© ®©® N O g A W N =

- o

31
32

33
34

FlowState: Sampling-Rate Invariant Time Series
Foundation Model with Dynamic Forecasting Horizons

Anonymous Author(s)
Affiliation
Address

email

Abstract

Foundation models (FMs) have transformed natural language processing (NLP),
but their successes have not yet translated to the time series domain. Existing
time series foundation models (TSFMs) struggle with generalization across vary-
ing context and target lengths, lack adaptability to different sampling rates, and
are computationally inefficient. We introduce FlowState, a novel TSFM architec-
ture that addresses these challenges through two key innovations: a state space
model (SSM) based encoder and a functional basis decoder. This design enables
continuous-time modeling, adjustment to various sampling rates, and flexible fore-
casting horizons without retraining, paving the way for a “BERT moment” for
TSFM. We further propose a parallel training strategy that enhances robustness and
accelerates training. Despite being the smallest model, FlowState achieves state-
of-the-art results on the GIFT and the Chronos benchmarks, while demonstrating
superior adaptability to unseen sampling rates.

1 Introduction

Foundation models (FMs) have revolutionized natural language processing (NLP) through pretraining
on large-scale text corpora, enabling strong zero-shot generalization Bommasani et al.|[2021]], [Hadi
et al.| [2023]. This “BERT moment” initiated a paradigm shift from task-specific models towards
universal models, that can generalize in a zero-shot manner to numerous tasks. However, their
successes have not yet translated to the time series domain.

Unlike NLP, time series data is often multivariate, domain-specific, and sampled at varying rates.
These differences limit the applicability of FMs from NLP, which perform poorly on time series
tasks [Zeng et al.|[2022]. Recent advances in time series modeling have favored architectures like
MLP mixers |Chen et al.| [2023]], Ekambaram et al.|[2023]] and state space models (SSMs) Gu et al.
[2021]], which better capture temporal dynamics. Based on these architectures, time series foundation
models (TSFMs) have emerged Auer et al.|[2025], Ansari et al.| [2024], [Ekambaram et al.[[2024]], | Das
et al.[[2023]],|Liang et al.|[2024]], but they still struggle with generalization across varying context and
target lengths, and lack adaptability to different sampling rates.

We propose FlowState, a novel TSFM that addresses these limitations through:

* SSM-based encoder: Enables efficient processing of variable-length contexts and dynamic
adjustment to input sampling rates.

* Functional Basis Decoder (FBD): Produces continuous forecasts that can be sampled at
arbitrary resolutions, supporting variable target lengths.

¢ Parallel forecasting pretraining scheme: Speeds up training and improves generalization
to varying context lengths.

Under review at the NeurIPS 2025 Workshop on Recent Advances in Time Series Foundation Models (BERT?S).
Do not distribute.

35

36
37
38
39
40
41
42

43
44
45
46
47
48
49

50
51
52
53

54

55
56
57

58
59
60
61

62
63
64

SA

= I Input 9., 4

1
N 1
r\f/’\ Causal Embedding SSM Encoder |-2LsFBD —» OVETSE Causal I/‘\J\ﬂ“\:

— 5 Normalization Normalization — »
1 L T 1 L T
Feature Space [Trainable parameters Coefficient Space
b SSM Encoder c Functional Basis Decoder (FBD)

5 o
4 o
— E’ — —| 2 |—
. - o
Skip connection . ®
2
oy = —» C2 X —>
S5 block 1 MLP o D
1 Aldl Rl -1 I 1 % : Discretize
zl, | |si =A's;_; + Blz;~ o} =SELU (h}) - n ® using S
Moo e w1 [nt o PO .
Input |h! = C's. + D'z, o (W'} +b') Cn X

Figure 1: Architecture overview. a The input gets normalized, embedded and processed by the
SSM encoder. The encoder transforms the input into the coefficient space and provides its outputs
to the FBD, to produce the forecast. b The SSM encoder consists of N S5 layers, each composed
of an S5 block extended with an MLP layer, and a skip to allow inputs to propagate directly to later
layers. ¢ The FBD interprets the outputs o} of the SSM encoder as coefficients of a functional basis
and creates a continuous output, which can be sampled at regular intervals to produce the forecast.

2 Time Series Foundation Models

Traditionally, data for time series forecasting has been processed with classic machine learning
models, such as the ARIMA model |Box et al.|[2015], which to this day still presents a strong baseline.
In such a task, the model receives an input time series X € RExe = {xX1,..,Xxr} = X1.1,, where
x; € R¢ is the c-channel multivariate time series at timestep ¢ and L is the context length. Given
this input data, the task of the model is to produce a forecast for the proceeding 7" timesteps, i.e., to
produce Y € RTxc = {§1,--,¥7} = ¥1.7 = XL41.L+T, Where T is the forecasting length. The
quality of the forecast can be measured by comparing it against the ground truth Y € RT>¢,

The time series domain has also experienced a shift towards FMs, which are typically trained on a
large pretrain corpus of univariate (¢ = 1) time series, extract essential foundational knowledge from
it and generalize this knowledge to various downstream tasks in a zero-shot manner. These TSFMs
typically require deep learning architectures and transformers Nie et al.| [2023]], [Liu et al.| [2024]],
MLP-mixer (Chen et al.|[2023]], Ekambaram et al.|[2023] or recently also SSM |Wang et al.| [2025]],
Gu et al.| [2022], [Smith et al.| [2023]], |Gu and Dao| [2023]], [Dao and Gu| [2024] and other stateful
architectures such as TiRex |Auer et al.|[2025]], representing the current state-of-the-art, have emerged.

In particular, TiRex introduced a series of novel concepts, such as a Multi-Patch-Inference (MPI)
process and contiguous patch masking (CPM) for training, which significantly improved performance.
The authors also showed that the ability to keep track of states and dynamics of the underlying time
series is critical, making stateful models especially well-suited for time series tasks.

3 FlowState

Our proposed model, FlowState, is an encoder-decoder architecture, employing an S5-based encoder
and a functional basis decoder. Figure[Th shows an overview of its architecture. The input time series
with length L is first normalized in a causal manner.

This causality is critical, to enable a novel parallel prediction technique we employ during pretraining.
To make optimal use of all intermediate results during pretraining, we predict a unique target from each
hidden state of the SSM Encoder in parallel. This also speeds up training, and increases robustness to
varying context lengths. This parallel prediction process is further detailed in Appendix[A.5]

After normalization, the inputs are embedded linearly and then provided to the SSM encoder directly
without any patching, see Section [3.1] for more details. Importantly, while the time series, before
being processed by the SSM, is considered to be in the feature space, where each element of it

65
66
67
68
69
70
71
72

73

74
75
76
77
78

79
80
81

82
83
84
85
86
87

88

89
90
91
92
93
94
95
%
97
98
99

100
101

102
103
104
105
106
107
108
109
110

represents features of the time series, the SSM encodes the time series into a coefficient space, where
it operates on coefficients of continuous basis functions. The final output of the SSM encoder forms
the basis for the FBD, see Section@]for details, whose outputs are then inverse normalized, using
the inverse method of the input normalization, and form the forecasts of our model. Importantly, the
FBD maps from the coefficient space back to the feature space to provide the forecasts. Furthermore,
the SSM encoder, as well as the FBD are controlled by an additional scaling factor sa, that allows to
adjust these components to the sampling rate of the input data. Additional model details can be found
in the Appendix [A]

3.1 SSM Encoder

FlowState utilizes a stack of S5 layers to form the SSM encoder, see Figure . Al ¢ R,
B! ¢ R*" C! € R"*™ and D! € R™*™ are the state transition, the input, the output and the skip
connections matrices of layer /, m and n are the hidden state size and the in-/output size of the SSM
block and s! and h! are the state and the output of the SSM block at timestep ¢. Note that the input is
denoted as x¥. As reported in|[Smith et al.| [2023], the matrices of the S5 block I can be computed as

Al — ediag(Al.A)’Bl — AlT? (Al _ 1) B/, C'=C. D! =D/,

where A! € R?, B! € R1*" C! ¢ R"*™, D! € R'*™ and A € R™ are the actual trainable param-
eters of the continuous S5 and initialized using the HiPPO method Gu et al.|[2023]]. Subsequently,
the output of each SSM block is further processed by an MLP layer, see Figure|Ip.

The S5 architecture can naturally be adjusted to a change of the input sampling rate|[Smith et al.[[2023]]
without the need for retraining. By adapting the quantization parameter A, the SSM can produce
similar representations, irrespective of the sampling rate. While this effect can be beneficial for
classification or regression tasks|Smith et al.[[2023]], it is insufficient for time series forecasting tasks.
In particular, current decoders cannot distinguish those similar representations, hence they cannot
adjust the forecasting sampling rate properly. To remedy this issue, we propose a novel decoder.

3.2 Functional Basis Decoder

For the functional basis decoder, we take inspiration from how SSMs are initialized from an input
sequence. The HiPPO approach ensures that their hidden state expresses coefficients of a polynomial
basis, which optimally approximates the input sequence. In particular, |Gu et al.|[2020] demonstrated
a possibility to use the hidden state of their SSM at timestep ¢ to reconstruct the input sequence
until ¢ with a functional basis. We adopt this approach for our decoder, but instead of extracting
coefficients that can be used to reconstruct the input, we use a continuous functional basis to construct
the forecast from the final outputs of the SSM encoder oY, see Figure . In particular, our proposed
FBD interprets the final outputs of the SSM encoder, o]LV , as coefficients of a functional basis, which
can in turn be used to produce a continuous output function. To obtain the forecast with a desired
quantization, this continuous output is then sampled at an equally spaced interval, with the spacing
adjusted with sa. The FBD can be formalized as follows:

n
C; = O[A,[,iv g = Z Cipi(aa b)7 Q = Sample(@v 5A)7 (1)
=1

where p; (-, -) is the i-th basis function evaluated at an interval [a, b], g is the continuous forecast and
sample(-, sa) samples the argument equally.

Our functional basis decoder offers several key advantages. Firstly, it produces a continuous forecast,
which can then be sampled with any desired sampling rate. Secondly, it draws inspiration from a
well-established procedure to map from coefficient to feature space, and thus can leverage various
functional basis functions, depending on the task. For our main experiments, we use the Legendre
polynomials to be consistent with the SSM input encoding used by the HiPPO initialization. Another
viable option is to use the Fourier basis functions to better match periodic signals. Finally, and most
importantly, it enables the decoder to produce forecasts at the correct sampling rate, based on sa.
Note that although we introduce the FBD as part of FlowState, it can be combined with other encoder
architectures as well.

111

112
113
114

115
116
117
118
119
120
121
122
123
124

125
126
127
128

129
130
131
132

133

134
135
136
137
138

140
141
142
143
144

Model Param.[M] MASE CRPS Model Param.[M] MASE WQL
FlowState-9.1M 9.1 0.726 0.502 FlowState(T)-9.1M 9.1 0.755 0.580
FlowState-2.6M 2.6 0.732 0.505 FlowState(T)-2.6M 2.6 0.777 0.614
Toto-Open-Base-1.0 151 0.750 0.517 TiRex 35 0.778 0.599
Sundial-Base 128 0.750 0.559 TimesFM-2.0 500 0.789 0.700
TabPFN-TS 11 0.771 0.544 Moirai-1 311 0.791 0.631
YingLong 300 0.798 0.548 Chronos-bolt-b 205 0.795 0.624
YingLong 110 0.809 0.557 Chronos-b 200 0.818 0.643

Table 1: GIFT results for zero-shot models, Table 2: Chronos results, sorted by ascending

sorted by ascending MASE. MASE.

4 Results

We evaluate FlowState’s forecasting capabilities on two commonly used benchmarks: GIFT-
Evaﬂ Aksu et al.| [2024], referred to as GIFT, and the Chronos benchmark (Hfl Ansari et al.
[2024], referred to as Chronos.

As discussed before, a critical component of TSFMs is their zero-shot capability. Therefore, we
carefully ensured that FlowState does not have any testdata leakage and performs zero-shot forecasting
on the two benchmarks. Therefore, we pretrain FlowState as a TSFM in two sizes, 9.1M and 2.6M
parameters. In particular, we train FlowState on the GIFT-Eval-Pretrain dataset, augmented with
some data from Chronos|Ansari et al.|[2024] that do not have any overlap with the GIFT benchmark.
Moreover, we train another variant, FlowState(T), with the exact same data as TiRex in order to
avoid testdata leakage with the Chronos benchmark. More details about pretraining can be found in
Appendix In the following we describe the results for the two benchmarks as of 289" August
2025 and additional results, including ablations and experiments evaluating performance on unseen
sampling rates, can be found in Appendix B}

GIFT benchmark. Table [Tl shows the normalized MASE and CRPS metrics for the GIFT-Eval
benchmark, with ascending MASE score. FlowState-9.1M and FlowState-2.6M surpass all previously
reported baselines. Notably, the FlowState-2.6M variant is by far the smallest model, yet outperforms
all other baselines.

Chronos benchmark. Table 2] shows the normalized MASE and WQL metrics for the Chronos
benchmark, with ascending MASE score. Similarly to the GIFT results, the FlowState(T) variants
outperform the current state-of-the-art models. Importantly, although FlowState(T) has been trained
on the same data as TiRex, it performs significantly better.

5 Conclusion

We introduce FlowState, a time series foundation model, that can dynamically adjust to the unique
characteristics of the input time series, such as its specific sampling rate. To do so, we developed a
functional basis decoder (FBD), a novel component that leverages a set of basis functions to create
continuous forecasts. FlowState’s combination of an SSM-based encoder and the FBD enables
the seamless adjustment and the production of forecasts of varying lengths. To further enhance
FlowState’s efficiency and robustness, we propose a training scheme that through multiple parallel
predictions exposes the model to diverse context lengths during training. FlowState establishes the
new state-of-the-art on the GIFT and the Chronos benchmarks, outperforming strong baselines that
are up to 192 larger. Finally, FlowState demonstrates superior robustness and adaptability to unseen
sampling rates and our ablation studies confirm the individual and collective benefits of our proposed
components. Thus, FlowState demonstrates progress toward a “BERT moment* for TSFMs.

"https://huggingface.co/spaces/Salesforce/GIFT-Eval
https://huggingface.co/spaces/autogluon/fev-leaderboard

https://huggingface.co/spaces/Salesforce/GIFT-Eval
https://huggingface.co/spaces/autogluon/fev-leaderboard

145

146
147
148

149
150
151

152
153
154

155
156
157
158
159

161
162
163
164
165
166
167
168
169
170
171
172
173
174

175
176

177
178
179

180
181
182
183
184
185

186
187

188
189
190
191
192
193

194
195
196
197

References

Taha Aksu, Gerald Woo, Juncheng Liu, Xu Liu, Chenghao Liu, Silvio Savarese, Caiming Xiong, and
Doyen Sahoo. Gift-eval: A benchmark for general time series forecasting model evaluation. arxiv
preprint arxiv:2410.10393, 2024.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
Chronos: Learning the language of time series. arXiv preprint arXiv:2403.07815, 2024.

Andreas Auer, Patrick Podest, Daniel Klotz, Sebastian Bock, Giinter Klambauer, and Sepp Hochreiter.
Tirex: Zero-shot forecasting across long and short horizons. In 1st ICML Workshop on Foundation
Models for Structured Data, 2025.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri Chatterji, Annie Chen, Kathleen Creel,
Jared Quincy Davis, Dora Demszky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano
Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori Hashimoto, Peter
Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil
Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar
Khattab, Pang Wei Koh, Mark Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal
Ladhak, Mina Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu
Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele Munyikwa,
Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman, Allen Nie, Juan Carlos Niebles,
Hamed Nilforoshan, Julian Nyarko, Giray Ogut, Laurel Orr, Isabel Papadimitriou, Joon Sung Park,
Chris Piech, Eva Portelance, Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda
Rong, Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori Sagawa,
Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Rohan Taori, Armin W.
Thomas, Florian Tramer, Rose E. Wang, William Wang, Bohan Wu, Jiajun Wu, Yuhuai Wu,
Sang Michael Xie, Michihiro Yasunaga, Jiaxuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang,
Xikun Zhang, Yuhui Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. On the Opportunities
and Risks of Foundation Models. arXiv, August 2021. doi: 10.48550/arXiv.2108.07258.

George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. Time series analysis:
forecasting and control. John Wiley & Sons, 2015.

Si-An Chen, Chun-Liang Li, Sercan O Arik, Nathanael Christian Yoder, and Tomas Pfister. TSMixer:
An all-MLP architecture for time series forecast-ing. Transactions on Machine Learning Research,
2023. ISSN 2835-8856. URL https://openreview.net/forum?id=wbpxTuXgmO.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized models and efficient algorithms
through structured state space duality. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller,
Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, Proceedings of
the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pages 10041-10071. PMLR, 21-27 Jul 2024. URL https://proceedings.
mlr.press/v235/dao24a.html,

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting. arXiv, October 2023. doi: 10.48550/arXiv.2310.10688.

Vijay Ekambaram, Arindam Jati, Nam Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam.
Tsmixer: Lightweight mlp-mixer model for multivariate time series forecasting. In Proceed-
ings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD
’23, page 459469, New York, NY, USA, 2023. Association for Computing Machinery. ISBN
9798400701030. doi: 10.1145/3580305.3599533. URL https://doi.org/10.1145/3580305,
3599633.

Vijay Ekambaram, Arindam Jati, Pankaj Dayama, Sumanta Mukherjee, Nam H. Nguyen, Wesley M.
Gifford, Chandra Reddy, and Jayant Kalagnanam. Tiny Time Mixers (TTMs): Fast Pre-trained
Models for Enhanced Zero/Few-Shot Forecasting of Multivariate Time Series. arXiv, January
2024. doi: 10.48550/arXiv.2401.03955.

https://openreview.net/forum?id=wbpxTuXgm0
https://proceedings.mlr.press/v235/dao24a.html
https://proceedings.mlr.press/v235/dao24a.html
https://proceedings.mlr.press/v235/dao24a.html
https://doi.org/10.1145/3580305.3599533
https://doi.org/10.1145/3580305.3599533
https://doi.org/10.1145/3580305.3599533

198
199

201
202

203
204
205
206
207

208
209
210

211
212
213

214
215
216

217
218
219
220

221
222
223
224
225
226

227

228
229

231
232

234
235

237

238

240

241
242

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474-1487, 2020.

Albert Gu, Isys Johnson, Karan Goel, Khaled Kamal Saab, Tri Dao, Atri Rudra, and Christopher
Re. Combining recurrent, convolutional, and continuous-time models with linear state space
layers. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in
Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=
yWd42CWN3c.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022. URL https:
//openreview.net/forum?id=uYLFoz1v1AC.

Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Re. How to train your HIPPO:
State space models with generalized orthogonal basis projections. In International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=k1K170Q3KB.

Muhammad Usman Hadi, Rizwan Qureshi, Abbas Shah, Muhammad Irfan, Anas Zafar, Muham-
mad Bilal Shaikh, Naveed Akhtar, Jia Wu, Seyedali Mirjalili, et al. A survey on large language
models: Applications, challenges, limitations, and practical usage. Authorea Preprints, 2023.

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Re-
versible instance normalization for accurate time-series forecasting against distribution shift. In
International Conference on Learning Representations, 2022. URL https://openreview.net/
forum?id=cGDAkQo1COp.

Yuxuan Liang, Haomin Wen, Yuqi Nie, Yushan Jiang, Ming Jin, Dongjin Song, Shirui Pan, and
Qingsong Wen. Foundation models for time series analysis: A tutorial and survey. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’24,
page 6555-6565, New York, NY, USA, 2024. Association for Computing Machinery. ISBN
9798400704901. doi: 10.1145/3637528.3671451. URL https://doi.org/10.1145/3637528,
3671451,

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.
itransformer: Inverted transformers are effective for time series forecasting. In The Tivelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum7id=JePfAI8fahl

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
words: Long-term forecasting with transformers. In The Eleventh International Conference on
Learning Representations, 2023. URL https://openreview.net/forum?id=JbdcOvTOcol.

Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for
sequence modeling. In The Eleventh International Conference on Learning Representations, 2023.
URL https://openreview.net/forum?id=Ai8Hw3AXqgks.

Zihan Wang, Fanheng Kong, Shi Feng, Ming Wang, Xiaocui Yang, Han Zhao, Daling Wang, and
Yifei Zhang. Is mamba effective for time series forecasting? Neurocomputing, 619:129178,
2025. ISSN 0925-2312. doi: https://doi.org/10.1016/j.neucom.2024.129178. URL https:
//www.sciencedirect.com/science/article/pii/S0925231224019490.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are Transformers Effective for Time Series
Forecasting? arXiv, May 2022. doi: 10.48550/arXiv.2205.13504.

https://openreview.net/forum?id=yWd42CWN3c
https://openreview.net/forum?id=yWd42CWN3c
https://openreview.net/forum?id=yWd42CWN3c
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/forum?id=klK17OQ3KB
https://openreview.net/forum?id=cGDAkQo1C0p
https://openreview.net/forum?id=cGDAkQo1C0p
https://openreview.net/forum?id=cGDAkQo1C0p
https://doi.org/10.1145/3637528.3671451
https://doi.org/10.1145/3637528.3671451
https://doi.org/10.1145/3637528.3671451
https://openreview.net/forum?id=JePfAI8fah
https://openreview.net/forum?id=JePfAI8fah
https://openreview.net/forum?id=JePfAI8fah
https://openreview.net/forum?id=Jbdc0vTOcol
https://openreview.net/forum?id=Ai8Hw3AXqks
https://www.sciencedirect.com/science/article/pii/S0925231224019490
https://www.sciencedirect.com/science/article/pii/S0925231224019490
https://www.sciencedirect.com/science/article/pii/S0925231224019490

243

244

245

246
247
248
249
250
251
252

253
254
255

256
257

258

259
260
261

262
263
264
265
266
267

268

269
270
271
272
273
274
275

276
277

278

279
280
281
282

284
285

A Additional details

A.1 Pretraining

We pretrain two distinct variants of FlowState:

» FlowState: The pretraining data for this variant is carefully designed to have no overlap
with the GIFT-Eval benchmark. It consists of the official GIFT-Eval pretraining dataset,
as well as of some training datasets from Chronos, that are not overlapping with the GIFT-
Eval benchmark. In addition, we added synthetic time series data generated via Gaussian
Processes, following the methodology of KernelSynth |Ansari et al.| [2024]]. Moreover,
we enhance the diversity of the entire pretraining dataset with augmentation techniques
introduced in |Auer et al.|[2025]].

» FlowState(T): The pretraining data for this variant is carefully designed to have no overlap
with the Chronos benchmark. We use the same pretraining corpus as TiRex, except for the
synthetic data, which we generate in the same way as for FlowState.

To enable probabilistic forecasting, we optimize the model using the quantile loss. For all models,
except one ablation, CPM is used during pretraining, which allows for MPI.

A.2 Metrics

Both benchmarks use a probabilistic evaluation metric based on the Weighted Quantile Loss (WQL).
While GIFT-Eval refers to this metric as CRPS, the underlying formulation is equivalent, as WQL
can be interpreted as a quantile-based approximation of the CRPS.

For each time series, we generate probabilistic forecasts and compute two normalized metrics: Mean
Absolute Scaled Error (MASE) measures point forecast accuracy, while CRPS and WQL measure
the probabilistic forecast accuracy. Both metrics are normalized per task using a Seasonal Naive
baseline. Final scores are reported as the geometric mean across tasks. For consistency with the
leaderboards, we refer to the normalized probabilistic metric as CRPS in GIFT and WQL in Chronos.
The normalized and averaged MASE are simply referred to as MASE.

A.3 Temporal Scaling

FlowState’s continuous-time formulation introduces two key considerations during evaluation. First,
we determine a suitable scale factor for each dataset. Since datasets vary in both sampling rates
and temporal dynamics, we base this factor on seasonality rather than raw sampling frequency.
For example, hourly temperature data typically exhibits a 24-step daily cycle, while weekly peak
temperatures follow a seasonal pattern of 365/7 ~ 52 steps. Even though a week contains 168 hours,
a more appropriate scale factor between these two examples is determined by the ratio of their relative
seasonality. We define a base seasonality of 24 and compute the scale factor as:

Base Seasonality
SA = ————————
4 Seasonality

This ensures that all datasets are mapped to a common temporal scale in the model’s continuous
space. A scale factor of 1 corresponds to seasonality 24.

A.4 Context and Forecasting Length

FlowState’s architecture enables flexible adaptation of both context and forecasting lengths across
datasets with diverse temporal resolutions. Unlike discrete models, where these lengths are fixed,
FlowState operates in a scale-adjusted latent space, representing continuous signals. To maintain
consistency with pretraining, we define effective lengths which the model actually uses, relative to
the scale factor sa, corresponding to the pretraining context length of 2048 steps, and to the base
forecasting length 7" = 24 (one season). Depending on sa these effective lengths will change. In
particular, the effective context length L. and forecasting length Ti¢ are computed as:

286
287
288

290

291
292
293

294

304

Input sequence 9., Target Y1.7

1 mln L L} T
I;gglccolooo:ooc
v v v v v

I SSM encoder |

Encoder output ‘ ‘ é ‘ ‘ ‘ é é é

Parallel predictions FBD FBD FBD

starting at L i, - \ -
1:3 6:9 6:9

@)
(©)

o)(®)
o)(®)
o)(®)

0O 0l0 0 O
© O © 0

Target 1 x4 Target 2 mgjg Target3 Y1.7

Input sequence may also serve as target

Figure 2: Schematic illustration of our parallel prediction training scheme. The input sequence
xY.; is encoded in parallel using the SSM encoder. Starting from Lyy,, multiple forecasts are
produced in parallel, where each forecast has its own target and is based on an increasing context
length. In particular, a prediction is made for every timestep after L,, but for clarity only three are

shown. For example, for the first forecast (green color) only the first three timesteps x(1)7273 are used

as the context, while for the last prediction (purple color) the full context x9, ., is used. Note that for
some of the forecasts the input sequence itself serves as the target and thus a causal processing of the
input is essential to avoid information leakage.

Letr = i, Tegr = L
SA SA
This formulation is particularly beneficial for datasets with large seasonality, which typically require
longer historical context and benefit from extended forecasting horizons. As seasonality increases,
sa decreases, resulting in larger Leg and Tigr. This allows FlowState to forecast far into the future for
such datasets—precisely where long-range predictions are often most valuable.

A.5 Parallel prediction details

To enable efficient training of FlowState and to enhance its robustness to varying context lengths, we
introduce an advanced foundation training scheme. In particular, it utilizes multiple parallel forecasts
with increasingly longer contexts, ranging from L, to L, see Figure@

These various forecasts can be formulated as
Y4147 = FBD (SSM (m(l):t))) (2)

where t € [Lyin, L]. Importantly, because FlowState is an SSM-based architecture, the inputs can
be processed in parallel and in turn also the multiple forecasts can be produced in parallel. Thus,
this approach allows to produce (L — Ly,) forecasts from any given context-target pair, while other
models traditionally only produce a single forecast per context-target pair. Depending on the choice
of L and Ly,, this amount can be very large, for example for L = 2048 and L;, = 20, as was used
for our main results, FlowState produces 2028 forecasts per sample in parallel.

The benefits of this training scheme can either materialize in significantly reduced training times,
because one can iterate through the dataset faster using a larger stride to the next context-target pair,
or in an increased number of training examples, when the original stride to the next context-target pair
is kept constant. Another advantage of this training procedure is that the model inherently learns to
produce forecasts from varying context lengths. This naturally increases the models’ generalization
capabilities and robustness. Note that our novel training scheme is not limited to the FlowState
architecture but can be applied to any causal architecture that can produce multiple forecasts in
parallel. A non-causal model is not compatible with this parallel prediction approach, because it could
use information from future inputs. This is further detailed for the example of global normalization
in Section[A7]

311

312

313
314
315
316
317

318
319

320

321
322
323
324
325

326
327

328

329
330

331
332
333
334

335

336
337

338

339

341
342
343
344
345
346

347

348
349

Note, parallel forecasting can also speed-up inference if combined with MPI.

A.6 Adjusting A for unseen sampling rates

As described in the main text, the dynamics of the SSM encoder and the FBD can be adjusted to the
input sampling rate by modifying A. Typically, A is only adjusted, as a trainable parameter, during
training, while during inference, the parameter remains fixed. In order to enable adjustments to the
sampling rates during inference, we modify the parameter A with an additional scaling parameter
SA, in particular:

AZf(A,SA):SA-A. (3)

The adaptation of the parameter A by multiplication with the correct scale factor sa is crucial,
because it is used to discretize the continuous SSM for a given sampling rate.

A.7 Causal normalization

For parallel forecasting to work properly an architecture has to be strictly causal. Otherwise, the
model may learn to exploit this information leakage during training. In particular, the prediction
Y¢1 1.0 should only use the data from x%,. The SSM and FBD of FlowState naturally satisfy
this requirement, but the commonly applied normalization and inverse normalization technique,
RevIN Kim et al.| [2022], would violate it.

RevIN normalizes every context-target pair, based on the mean and the standard deviation of the
entire context 20 ; , see Eq. 2 of [Kim et al[[2022]]. However, this would result in information from
x, to influence 9, ., ;. For example, if the average of the normalized sequence ji; = z9., is
negative, the model will learn that positive values are to be expected for igt, because, per definition,
RevIN produces a zero mean for the whole time series.

To address this problem, we use a causal form of RevIN. Specifically, instead of using the average
and standard deviation of the entire context to normalize, we leverage a running mean and a running
standard deviation. Each element of the input at time ¢ is then normalized using these quantities at
time ¢. This can be formulated as

cumsum (z9.,)

pirg = ———)
cumsum ((Nr,t — w(l):t)2>
ol = (5
’ t
0
~ Ti.p — Wr,
&), = T Mt ©6)
Unt

where cumsum(-) is the cumulative sum function.

Similarly, each forecast of the FBD is de-normalized by the statistics of the last timestep of the
context. For example, 4., 7 is de-normalized with i, ; and 0. 4.

A.8 Autoregressive Forecasting and Multi-Patch-Inference

Typically TSFMs use autoregressive techniques to extend their forecasting horizon. Namely, they
produce several shorter forecasts of size p < 1" sequentially, always appending their forecast to
the original context. |Auer et al.|[2025] have improved this autoregressive technique with MPI. In
particular, they adopt contiguous patch masking (CPM) during training, which accustoms the model
to make a prediction after a certain number of unknown timesteps. This setup enables MPI to forecast
future patches by treating intermediate ones as missing. The main advantage of MPI / CPM over
autoregressive forecasting is the increased model’s robustness to noise and uncertain data, as well as
the ability to propagate uncertainty over multiple forecasting patches.

A.9 Hyperparameters

Model hyperparameters can be found in Table[3] Note that no extensive hyperparameter search has
been performed yet.

350

351

352
353
354
355
356

357
358
359
360
361

363
364
365

366

368
369

371
372

Component FlowState-2.6M FlowState-9.1M

Layers 6 6
Hidden Size 256 512
State Dimension 256 512
Basis Functions 256 256

Table 3: Model hyperparameters for FlowState variants.

— FlowState-9.1M = Chronos-bolt-base
TiRex — Toto
8.5 1
7.8
7.1
m
<
Z 64 -
5.7 L
5.0-
I T T T T T T T T T T T T
5 15 25 35 45 55 65

Sampling Frequency [min]

Figure 3: MAE performance across various sampling frequencies on the Loop Seattle dataset.

B Additional results

B.1 Robustness to Unseen Sampling Rates

To assess the robustness of FlowState to varying temporal resolutions, we conduct a controlled
experiment on the Loop Seattle dataset. Originally sampled at 5-minute intervals, we subsample the
data to create versions with sampling intervals ranging from 5 to 65 minutes in 5-minute increments.
We then evaluate FlowState-9.1M, TiRex, Chronos-bolt-b, and Toto on each version using the standard
GIFT-Eval evaluation framework and a target length of 480 timesteps.

Figure 3] shows the MAE of all models for each sampling frequency. FlowState-9.1M consistently
outperforms all baselines across most frequencies, with a particularly large margin at uncommon
sampling intervals. The only exceptions are at 15T, 30T, and 60T—common frequencies likely seen
during pretraining—where baseline models briefly close the gap. These results highlight FlowState’s
ability to generalize to unseen sampling rates without requiring exposure to every possible frequency
during training.

Loop Seattle was selected because none of the baselines use it during pretraining, and due to its
small original sampling rate, and long time series, making it well-suited for controlled subsampling
experiments.

B.2 Ablation Study

To understand the contributions of individual components in FlowState, we conduct a series of
ablations by retraining variations of the FlowState-2.6M model and evaluating on GIFT. The results
are summarized in Table[d] and organized into the following categories:

Core Architectural Components. This group isolates the impact of FlowState’s key design choices.
Removing the time-scale adjustment mechanism leads to a significant drop in performance, confirming
its importance for generalization across sampling rates. Disabling parallel predictions, by always only

10

373
374

375
376
377
378

379
380
381
382
383

Model Variant MASE CRPS

FlowState-2.6M (baseline) 0.732 0.505
Core Architectural Components
w/o time-scale adjustment 0.796 0.548
w/o parallel predictions 0.761 0.531
Decoder Variants
Fourier basis 0.737 0.511
Half-Legendre basis 0.737 0.511
CPM

Autoregressive instead of MPI 0.749 0.541
No CPM training, longer target 0.739 0.526

Table 4: Ablation results for FlowState-2.6M evaluated on GIFT.

predicting from the last context point, also significantly degrades performance, though to a lesser
extent.

Decoder Variants. We evaluate two alternative sets of basis functions to the default Legendre basis:
a Fourier basis, and a Legendre basis defined over the interval [0, 1] instead of [—1,1] (referred
to as “Half-Legendre”). Both sets of basis functions have performed slightly worse compared to
FlowState-2.6M.

CPM Mechanism. We assess the impact of the CPM / MPI mechanism by evaluating FlowState-
2.6M, which was trained with CPM, autoregressively, instead of using MPI. This leads to a substantial
performance drop. However, when we retrain the model without CPM, and using a longer base target
length of 60 instead of 24, performance recovers. Both MASE and CRPS remain worse, but CRPS to
a larger degree, highlighting the importance of MPI for accuracy of long probabilistic predictions.

11

	Introduction
	Time Series Foundation Models
	FlowState
	SSM Encoder
	Functional Basis Decoder

	Results
	Conclusion
	Additional details
	Pretraining
	Metrics
	Temporal Scaling
	Context and Forecasting Length
	Parallel prediction details
	Adjusting for unseen sampling rates
	Causal normalization
	Autoregressive Forecasting and Multi-Patch-Inference
	Hyperparameters

	Additional results
	Robustness to Unseen Sampling Rates
	Ablation Study

