.edu/yuv/
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