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ABSTRACT

Scalability and partial observability are two major challenges faced by multi-agent
reinforcement learning. Recently researchers propose offline MARL algorithms
to improve scalability by reducing online exploration cost, while the problem of
partial observability is often ignored in the offline MARL setting. Communication
is a promising approach to alleviate the miscoordination caused by partially ob-
servability, thus in this paper we focus on offline communication learning where
agents learn from an fixed dataset. We find out that learning communications
in an end-to-end manner from a given offline dateset without communication in-
formation is intractable, since the correct communication protocol space is too
sparse compared with the exponentially growing joint state-action space when the
number of agents increases. Besides, unlike offline policy learning which can
be guided by reward signals, offline communication learning is struggling since
communication messages implicitly impact the reward. Moreover, in real-world
applications, offline MARL datasets are often collected from multi-source, leaving
offline MARL communication learning more challenging. Therefore, we present
a new benchmark which contains a diverse set of challenging offline MARL com-
munication tasks with single/multi-source datasets, and propose a novel Multi-
Head structure for Communication Imitation learning (MHCI) algorithm that au-
tomatically adapts to the distribution of the dataset. Empirical result shows the
effectiveness of our method on various tasks of the new offline communication
learning benchmark.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning is essential for many real-world tasks where multi-
ple agents must coordinate to achieve a joint goal. However, the problems of scalability and partial
observability limit the effectiveness of online MARL algorithms. The large joint state-action space
makes exploration costly especially when the number of agents increases. On the other hand, the
partial observability requires communication among agents to make better decisions. Plenty of
previous works in MARL try to find solutions for these two challenges, with the hope to make co-
operative MARL applicable to more complicated real-world tasks (Sukhbaatar et al. (2016); Singh
et al. (2019); Yang et al. (2021)).

Recently, emerging researches apply offline RL to cooperative multi-agent RL in order to avoid
costly exploration across the joint state-action space, thus the scalability is improved. Offline RL
is defined as learning from a fixed dataset instead of online interactions. In the context of single-
agent offline RL, the main challenge is the distributional shift issue, which means that the learned
policy reaches unseen state-action pairs which are not correctly estimated. By constraining the
policy on the behavioral policy, offline RL has gained success on diverse single-agent offline tasks
like locomotion (Fu et al. (2020)) and planning without expensive online exploration(Finn & Levine
(2017)).

As the problem of scalability can be promisingly alleviated by utilizing offline datasets, another
challenge of MARL, i.e., the partial observability, can be addressed by introducing communications
during coordination. Communication allows agents to share information and work as a team. A wide
range of multi-agent systems benefit from effective communication, including electronic games like
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StarCraft II (Rashid et al. (2018) and soccer (Huang et al. (2021)), as well as real-world applications,
e.g., autonomous driving (Shalev-Shwartz et al. (2016)) and traffic control (Das et al. (2019)).

Although several offline MARL algorithms (Yang et al. (2021); Pan et al. (2022)) have been pro-
posed to tackle with the scalability challenge recently, how to deal with the partial observability
in the offline MARL setting, has not received much attention. Unluckily, simply adopting com-
munication mechanism in offline MARL, i.e., learning communication in an end-to-end manner by
offline datasets is still problematic. Finding effective communication protocols without any guid-
ance can be the bottleneck especially when the task scale increases. It may converge to sub-optimal
communication protocols that influence the downstream policy learning. To handle this problem,
in this paper, we investigate the new area of offline communication learning, where the multiple
agents learn communication protocols from a static offline dataset containing extra communication
information. We denote this kind of dataset as “communication-based dataset” to distinguish it
from single-agent offline dataset. In real-world applications, communication-based dataset may be
collected by a variety of existing communication protocols, like handcraft protocols designed by
experts, or hidden protocols leaned by other agents. Therefore, communication-based dataset can
be established in offline MARL learning to boost the performance of the downstream tasks.

Previous offline RL works focus on eliminating the problem of distributional shift, while offline
MARL communication learning faces different challenges. Unlike policy learning which is directly
guided by reward signals since actions influence the expected return, it is hard to evaluate commu-
nication learning since communication serves as an implicit impact between agents . What’s worse,
it is likely that the offline dataset is multi-source in real world, thus trajectories may be sampled by
different communication protocols as well as policies. The multi-source property introduces extra
challenges as we cannot simply imitate the dataset communication. Offline communication learning
algorithms need to distinguish the source of each trajectories before learning from them. In this
paper, We propose Multi-head Communication Imitation (MHCI) that accomplishes multi-source
classification and message imitation at the same time. To our best knowledge, MHCI is the first
to learn a composite communication from a multi-source communication-based dataset. We also
provide theoretical explanation on its optimality under the dataset.

To better evaluate the effectiveness of our algorithm as well as for further study, we propose an
offline communication learning benchmark, including environments from previous works and ad-
ditional environments that require sophisticated communication. The empirical results show that
Multi-head Communication Imitation (MHCI) successfully combines and refines information in the
communication-based dataset, thus obtains outperformance in diverse challenging tasks of the of-
fline communication learning benchmark.

Our main contributions are two-folds: 1) we analyze the new challenges in offline communica-
tion learning, and introduce a benchmark of offline communication learning which contains diverse
tasks.; 2) we propose an effective algorithm, Multi-head Communication Imitation (MHCI), which
aims to address the problem of learning from single-source or multi-source datasets, and our method
shows superior outperformance in various environments of our benchmark.

2 RELATED WORKS

MARL with communication Multi-agent reinforcement learning has attracted great attention in
recent years. (Tampuu et al. (2017); Matignon et al. (2012); Mordatch & Abbeel (2017); Wen
et al. (2019)) In MARL, the framework of centralized training and decentralized execution has been
widely adopted (Kraemer & Banerjee (2016); Lowe et al. (2017)). For cooperative scenarios under
this framework, COMA (Foerster et al. (2018)) assigns credits to different agents based on a central-
ized critic and counter-factual advantage functions, while another series of works, including VDN
(Sunehag et al. (2018)), QMIX (Rashid et al. (2018)) and QTRAN (Son et al. (2019)), achieve this
by applying value-function factorization. These MARL algorithms show remarkable empirical re-
sults when tested on the popular StarCraft unit micromanagement benchmark (SMAC) (Samvelyan
et al. (2019)).

CommNet (Sukhbaatar et al. (2016)), RIAL and DIAL (Foerster et al. (2016)) are seminal works that
allow agents to learn how to communicate with each other in MARL. CommNet and DIAL design
the communication structure in a differentiable way to enable end-to-end training, and RIAL trains
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communication with RL algorithms by constraining communication to be discrete and regarding it
as another kind of actions. To make communication more effective and efficient, IC3Net (Singh et al.
(2019)), Gated-ACML (Mao et al. (2020b)) , and I2C (Ding et al. (2020)) utilize a gate mechanism
to decide when and who to communicate with. TarMAC (Das et al. (2019)) and DAACMP (Mao
et al. (2020a)) achieve targeted communication by introducing attention mechanism. NDQ (Wang*
et al. (2020)) uses information-theory-based regularizers to minimize communication. MAIC (Yuan
et al. (2022)) realizes sparse and effective communication by modeling teammates.

Offline MARL Offline RL is a hot topic in the last few years. It focuses on RL given a static
dataset. The problem of distributional shift is critical for offline RL (Fujimoto et al. (2019)), and
typical solutions include constraining the policy (Kumar et al. (2019); Wu et al. (2020)) or the Q
value (Kumar et al. (2020)). Recently, offline MARL is also attracting interests. As a combination
of two areas, offline RL and MARL, it faces new challenges of larger state-action space. Yang et al.
(2021) proposes a even more conservative method compared to single-agent offline RL. Pan et al.
(2022) finds that conservative offline RL algorithms converge to local optima in the multi-agent
setting, thus proposes better optimization methods.

Multi-source fusion Works in other fields also concern about multi-source fusion. For example,
Sun et al. (2021) use an attention mechainsm to fuse multiple word features for downstream tasks.

3 BACKGROUND

In a fully cooperative multi-agent RL, the environment is generally modelled as a Dec-POMDP
Oliehoek & Amato (2016). Adding communication, Dec-POMDP with communication is defined
as G =< I, S,A, P,R,Ω, O, n, γ,M >. I = {1, 2, · · · , n} stands for the set of the agents.
s ∈ S, ai ∈ A, oi ∈ Ω are the state, action and observation of a certain agent, and the observa-
tion of agent i oi is calculated by the observation function oi = O(s, i). P (s′|s, a), R(s,a) are the
transition function and the reward function, and γ ∈ [0, 1) is the discount factor. When communica-
tion is added to this model, mij is denoted as message conveyed from agent i to agent j. In practice,
we take s = o: by default. The offline dataset is denoted as D.

Based on the basic definitions of Dec-POMDP with communication, we can further denote the
action-observation history τi ∈ T ≡ (Ω×A)∗, and a policy πi(m:i, τi) is defined on the history. In
order to unify the notation of communication protocols proposed by previous works, we first give a
general form of communication

mij = Cij(oi), aj = πj(m:j , oj , τj) (∀i, j ∈ I), (1)

where Cij is an arbitrary communication function, and : is the abbreviation of all the agents. Al-
though oj is included in τj , here we abuse the notation for convenience. In Equation 1, each message
from i to j is generated from the communication function, and an action is determined through the
policy function π, by taking as input all the received messages, individual observation, and indi-
vidual history if needed. In Appendix A, we list the expression of the communication protocols in
previous works. Generally speaking, they take different inductive bias into account and can all be
viewed as modified protocols from Equation 1.

4 A MOTIVATIVE EXAMPLE

Before digging into the specific method of offline communication learning, we first illustrate why
learning communication directly from communication-based dataset is important, rather than learn-
ing in an end-to-end manner, i.e., learning communication from scratch. In this section, we analyze
the influence of the number of agents n and the dimension of states p, by comparing the performance
in an imaginary communication game with tunable n, p. The number of agents corresponds to the
scalability of a task, and the dimension of states reflects the complexity of information sources (e.g.
images are complex, while velocity and acceleration information isn’t).

The imaginary communication game consists of n agents, with state dimension p and observation
dimension q. And 2q (not q) dimensions of the state space are related to the policy of each agent
in (4), therefore besides the q dimensions that can be directly observed as defined in (3), the other q
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dimensions are not observed thus come from communication. The max horizon T = 1, and each of
the p-dimension states is randomly initialized from −1, 1. Details are in Appendix C.

T = 1, s ∈ {−1, 1}p (2)
oi = (s

index
(i)
1
, s

index
(i)
2
, · · · , s

index
(i)
q
) (3)

a∗i =

{
1

∏
j=1···2q sindex(i)

j
> 0

0 otherwise
(a∗i is the optimal action of agent i) (4)

r =
∑

i=1···n
I(ai = a∗i ). (5)

Figure 1 shows how the performance decays with the increasing n and p. In general, learning
communication from dataset performs better than learning communication from scratch, especially
when the task becomes harder with a larger n or p. The basic reason is that, in challenging tasks
where the whole state space is enourmous, pure offline MARL methods still have difficulty in finding
unobserved information related to an optimal policy, even if hard exploration in the state space is
no longer a problem. A randomly initialized communication function may converge to sub-optimal,
that confuses the downstream policy to some extent. For example, in a multi-agent navigation task
with image inputs, the agent needs to communicate whether the goal is in sight. However, there’s too
much redundant information in the image, so the communication tends to converge to easier patterns
like the color or background of the goal, which are misleading in downstream policy learning.

Figure 1: Evaluation accuracy with different number of agents n, and different dimension of the state
space p, comparing fitting the dataset communication and learning communication from scratch.

5 METHOD

In this work, we propose Multi-head Communication Imitation (MHCI) for offline communication
learning as shown in Figure 2. In Section 5.1, we provide the complete definitions of the multi-source
communication in the offline setting, and derive the offline optimality according to the communi-
cation in the dataset. Finally in Section 5.2, the full structure of our Multi-head Communication
Imitation (MHCI) is introduced, which learns a composite communication protocol that supports
the optimal policy according to the offline dataset.

5.1 UNIVERSAL AND LOCAL COMMUNICATION IN THE OFFLINE SETTING

In order to introduce the concept of Universal and Local Communication, we first define how the
multi-source dataset is split. Denote a communication function as C(o:) : Ωn → Rp·n2

(p is the
dimension of each message mij), which specifically is
C((o1, · · · , on)) =

(C11(o1), C12(o1), · · · , C1n(o1), C21(o2), · · · , C2n(o2), · · · , Cn1(on), · · · , Cnn(on)).
(6)

Assume that the communication in dataset D can be discriminated by source into |G| groups, with
state domain and communication function

G = {(S(1), C(1)(·)), (S(2), C(2)(·)), · · · , (S(|G|), C(|G|)(·))}. (7)
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Figure 2: The pipeline of offline communication learning, breaking into two parts, the communica-
tion network and the policy network. Our work focuses on offline communication learning using a
multi-head structure shown in the communication network part. The messages are generated by first
computing the messages in all the heads, and then a linear fusion is applied on them.

We name each communication function C(i), i ∈ [|G|] as one Local Communication (LC). There
are |G| Local Communications in the dataset in total.
Definition 1. The relation that C(1) dominates C(2) is defined as

∃f, s.t. ∀j, k ∈ [n], fjk(C
(1)
jk (oj)) = C

(2)
jk (oj). (8)

Definition 2. Define the Universal Communication (UC) as the communication function that con-
tains all of dataset communication function.

UC : S → R∗,

∃f1 · · · f|G|,∀i ∈ [|G|], j, k ∈ [n], f
(i)
jk (UCjk(oj)) = C

(i)
jk (oj)

i.e.

∀i ∈ [|G|], UC dominates C(i).

(9)

Compared to the Local Communication, the Universal communication includes the information of
all the Local Communications C(1), C(2), · · · , C(|G|).

After introducing the concept of Universal and Local Communication, we prove that the Universal
Communication is sufficient for obtaining policies that match or outperform the dataset in The-
orem 1. For simplicity, first denote the optimal policy and the optimal value function under a
Dec-POMDP TC(M) (transformed from the real MDP M by the communication function C(·))
as π∗

TC(M), V
∗
TC(M).

Theorem 1. The optimal expected return based on the Universal Communication is greater than or
equal to that of dataset communications and policies, i.e.,

∀(S,LC, π) ∈ Gπ, V
∗
TUC(MD)(sinit) ≥ VTLC(MD),π(sinit). (10)

Theorem 1 means that the optimal policy given UC(·) is always equal to or better than that of the
dataset, under the dataset MDP MD as defined in (Fujimoto et al. (2019)). The whole proof is in
appendix B.
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In fact, the provably true Universal Communication is at least the concatenation of all Local Com-
munications, because without any additional assumptions on communication, the local communi-
cations may include distinct information. As a result, we are actually approximating the Universal
Communication in the following algorithm design.

5.2 MULTI-HEAD COMMUNICATION IMITATION

In section 5.1, we have shown that in order to guarantee optimality compared with the performance
of dataset policies, combining all the information contained by dataset communication is essential
for the policy training afterward. To this end, we propose a Multi-head Communication Imitation
(MHCI) pipeline that learns communication from multi-source datasets. It simultaneously optimizes
the predicted category of each communication and imitates the dataset communication. The learned
multi-head communication can be viewed as Local Communication mentioned above. Besides train-
ing, we adopt a Linear Fusion module to fuse the learned communications in different categories.
The fusing phase can be understood as approximating the Universal Communication. With MHCI
and a policy learner, we’re able to master the communication and policy in challenging tasks with
multi-source offline datasets.

Multi-head structure We design a multi-head stucture to classify the true category. The structure
is inspired by the widely used attention module, where query and key are first computed from the
input, and the weight of each element is obtained from the inner-product of key and query. In
our multi-head structure, we simply compute the key from dataset communication, and the query
from the observation. After taking the inner-product and applying the softmax operator, we get a
prediction probability of each category, which is used in the overall imitation loss in Equation 11.
In practice, the communication heads C(1), C(2), · · · , C(k) share most networks except the last two
layers for efficiency.

LossImitation =

k∑
i=1

probi ·MSE(C(i)(oD),mD). (11)

Figure 3: The schematics of the network structure and the loss computation in Equation 11.

Linear fusion Although the Multi-head Communication Imitation successfully learns the commu-
nication function of each category, we still need to fuse all those categories of generated messages in
the testing phase. A trivial fusion method is to concatenate them all, but it is bandwidth-consuming
as the dimension of all the received messages m:i is k · p. To fuse different categories of message
output, as long as not adding extra burden on computation, we use Linear fusion which is enough
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in most cases empirically. It can be viewed as an approximation of the concatenated messages. We
fuse the received messages in the following way.

mfusion = Akp×p(m
(1),m(2), · · · ,m(k))T , (12)

where (m(1),m(2), · · · ,m(k)) are the learned messages with dimension p. k is the total number of
heads in MHCI. Further investigations on Linear Fusion are in the ablation study in Section 6.3.

In practice, the fusion matrix Akp×p is learned by the downstream RL loss. Since it’s probable that
the dataset communication isn’t optimal, we also assign an additional learned head of communica-
tion. So the optimization of the linear fusion is as follows

A, ϕ = argmin
A,ϕ

LossRL(o, a,A(m(1),m(2), · · · ,m(k), C
(k+1)
ϕ (o))T ). (13)

6 EXPERIMENT

In order to evaluate offline communication learning algorithms, we introduce a benchmark that con-
sists of many kinds of communication-intensive cooperative multi-agent tasks. Tasks introduced
in previous researches are investigated in our work, and we also create new tasks that require so-
phisticated communication. The details of the benchmark are included in Section 6.1. All the
environments except Room (an added environment introduced in Section 6.1) are built based on
StarCraft II. It is a widely used platform in a variety of researches on MARL and communication
(Samvelyan et al. (2019); Rashid et al. (2018); Wang* et al. (2020)). The implementation details
including hyperparameters and dataset generating scheme are in Appendix D.1.

Besides the part of communication learning, we use Implicit Constraint Q-learning (ICQ, Yang et al.
(2021)) as the downstream offline policy learning algorithm in our experiments. It is designed to
trust only state-action pairs that appears in the dataset. Our experiment results in Section 6.2 are
based on ICQ combined with relative offline communication learning methods. By keeping the
downstream offline MARL algorithm all the same among comparison, we empirically show how
communication learning influences the overall performance.

6.1 OFFLINE COMMUNICATION LEARNING BENCHMARK

Figure 4: The environment Room

Figure 5: The environment 6o1b vs 1r
in StarCraft II

Besides environments used in previous researches, the first added environment is Room. Each agent
is corresponding to one of the goals (diamonds in Figure 4), and acquires reward only when it arrives
at the proper goal of the same color. The goals are initialized randomly in the upper row, while the
agents are initialized randomly in the lower row. The challenge comes from the fact that, each agent
has no idea where the corresponding goal is. So the optimal joint policy is first going up to check the
color of that diamond, and then sending the coordinate message to the agent with the same color. In
this way, every agent is aware of its proper destination, and is able to head for the proper goal with
reward.

We also come up with a coordination task in StarCraft II called 6o1b vs 1r. In this environment,
there are 6 observers who can’t move, and 1 agent (between the two observers on the top) needs
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to reach the enemy’s position and kill it. The 6 observers and 1 agent are initiallized in the fixed
position, while the enemy is randomly initialized in the lower-left or lower-right corner. However,
each agent has a limited sight range. So the message is transferred from the lowest observer to upper
observer, and finally transferred to the agent that can move to the enemy.

During designing new environments with sophisticated communication, we conclude the following
patterns that make the task really challenging.

• Inconsistent communication It means that the communication is inconsistent among dif-
ferent receivers. Unlike broadcasting part of one’s observation to everyone, sending the
necessary message without redundant information is a more effective way.

• Delayed-effect communication Consider a special case that the optimal policy is based on
the received message in the past. Optimizing in an environment with such communication
pattern requires recursive backpropogating along the historic policy network (e.g. RNN),
adding to additional difficulty in convergence.

In conclusion, there are different kinds of environments in the benchmark. Some come from previ-
ous online cooperative MARL researches, and others are new environments where a sophisticated
communication is essential for solving these tasks. Specifically, we assign moderate-size datasets in
order to investigate how offline communication learning helps downstream policy learning in chal-
lenging tasks. Although real-world tasks involve larger multi-agent systems and more complicated
observations than experimental settings, we hope the offline communication learning benchmark
can bridge the gap between experimental RL tasks and more challenging real-world applications.

6.2 MAIN RESULTS

MHCI (Ours) Learning communication Pure imitation
from scratch

3b vs 1h1m-medium-random 38.1± 7.6 16.3± 4.8 25.7± 15.5
1o10b vs 1r-medium-random 52.2± 13.4 35.3± 1.9 60.4± 6.3

5z vs 1ul-medium-random 47.9± 23.0 25.0± 10.2 50.0± 13.5
MMM-medium-random 17.6± 2.9 5.7± 3.1 10.0± 1.2

1o2r vs 4r-medium-random 59.7± 29.5 65.3± 8.4 63.1± 15.2
Room-medium 82.5± 6.3 74.2± 3.5 95.4± 3.6

Room-expert-expert 86.3± 5.8 58.2± 0.4 58.7± 0.5
Room-expert-expert-medium 69.4± 6.7 59.7± 1.5 55.7± 2.5

Room-medium-random 67.2± 6.4 49.9± 1.7 61.0± 1.2
6o1b vs 1r-medium-random 45.0± 5.7 44.0± 6.5 44.0± 1.4

Table 1: The performance comparison of our method MHCI, learning communication from scratch
and pure imitation, normalized by the score of the expert (from 0 to 100). The results are averaged
over three random seeds with standard deviation.

As shown in Table 1, we compare our algorithm with two other communication learning strategies.
Learning communication from scratch in the second column means that instead of using the dataset
communication, the communication function is trained together with the policy in an end-to-end
manner. Pure imitation means that without discriminating different sources, the communication
is learned by minimizing the MSE loss between dataset and learned communication. The table is
split into two parts, including environments introduced in previous works and added environments
respectively.

In the first part (the first 5 rows of results), we cope with StarCraft II tasks introduced in Wang*
et al. (2020). From the results, we can conclude that by learning from communication-based
datasets, both MHCI and pure imitation perform better in 3b vs 1h1m-mdeium-random, 5z vs 1ul-
medium-random and MMM-medium-random. Among the 3 methods, MHCI takes the property of
multi-source into account and achieves higher scores than Pure imitation. In 1o10b vs 1r-medium-
random, pure imitation performs better than MHCI and learning from scratch, which is probably
because the large number of agents (11 agents in total) makes multi-head learning difficult. In
1o2r vs 4r-medium-random, all the three strategies actually perform similarly.
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The comparison in the added environments described in Section 6.1 is included in the second part
(the last 5 rows of results). In the single-source dataset Room-medium, pure imitation obtains the
highest score, and MHCI is the second. We also compare under three mixing schemes in Room. The
results show that our algorithm outperforms learning communication from scratch by using dataset
communication, as well as pure imitation, which neglects the multi-source property. In 6o1b vs 1r
where a cascading communication is required, all the three methods fail to have good scores. We
look forward to future algorithms that can handle 6o1b vs 1r-medium-random.

In conclusion, we conduct comparison among the three methods, MHCI, learning communication
from scratch and pure imitation, on the created benchmark of offline communication learning. In
this way, we show that by utilizing dataset communication, both MHCI and pure imitation work
better than learning communication from scratch. And in many datasets, dealing with the multi-
source property gives MHCI an additional advantage over pure imitation. Therefore, we can draw
the conclusion that MHCI boosts downstream policy learning in offline communication learning
with multi-source datasets.

6.3 ABLATION STUDY

In this section, we look into the effectness of each module in MHCI. As introduced in Section 5,
our method includes two main parts, the multi-head structure for communication imitation learning,
and the way of fusing the messages from different sources. Therefore, we respectively compare the
modules with other alternatives.

MHCI (ours) closest
Room-expert-expert 86.3± 5.8 79.2± 7.3

3b vs 1hm-medium-random 38.1± 7.6 1.7± 1.6

Learned linear fusion PCA-based fusion Hidden
(Ours)

Room-expert-expert 86.3± 5.8 66.5± 11.8 55.3± 2.9
3b vs 1hm-medium-random 38.1± 7.6 28.7± 11.7 8.1± 4.7

Table 2: Ablation study including alternative classifying methods (the upper part), and alternative
techniques of message fusion (the lower part).

The effectiveness of the multi-head structure In MHCI, we use an attention-like multi-head
network to predict the categories of the dataset communications. An alternative is to classify each
communication to its closest category argmini dist(mD, m̂(i)). We compare the performances
using the two classification methods in the upper part of Table 2, drawing the conclusion that our
multi-head structure outperforms the method of finding the closest category and acts more robustly.

The effectiveness of linear fusion We compare between learned linear fusion, PCA-based fusion
and directly using the hidden variable shared by all communication heads. PCA-based fusion means
that the fusion matrix is obtained from calculating the compression matrix given the concatentated
multi-head messages (F.R.S. (1901)). And the results in the lower part of Table 2 show that learned
linear fusion performs better than PCA-based fusion.

7 CONCLUSION

Partial observablity and Scalability are two main challenges in cooperative multi-agent RL, we look
into the new area of offline communication learning that hopefully addresses the two problems
to achieve higher group intelligence. However, addtional challenges come from the multi-source
property of offline dataset, in which directly training communication in the end-to-end manner isn’t
effective enough. Therefore, we propose Multi-head Communication Imitation, aiming to combine
the information in the dataset communication to boost downstream policy learning. Empirical results
show the effectiveness of our algorithm under the new offline communication benchmark.
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A DIFFERENT COMMUNICATION PROTOCOLS IN PREVIOUS WORKS

In Section 3, the general form of how communication works in multi-agent RL is summarized in
Equation 1. We further analyze that previous works on communication can be viewed as applying
different modifications on the general form.

• Informative communication
mij ∈ M = Rd, d is the dimension of message. It is generally used in all kinds of
differentiable communication learning.

• Broadcasting communication
Ci ≡ Ci1 = Ci2 = · · · = Cin ∀i ∈ I (Sukhbaatar et al. (2016)).

• Discrete communication (action communication)
mij ∈ M = Am = {1, 2, · · · , |Am|}. Each agent i sends the same messages to all
receivers (Foerster et al. (2016)).

• Targeted communication
The message follows the broadcasting communication protocol, while the policy function
includes an attention module. mi = C(oi), aj = πj(Attention(m:, oj), τj) (Das et al.
(2019)).

• Incentive communication
The message directly influence the Q value of each receiver. mij ∈ M = R|A|, aj =
argmax

{
Q(oj , τj) +mij

}
(Yuan et al. (2022)).

B SUPPLEMENTARY PROOF OF THEOREM 1

In general, the proof of Theorem 1 is based on Lemma 1, which includes more efforts. In this
section, we first give a proof of Theorem 1 using Lemma 1. And the residual part are all proof of
Lemma 1.
Theorem 1. The optimal expected return based on the Universal Communication is greater than or
equal to that of dataset communications and policies.

∀(S,LC, π) ∈ Gπ, V
∗
TUC(MD)(sinit) ≥ VTLC(MD),π(sinit) (14)

Proof. According to Definition 1 and 2, ∀(S,LC, π) ∈ Gπ, CUC dominates CLC . Therefore by
Lemma 1, we have

V ∗
TGC(MD)(sinit) ≥ V ∗

TC(MD)(sinit)

And apparently V ∗
TC(MD)(sinit) ≥ VTC(MD),π(sinit). Therefore

V ∗
TGC(MD)(sinit) ≥ V ∗

TC(MD)(sinit) ≥ VTC(MD),π(sinit)

Lemma 1. If communication function C1 dominates C2, we have
V ∗
TC1

(M)(sinit) ≥ V ∗
TC2

(M)(sinit). (15)

The following is the proof of Lemma 1. Recall that the observation function in POMDP is O : S →
O.
Definition 3. The relation that O1 contains more information than O2 is defined as ∃f : S →
O,∀s ∈ S(∈ MDP ), f(O1(s)) = O2(s).

It can be understood as the fact that O1 contains strictly more information than O2.

Denote history τt = (s1, a1, s2, a2, · · · , st−1, at−1, st), τ
(a)
t = (s1, a1, s2, a2, · · · , st−1, at−1)

(∀t), τt ∈ Tt, the probability p(τ)

Denote the history under observation function O(·) as O(τt) = (O(s1), a1, O(s2), a2, · · · ), O(τt) ∈
O(Tt), the probability p(τOt ) =

∑
O(τt)=τO

t
p(τt)

Denote the infostate obtained from the history IS : O(Tt) → ∆(S), pIS(τO
t )(s) =∑

τ=(··· ,st),O(τt)=τO
t
p(τt)/p(τ

O
t )
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Lemma 2. O(Tt) is a split of Tt. If O1 contains more information than O2, O2(Tt) is a split of
O1(Tt)

Proof. 1. IS(O1(τt)) ⊂ IS(O2(τt)).

2. Probability adds up to 1. (By taking expectation)

Therefore define the SplitO1(O2(τt)) ∈ ∆(O1(Tt)).

Lemma 3. Suppose τt = (o1, a1, · · · , ot−1, at−1, ot), τ
(a)
t = (o1, a1, · · · , ot−1, at−1), if

Eτ
O1
t ∼SplitO1

(τ
O2
t )

Q∗
O1

(τO1
t , at) ≥ Q∗

O2
(τO2

t , at), we have Eτ
O1
t ∼SplitO1

(τ
O2
t )

Q∗
O1

(τ
(a),O1

t , at) ≥

Q∗
O2

(τ
(a),O2

t , at)

Proof.

LHS = E
ot|τO1

E
τO1∼SplitO1

(τ
O2
t )

Q∗
O1

(τO1
t , at)

≥ E
ot|τO1

Q∗
O2

(τO2
t , at)

= RHS

Theorem 2. ∀t, O1 dominates O2, we have Eτ
O1
t ∼SplitO1

(τ
O2
t )

Q∗
O1

(τO1
t , at) ≥ Q∗

O2
(τO2

t , at).

Proof. Prove literately. Without generality, suppose all trajectories have the same length tmax, and
the inequality naturally holds for the ending state.

If Eτ
O1
t ∼SplitO1

(τ
O2
t+1)

Q∗
O1

(τO1
t+1, at+1) ≥ Q∗

O2
(τO2

t+1, at+1),

E
τ
O1
t ∼SplitO1

(τ
O2
t )

Q∗
O1

(τO1
t , at)

= E
τ
O1
t ∼SplitO1

(τ
O2
t )

max
at+1

Q∗
O1

(τ
(a),O1

t+1 , at+1) (Denote τ
(a),O1

t+1 = Concat(τO1
t , at))

≥max
at+1

E
τ
O1
t ∼SplitO1

(τ
O2
t )

Q∗
O1

(τ
(a),O1

t+1 , at+1)

≥max
at+1

Q∗
O2

(τ
(a),O2

t+1 , at+1) (∵ Lemma 4)

=Q∗
O2

(τO2
t , at)

C DETAILS OF THE IMAGINARY COMMUNICATION GAME

The formulation of the imaginary communication is included in Section 4. It is named as an imag-
inary communication game, because it doesn’t include any real-world correspondence. However,
in this way we can concretely measure the influence of scalability, state space complexity and the
advantage from learning communication from datasets.

The number of agents is n. The state space is of p dimension, while the indiviual observation space
is q. Natually, p > q, i.e., each agent itself doesn’t observe all the information. In the implemen-
tation, we guarantee nq > p and that all the concatenated observations of all agents include all the
information of the state. The partial observability lies in the fact that for each agent i, there are 2q
dimensions that relate to the optimal policy, but only q dimensions are included in its own observa-
tion. Therefore, a communication mechanism is required to make up this lost q dimensions. The
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two experiments share the same network structure, but still, learning communication from scratch
fails to converge to optimal when the the task become more challenging.

The network structure involves a communication module and a policy module, and both modules are
3-layer MLPs. The communication module of agent i takes the individual observation oi as input
and outputs the message mi: to each receivers. The policy module of agent j takes oj ,m:j as input
and outputs an action. All the network doesn’t share parameters.

Since this environment is of horizon T = 1 and the reward belongs to 0, 1, it can be modeled as a
classification problem. We use BCE loss for optimization, with the data size 1000, batch size 1000
(1 step covers 1 epoch) and learning rate 0.1 in SGD optimizer. In learning communication from
scratch, we optimize both the communication and policy module by the downstream BCE Loss.
In the fitting dataset communication, we optimize the communication module by minimizing the
MSE loss using dataset communication, while optimize the policy module by the downstream BCE
loss. For the sake of fairness, we use the rule of early stopping that stops training if the evaluation
accuracy doesn’t increase in 30 steps.

Figure 1 is the average evaluation accuracy over 100 experiments at each value of n, p with q = 2.
In every experiment, the environment and dataset are re-initialized. In appendix, we also compare
under a different q = 3 in Figure 6, and a different data size 10000 in Figure 7.

Figure 6: Evaluation accuracy with different n, p, given q = 3 (size 1000 by default).

Figure 7: Evaluation accuracy with different n, p, given size 10000 (q = 2 by default).

D IMPLEMENTATION DETAILS

D.1 MHCI IMPLEMENTATION

Hyperparameters of MHCI and the data size in the offline communication learning benchmark are
respectively presented in Table 3, 4. The implementation details of the downstream policy learning
follows the same manner in ICQ’s original implementation (Yang et al. (2021)).

In all the experiments, the state is the observation concatenation by default.
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Hyperparameter Value
Communication dimensison 3
Number of attention heads 3

Batch size 16
Learning rate 0.0005

Table 3: MHCI hyperparameters table.

D.2 BENCHMARK

Dataset Size
Room-expert 500

Room-expert-expert-medium 750
Room-medium-random 500

All the StarCraft II tasks (medium-random) 100

Table 4: The table of data size in offline communication learning benchmark.

For convenience, we use expert to represent manually designed datasets, which are optimal. Medium
indicates that the dataset is collected by a learned policy and communication. And random is just
trajectories collected by a randomly intialized policy and communication. We mix datasets from
different sources and name as expert-medium for example, meaning the mixture of a expert dataset
and a medium dataset.

Besides, for easier understanding, we mention in this paragraph the general challenge of StarCraft II
tasks included in the benchmark. In previous communication-related works, the sight range of each
agent is assigned to a small value, making the tasks partially observable. We also use this criterion
in the added task 6o1b vs 1r.

Dataset generation details In StarCraft II related tasks (3b vs 1h1m, 1010b vs 1r, 5z vs 1ul,
MMM, 1o2r vs 4r and 6o1b vs 1r), the medium dataset is generated by collecting the trajectories
after 2e7 steps training of the NDQ algorithm (Wang* et al. (2020)), which means that the policy
is trained to convergence. And the random dataset is collected at the first step of training, meaning
that the policy is only randomly initialized. The state required by the mixing network is the concate-
nation of all agents’ observation, rather than a predefined low-dimension state as in previous works.
Because the latter requires domain knowledge which is unfeasible in the general CTDE assumption.

In the Room environment, we manually designed expert datasets, in which all the agents act per-
fectctly (First transmit the location to the correct agents, then move towards its own goal, as de-
scribed in Section 6.1). And the communication function is designed as mij = (1 + location) ∗ 10
if i observes j’s goal, otherwise 0. And in datasets where two different expert sources are included,
they’re m(1)

ij = (1+ location)∗10,m(2)
ij = −(1+ location)∗10 respectively. The medium dataset

is generated by offline training (training communication from scratch) on abundant expert data. And
the random dataset is also collected from the trajectories of randomly initialized policies.

E EFFECTIVENESS OF MULTI-HEAD STRUCTURE

In this section, we look into the classification performance of multi-head structure in communication
learning, and show how it improves the downstream performance of the policy.

From the head classification results shown in Table 5, MHCI successfully classifies different cat-
egories of dataset communication into different heads in most datasets, which allows for accurate
communication learning. And eventually the overall performance of the downstream policy is in-
creased significantly. On contrast, in those datasets that communication classification doesn’t work
well (e.g. 1o10b vs 1r, 5z vs 1ul and Room-medium), MHCI doesn’t surpass pure imitation.

(Since the second version in rebuttal updates the way of linear fusion, we need to clarify that the
tendency shown in Table 5 is similar both in the old version of random linear fusion and the new
version of learned linear fusion.)
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Multi-head Single-head

3b vs 1h1m

Head 1 Head 2 Head 3 Head 1 Head 2 Head 3
Cate 1 56.2% 40.8% 3.0% Cate 1 100% / /
Cate 2 100% 0% 0% Cate 2 100% / /

Score: 38.1± 7.6 Score: 25.7± 15.5

1o10b vs 1r

Head 1 Head 2 Head 3 Head 1 Head 2 Head 3
Cate 1 0% 0% 100% Cate 1 100% / /
Cate 2 0% 0% 100% Cate 2 100% / /

Score: 52.2± 13.4 Score: 60.4± 6.3

5z vs 1ul

Head 1 Head 2 Head 3 Head 1 Head 2 Head 3
Cate 1 100% 0% 0% Cate 1 100% / /
Cate 2 99.8% 0.2% 0% Cate 2 100% / /

Score: 47.9± 23.0 Score: 50.0± 13.5

MMM

Head 1 Head 2 Head 3 Head 1 Head 2 Head 3
Cate 1 0% 41.3% 58.7% Cate 1 100% / /
Cate 2 0% 0% 100% Cate 2 100% / /

Score: 17.6± 2.9 Score: 10.0± 1.2

1o2r vs 4r

Head 1 Head 2 Head 3 Head 1 Head 2 Head 3
Cate 1 5.1% 94.9% 0% Cate 1 100% / /
Cate 2 0% 100% 0% Cate 2 100% / /

Score: 59.7± 29.5 Score: 63.1± 15.2

Room-m
Head 1 Head 2 Head 3 Head 1 Head 2 Head 3

Cate 1 0% 0% 100% Cate 1 100% / /
Score: 88.2± 4.2 Score: 95.4± 3.6

Room-ee

Head 1 Head 2 Head 3 Head 1 Head 2 Head 3
Cate 1 0% 0% 100% Cate 1 100% / /
Cate 2 0% 100% 0% Cate 2 100% / /

Score: 84.5± 3.8 Score: 58.7± 0.5

Room-eem

Head 1 Head 2 Head 3 Head 1 Head 2 Head 3
Cate 1 0% 0% 100% Cate 1 100% / /
Cate 2 0% 100% 0% Cate 2 100% / /
Cate 2 20% 80% 0% Cate 2 100% / /

Score: 66.1± 4.7 Score: 55.7± 2.5

Room-mr

Head 1 Head 2 Head 3 Head 1 Head 2 Head 3
Cate 1 0% 0% 100% Cate 1 100% / /
Cate 2 32.0% 68.0% 0% Cate 2 100% / /

Score: 63.9± 6.5 Score: 61.0± 1.2

6o1b vs 1r

Head 1 Head 2 Head 3 Head 1 Head 2 Head 3
Cate 1 16.5% 83.5% 0% Cate 1 100% / /
Cate 2 0% 100% 0% Cate 2 100% / /

Score: 47.6± 10.7 Score: 44.0± 1.4

Table 5: The predicted head of each category is shown in this table, as well as the average score of
related methods. Multi-head stands for out method MHCI, and single-head means pure imitation.
The dataset Room-ee is the abbreviation of Room-expert-expert. The predicted head probability is
collected under one experiment after 2e5 steps, where the probability represents the proportion of
communication that is classified into each head.

F ABLATION ON THE LEARNED LINEAR FUSION

The comparison among random fusion, learned fusion, learned fusion with learned head (used in
MHCI) is shown in Table 6. Compared with the ablation study in the main text in Section 6.3, the
influence of different ways of linear fusion isn’t the main influencing factor of performance. Using
MHCI with arbitrary linear fusion, we can obtain satisfying performance in the offline communica-
tion learning benchmark.
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Random matrix Learned matrix Learned matrix +
learned head (MHCI)

3b vs 1h1m-medium-random 45.4± 3.7 38.1± 3.0 38.1± 7.6
1o10b vs 1r-medium-random 34.6± 10.0 48.2± 4.2 52.2± 13.4

5z vs 1ul-medium-random 62.5± 22.2 52.1± 17.9 47.9± 23.0
MMM-medium-random 29.0± 4.7 20.0± 5.3 17.6± 2.9

1o2r vs 4r-medium-random 65.3± 13.9 56.3± 10.4 59.7± 29.5
Room-medium 88.2± 4.2 88.3± 1.2 82.5± 6.3

Room-expert-expert 84.5± 3.8 81.7± 3.0 86.3± 5.8
Room-expert-expert-medium 66.1± 4.7 64.8± 6.1 69.5± 6.7

Room-medium-random 63.9± 6.5 62.8± 5.0 67.2± 6.4
6o1b vs 1r-medium-random 47.6± 10.7 39.0± 4.9 45.0± 5.7

Table 6: The performance comparison of different ways of linear fusion, normalized by the score of
the expert (from 0 to 100). The results are averaged over three random seeds with standard deviation.

G THE EFFECT OF COMBINING DIFFERENT COMMUNICATION PROTOCOLS

We look into how MHCI combines different communication protocols and improve the overall per-
formance. We specifically design the dataset including multiple sources that are valuable in different
aspects, and therefore combining all of them, rather than learning one of them, is essential for good
performance.

In detail, we modify the Room-medium dataset by masking half of the senders’ messages, and
leaving the trajectories the same. In 50% data, we mask the first 4 agents’ sent messages, and in
the remaining 50% data, we mask the last 4 agents’ sent messages (8 agents in all). Therefore, the
communication learning algorithm needs to combine the experiences of how the first 4 agents should
communicate, and also how the last 4 agents should communicate. The experiment results shows
that, under such dataset that requires combining experiences, MHCI gains advantage by combining
different communication protocols, and exceeds learning from scratch.

50% mask 1-4 100% mask 1-4 Not masked Learn communication
50% mask 5-8 from scratch
82.0± 11.4 69.5± 2.3 88.3± 1.2 74.2± 3.5

Table 7: The experiment results when the optimal communication in the dataset is masked partially,
showing that MHCI combines experience from different sources of communication protocols.

H COMPARISON WITH PREVIOUS ONLINE COMMUNICATION LEARNING
ALGORITHMS

We compare MHCI with VBC (Zhang et al. (2019)) under 3b vs 1h1m-medium-random in Figure
8. VBC fails to converge because it isn’t designed for the offline setting.
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Figure 8: Learning curve on 3b vs 1h1m-medium-random.
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