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Figure 1. PhysTwin takes sparse videos of deformable objects under interaction as input and automatically reconstructs a simulatable
digital twin with complete geometry, high-fidelity appearance, and accurate physical parameters. This enables multiple applications, such as
real-time interactive simulation using keyboards and robotic teleoperation devices, as well as model-based robot planning.

Abstract

Creating a physical digital twin of a real-world object has001
immense potential in robotics, content creation, and XR. In002
this paper, we present PhysTwin, a novel framework that uses003
sparse videos of dynamic objects in interaction to produce004
a photo- and physically realistic, real-time interactive vir-005
tual replica. Our approach centers on two key components:006
(1) a physics-informed representation that combines spring-007
mass models for realistic physical simulation, generative008
shape models for geometry, and Gaussian splats for render-009
ing, and (2) a novel multi-stage optimization-based inverse010
modeling framework that reconstructs complete geometry,011
infers dense physical properties, and replicates realistic ap-012
pearance from videos. Our method integrates an inverse013
physics framework with visual perception cues, enabling014
high-fidelity reconstruction even from partial, occluded, and015
limited viewpoints. PhysTwin supports modeling various016
deformable objects, including ropes, stuffed animals, cloth,017
and delivery packages. Experiments show that PhysTwin out-018
performs competing methods in reconstruction, rendering,019
future prediction, and simulation under novel interactions.020
We further demonstrate its applications in interactive real-021

time simulation and model-based robotic motion planning. 022
(See our supplement webpage for all videos and demos.) 023

1. Introduction 024

The construction of interactive digital twins is essential for 025
modeling the world and simulating future states, with ap- 026
plications in virtual reality, augmented reality, and robotic 027
manipulation. A physically realistic digital twin (PhysT- 028
win) should accurately capture the geometry, appearance, 029
and physical properties of an object, allowing simulations 030
that closely match observations in the real world. However, 031
constructing such a representation from sparse observations 032
remains a significant challenge. 033

The creation of digital twins for deformable objects has 034
long been a challenging topic in the vision community. 035
While dynamic 3D methods (e.g., dynamic NeRFs [2, 5, 8, 036
13, 14, 17, 27, 29–31, 39–41, 43, 55, 56, 58, 61], dynamic 037
3D Gaussians [10, 20, 24, 33, 34, 59, 65, 66, 68]) capture ob- 038
served motion, appearance, and geometry from videos, they 039
omit the underlying physics and are thus unsuitable for simu- 040
lating outcomes in unseen interactions. While recent neural- 041
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based models [4, 11, 28, 32, 36, 42, 49, 51, 52, 60, 64, 69]042
learn intuitive physics models from videos, they require large043
amounts of data and remain limited to specific objects or044
motions, whereas physics-driven approaches [9, 12, 27, 44,045
63, 71, 72] often rely on pre-scanned shapes or dense obser-046
vations to mitigate ill-posedness. Additionally, it requires047
dense viewpoint coverage and supports only limited motion048
types, making it unsuitable for general dynamics modeling.049

In this work, we aim to build an interactive PhysTwin050
from sparse-viewpoint RGB-D video sequences, capturing051
object geometry, non-rigid dynamic physics, and appearance052
for realistic physical simulation and rendering. We model053
deformable object dynamics with a spring-mass-based rep-054
resentation, enabling efficient physical simulation and han-055
dling a wide range of common objects, such as ropes, stuffed056
animals, cloth, and delivery packages. To address challenges057
posed by sparse observations, we leverage shape priors and058
motion evidence from advanced 3D generative models [62]059
and vision foundation models [23, 46, 48] to estimate the060
topology, geometry, and physical parameters of our physi-061
cal representation. Since some physical parameters (such062
as topology-related properties) are non-differentiable and063
optimizing them efficiently is non-trivial, we design a hierar-064
chical sparse-to-dense optimization strategy. This strategy065
integrates zero-order optimization [18] for non-differentiable066
topology and sparse physical parameters (e.g., collision pa-067
rameters and homogeneous spring stiffness), while employ-068
ing first-order gradient-based optimization to refine dense069
spring stiffness and further optimize collision parameters.070
For appearance modeling, we adopt a Gaussian blending071
strategy, initializing static Gaussians from sparse observa-072
tions in the first frame using shape priors and deforming073
them with a linear blending algorithm to generate realistic074
dynamic appearances.075

Our inverse modeling framework effectively constructs in-076
teractive PhysTwin from videos of objects under interaction.077
We create a real-world deformable object interaction dataset078
and evaluate our method on three key tasks: reconstruction079
and resimulation, future prediction, and generalization to080
unseen interactions. Both quantitative and qualitative results081
demonstrate that our reconstructed PhysTwin aligns accu-082
rately with real-world observations, achieves precise future083
predictions, and generates realistic simulations under diverse084
unseen interactions. Furthermore, the high computational ef-085
ficiency of our physics simulator enables real-time dynamics086
and rendering of our constructed PhysTwin, facilitating mul-087
tiple applications, including real-time interactive simulation088
and model-based robotic motion planning.089

2. Related Works090

Dynamic Scene Reconstruction. Dynamic scene recon-091
struction aims to recover the underlying representation of092
dynamic scenes from inputs like depth scans [6, 26], RGBD093

videos [38], or monocular or multi-view videos [1, 5, 24, 31, 094
34, 39, 40, 43, 56, 58, 61, 67, 68]. Recent advancements 095
in dynamic scene modeling have involved the adaptation 096
of novel scene representations, including Neural Radiance 097
Fields (NeRF) [2, 5, 8, 13, 14, 16, 17, 27, 29, 30, 30, 31, 39– 098
41, 43, 55, 56, 58, 61] and 3D Gaussian splats [10, 20, 24, 33, 099
34, 59, 65, 66, 68]. D-NeRF [43] extends a canonical NeRF 100
on dynamic scenes by optimizing a deformable field. Simi- 101
larly, Deformable 3D-GS [66] optimizes a deformation field 102
of each Gaussian kernel. Dynamic 3D-GS [34] optimizes the 103
motion of Gaussian kernels for each frame to capture scene 104
dynamics. 4D-GS [59] modulates 3D Gaussians with 4D 105
neural voxels for dynamic multi-view synthesis. Although 106
these methods achieve high-fidelity results in dynamic multi- 107
view synthesis, they primarily focus on reconstructing scene 108
appearance and geometry without capturing real-world dy- 109
namics, limiting their ability to support action-conditioned 110
future predictions and interactive simulations. 111

Physics-Based Simulation of Deformable Objects. An- 112
other line of work incorporates physical simulators to per- 113
form system identification of physical parameters during 114
reconstruction. Earlier methods relied on pre-scanned 115
static objects and required clean point cloud observa- 116
tions [9, 15, 19, 21, 35, 44, 47, 57]. Most recent approaches 117
build upon SDF [45], NeRF [3, 12, 27] or Gaussian Splat- 118
ting [22, 63, 71, 72] to support more flexible physical digital 119
twin reconstruction. Several works [12, 22, 63] manually 120
specify physics parameters, resulting in a mismatch between 121
the simulation and real-world video observations. Other 122
works [3, 27, 45, 71, 72] attempt to estimate physical param- 123
eters from videos. However, they are often constrained to 124
synthetic data, limited motion, or the need for dense view- 125
points to accurately reconstruct static geometry, limiting 126
their practical applicability. The closest related work to ours 127
is Spring-Gaus [72], which also utilizes a 3D Spring-Mass 128
model for learning from videos. However, their physical 129
model is overly regularized and violates real-world physics, 130
lacking momentum conservation and realistic gravity. More- 131
over, Spring-Gaus requires dense viewpoint coverage to 132
reconstruct the full geometry at the initial state, which is 133
impractical in many real-world settings. The motions are 134
also only limited to tabletop collisions and lack action in- 135
puts, making it unsuitable as a general dynamics model for 136
downstream applications. 137

Learning-Based Simulation of Deformable Objects. 138
Analytically modeling the dynamics of deformable objects 139
is extremely challenging due to the high complexity of 140
state space and the variance of physical properties. Recent 141
works [4, 11, 36, 60, 64] have chosen to use neural network- 142
based simulators to model object dynamics. Specifically, 143
graph-based networks effectively learn the dynamics of vari- 144
ous types of objects such as plasticine [51, 52], cloth [32, 42], 145
fluid [28, 49], and stuffed animals [69]. GS-Dynamics [69] 146
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Figure 2. Overview of Our PhysTwin Framework. We present an overview of our PhysTwin framework, where the core representation
includes geometry, topology, physical parameters (associated with springs and contacts), and Gaussian kernels. To optimize PhysTwin,
we minimize the rendering loss and the discrepancy between simulated and observed geometry/motion. The rendering loss optimizes the
Gaussian kernels, while the geometry and motion losses refine the overall geometry, topology, and physical parameters in PhysTwin.

attempted to learn object dynamics directly from real-world147
videos using tracking and appearance priors from Dynamic148
Gaussians [34], and generalized well to unseen actions. How-149
ever, these learned models need extensive training samples150
and are often limited to specific environments with limited151
motion ranges. In contrast, our method requires only one152
interaction trial while achieving a broader range of motions.153

3. Preliminary: Spring-Mass Model154

Spring-mass models are widely used for simulating de-155
formable objects due to their simplicity and computational156
efficiency. A deformable object is represented as a set of157
spring-connected mass nodes, forming a graph structure158
G = (V, E), where V is the set of mass points and E is the159
set of springs. Each mass node i has a position xi ∈ R3160
and velocity vi ∈ R3, which evolve over time according161
to Newtonian dynamics. Springs are constructed between162
neighboring nodes based on a predefined topology, defining163
the elastic structure of the object.164

The force on node i is the result of the combined effects165
of adjacent nodes connected by springs:166

Fi =
∑

(i,j)∈E

Fspring
i,j + Fdashpot

i,j + Fext
i , (1)167

where the spring force and dashpot damping force between168
nodes i and j are given by Fspring

i,j = kij(∥xj − xi∥ −169

lij)
xj−xi

∥xj−xi∥ and Fdashpot
i,j = −γ(vi−vj), respectively. Here,170

kij is the spring stiffness, lij is the rest length, and γ is171
the dashpot damping coefficient. The external force Fext

i172
accounts for factors such as gravity, collisions, and user in-173
teractions. The spring force restores the system to its rest174

shape, while the dashpot damping dissipates energy, pre- 175
venting oscillations. For collisions, we use impulse-based 176
collision handling when two mass points are very close, in- 177
cluding collisions between the object and the collider, as 178
well as between two object points. 179

The spring-mass model updates the system state with a dy- 180
namic model Xt+1 = fα,G0(Xt, at) by applying explicit Eu- 181
ler integration to both velocity and position. More formally, 182

for all i, vt+1
i = δ

(
vt
i +∆t Fi

mi

)
, xt+1

i = xt
i+∆tvt+1

i , 183

where Xt represents the system state at time t. In this formu- 184
lation, α denotes all physical parameters of the spring-mass 185
model, including spring stiffness, collision parameters, and 186
damping. It also encompasses the parameters related to the 187
control interaction. G0 represents the “canonical” geometry 188
and topology for the spring-mass system 1, and at represents 189
the actions at time t. 190

4. Method 191

In this section, we formulate the construction of PhysTwin 192
as an optimization problem. We then present our two-stage 193
strategy, where the first stage addresses the physics-related 194
optimization, followed by the appearance-based optimiza- 195
tion in the second stage. Finally, we demonstrate the capabil- 196
ity of our framework to perform real-time simulation using 197
the constructed PhysTwin. 198

4.1. Problem Formulation 199

Given three RGBD videos of a deformable object under in- 200
teraction, our objective is to construct a PhysTwin model that 201
captures the geometry, appearance, and physical parameters 202

1In practice, we use the first-frame object state as the canonical state.
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of the object over time. At each time frame t, we denote203
the RGBD observations from each video as Ot,i for the i-th204
observation at time t, where O = (I,D) represents the RGB205
image I and depth map D.206

The goal of our optimization problem is to minimize the207
discrepancy between the predicted observation Ôt,i and the208
actual observation Ot,i. The predicted observation is derived209

by projecting and rendering the predicted state X̂t onto im-210
ages through a function gθ, where θ encodes the appearance211
of the objects represented by Gaussian splats. The 3D state212
X̂t evolves over time according to the Spring-Mass model,213
which captures the deformable object’s dynamics and up-214
dates the state using the explicit Euler integration method.215
The optimization problem is formulated as:216

min
α,G0,θ

∑
t,i

C(Ôt,i,Ot,i)

s.t. Ôt,i = gθ(X̂t, i), X̂t+1 = fα,G(X̂t, at),

(2)217

where α,G0, θ captures the physics, geometry, topology and218
appearance parameters (Sec. 3); the cost function quantifies219
the difference between the predicted observation Ôt,i and the220
actual observation Ot,i. This cost function is decomposed221
into three components: C = Cgeometry+Cmotion+Crender,222
each capturing the discrepancy between the inferred system223
states and the corresponding observations from 3D geometry,224
3D motion tracking, and 2D color, respectively (we defer the225
details of each cost component to Sec.4.2.1 and Sec.4.2.2).226
The function gθ is the observation model, describing the227
projection from the predicted state to the image plane and228
render the i-th image-space sensory observation, and fα,G229
models the dynamic evolution of the object’s state under the230
Spring-Mass model, as detailed in Sec. 3.231

4.2. PhysTwin Framework232

Given the complexity of the overall optimization defined233
in Eq. 2, our PhysTwin framework decomposes it into two234
stages. The first stage focuses on optimizing the geometry235
and physical parameters, while the second stage is dedicated236
to optimizing the appearance-related parameters.237

4.2.1. Physics and Geometry Optimization.238

As outlined in our optimization formulation in Sec. 4.1, the239
objective is to minimize the discrepancy between the pre-240
dicted observation Ôt,i and the actual observation Ot,i. First,241
we convert the depth observations Dt at each time frame t242
into the observed partial 3D point cloud Xt. In the first stage,243
we consider the following formulation for the optimization:244

min
α,G0

∑
t

(
Cgeometry(X̂t,Xt) + Cmotion(X̂t,Xt)

)
s.t. X̂t+1 = fα,G0

(X̂t, at),

(3)245

where the Cgeometry function quantifies the single-direction246
Chamfer distance between the partial observed point cloud247

Xt and the inferred state X̂t, and Cmotion quantifies the track- 248

ing error between the predicted point x̂t
i and its correspond- 249

ing observed tracking xt
i. The observed tracking is obtained 250

using the vision foundation model CoTracker3 [23], fol- 251
lowed by lifting the result to 3D via depth map unprojection. 252

There are three main challenges in the first-stage opti- 253
mization: 1) partial observations from sparse viewpoints, 254
2) joint discrete topology and physical parameter optimiza- 255
tion, and 3) discontinuities in the dynamic model, as well 256
as the long-time horizon and dense properties, making con- 257
tinuous optimization difficult. To address these challenges, 258
we handle the geometry and other parameters separately. 259
Specifically, we first leverage generative shape initializa- 260
tion to obtain the full geometry, then employ our two-stage 261
sparse-to-dense optimization to refine the other parameters. 262

Generative Shape Prior. Due to partial observations, 263
recovering full geometry is challenging. We use a shape 264
prior from the image-to-3D generative model, TRELLIS 265
[62], to generate the full mesh conditioned on a single RGB 266
observation of the masked object. To improve mesh quality, 267
we apply a super-resolution model [48] to upscale the fore- 268
ground, segmented using Grounded-SAM2 [46]. While the 269
mesh corresponds reasonably with the observation, inconsis- 270
tencies in scale, pose, and deformation remain. 271

To address this, we design a registration module using 272
2D matching for scale estimation, rigid registration, and 273
non-rigid deformation. A coarse-to-fine strategy estimates 274
initial rotation via 2D correspondences matched using Su- 275
perGlue [50], followed by refinement with the Perspective- 276
n-Point [25] algorithm. We resolve scale and translation 277
ambiguities by optimizing the matched point distances in 278
the camera coordinate system. After applying these transfor- 279
mations, the objects align in pose, with some deformations 280
handled by as-rigid-as-possible registration [53]. Finally, 281
ray-casting alignment ensures that observed points match 282
the deformed mesh without occlusions. 283

These steps yield a shape prior aligned with the first- 284
frame observations, which serves as a crucial initialization 285
for the inverse physics and appearance optimization stages. 286

Sparse-to-Dense Optimization The Spring-Mass model 287
consists of both the topological structure (i.e., the connec- 288
tivity of the springs) and the physical parameters defined on 289
the springs. As mentioned in Sec. 3, we also include the 290
control parameters to connect the springs between control 291
points and object points throguh radius and max neighbours. 292
For topology optimization, we employ a heuristic approach 293
to connect the nearest neighbor points, parameterized by 294
a connection radius and a maximum number of neighbors, 295
thereby controlling the density of the springs. The same 296
parameterization for the springs between control points and 297
object points. To extract control points from video data, we 298
utilize Grounded-SAM2 [46] to segment the hand mask and 299
CoTracker3 [23] to track hand movements. After lifting the 300
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points to 3D, we apply farthest-point sampling to obtain the301
final set of control points.302

All the aforementioned parameters constitute the param-303
eter space we aim to optimize. The two main challenges304
are: i) some parameters are not differentiable (e.g., radius305
and maximum number of neighbors); ii) to represent a wide306
range of objects, we model dense spring stiffness, leading to307
a parameter space that includes thousands of springs.308

To address these challenges, we introduce a hierarchical309
sparse-to-dense optimization strategy. Initially, we employ310
zero-order sampling-based optimization to optimize the pa-311
rameters, which naturally overcome the differentiability is-312
sue. However, zero-order optimization is inefficient when313
the parameter space is too large. Therefore, in the first stage,314
we assume homogeneous stiffness, allowing the topology315
and other physical parameters to obtain a good initialization.316
In the second stage, we further refine the parameters using317
first-order gradient descent, leveraging our built differen-318
tiable spring-mass simulator. This stage optimizes the dense319
spring stiffness and collision parameters simultaneously.320

Beyond the optimization strategy, we incorporate addi-321
tional supervision by utilizing tracking priors from vision322
foundation models. We lift the 2D tracking prediction into323
3D to obtain pseudo-ground-truth tracking data for the 3D324
points, which forms a crucial component of our cost function325
as mentioned above.326

By integrating our optimization strategy with a cost func-327
tion that leverages additional tracking priors, our PhysTwin328
framework can effectively and efficiently model the dynam-329
ics of diverse interactable objects from videos.330

4.2.2. Appearance Optimization331

For the second-stage appearance optimization, to model ob-332
ject appearance, we construct a set of static 3D Gaussian333
kernels parameterized by θ, with each Gaussian defined by334
a 3D center position µ, a rotation matrix represented by a335
quaternion q ∈ SO(3), a scaling matrix represented by a 3D336
vector s, an opacity value α, and color coefficients c. We337
optimize θ here via338

min
θ

∑
t,i

Crender(Îi,t, Ii,t) s.t. Îi,t = gθ(X̂t, i), (4)339

where X̂t is the optimized system states at time t, i is the340
camera index, and Ii,t, Îi,t are the ground truth image and341
rendered image from camera view i at time t, respectively.342
Crender computes the L1 loss with a D-SSIM term between343
the rendering and ground truth image. For simplicity, we344
set t = 0 to optimize appearance only at the first frame. We345
restrict the Gaussian shape to be isotropic to prevent spiky346
artifacts during deformation.347

To ensure realistic rendering under deformation, we need348
to dynamically adjust each Gaussian at each timestep t based349
on the transition between states X̂t and X̂t+1. To achieve350

this, we adopt a Gaussian updating algorithm using Linear 351
Blend Skinning (LBS) [20, 54, 69], which interpolates the 352
motions of 3D Gaussians using the motions of neighboring 353
mass nodes. Please refer to the supplementary for details. 354

4.3. Capabilities of PhysTwin 355

Our constructed PhysTwin supports real-time simulation of 356
deformable objects under various motions while maintaining 357
realistic appearance. This real-time, photorealistic simula- 358
tion enables interactive exploration of object dynamics. 359

By introducing control points and dynamically connect- 360
ing them to object points via springs, our system can simulate 361
diverse motion patterns and interactions. These capabilities 362
make PhysTwin a powerful representation for real-time inter- 363
active simulation and model-based robotic motion planning, 364
which are further described in Sec. 5.3. 365

5. Experiments 366

In this section, we evaluate the performance of our PhysT- 367
win framework across three distinct tasks involving different 368
types of objects. Our primary objective is to address the fol- 369
lowing three questions: 1) How accurately does our frame- 370
work reconstruct and re-simulate deformable objects and 371
predict its future states? 2) How well does the constructed 372
PhysTwin generalize to unseen interactions? 3) What is the 373
utility of PhysTwin in downstream tasks? 374

5.1. Experiment Settings 375

Dataset. We collect a dataset of RGBD videos capturing 376
human interactions with various deformable objects with 377
different physical properties, such as ropes, stuffed animals, 378
cloth, and delivery packages. Three RealSense-D455 RGBD 379
cameras are used to record the interactions. Each video is 380
1 to 10 sec long and covers different interactions, including 381
quick lifting, stretching, pushing, and squeezing with either 382
one or both hands. We collect 22 scenarios encompassing 383
various object types, interaction types, and hand configura- 384
tions. For each scenario, the RGBD videos are split into a 385
training set and a test set following a 7:3 ratio, where only 386
the training set is used to construct PhysTwin. We manu- 387
ally annotate 9 ground-truth tracking points for each video 388
to evaluate tracking performance with the semi-auto tool 389
introduced in [7]. 390

Tasks. To assess the effectiveness of our PhysTwin frame- 391
work and the quality of our constructed PhysTwin, we for- 392
mulate three tasks: 1) Reconstruction & Resimulation; 2) 393
Future Prediction; 3) Generalization to Unseen Actions. 394

For the Reconstruction & Resimulation task, the objective 395
is to construct PhysTwin such that it can accurately recon- 396
struct and resimulate the motion of deformable objects given 397
the actions represented by the control point positions. 398

For the Future Prediction task, we aim to assess whether 399
PhysTwin can perform well on unseen future frames during 400

5



ICCV
#11564

ICCV
#11564

ICCV 2025 Submission #11564. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Future PredictionReconstruction & Resimulation
P

hy
sT

w
in

 (O
ur

s)
O

bs
er

va
tio

n
G

S
-D

yn
am

ic
s

S
pr

in
g-

G
au

s
P

hy
sT

w
in

 
O

bs
er

va
tio

n
G

S
-D

yn
am

ic
s

S
pr

in
g-

G
au

s
P

hy
sT

w
in

 (O
ur

s)
O

bs
er

va
tio

n
G

S
-D

yn
am

ic
s

S
pr

in
g-

G
au

s
  t   t

Figure 3. Qualitative Results on Reconstruction & Resimulation and Future Prediction. We visualize the rendering results of different
methods on two tasks. For the reconstruction & resimulation task, our method achieves a better match with the observations. For the future
prediction task, our method accurately predicts the future state of the objects. In contrast, the baselines fail in most cases: GS-Dynamics
tends to remain static, while Spring-Gauss frequently causes the physical model to crash.
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Figure 4. Qualitative Results on Generalization to Unseen Interactions. We visualize the simulation of a deformable object under unseen
interactions using our method and GS-Dynamics. The leftmost image illustrates the interaction on which the dynamics models are trained,
while the right images demonstrate their generalization ability to unseen interactions. Our PhysTwin significantly outperforms prior work.

Table 1. Quantitative Results on Reconstruction & Resimulation and Future Prediction. We compare the performance of our method
with two prior work, GS-Dynamics and Spring-Gaus, on two tasks: reconstruction & resimulation and future prediction. Our PhysTwin
framework consistently outperforms the baselines across all metrics.

Task Reconstruction & Resimulation Future Prediction

Method CD ↓ Track Error ↓ IoU % ↑ PSNR ↑ SSIM ↑ LPIPS ↓ CD ↓ Track Error ↓ IoU % ↑ PSNR ↑ SSIM ↑ LPIPS ↓
Spring-Gaus [72] 0.041 0.050 57.6 23.445 0.928 0.102 0.062 0.094 46.4 22.488 0.924 0.113
GS-Dynamics [69] 0.014 0.022 72.1 26.260 0.940 0.052 0.041 0.070 49.8 22.540 0.924 0.097
PhysTwin (Ours) 0.005 0.009 84.4 28.214 0.945 0.034 0.012 0.022 72.5 25.617 0.941 0.055

Table 2. Quantitative Results on Generalization to Unseen
Interactions. We compare our method with GS-Dynamics on
generalization to unseen interactions. Both methods are trained
on the same video with a specific interaction and tested on unseen
interactions. Our method achieves significantly better results.

Method CD ↓ Track Error ↓ IoU % ↑ PSNR ↑ SSIM ↑ LPIPS ↓
GS-Dynamics [69] 0.029 0.038 63.4 25.053 0.934 0.067
PhysTwin (Ours) 0.013 0.018 72.18 26.199 0.938 0.047

its construction. For the Generalization to Unseen Interac-401
tions task, the goal is to assess whether PhysTwin can adapt402
to different interactions. To evaluate this, we construct a gen-403
eralization dataset consisting of interaction pairs performed404
on the same object but with varying motions, including dif-405
ferences in hand configuration and interaction type.406

Baselines. To the best of our knowledge, there is cur-407
rently no existing work that demonstrates good performance408
across all three tasks. Therefore, we select two main research409
directions as baselines and further augment them to match410
the tasks in our setting (full details in the supplementary).411

The first baseline we consider is a physics-based simu-412
lation method for identifying the material properties of de-413
formable objects, Spring-Gaus [72]. Their work has demon-414

strated strong capabilities in reconstruction, resimulation, 415
and future prediction in its original setting. However, their 416
framework does not support human control, so we augment 417
their method with additional control support. 418

The second baseline is based on a learning-based simula- 419
tion approach, GS-Dynamics [69], specifically a GNN-based 420
neural dynamics model. This model directly learns the sys- 421
tem’s dynamics from two partial states. In their original set- 422
ting, video preprocessing is required using Dyn3DGS [34] 423
to obtain tracking information. In our case, we leverage our 424
3D-lifting tracking from CoTracker3 [23] as supervision for 425
the neural dynamics model. 426

Evaluation. To better understand whether our prediction 427
matches the observations, we evaluate predictions in both 3D 428
and 2D. For the 3D evaluation, we use the single-direction 429
Chamfer Distance (partial ground truth with our full-state 430
prediction) and the tracking error (based on our manually 431
annotated ground-truth tracking points). For the 2D eval- 432
uation, we assess image quality using PSNR, SSIM, and 433
LPIPS [70], and silhouette alignment using IoU. We perform 434
2D evaluation only at the center viewpoint due to optimal 435
visibility of objects, with metrics averaged across all frames 436
and scenarios. Specially, for the Spring-Gaus [72] baseline, 437
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Figure 5. Applications of our PhysTwin. Our constructed PhysTwin supports a variety of tasks, including real-time interactive simulation,
which can accept input from either a keyboard or a robot teleoperation setup. Meanwhile, PhysTwin also enables model-based robot planning
to accomplish tasks such as lifting a rope into some specific configuration.

its optimization process is unstable due to inaccurate physics438
modeling. Therefore, we report the above metrics only for439
its successful cases.440

5.2. Results441

We compare with two augmented baselines across three task442
settings. Our quantitative analysis reveals that the PhysT-443
win framework consistently outperforms the baselines across444
various tasks. Full video results can be found on our supple-445
mentary webpage.446

Reconstruction & Resimulation. The quantitative re-447
sults in Tab. 1 Reconstruction & Resimulation section448
demonstrate the superior performance of our PhysTwin449
method over baselines. Our approach significantly improves450
all evaluated metrics, including Chamfer Distance, track-451
ing error, and 2D IoU, confirming that our reconstruction452
and resimulation align more closely with the original ob-453
servations. This highlights the effectiveness of our model454
in learning a more accurate dynamics model under sparse455
observations. Additionally, rendering metrics show that456
our method produces more realistic 2D images, benefiting457
from the Gaussian blending strategy and enhanced dynamic458
modeling. Fig. 3 further provides qualitative visualizations459
across different objects, illustrating precise alignment with460
original observations. Notably, our physics-based represen-461
tation inherently improves point tracking. After physics-462
constrained optimization, our tracking surpasses the original463
CoTracker3 [23] predictions used for training, achieving bet-464
ter alignment after global optimization (See supplement for465
more details).466

Future Prediction. Table 1, in the Future Prediction467
section, demonstrates that our method achieves superior468
performance in predicting unseen frames, excelling in both469
dynamics alignment and rendering quality. Fig. 3 further470
provides qualitative results, illustrating the accuracy of our471
predictions on unseen frames.472

Generalization to Unseen Interactions. We also eval-473
uate the generalization performance to unseen interactions.474
We directly use our constructed PhysTwin and leverage our475
registration pipeline to align it with the first frame of the tar-476
get case. Fig. 4 shows that our method closely matches the477

ground truth observations in terms of dynamics. Quantita- 478
tive results further demonstrate the robustness of our method 479
across different actions. In contrast, the neural dynamics 480
model struggles to adapt to environmental changes and di- 481
verse interactions as effectively as our approach. Moreover, 482
for unseen interaction scenarios, our method achieves perfor- 483
mance comparable to the future prediction task, highlighting 484
the robustness and practicality of our constructed PhysTwin. 485

5.3. Application 486

The high-speed forward simulation of our Spring-Mass sim- 487
ulator implemented using Warp [37] enables a variety of 488
downstream applications. Fig. 5 illustrates three key appli- 489
cations of PhysTwin. 1) Interactive Simulation: Users can 490
interact with objects in real time using keyboard controls, 491
either with one hand or both hands. 2) Real-Time Future 492
Prediction: Our method enables real-time simulation of an 493
object’s future state while a human teleoperates the robotic 494
arms to interact with a real object. This can serve as a crucial 495
tool for predicting object dynamics during manipulation. 3) 496
Model-Based Robotic Planning: Due to the high fidelity of 497
our constructed PhysTwin, it can also be used purely as a 498
dynamic function. By integrating it with model-based plan- 499
ning techniques, we can generate motion plans for the robot 500
to complete different types of tasks effectively. 501

6. Conclusion 502

We introduced PhysTwin, a novel framework for construct- 503
ing physical digital twins from sparse videos, enabling effec- 504
tive reconstruction and resimulation of deformable objects. 505
Our approach excels in predicting future states and simulat- 506
ing object interactions that generalize to unseen scenarios. 507
We showed the superior performance of our method across 508
various object types, control configurations, and task set- 509
tings, significantly outperforming prior work. PhysTwin 510
enables various downstream tasks that demand high-speed 511
simulation and accurate future prediction. Moreover, our 512
approach provides valuable insights for robotic manipulation. 513
By bridging perception and physics-based simulation, Phys- 514
Twin serves as a crucial tool for guiding robot interactions, 515
making real-world deployment more efficient and reliable. 516
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