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Abstract

Foundation models (FMs) have transformed natural language processing (NLP),1

but their successes have not yet translated to the time series domain. Existing2

time series foundation models (TSFMs) struggle with generalization across vary-3

ing context and target lengths, lack adaptability to different sampling rates, and4

are computationally inefficient. We introduce FlowState, a novel TSFM architec-5

ture that addresses these challenges through two key innovations: a state space6

model (SSM) based encoder and a functional basis decoder. This design enables7

continuous-time modeling, adjustment to various sampling rates, and flexible fore-8

casting horizons without retraining, paving the way for a “BERT moment” for9

TSFM. We further propose a parallel training strategy that enhances robustness and10

accelerates training. Despite being the smallest model, FlowState achieves state-11

of-the-art results on the GIFT and the Chronos benchmarks, while demonstrating12

superior adaptability to unseen sampling rates.13

1 Introduction14

Foundation models (FMs) have revolutionized natural language processing (NLP) through pretraining15

on large-scale text corpora, enabling strong zero-shot generalization Bommasani et al. [2021], Hadi16

et al. [2023]. This “BERT moment” initiated a paradigm shift from task-specific models towards17

universal models, that can generalize in a zero-shot manner to numerous tasks. However, their18

successes have not yet translated to the time series domain.19

Unlike NLP, time series data is often multivariate, domain-specific, and sampled at varying rates.20

These differences limit the applicability of FMs from NLP, which perform poorly on time series21

tasks Zeng et al. [2022]. Recent advances in time series modeling have favored architectures like22

MLP mixers Chen et al. [2023], Ekambaram et al. [2023] and state space models (SSMs) Gu et al.23

[2021], which better capture temporal dynamics. Based on these architectures, time series foundation24

models (TSFMs) have emerged Auer et al. [2025], Ansari et al. [2024], Ekambaram et al. [2024], Das25

et al. [2023], Liang et al. [2024], but they still struggle with generalization across varying context and26

target lengths, and lack adaptability to different sampling rates.27

We propose FlowState, a novel TSFM that addresses these limitations through:28

• SSM-based encoder: Enables efficient processing of variable-length contexts and dynamic29

adjustment to input sampling rates.30

• Functional Basis Decoder (FBD): Produces continuous forecasts that can be sampled at31

arbitrary resolutions, supporting variable target lengths.32

• Parallel forecasting pretraining scheme: Speeds up training and improves generalization33

to varying context lengths.34
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Figure 1: Architecture overview. a The input gets normalized, embedded and processed by the
SSM encoder. The encoder transforms the input into the coefficient space and provides its outputs
to the FBD, to produce the forecast. b The SSM encoder consists of N S5 layers, each composed
of an S5 block extended with an MLP layer, and a skip to allow inputs to propagate directly to later
layers. c The FBD interprets the outputs ol

t of the SSM encoder as coefficients of a functional basis
and creates a continuous output, which can be sampled at regular intervals to produce the forecast.

2 Time Series Foundation Models35

Traditionally, data for time series forecasting has been processed with classic machine learning36

models, such as the ARIMA model Box et al. [2015], which to this day still presents a strong baseline.37

In such a task, the model receives an input time series X ∈ RL×c = {x1, ...,xL} = x1:L, where38

xt ∈ Rc is the c-channel multivariate time series at timestep t and L is the context length. Given39

this input data, the task of the model is to produce a forecast for the proceeding T timesteps, i.e., to40

produce Ŷ ∈ RT×c = {ŷ1, ..., ŷT } = ŷ1:T = xL+1:L+T , where T is the forecasting length. The41

quality of the forecast can be measured by comparing it against the ground truth Y ∈ RT×c.42

The time series domain has also experienced a shift towards FMs, which are typically trained on a43

large pretrain corpus of univariate (c = 1) time series, extract essential foundational knowledge from44

it and generalize this knowledge to various downstream tasks in a zero-shot manner. These TSFMs45

typically require deep learning architectures and transformers Nie et al. [2023], Liu et al. [2024],46

MLP-mixer Chen et al. [2023], Ekambaram et al. [2023] or recently also SSM Wang et al. [2025],47

Gu et al. [2022], Smith et al. [2023], Gu and Dao [2023], Dao and Gu [2024] and other stateful48

architectures such as TiRex Auer et al. [2025], representing the current state-of-the-art, have emerged.49

In particular, TiRex introduced a series of novel concepts, such as a Multi-Patch-Inference (MPI)50

process and contiguous patch masking (CPM) for training, which significantly improved performance.51

The authors also showed that the ability to keep track of states and dynamics of the underlying time52

series is critical, making stateful models especially well-suited for time series tasks.53

3 FlowState54

Our proposed model, FlowState, is an encoder-decoder architecture, employing an S5-based encoder55

and a functional basis decoder. Figure 1a shows an overview of its architecture. The input time series56

with length L is first normalized in a causal manner.57

This causality is critical, to enable a novel parallel prediction technique we employ during pretraining.58

To make optimal use of all intermediate results during pretraining, we predict a unique target from each59

hidden state of the SSM Encoder in parallel. This also speeds up training, and increases robustness to60

varying context lengths. This parallel prediction process is further detailed in Appendix A.5.61

After normalization, the inputs are embedded linearly and then provided to the SSM encoder directly62

without any patching, see Section 3.1 for more details. Importantly, while the time series, before63

being processed by the SSM, is considered to be in the feature space, where each element of it64

2



represents features of the time series, the SSM encodes the time series into a coefficient space, where65

it operates on coefficients of continuous basis functions. The final output of the SSM encoder forms66

the basis for the FBD, see Section 3.2 for details, whose outputs are then inverse normalized, using67

the inverse method of the input normalization, and form the forecasts of our model. Importantly, the68

FBD maps from the coefficient space back to the feature space to provide the forecasts. Furthermore,69

the SSM encoder, as well as the FBD are controlled by an additional scaling factor s∆, that allows to70

adjust these components to the sampling rate of the input data. Additional model details can be found71

in the Appendix A.72

3.1 SSM Encoder73

FlowState utilizes a stack of S5 layers to form the SSM encoder, see Figure 1b. Āl ∈ Rn×n,74

B̄l ∈ R1×n, C̄l ∈ Rn×m and D̄l ∈ Rm×m are the state transition, the input, the output and the skip75

connections matrices of layer l, m and n are the hidden state size and the in-/output size of the SSM76

block and slt and hl
t are the state and the output of the SSM block at timestep t. Note that the input is77

denoted as x0
t . As reported in Smith et al. [2023], the matrices of the S5 block l can be computed as78

Āl = ediag(Al·∆), B̄l = Al−1 (
Āl − 1

)
Bl, C̄l = Cl, D̄l = Dl,

where Al ∈ Rn, Bl ∈ R1×n, Cl ∈ Rn×m, Dl ∈ R1×m, and ∆ ∈ Rn are the actual trainable param-79

eters of the continuous S5 and initialized using the HiPPO method Gu et al. [2023]. Subsequently,80

the output of each SSM block is further processed by an MLP layer, see Figure 1b.81

The S5 architecture can naturally be adjusted to a change of the input sampling rate Smith et al. [2023]82

without the need for retraining. By adapting the quantization parameter ∆, the SSM can produce83

similar representations, irrespective of the sampling rate. While this effect can be beneficial for84

classification or regression tasks Smith et al. [2023], it is insufficient for time series forecasting tasks.85

In particular, current decoders cannot distinguish those similar representations, hence they cannot86

adjust the forecasting sampling rate properly. To remedy this issue, we propose a novel decoder.87

3.2 Functional Basis Decoder88

For the functional basis decoder, we take inspiration from how SSMs are initialized from an input89

sequence. The HiPPO approach ensures that their hidden state expresses coefficients of a polynomial90

basis, which optimally approximates the input sequence. In particular, Gu et al. [2020] demonstrated91

a possibility to use the hidden state of their SSM at timestep t to reconstruct the input sequence92

until t with a functional basis. We adopt this approach for our decoder, but instead of extracting93

coefficients that can be used to reconstruct the input, we use a continuous functional basis to construct94

the forecast from the final outputs of the SSM encoder oN
L , see Figure 1c. In particular, our proposed95

FBD interprets the final outputs of the SSM encoder, oN
L , as coefficients of a functional basis, which96

can in turn be used to produce a continuous output function. To obtain the forecast with a desired97

quantization, this continuous output is then sampled at an equally spaced interval, with the spacing98

adjusted with s∆. The FBD can be formalized as follows:99

ci = oNL,i, ỹ =

n∑
i=1

cipi(a, b), ŷ = sample(ỹ, s∆), (1)

where pi(·, ·) is the i-th basis function evaluated at an interval [a, b], ỹ is the continuous forecast and100

sample(·, s∆) samples the argument equally.101

Our functional basis decoder offers several key advantages. Firstly, it produces a continuous forecast,102

which can then be sampled with any desired sampling rate. Secondly, it draws inspiration from a103

well-established procedure to map from coefficient to feature space, and thus can leverage various104

functional basis functions, depending on the task. For our main experiments, we use the Legendre105

polynomials to be consistent with the SSM input encoding used by the HiPPO initialization. Another106

viable option is to use the Fourier basis functions to better match periodic signals. Finally, and most107

importantly, it enables the decoder to produce forecasts at the correct sampling rate, based on s∆.108

Note that although we introduce the FBD as part of FlowState, it can be combined with other encoder109

architectures as well.110
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Model Param.[M] MASE CRPS
FlowState-9.1M 9.1 0.726 0.502
FlowState-2.6M 2.6 0.732 0.505
Toto-Open-Base-1.0 151 0.750 0.517
Sundial-Base 128 0.750 0.559
TabPFN-TS 11 0.771 0.544
YingLong 300 0.798 0.548
YingLong 110 0.809 0.557

Table 1: GIFT results for zero-shot models,
sorted by ascending MASE.

Model Param.[M] MASE WQL
FlowState(T)-9.1M 9.1 0.755 0.580
FlowState(T)-2.6M 2.6 0.777 0.614
TiRex 35 0.778 0.599
TimesFM-2.0 500 0.789 0.700
Moirai-l 311 0.791 0.631
Chronos-bolt-b 205 0.795 0.624
Chronos-b 200 0.818 0.643

Table 2: Chronos results, sorted by ascending
MASE.

4 Results111

We evaluate FlowState’s forecasting capabilities on two commonly used benchmarks: GIFT-112

Eval1 Aksu et al. [2024], referred to as GIFT, and the Chronos benchmark (II)2 Ansari et al.113

[2024], referred to as Chronos.114

As discussed before, a critical component of TSFMs is their zero-shot capability. Therefore, we115

carefully ensured that FlowState does not have any testdata leakage and performs zero-shot forecasting116

on the two benchmarks. Therefore, we pretrain FlowState as a TSFM in two sizes, 9.1M and 2.6M117

parameters. In particular, we train FlowState on the GIFT-Eval-Pretrain dataset, augmented with118

some data from Chronos Ansari et al. [2024] that do not have any overlap with the GIFT benchmark.119

Moreover, we train another variant, FlowState(T), with the exact same data as TiRex in order to120

avoid testdata leakage with the Chronos benchmark. More details about pretraining can be found in121

Appendix A.1. In the following we describe the results for the two benchmarks as of 289th August122

2025 and additional results, including ablations and experiments evaluating performance on unseen123

sampling rates, can be found in Appendix B.124

GIFT benchmark. Table 1 shows the normalized MASE and CRPS metrics for the GIFT-Eval125

benchmark, with ascending MASE score. FlowState-9.1M and FlowState-2.6M surpass all previously126

reported baselines. Notably, the FlowState-2.6M variant is by far the smallest model, yet outperforms127

all other baselines.128

Chronos benchmark. Table 2 shows the normalized MASE and WQL metrics for the Chronos129

benchmark, with ascending MASE score. Similarly to the GIFT results, the FlowState(T) variants130

outperform the current state-of-the-art models. Importantly, although FlowState(T) has been trained131

on the same data as TiRex, it performs significantly better.132

5 Conclusion133

We introduce FlowState, a time series foundation model, that can dynamically adjust to the unique134

characteristics of the input time series, such as its specific sampling rate. To do so, we developed a135

functional basis decoder (FBD), a novel component that leverages a set of basis functions to create136

continuous forecasts. FlowState’s combination of an SSM-based encoder and the FBD enables137

the seamless adjustment and the production of forecasts of varying lengths. To further enhance138

FlowState’s efficiency and robustness, we propose a training scheme that through multiple parallel139

predictions exposes the model to diverse context lengths during training. FlowState establishes the140

new state-of-the-art on the GIFT and the Chronos benchmarks, outperforming strong baselines that141

are up to 192× larger. Finally, FlowState demonstrates superior robustness and adaptability to unseen142

sampling rates and our ablation studies confirm the individual and collective benefits of our proposed143

components. Thus, FlowState demonstrates progress toward a “BERT moment“ for TSFMs.144

1https://huggingface.co/spaces/Salesforce/GIFT-Eval
2https://huggingface.co/spaces/autogluon/fev-leaderboard
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A Additional details243

A.1 Pretraining244

We pretrain two distinct variants of FlowState:245

• FlowState: The pretraining data for this variant is carefully designed to have no overlap246

with the GIFT-Eval benchmark. It consists of the official GIFT-Eval pretraining dataset,247

as well as of some training datasets from Chronos, that are not overlapping with the GIFT-248

Eval benchmark. In addition, we added synthetic time series data generated via Gaussian249

Processes, following the methodology of KernelSynth Ansari et al. [2024]. Moreover,250

we enhance the diversity of the entire pretraining dataset with augmentation techniques251

introduced in Auer et al. [2025].252

• FlowState(T): The pretraining data for this variant is carefully designed to have no overlap253

with the Chronos benchmark. We use the same pretraining corpus as TiRex, except for the254

synthetic data, which we generate in the same way as for FlowState.255

To enable probabilistic forecasting, we optimize the model using the quantile loss. For all models,256

except one ablation, CPM is used during pretraining, which allows for MPI.257

A.2 Metrics258

Both benchmarks use a probabilistic evaluation metric based on the Weighted Quantile Loss (WQL).259

While GIFT-Eval refers to this metric as CRPS, the underlying formulation is equivalent, as WQL260

can be interpreted as a quantile-based approximation of the CRPS.261

For each time series, we generate probabilistic forecasts and compute two normalized metrics: Mean262

Absolute Scaled Error (MASE) measures point forecast accuracy, while CRPS and WQL measure263

the probabilistic forecast accuracy. Both metrics are normalized per task using a Seasonal Naive264

baseline. Final scores are reported as the geometric mean across tasks. For consistency with the265

leaderboards, we refer to the normalized probabilistic metric as CRPS in GIFT and WQL in Chronos.266

The normalized and averaged MASE are simply referred to as MASE.267

A.3 Temporal Scaling268

FlowState’s continuous-time formulation introduces two key considerations during evaluation. First,269

we determine a suitable scale factor for each dataset. Since datasets vary in both sampling rates270

and temporal dynamics, we base this factor on seasonality rather than raw sampling frequency.271

For example, hourly temperature data typically exhibits a 24-step daily cycle, while weekly peak272

temperatures follow a seasonal pattern of 365/7 ≈ 52 steps. Even though a week contains 168 hours,273

a more appropriate scale factor between these two examples is determined by the ratio of their relative274

seasonality. We define a base seasonality of 24 and compute the scale factor as:275

s∆ =
Base Seasonality

Seasonality

This ensures that all datasets are mapped to a common temporal scale in the model’s continuous276

space. A scale factor of 1 corresponds to seasonality 24.277

A.4 Context and Forecasting Length278

FlowState’s architecture enables flexible adaptation of both context and forecasting lengths across279

datasets with diverse temporal resolutions. Unlike discrete models, where these lengths are fixed,280

FlowState operates in a scale-adjusted latent space, representing continuous signals. To maintain281

consistency with pretraining, we define effective lengths which the model actually uses, relative to282

the scale factor s∆, corresponding to the pretraining context length of 2048 steps, and to the base283

forecasting length T = 24 (one season). Depending on s∆ these effective lengths will change. In284

particular, the effective context length Leff and forecasting length Teff are computed as:285
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SSM encoder

Parallel predictions
starting at            

Input sequence Target

FBD

Target 3

Input sequence may also serve as target

FBD FBD

Encoder output

Target 1 Target 2

Figure 2: Schematic illustration of our parallel prediction training scheme. The input sequence
x0
1:T is encoded in parallel using the SSM encoder. Starting from Lmin, multiple forecasts are

produced in parallel, where each forecast has its own target and is based on an increasing context
length. In particular, a prediction is made for every timestep after Lmin, but for clarity only three are
shown. For example, for the first forecast (green color) only the first three timesteps x0

1,2,3 are used
as the context, while for the last prediction (purple color) the full context x0

1:T , is used. Note that for
some of the forecasts the input sequence itself serves as the target and thus a causal processing of the
input is essential to avoid information leakage.

Leff =
L

s∆
, Teff =

T

s∆

This formulation is particularly beneficial for datasets with large seasonality, which typically require286

longer historical context and benefit from extended forecasting horizons. As seasonality increases,287

s∆ decreases, resulting in larger Leff and Teff. This allows FlowState to forecast far into the future for288

such datasets—precisely where long-range predictions are often most valuable.289

A.5 Parallel prediction details290

To enable efficient training of FlowState and to enhance its robustness to varying context lengths, we291

introduce an advanced foundation training scheme. In particular, it utilizes multiple parallel forecasts292

with increasingly longer contexts, ranging from Lmin to L, see Figure 2.293

These various forecasts can be formulated as294

ŷt+1:t+T = FBD
(
SSM

(
x0
1:t

))
, (2)

where t ∈ [Lmin, L]. Importantly, because FlowState is an SSM-based architecture, the inputs can295

be processed in parallel and in turn also the multiple forecasts can be produced in parallel. Thus,296

this approach allows to produce (L− Lmin) forecasts from any given context-target pair, while other297

models traditionally only produce a single forecast per context-target pair. Depending on the choice298

of L and Lmin, this amount can be very large, for example for L = 2048 and Lmin = 20, as was used299

for our main results, FlowState produces 2028 forecasts per sample in parallel.300

The benefits of this training scheme can either materialize in significantly reduced training times,301

because one can iterate through the dataset faster using a larger stride to the next context-target pair,302

or in an increased number of training examples, when the original stride to the next context-target pair303

is kept constant. Another advantage of this training procedure is that the model inherently learns to304

produce forecasts from varying context lengths. This naturally increases the models’ generalization305

capabilities and robustness. Note that our novel training scheme is not limited to the FlowState306

architecture but can be applied to any causal architecture that can produce multiple forecasts in307

parallel. A non-causal model is not compatible with this parallel prediction approach, because it could308

use information from future inputs. This is further detailed for the example of global normalization309

in Section A.7.310
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Note, parallel forecasting can also speed-up inference if combined with MPI.311

A.6 Adjusting ∆ for unseen sampling rates312

As described in the main text, the dynamics of the SSM encoder and the FBD can be adjusted to the313

input sampling rate by modifying ∆. Typically, ∆ is only adjusted, as a trainable parameter, during314

training, while during inference, the parameter remains fixed. In order to enable adjustments to the315

sampling rates during inference, we modify the parameter ∆ with an additional scaling parameter316

s∆, in particular:317

∆̄ = f (∆, s∆) = s∆ ·∆. (3)

The adaptation of the parameter ∆ by multiplication with the correct scale factor s∆ is crucial,318

because it is used to discretize the continuous SSM for a given sampling rate.319

A.7 Causal normalization320

For parallel forecasting to work properly an architecture has to be strictly causal. Otherwise, the321

model may learn to exploit this information leakage during training. In particular, the prediction322

ŷt+1:t+T should only use the data from x0
≤t. The SSM and FBD of FlowState naturally satisfy323

this requirement, but the commonly applied normalization and inverse normalization technique,324

RevIN Kim et al. [2022], would violate it.325

RevIN normalizes every context-target pair, based on the mean and the standard deviation of the326

entire context x0
1:L, see Eq. 2 of Kim et al. [2022]. However, this would result in information from327

x0
>t to influence ŷt+1:t+T . For example, if the average of the normalized sequence µt = x̃0

1:t is328

negative, the model will learn that positive values are to be expected for x̃0
>t, because, per definition,329

RevIN produces a zero mean for the whole time series.330

To address this problem, we use a causal form of RevIN. Specifically, instead of using the average331

and standard deviation of the entire context to normalize, we leverage a running mean and a running332

standard deviation. Each element of the input at time t is then normalized using these quantities at333

time t. This can be formulated as334

µr,t =
cumsum

(
x0
1:t

)
t

(4)

σ2
r,t =

cumsum
((

µr,t − x0
1:t

)2)
t

(5)

x̃0
1:t =

x0
1:t − µr,t

σr,t
, (6)

where cumsum(·) is the cumulative sum function.335

Similarly, each forecast of the FBD is de-normalized by the statistics of the last timestep of the336

context. For example, ŷt:t+T is de-normalized with µr,t and σr,t.337

A.8 Autoregressive Forecasting and Multi-Patch-Inference338

Typically TSFMs use autoregressive techniques to extend their forecasting horizon. Namely, they339

produce several shorter forecasts of size p < T sequentially, always appending their forecast to340

the original context. Auer et al. [2025] have improved this autoregressive technique with MPI. In341

particular, they adopt contiguous patch masking (CPM) during training, which accustoms the model342

to make a prediction after a certain number of unknown timesteps. This setup enables MPI to forecast343

future patches by treating intermediate ones as missing. The main advantage of MPI / CPM over344

autoregressive forecasting is the increased model’s robustness to noise and uncertain data, as well as345

the ability to propagate uncertainty over multiple forecasting patches.346

A.9 Hyperparameters347

Model hyperparameters can be found in Table 3. Note that no extensive hyperparameter search has348

been performed yet.349
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Component FlowState-2.6M FlowState-9.1M
# Layers 6 6
Hidden Size 256 512
State Dimension 256 512
# Basis Functions 256 256
Table 3: Model hyperparameters for FlowState variants.

Figure 3: MAE performance across various sampling frequencies on the Loop Seattle dataset.

B Additional results350

B.1 Robustness to Unseen Sampling Rates351

To assess the robustness of FlowState to varying temporal resolutions, we conduct a controlled352

experiment on the Loop Seattle dataset. Originally sampled at 5-minute intervals, we subsample the353

data to create versions with sampling intervals ranging from 5 to 65 minutes in 5-minute increments.354

We then evaluate FlowState-9.1M, TiRex, Chronos-bolt-b, and Toto on each version using the standard355

GIFT-Eval evaluation framework and a target length of 480 timesteps.356

Figure 3 shows the MAE of all models for each sampling frequency. FlowState-9.1M consistently357

outperforms all baselines across most frequencies, with a particularly large margin at uncommon358

sampling intervals. The only exceptions are at 15T, 30T, and 60T—common frequencies likely seen359

during pretraining—where baseline models briefly close the gap. These results highlight FlowState’s360

ability to generalize to unseen sampling rates without requiring exposure to every possible frequency361

during training.362

Loop Seattle was selected because none of the baselines use it during pretraining, and due to its363

small original sampling rate, and long time series, making it well-suited for controlled subsampling364

experiments.365

B.2 Ablation Study366

To understand the contributions of individual components in FlowState, we conduct a series of367

ablations by retraining variations of the FlowState-2.6M model and evaluating on GIFT. The results368

are summarized in Table 4, and organized into the following categories:369

Core Architectural Components. This group isolates the impact of FlowState’s key design choices.370

Removing the time-scale adjustment mechanism leads to a significant drop in performance, confirming371

its importance for generalization across sampling rates. Disabling parallel predictions, by always only372
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Model Variant MASE CRPS
FlowState-2.6M (baseline) 0.732 0.505
Core Architectural Components

w/o time-scale adjustment 0.796 0.548
w/o parallel predictions 0.761 0.531

Decoder Variants
Fourier basis 0.737 0.511
Half-Legendre basis 0.737 0.511

CPM
Autoregressive instead of MPI 0.749 0.541
No CPM training, longer target 0.739 0.526

Table 4: Ablation results for FlowState-2.6M evaluated on GIFT.

predicting from the last context point, also significantly degrades performance, though to a lesser373

extent.374

Decoder Variants. We evaluate two alternative sets of basis functions to the default Legendre basis:375

a Fourier basis, and a Legendre basis defined over the interval [0, 1] instead of [−1, 1] (referred376

to as “Half-Legendre”). Both sets of basis functions have performed slightly worse compared to377

FlowState-2.6M.378

CPM Mechanism. We assess the impact of the CPM / MPI mechanism by evaluating FlowState-379

2.6M, which was trained with CPM, autoregressively, instead of using MPI. This leads to a substantial380

performance drop. However, when we retrain the model without CPM, and using a longer base target381

length of 60 instead of 24, performance recovers. Both MASE and CRPS remain worse, but CRPS to382

a larger degree, highlighting the importance of MPI for accuracy of long probabilistic predictions.383
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