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Figure 1. PhysTwin takes sparse videos of deformable objects under interaction as input and automatically reconstructs a simulatable
digital twin with complete geometry, high-fidelity appearance, and accurate physical parameters. This enables multiple applications, such as
real-time interactive simulation using keyboards and robotic teleoperation devices, as well as model-based robot planning.

Abstract

Creating a physical digital twin of a real-world object has
immense potential in robotics, content creation, and XR. In
this paper, we present PhysTwin, a novel framework that uses
sparse videos of dynamic objects in interaction to produce
a photo- and physically realistic, real-time interactive vir-
tual replica. Our approach centers on two key components:
(1) a physics-informed representation that combines spring-
mass models for realistic physical simulation, generative
shape models for geometry, and Gaussian splats for render-
ing, and (2) a novel multi-stage optimization-based inverse
modeling framework that reconstructs complete geometry,
infers dense physical properties, and replicates realistic ap-
pearance from videos. Our method integrates an inverse
physics framework with visual perception cues, enabling
high-fidelity reconstruction even from partial, occluded, and
limited viewpoints. PhysTwin supports modeling various
deformable objects, including ropes, stuffed animals, cloth,
and delivery packages. Experiments show that PhysTwin out-
performs competing methods in reconstruction, rendering,
future prediction, and simulation under novel interactions.
We further demonstrate its applications in interactive real-

time simulation and model-based robotic motion planning.
(See our supplement webpage for all videos and demos.)

1. Introduction

The construction of interactive digital twins is essential for
modeling the world and simulating future states, with ap-
plications in virtual reality, augmented reality, and robotic
manipulation. A physically realistic digital twin (PhysT-
win) should accurately capture the geometry, appearance,
and physical properties of an object, allowing simulations
that closely match observations in the real world. However,
constructing such a representation from sparse observations
remains a significant challenge.

The creation of digital twins for deformable objects has
long been a challenging topic in the vision community.
While dynamic 3D methods (e.g., dynamic NeRFs [2, 5, 8,
13, 14, 17,27, 29-31, 3941, 43, 55, 56, 58, 61], dynamic
3D Gaussians [10, 20, 24, 33, 34, 59, 65, 66, 68]) capture ob-
served motion, appearance, and geometry from videos, they
omit the underlying physics and are thus unsuitable for simu-
lating outcomes in unseen interactions. While recent neural-
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based models [4, 11, 28, 32, 36, 42, 49, 51, 52, 60, 64, 69]
learn intuitive physics models from videos, they require large
amounts of data and remain limited to specific objects or
motions, whereas physics-driven approaches [9, 12, 27, 44,
63, 71, 72] often rely on pre-scanned shapes or dense obser-
vations to mitigate ill-posedness. Additionally, it requires
dense viewpoint coverage and supports only limited motion
types, making it unsuitable for general dynamics modeling.

In this work, we aim to build an interactive PhysTwin
from sparse-viewpoint RGB-D video sequences, capturing
object geometry, non-rigid dynamic physics, and appearance
for realistic physical simulation and rendering. We model
deformable object dynamics with a spring-mass-based rep-
resentation, enabling efficient physical simulation and han-
dling a wide range of common objects, such as ropes, stuffed
animals, cloth, and delivery packages. To address challenges
posed by sparse observations, we leverage shape priors and
motion evidence from advanced 3D generative models [62]
and vision foundation models [23, 46, 48] to estimate the
topology, geometry, and physical parameters of our physi-
cal representation. Since some physical parameters (such
as topology-related properties) are non-differentiable and
optimizing them efficiently is non-trivial, we design a hierar-
chical sparse-to-dense optimization strategy. This strategy
integrates zero-order optimization [ 18] for non-differentiable
topology and sparse physical parameters (e.g., collision pa-
rameters and homogeneous spring stiffness), while employ-
ing first-order gradient-based optimization to refine dense
spring stiffness and further optimize collision parameters.
For appearance modeling, we adopt a Gaussian blending
strategy, initializing static Gaussians from sparse observa-
tions in the first frame using shape priors and deforming
them with a linear blending algorithm to generate realistic
dynamic appearances.

Our inverse modeling framework effectively constructs in-
teractive PhysTwin from videos of objects under interaction.
We create a real-world deformable object interaction dataset
and evaluate our method on three key tasks: reconstruction
and resimulation, future prediction, and generalization to
unseen interactions. Both quantitative and qualitative results
demonstrate that our reconstructed PhysTwin aligns accu-
rately with real-world observations, achieves precise future
predictions, and generates realistic simulations under diverse
unseen interactions. Furthermore, the high computational ef-
ficiency of our physics simulator enables real-time dynamics
and rendering of our constructed PhysTwin, facilitating mul-
tiple applications, including real-time interactive simulation
and model-based robotic motion planning.

2. Related Works

Dynamic Scene Reconstruction. Dynamic scene recon-
struction aims to recover the underlying representation of
dynamic scenes from inputs like depth scans [6, 26], RGBD

videos [38], or monocular or multi-view videos [1, 5, 24, 31,
34, 39, 40, 43, 56, 58, 61, 67, 68]. Recent advancements
in dynamic scene modeling have involved the adaptation
of novel scene representations, including Neural Radiance
Fields (NeRF) [2, 5, 8, 13, 14, 16, 17, 27, 29, 30, 30, 31, 39—
41,43,55,56, 58, 61] and 3D Gaussian splats [10, 20, 24, 33,
34,59, 65, 66, 68]. D-NeRF [43] extends a canonical NeRF
on dynamic scenes by optimizing a deformable field. Simi-
larly, Deformable 3D-GS [66] optimizes a deformation field
of each Gaussian kernel. Dynamic 3D-GS [34] optimizes the
motion of Gaussian kernels for each frame to capture scene
dynamics. 4D-GS [59] modulates 3D Gaussians with 4D
neural voxels for dynamic multi-view synthesis. Although
these methods achieve high-fidelity results in dynamic multi-
view synthesis, they primarily focus on reconstructing scene
appearance and geometry without capturing real-world dy-
namics, limiting their ability to support action-conditioned
future predictions and interactive simulations.

Physics-Based Simulation of Deformable Objects. An-
other line of work incorporates physical simulators to per-
form system identification of physical parameters during
reconstruction. Earlier methods relied on pre-scanned
static objects and required clean point cloud observa-
tions [9, 15, 19, 21, 35, 44, 47, 57]. Most recent approaches
build upon SDF [45], NeRF [3, 12, 27] or Gaussian Splat-
ting [22, 63, 71, 72] to support more flexible physical digital
twin reconstruction. Several works [12, 22, 63] manually
specify physics parameters, resulting in a mismatch between
the simulation and real-world video observations. Other
works [3, 27, 45, 71, 72] attempt to estimate physical param-
eters from videos. However, they are often constrained to
synthetic data, limited motion, or the need for dense view-
points to accurately reconstruct static geometry, limiting
their practical applicability. The closest related work to ours
is Spring-Gaus [72], which also utilizes a 3D Spring-Mass
model for learning from videos. However, their physical
model is overly regularized and violates real-world physics,
lacking momentum conservation and realistic gravity. More-
over, Spring-Gaus requires dense viewpoint coverage to
reconstruct the full geometry at the initial state, which is
impractical in many real-world settings. The motions are
also only limited to tabletop collisions and lack action in-
puts, making it unsuitable as a general dynamics model for
downstream applications.

Learning-Based Simulation of Deformable Objects.
Analytically modeling the dynamics of deformable objects
is extremely challenging due to the high complexity of
state space and the variance of physical properties. Recent
works [4, 11, 36, 60, 64] have chosen to use neural network-
based simulators to model object dynamics. Specifically,
graph-based networks effectively learn the dynamics of vari-
ous types of objects such as plasticine [51, 52], cloth [32, 42],
fluid [28, 49], and stuffed animals [69]. GS-Dynamics [69]
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Figure 2. Overview of Our PhysTwin Framework. We present an overview of our PhysTwin framework, where the core representation
includes geometry, topology, physical parameters (associated with springs and contacts), and Gaussian kernels. To optimize PhysTwin,
we minimize the rendering loss and the discrepancy between simulated and observed geometry/motion. The rendering loss optimizes the
Gaussian kernels, while the geometry and motion losses refine the overall geometry, topology, and physical parameters in PhysTwin.

attempted to learn object dynamics directly from real-world
videos using tracking and appearance priors from Dynamic
Gaussians [34], and generalized well to unseen actions. How-
ever, these learned models need extensive training samples
and are often limited to specific environments with limited
motion ranges. In contrast, our method requires only one
interaction trial while achieving a broader range of motions.

3. Preliminary: Spring-Mass Model

Spring-mass models are widely used for simulating de-
formable objects due to their simplicity and computational
efficiency. A deformable object is represented as a set of
spring-connected mass nodes, forming a graph structure
G = (V, &), where V is the set of mass points and £ is the
set of springs. Each mass node i has a position x; € R?
and velocity v; € R®, which evolve over time according
to Newtonian dynamics. Springs are constructed between
neighboring nodes based on a predefined topology, defining
the elastic structure of the object.

The force on node 7 is the result of the combined effects
of adjacent nodes connected by springs:

Z Fspnng +Fdashpol ngt, (1)
(.)€

where the spring force and dashpot damping force between
nodes i and j are given by Fi"™ = ki;(|lx; — x| —
l; )ﬁ and Fd‘%hpm 'y(vz —v;), respectively. Here,
k;; is the spring stlffness, l;; is the rest length, and + is
the dashpot damping coefficient. The external force F$*
accounts for factors such as gravity, collisions, and user in-
teractions. The spring force restores the system to its rest

shape, while the dashpot damping dissipates energy, pre-
venting oscillations. For collisions, we use impulse-based
collision handling when two mass points are very close, in-
cluding collisions between the object and the collider, as
well as between two object points.

The spring-mass model updates the system state with a dy-
namic model X1 = fo g, (X4, a;) by applying explicit Eu-
ler integration to both velocity and position. More formally,
foralli, viT!' =4 (vf + At 71:;—) ;o xiTh=xt ALV
where X represents the system state at time ¢. In this formu-
lation, v denotes all physical parameters of the spring-mass
model, including spring stiffness, collision parameters, and
damping. It also encompasses the parameters related to the
control interaction. Gy represents the “canonical” geometry
and topology for the spring-mass system ', and a; represents
the actions at time ¢.

4. Method

In this section, we formulate the construction of PhysTwin
as an optimization problem. We then present our two-stage
strategy, where the first stage addresses the physics-related
optimization, followed by the appearance-based optimiza-
tion in the second stage. Finally, we demonstrate the capabil-
ity of our framework to perform real-time simulation using
the constructed PhysTwin.

4.1. Problem Formulation

Given three RGBD videos of a deformable object under in-
teraction, our objective is to construct a PhysTwin model that
captures the geometry, appearance, and physical parameters

'In practice, we use the first-frame object state as the canonical state.
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of the object over time. At each time frame ¢, we denote
the RGBD observations from each video as Oy ; for the i-th
observation at time ¢, where O = (I, D) represents the RGB
image I and depth map D.

The goal of our optimization problem is to minimize the
discrepancy between the predicted observation (A)m- and the
actual observation Oy ;. The predicted observation is derived
by projecting and rendering the predicted state X, onto im-
ages through a function gy, where 6 encodes the appearance
of the objects represented by Gaussian splats. The 3D state
X, evolves over time according to the Spring-Mass model,
which captures the deformable object’s dynamics and up-
dates the state using the explicit Euler integration method.
The optimization problem is formulated as:

min C(Ot7i, Ot,i)
B @)

st. O = go(Xy, 1), X1 = fag(Xe,ar),

where «, G, 0 captures the physics, geometry, topology and
appearance parameters (Sec. 3); the cost function quantifies
the difference between the predicted observation (A)m- and the
actual observation Oy ;. This cost function is decomposed
into three components: C' = Cyeometry + Cmotion + Crenders
each capturing the discrepancy between the inferred system
states and the corresponding observations from 3D geometry,
3D motion tracking, and 2D color, respectively (we defer the
details of each cost component to Sec.4.2.1 and Sec.4.2.2).
The function gy is the observation model, describing the
projection from the predicted state to the image plane and
render the i-th image-space sensory observation, and f, g
models the dynamic evolution of the object’s state under the
Spring-Mass model, as detailed in Sec. 3.

4.2. PhysTwin Framework

Given the complexity of the overall optimization defined
in Eq. 2, our PhysTwin framework decomposes it into two
stages. The first stage focuses on optimizing the geometry
and physical parameters, while the second stage is dedicated
to optimizing the appearance-related parameters.

4.2.1. Physics and Geometry Optimization.

As outlined in our optimization formulation in Sec. 4.1, the
objective is to minimize the discrepancy between the pre-
dicted observation Ot,i and the actual observation Oy ;. First,
we convert the depth observations D, at each time frame ¢
into the observed partial 3D point cloud X. In the first stage,
we consider the following formulation for the optimization:

min Z (Cgeometry (Xt, Xt) + Cmotion(Xh Xt))
a,Go P 3)
st. Xit1 = fa.go (X, at)7

where the Cycomerry function quantifies the single-direction
Chamfer distance between the partial observed point cloud

X; and the inferred state Xt, and Clyotion quantifies the track-

ing error between the predicted point z! and its correspond-
ing observed tracking x!. The observed tracking is obtained
using the vision foundation model CoTracker3 [23], fol-
lowed by lifting the result to 3D via depth map unprojection.

There are three main challenges in the first-stage opti-
mization: 1) partial observations from sparse viewpoints,
2) joint discrete topology and physical parameter optimiza-
tion, and 3) discontinuities in the dynamic model, as well
as the long-time horizon and dense properties, making con-
tinuous optimization difficult. To address these challenges,
we handle the geometry and other parameters separately.
Specifically, we first leverage generative shape initializa-
tion to obtain the full geometry, then employ our two-stage
sparse-to-dense optimization to refine the other parameters.

Generative Shape Prior. Due to partial observations,
recovering full geometry is challenging. We use a shape
prior from the image-to-3D generative model, TRELLIS
[62], to generate the full mesh conditioned on a single RGB
observation of the masked object. To improve mesh quality,
we apply a super-resolution model [48] to upscale the fore-
ground, segmented using Grounded-SAM?2 [46]. While the
mesh corresponds reasonably with the observation, inconsis-
tencies in scale, pose, and deformation remain.

To address this, we design a registration module using
2D matching for scale estimation, rigid registration, and
non-rigid deformation. A coarse-to-fine strategy estimates
initial rotation via 2D correspondences matched using Su-
perGlue [50], followed by refinement with the Perspective-
n-Point [25] algorithm. We resolve scale and translation
ambiguities by optimizing the matched point distances in
the camera coordinate system. After applying these transfor-
mations, the objects align in pose, with some deformations
handled by as-rigid-as-possible registration [53]. Finally,
ray-casting alignment ensures that observed points match
the deformed mesh without occlusions.

These steps yield a shape prior aligned with the first-
frame observations, which serves as a crucial initialization
for the inverse physics and appearance optimization stages.

Sparse-to-Dense Optimization The Spring-Mass model
consists of both the topological structure (i.e., the connec-
tivity of the springs) and the physical parameters defined on
the springs. As mentioned in Sec. 3, we also include the
control parameters to connect the springs between control
points and object points throguh radius and max neighbours.
For topology optimization, we employ a heuristic approach
to connect the nearest neighbor points, parameterized by
a connection radius and a maximum number of neighbors,
thereby controlling the density of the springs. The same
parameterization for the springs between control points and
object points. To extract control points from video data, we
utilize Grounded-SAM?2 [46] to segment the hand mask and
CoTracker3 [23] to track hand movements. After lifting the
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points to 3D, we apply farthest-point sampling to obtain the
final set of control points.

All the aforementioned parameters constitute the param-
eter space we aim to optimize. The two main challenges
are: i) some parameters are not differentiable (e.g., radius
and maximum number of neighbors); ii) to represent a wide
range of objects, we model dense spring stiffness, leading to
a parameter space that includes thousands of springs.

To address these challenges, we introduce a hierarchical
sparse-to-dense optimization strategy. Initially, we employ
zero-order sampling-based optimization to optimize the pa-
rameters, which naturally overcome the differentiability is-
sue. However, zero-order optimization is inefficient when
the parameter space is too large. Therefore, in the first stage,
we assume homogeneous stiffness, allowing the topology
and other physical parameters to obtain a good initialization.
In the second stage, we further refine the parameters using
first-order gradient descent, leveraging our built differen-
tiable spring-mass simulator. This stage optimizes the dense
spring stiffness and collision parameters simultaneously.

Beyond the optimization strategy, we incorporate addi-
tional supervision by utilizing tracking priors from vision
foundation models. We lift the 2D tracking prediction into
3D to obtain pseudo-ground-truth tracking data for the 3D
points, which forms a crucial component of our cost function
as mentioned above.

By integrating our optimization strategy with a cost func-
tion that leverages additional tracking priors, our PhysTwin
framework can effectively and efficiently model the dynam-
ics of diverse interactable objects from videos.

4.2.2. Appearance Optimization

For the second-stage appearance optimization, to model ob-
ject appearance, we construct a set of static 3D Gaussian
kernels parameterized by 6, with each Gaussian defined by
a 3D center position p, a rotation matrix represented by a
quaternion ¢ € SO(3), a scaling matrix represented by a 3D
vector s, an opacity value «, and color coefficients c. We
optimize 6 here via

i CVren er ii aIi L iz = X7’> 4
m@lnz der(Lit, Lie) st L = go(Xe,0),  (4)

ti

where X, is the optimized system states at time ¢, ¢ is the
camera index, and I; ;, im are the ground truth image and
rendered image from camera view ¢ at time ¢, respectively.
Crender computes the £1 loss with a D-SSIM term between
the rendering and ground truth image. For simplicity, we
set t = 0 to optimize appearance only at the first frame. We
restrict the Gaussian shape to be isotropic to prevent spiky
artifacts during deformation.

To ensure realistic rendering under deformation, we need
to dynamically adjust each Gaussian at each timestep ¢ based
on the transition between states Xt and Xt+1- To achieve

this, we adopt a Gaussian updating algorithm using Linear
Blend Skinning (LBS) [20, 54, 69], which interpolates the
motions of 3D Gaussians using the motions of neighboring
mass nodes. Please refer to the supplementary for details.

4.3. Capabilities of PhysTwin

Our constructed PhysTwin supports real-time simulation of
deformable objects under various motions while maintaining
realistic appearance. This real-time, photorealistic simula-
tion enables interactive exploration of object dynamics.

By introducing control points and dynamically connect-
ing them to object points via springs, our system can simulate
diverse motion patterns and interactions. These capabilities
make PhysTwin a powerful representation for real-time inter-
active simulation and model-based robotic motion planning,
which are further described in Sec. 5.3.

5. Experiments

In this section, we evaluate the performance of our PhysT-
win framework across three distinct tasks involving different
types of objects. Our primary objective is to address the fol-
lowing three questions: 1) How accurately does our frame-
work reconstruct and re-simulate deformable objects and
predict its future states? 2) How well does the constructed
PhysTwin generalize to unseen interactions? 3) What is the
utility of PhysTwin in downstream tasks?

5.1. Experiment Settings

Dataset. We collect a dataset of RGBD videos capturing
human interactions with various deformable objects with
different physical properties, such as ropes, stuffed animals,
cloth, and delivery packages. Three RealSense-D455 RGBD
cameras are used to record the interactions. Each video is
1 to 10 sec long and covers different interactions, including
quick lifting, stretching, pushing, and squeezing with either
one or both hands. We collect 22 scenarios encompassing
various object types, interaction types, and hand configura-
tions. For each scenario, the RGBD videos are split into a
training set and a test set following a 7:3 ratio, where only
the training set is used to construct PhysTwin. We manu-
ally annotate 9 ground-truth tracking points for each video
to evaluate tracking performance with the semi-auto tool
introduced in [7].

Tasks. To assess the effectiveness of our PhysTwin frame-
work and the quality of our constructed PhysTwin, we for-
mulate three tasks: 1) Reconstruction & Resimulation; 2)
Future Prediction; 3) Generalization to Unseen Actions.

For the Reconstruction & Resimulation task, the objective
is to construct PhysTwin such that it can accurately recon-
struct and resimulate the motion of deformable objects given
the actions represented by the control point positions.

For the Future Prediction task, we aim to assess whether
PhysTwin can perform well on unseen future frames during

ICCV
#11564

351
352
353
354

355

356
357
358
359
360
361
362
363
364
365

366

367
368
369
370
371
372
373
374

375

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400



ICCV ICCV
#11564 #11564
ICCV 2025 Submission #11564. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Reconstruction & Resimulation t Future Prediction
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Figure 3. Qualitative Results on Reconstruction & Resimulation and Future Prediction. We visualize the rendering results of different
methods on two tasks. For the reconstruction & resimulation task, our method achieves a better match with the observations. For the future
prediction task, our method accurately predicts the future state of the objects. In contrast, the baselines fail in most cases: GS-Dynamics
tends to remain static, while Spring-Gauss frequently causes the physical model to crash.
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Figure 4. Qualitative Results on Generalization to Unseen Interactions. We visualize the simulation of a deformable object under unseen
interactions using our method and GS-Dynamics. The leftmost image illustrates the interaction on which the dynamics models are trained,
while the right images demonstrate their generalization ability to unseen interactions. Our PhysTwin significantly outperforms prior work.

Table 1. Quantitative Results on Reconstruction & Resimulation and Future Prediction. We compare the performance of our method
with two prior work, GS-Dynamics and Spring-Gaus, on two tasks: reconstruction & resimulation and future prediction. Our PhysTwin

framework consistently outperforms the baselines across all metrics.

Task Reconstruction & Resimulation Future Prediction

Method CDJ| TrackError] IoU% 71 PSNRT SSIM1 LPIPS| CDJ] TrackErrorl IoU% 1 PSNR?1 SSIMT LPIPS |
Spring-Gaus [72] 0.041 0.050 57.6  23.445 0.928 0.102  0.062 0.094 46.4  22.488 0.924 0.113
GS-Dynamics [69] 0.014 0.022 72.1  26.260 0.940 0.052  0.041 0.070 49.8  22.540 0.924 0.097
PhysTwin (Ours)  0.005 0.009 844  28.214 0.945 0.034 0.012 0.022 725  25.617 0.941 0.055

Table 2. Quantitative Results on Generalization to Unseen
Interactions. We compare our method with GS-Dynamics on
generalization to unseen interactions. Both methods are trained
on the same video with a specific interaction and tested on unseen
interactions. Our method achieves significantly better results.

Method CD| TrackError| IoU% 1 PSNR?T SSIMt LPIPS |
GS-Dynamics [69]  0.029 0.038 634 25053 0.934 0.067
PhysTwin (Ours)  0.013 0.018 7218  26.199 0.938 0.047

its construction. For the Generalization to Unseen Interac-
tions task, the goal is to assess whether PhysTwin can adapt
to different interactions. To evaluate this, we construct a gen-
eralization dataset consisting of interaction pairs performed
on the same object but with varying motions, including dif-
ferences in hand configuration and interaction type.
Baselines. To the best of our knowledge, there is cur-
rently no existing work that demonstrates good performance
across all three tasks. Therefore, we select two main research
directions as baselines and further augment them to match
the tasks in our setting (full details in the supplementary).
The first baseline we consider is a physics-based simu-
lation method for identifying the material properties of de-
formable objects, Spring-Gaus [72]. Their work has demon-

strated strong capabilities in reconstruction, resimulation,
and future prediction in its original setting. However, their
framework does not support human control, so we augment
their method with additional control support.

The second baseline is based on a learning-based simula-
tion approach, GS-Dynamics [69], specifically a GNN-based
neural dynamics model. This model directly learns the sys-
tem’s dynamics from two partial states. In their original set-
ting, video preprocessing is required using Dyn3DGS [34]
to obtain tracking information. In our case, we leverage our
3D-lifting tracking from CoTracker3 [23] as supervision for
the neural dynamics model.

Evaluation. To better understand whether our prediction
matches the observations, we evaluate predictions in both 3D
and 2D. For the 3D evaluation, we use the single-direction
Chamfer Distance (partial ground truth with our full-state
prediction) and the tracking error (based on our manually
annotated ground-truth tracking points). For the 2D eval-
uation, we assess image quality using PSNR, SSIM, and
LPIPS [70], and silhouette alignment using IoU. We perform
2D evaluation only at the center viewpoint due to optimal
visibility of objects, with metrics averaged across all frames
and scenarios. Specially, for the Spring-Gaus [72] baseline,
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Figure 5. Applications of our PhysTwin. Our constructed PhysTwin supports a variety of tasks, including real-time interactive simulation,
which can accept input from either a keyboard or a robot teleoperation setup. Meanwhile, PhysTwin also enables model-based robot planning
to accomplish tasks such as lifting a rope into some specific configuration.

its optimization process is unstable due to inaccurate physics
modeling. Therefore, we report the above metrics only for
its successful cases.

5.2. Results

We compare with two augmented baselines across three task
settings. Our quantitative analysis reveals that the PhysT-
win framework consistently outperforms the baselines across
various tasks. Full video results can be found on our supple-
mentary webpage.

Reconstruction & Resimulation. The quantitative re-
sults in Tab. 1 Reconstruction & Resimulation section
demonstrate the superior performance of our PhysTwin
method over baselines. Our approach significantly improves
all evaluated metrics, including Chamfer Distance, track-
ing error, and 2D IoU, confirming that our reconstruction
and resimulation align more closely with the original ob-
servations. This highlights the effectiveness of our model
in learning a more accurate dynamics model under sparse
observations. Additionally, rendering metrics show that
our method produces more realistic 2D images, benefiting
from the Gaussian blending strategy and enhanced dynamic
modeling. Fig. 3 further provides qualitative visualizations
across different objects, illustrating precise alignment with
original observations. Notably, our physics-based represen-
tation inherently improves point tracking. After physics-
constrained optimization, our tracking surpasses the original
CoTracker3 [23] predictions used for training, achieving bet-
ter alignment after global optimization (See supplement for
more details).

Future Prediction. Table 1, in the Future Prediction
section, demonstrates that our method achieves superior
performance in predicting unseen frames, excelling in both
dynamics alignment and rendering quality. Fig. 3 further
provides qualitative results, illustrating the accuracy of our
predictions on unseen frames.

Generalization to Unseen Interactions. We also eval-
uate the generalization performance to unseen interactions.
We directly use our constructed PhysTwin and leverage our
registration pipeline to align it with the first frame of the tar-
get case. Fig. 4 shows that our method closely matches the

ground truth observations in terms of dynamics. Quantita-
tive results further demonstrate the robustness of our method
across different actions. In contrast, the neural dynamics
model struggles to adapt to environmental changes and di-
verse interactions as effectively as our approach. Moreover,
for unseen interaction scenarios, our method achieves perfor-
mance comparable to the future prediction task, highlighting
the robustness and practicality of our constructed PhysTwin.

5.3. Application

The high-speed forward simulation of our Spring-Mass sim-
ulator implemented using Warp [37] enables a variety of
downstream applications. Fig. 5 illustrates three key appli-
cations of PhysTwin. 1) Interactive Simulation: Users can
interact with objects in real time using keyboard controls,
either with one hand or both hands. 2) Real-Time Future
Prediction: Our method enables real-time simulation of an
object’s future state while a human teleoperates the robotic
arms to interact with a real object. This can serve as a crucial
tool for predicting object dynamics during manipulation. 3)
Model-Based Robotic Planning: Due to the high fidelity of
our constructed PhysTwin, it can also be used purely as a
dynamic function. By integrating it with model-based plan-
ning techniques, we can generate motion plans for the robot
to complete different types of tasks effectively.

6. Conclusion

We introduced PhysTwin, a novel framework for construct-
ing physical digital twins from sparse videos, enabling effec-
tive reconstruction and resimulation of deformable objects.
Our approach excels in predicting future states and simulat-
ing object interactions that generalize to unseen scenarios.
We showed the superior performance of our method across
various object types, control configurations, and task set-
tings, significantly outperforming prior work. PhysTwin
enables various downstream tasks that demand high-speed
simulation and accurate future prediction. Moreover, our
approach provides valuable insights for robotic manipulation.
By bridging perception and physics-based simulation, Phys-
Twin serves as a crucial tool for guiding robot interactions,
making real-world deployment more efficient and reliable.
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