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Abstract

Causal Representation Learning (CRL) aims to uncover the data-generating process
and identify the underlying causal variables and relations, whose evaluation re-
mains inherently challenging due to the requirement of known ground-truth causal
variables and causal structure. Existing evaluations often rely on either simplis-
tic synthetic datasets or downstream performance on real-world tasks, generally
suffering a dilemma between realism and evaluative precision. In this paper, we
introduce a new benchmark for CRL using high-fidelity simulated visual data that
retains both realistic visual complexity and, more importantly, access to ground-
truth causal generating processes. The dataset comprises around 200 thousand
images and 3 million video frames across 24 sub-scenes in four domains: static
image generation, dynamic physical simulations, robotic manipulations, and traffic
situation analysis. These scenarios range from static to dynamic settings, simple to
complex structures, and single to multi-agent interactions, offering a comprehensive
testbed that hopefully bridges the gap between rigorous evaluation and real-world
applicability. In addition, we provide flexible access to the underlying causal
structures, allowing users to modify or configure them to align with the required
assumptions in CRL, such as available domain labels, temporal dependencies, or
intervention histories. Leveraging this benchmark, we evaluated representative
CRL methods across diverse paradigms and offered empirical insights to assist
practitioners and newcomers in choosing or extending appropriate CRL frame-
works to properly address specific types of real problems that can benefit from
the CRL perspective. Welcome to visit our: Project page: causal-verse.github.io,
Dataset: huggingface.co/CausalVerse.

1 Introduction

Understanding the causal factors underlying high-dimensional unstructured data, like images or
videos, is a central challenge in machine learning and scientific discovery. Causal Representation
Learning (CRL) has emerged as a promising framework to tackle this problem by recovering the
latent causal variables and their relations from raw observations, or pursuing meaningful abstractions
of fine-grained micro-variables. In general, CRL seeks to go beyond mere correlational patterns,
offering representations that reflect the true generative mechanisms of data.

Despite rapid theoretical and methodological progress, the evaluation of CRL methods remains an
open challenge. A major bottleneck lies in the absence of a real-world database with accessible
ground-truth causal structures. This limitation forces existing evaluation strategies into a trade-off
between realism and evaluative rigor. On the one hand, some methods adopt simplistic synthetic
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environments, such as physical process [1–3] or 3D object generation [4, 5], which enable precise
verification but fall short in realism. For instance, Yao et al. [2] uses a physical setup where balls
are connected by invisible springs to test whether CRL methods can recover object identities and
their latent interactions. On the other hand, some works attempt to evaluate CRL indirectly via
performance on real-world downstream tasks, such as domain adaptation/generalization [6, 7] and
visual reasoning [8]. However, these real datasets lack annotated causal variables or structures, making
it difficult to rigorously assess whether a method truly recovers causal factors or merely captures
task-relevant correlations. This trade-off between realism and evaluative precision significantly
hampers the ability to systematically compare and advance CRL methods.

Figure 1: The CausalVerse dataset. Causal-
Verse is organized with a hierarchical domain-
scene-instance structure. We showcase four di-
verse domains: static generation, physical simu-
lation, robotic manipulation, and traffic analysis.
Within each domain, multiple scenes are designed
to reflect distinct causal variables and structures.
Sample instances are generated using simulation
tools such as Unreal Engine 4, with each instance
grounded in a predefined causal graph.

To address this limitation, we introduce Causal-
Verse, a new benchmark specifically designed
for causal representation learning. CausalVerse
is a high-fidelity simulated visual dataset that
combines realistic visual complexity with com-
plete access to ground-truth causal variables and
structures. Specifically, we carefully designed
a set of scenes with well-defined causal factors
and leveraged advanced rendering engines such
as Blender and Unreal Engine 4 to generate
high-quality simulated images and videos. The
dataset includes around 200 thousand images
and 300 million video frames across 24 sub-
scenes drawn from four diverse domains: static
image generation, dynamic physical simulations,
robotic manipulation, and traffic scene analy-
sis. These domains cover a broad spectrum of
settings, ranging from static to dynamic, single-
agent to multi-agent, and simple to highly struc-
tured environments. In addition, CausalVerse
goes beyond static annotations by providing ac-
cess to the entire simulation process, enabling
configurable access to the underlying causal
graphs, such as domain labels, temporal depen-
dencies, and intervention histories. This flexi-
bility allows researchers to modify the dataset
to satisfy specific theoretical assumptions and
experimental setups in CRL. As summarized in
Table 1 compared to existing CRL benchmarks,
CausalVerse offers greater scalability, richer di-

versity of task environments, high-dimensional latent spaces, and significantly improved realism,
making it a more comprehensive and practical testbed for developing and evaluating causal represen-
tation methods.

Using this benchmark, we conduct a series of empirical evaluations of representative CRL methods
grounded in diverse principles, providing comparative insights into their strengths, limitations, and
applicability across a range of settings. Our results reveal that, despite recent theoretical advances
in identifiability for CRL, applying these methods in practice remains challenging, particularly in
scenarios involving complex visual content. Furthermore, we challenge existing CRL methods
under unmet assumptions, offering practical guidance for researchers, especially newcomers who
may not have prior knowledge of the specific assumptions underlying their data. By releasing
CausalVerse along with these empirical analyses, we aim to advance the development of more
robust and generalizable CRL methods, and support both researchers and practitioners in selecting
appropriate tools for addressing real-world problems from a causal perspective.

We summarize the main contributions of this paper as follows: (1) CausalVerse Benchmark: A large-
scale, high-fidelity visual dataset for CRL, featuring realistic complexity, high-dimensional latent
spaces, and full access to ground-truth causal structures. (2) Diverse Scenarios and Configurable
Settings: Around 200k images and 300 million video frames across 24 sub-scenes in four domains,
with the whole simulation process to support configurable causal settings. (3) Empirical Evaluation:

2



Table 1: Comparison of benchmarks related to Causal Representation Learning. The number of
video frames is used to represent the scale of each video dataset.

Benchmark Design
for CRL

Data
Type Scale Domain Latent

Variables
Dynamic

Data
Ground
Truth

Pendulum [29] ✗ Image 7k Physics <10 ✗ ✓

Flow [29] ✗ Image 8k Physics <10 ✗ ✓

CAUSAL3D [4] ✗ Image 190k Physics <10 ✗ ✓

Causal3DIdent [16] ✓ Image 277k 3D scenes 10 ✗ ✓

3DIdent [5] ✓ Image 275k 3D scenes 10 ✗ ✓

CausalCircuit [18] ✓ Image 120k Electronics 4 ✗ ✓

Ball [3] ✓ Video 2500k Ball <10 ✓ ✓

Cloth [3] ✓ Video 600k Cloth <10 ✓ ✓

Light Tunnel [30] ✓ Image 60k Physical 3-5 ✓ ✓

ISTAnt [31] ✗ Video 792k Biology - ✓ ✗

CausalVerse ✓
Image
Video

198.66k
300m

Multi
Domains 3-129 ✓ ✓

Systematic comparison of CRL methods under varying assumptions and conditions. (4) Practical
Insights: Guidance for selecting or designing CRL methods in real-world scenarios, especially under
imperfect assumptions.

2 Related Work

Causal representation learning. CRL has emerged as a crucial paradigm in machine learning that
aims to discover and model the underlying causal mechanisms that generate observable data [9].
While achieving identifiability by assuming the generating process is a linear mapping between
latent variables and observations [10–14], extending the identifiability to nonlinear cases remains a
significant challenge. Recently, different approaches are used to establish identifiability in nonlinear
cases, like relying on sufficient changes in the latent variable distributions [1, 2, 6, 8, 15], supervised
learning [16–18], multi-view [19, 20], and introducing structural constraints like sparsity [21–25].

Evaluation by simple synthetics. Simplified synthetic environments serve as common testbeds for
CRL evaluation due to their precise ground-truth causal structures. Physical simulations represent
a prominent approach, with works like V-CDN [3] and LEAP [2] utilizing mass-spring systems to
assess whether methods can identify object identities and their latent interactions. Similarly, TDRL
[1] evaluates temporal disentanglement in physical settings. Causal3DIdent [16], CAUSAL3D [4],
and CausalCircuit [18] datasets offer images through 3D rendered engines like Blender [26] and
MuJoCo [27], with controlled generative factors. But these images are about several simple observed
objects and mechanisms, while also being limited to static and low-dimensional latent variables.
Compared to existing datasets, CausalVerse presents more complex scenarios for causal representation
learning across a wide range of scales—from static images to dynamic video, from single-agent to
multi-agent interactions, and from simple low-dimensional variables to high-dimensional data with
hundreds of features. It also leverages the more powerful Unreal Engine 4 [28] for rendering in some
domains.

Evaluation by downstream tasks. Given the limitations of simplified simulations, researchers
also evaluate CRL methods through performance on downstream tasks with real-world datasets,
prioritizing practical utility while sacrificing precise causal verification. Transfer learning serves
as a common task, with Sufficient Change [6] and SIG [32] assessing adaptation performance
across domains to prove the usage of latent causal mechanisms, while Salaudeen et al. [7] analyze
domain generalization datasets as proxy benchmarks for CRL. Reasoning [8, 33] and discovery
task [34] provide another evaluation avenue for CRL. Image classification is also a widely used task
for CRL methods [17, 19]. However, without ground-truth causal annotations, it remains unclear
whether performance improvements stem from capturing genuine causal factors and mechanisms
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Figure 2: Data examples of the dataset across four domains. The Static Image Generation domain
features the human images in diverse indoor environments. The Dynamic Physical Simulations
domain describes different physical processes like spring compression, light refraction, and projectile
motion. The Traffic Situation Analysis domain shows the traffic situations under different cities,
scenes, and conditions. The Robotic Manipulations domain offers six scenes in which a robot
operates in different indoor settings and performs various tasks.

or merely task-relevant correlations. CausalVerse integrates high-fidelity images and videos with
comprehensive metadata, thereby supporting a broad spectrum of downstream tasks while enabling
precise benchmarking against ground-truth latent variables and causal structures. In particular, its four
static image generation scenarios can serve as distinct domains for domain adaptation experiments,
and its robotics and physical simulation modules, each captured from multiple camera viewpoints,
provide an exacting testbed for multi-view validation of causal models. More related work can be
found in Appendix A.

3 The CausalVerse Dataset

In this section, we present CausalVerse, a high-fidelity simulated visual dataset specifically designed
for CRL. While prior datasets often suffer from a trade-off between realism and access to ground-truth
causal structures, CausalVerse is designed to bridge this gap by simulations offering both rich visual
complexity and explicit, configurable causal ground truth. It supports rigorous evaluation of CRL
methods under diverse and realistic conditions. To the best of our knowledge, CausalVerse is the
most comprehensive and flexible benchmark for CRL to date. We introduce CausalVerse from the
following perspectives: the composition of domains and sub-scenes, detailed dataset statistics, the
simulation pipeline used to generate high-quality visual data and causal annotations, and finally, the
flexibility it offers for modeling assumptions and real-world use cases.

3.1 Dataset composition

CausalVerse is designed to support a broad spectrum of CRL scenarios by offering diverse visual
environments with clearly defined and accessible ground-truth causal structures. One of the core
challenges in constructing such benchmarks is the difficulty of identifying or simulating scenarios
where the true causal variables and relationships are known. As a result, most existing CRL datasets,
even those using synthetic data, tend to focus narrowly on specific domains, such as 3D object
generation [5] or simple physical systems [3, 4]. While these datasets are relatively easy to construct
and evaluate, they often suffer from limited scenario diversity and poor scalability, which constrain
their usefulness for testing CRL methods across a wide range of real-world conditions.

Towards the goal of constructing a large-scale benchmark with high diversity, the CausalVerse dataset
is organized in a hierarchical domain–scene–instantiation structure, as illustrated in Figure 1. This
design enables systematic variation across different levels of abstraction and supports comprehensive
evaluation of CRL methods.
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• Domain. For comprehensive evaluation, CausalVerse is organized into four distinct domains:
static image generation, dynamic physical simulation, robotic manipulation, and traffic scene
analysis, as showed in Figure 2. Each domain represents a unique category of visual and causal
phenomena, ranging from object-centric generative processes in static settings to complex, multi-
agent interactions in dynamic environments. This diversity enables the benchmark to capture a
wide spectrum of causal challenges relevant to real-world scenarios.

• Scene. Within each domain, we construct multiple curated scenes (24 in total), each representing
a specific causal setting. Scenes are designed to differ in key factors of the causal structure, such
as the number and type of causal variables, the presence of domain-specific labels, and the visual
context. This mid-level granularity enables researchers to evaluate CRL models under targeted
structural assumptions and constraints. Taking the dynamic physical simulation domain as an
example, CausalVerse includes 10 distinct scenes encompassing both aggregated and temporally
dynamic cases. The aggregation cases condense physical processes into single images, capturing
4 phenomena such as a cylinder compressing a spring, light refraction, a ball decelerating and
ascending a slope, and a ball freely falling onto plasticine. In contrast, the dynamic cases simulate
continuous physical processes through videos, depicting falling, projectile motion, and collisions
involving both single and interacting objects, with simple and complex motion mechanisms (6
scenes). The detailed data structure can be found in the Appendix.

• Instance. At the finest level, each scene includes a set of instantiations, concrete visual episodes
generated by sampling from the underlying causal model. Each instantiation is accompanied by
annotations of the relevant causal variables and their structural relationships. For example, in
the traffic scene domain, altering the speed of a single vehicle can lead to the emergence of a
traffic accident scenario, illustrating how specific changes in causal factors manifest in visually
and semantically distinct outcomes. Such fine-grained control enables precise testing of a model’s
capacity to capture causal variables and relations across varying conditions.

A key strength of CausalVerse lies in its comprehensive coverage of diverse causal scenarios, making
it uniquely positioned to evaluate CRL methods under a wide range of conditions. The dataset
spans a spectrum of static to dynamic settings, including both image-based scenes with fixed causal
factors and temporally evolving environments with sequential dependencies. It also covers structural
complexity, from simple systems with a few causal variables to highly complex settings characterized
by rich causal relations. Additionally, CausalVerse supports both single-agent and multi-agent
interactions, enabling the study of causal reasoning in environments ranging from isolated object
manipulation to collaborative or competitive agent behaviors, such as traffic systems or robotic
coordination. This diversity ensures that models evaluated on CausalVerse are not only tested for
technical soundness but also for their ability to generalize across realistic and varied causal contexts.

3.2 Dataset statistics

Latent Variable Number per Scene
Latent
Variable
Number

Scene

Figure 3: Latent variable numbers across all scenes in CausalVerse.
please zoom in for details, like scene name.

To illustrate the scale and
diversity of the Causal-
Verse dataset, we present
key statistics summa-
rizing its composition.
In total, CausalVerse
contains around 200k
high-resolution images
and around 140k videos
with more than 300 million
frames, distributed across
24 meticulously curated
scenes spanning four
distinct domains, including
static image generation,
dynamic physical simulation, robotic manipulation, and traffic scene analysis. As illustrated in
Figure 4, these domains contain 4, 10, 5, and 5 scenes, respectively. The dynamic physical simulation
domain is further subdivided into aggregated and dynamic categories, comprising 4 and 6 scenes,
respectively. The detailed sample statistic of all senses is shown in the pie chart in Figure 4.
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Human in Retail Store
11.2k images

Cylinder Spring
40k images

Simple Collision
20k videos

Robot in Kitchen
2.7k videos

Traffic in Town01
1.97k videos

Figure 4: Sample statistics across all scenes in CausalVerse. The pie
chart illustrates the relative data scale for all scenes, where the radius
length reflects the number of images/videos (rather than frames), and
colors indicate different domains. For example, the scene Cylinder
Compressing Spring contains 40k images.

Each scene comprises
hundreds to thousands
of samples with video
durations ranging from 3 to
32 seconds and a diverse set
of frame rates. Frame res-
olutions vary across scenes,
typically 1024 × 1024 or
1920×1080 pixels, thereby
accommodating model
training across different
spatial scales and levels of
visual detail. Each scene
is governed by a set of
causal variables, typically
ranging from 3 to around
100, encompassing both
categorical variables (e.g.,
object types, material
categories) and continuous
variables (e.g., velocity,
mass, spatial coordinates).
Figure 3 summarizes the
distribution of the number
of latent variables across all
scenes. Here, the number
of causal variables in the
temporal setting refers to
the variables present per
frame. In temporal processes, certain variables, such as object type or mass, remain invariant over
time and serve as global descriptors of the system. In contrast, dynamic variables, including position,
orientation, and momentum, continuously evolve throughout the video sequence, capturing the
unfolding physical dynamics and enabling fine-grained causal reasoning over time. More dataset
statistics can be found in Appendix B.

3.3 Data simulation pipeline

The data simulation process consists of three steps, including domain and scene definition, latent
variable sampling, and image/video rendering. Figure 5 takes the domain of dynamic physical
simulation as an example to illustrate the basic simulation process.

Defining domains and scenes. We generate data through a hierarchical progression approach.
First, we select four distinct domains for our data generation framework: (1) static image generation,
which showcases individuals with varying poses and appearances in different indoor environments;
(2) physical simulations, including both complete videos documenting entire trajectories of objects
in motion and time-lapse images capturing normalized physical processes where we record object
positions at specific timestamps to create aggregated visualizations; (3) robotic manipulations; (4)
traffic situation analysis. After determining the domain, we further define specific scenes. It is
important to note that once a scene is established, the underlying causal variables and mechanisms
become uniquely determined. We use metadata to document these hidden variables and mechanisms.
For static image generation, scenes represent different indoor environments with distinct lighting,
spatial dimensions, and object arrangements; for dynamic physical simulations, different scenes
correspond to various physical processes and governing laws that determine object behaviors, robotic
manipulations, and traffic conditions.

Latent variable sampling. Guided by the predefined causal graph for each scene, we sample
latent variables based on their causal dependencies. For static scenes, we draw human-related
factors (e.g., pose, attire, body shape) to form D-dimensional representations. For physical and
robotic simulations, we sample a subset of physical variables (e.g., mass, position, rotation), with
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Figure 5: Data construction pipeline illustrated using the dynamic physical simulation domain.
Starting from a task type such as dynamic physical simulation, we first identify candidate scenes and
collect relevant causal variables and structures using human domain expertise. Instances are then
generated using a rendering engine to ensure alignment with the designed causal structures.

others derived via physical laws to ensure temporal and physical consistency—resulting in (T ×D)-
dimensional trajectories for dynamic settings. In traffic scenes, agent-level (e.g., vehicle position)
and environment-level (e.g., weather) variables are sampled to capture structured interactions. These
latent representations are then fed into domain-specific renderer, from neural engines to physics-based
simulators, to generate high-fidelity outputs with causal coherence.

Static rendering. For static images, we uniformly employ the Blender engine to leverage its
photorealistic rendering capabilities. Specifically, for human figures, we construct diverse character
models utilizing the open-source assets for humans and clothing provided by the MakeHuman
project [35]. For images depicting physical processes, we employ the Blenderproc [36] library, which
automates simultaneous physical simulation and rendering.

Dynamic rendering. In generating dynamic videos, we select appropriate physics engines accord-
ing to the characteristics of different domains. For dynamic physical simulations, we utilize the
Bullet Physics SDK [37] and source assets from the Replica3D dataset [38]. For robotic simulation
scenarios, we primarily build upon Robosuite [39] and Habitat-Lab, enabling embodied agents to
navigate and interact within enclosed, highly interactive environments. For complex traffic scenarios,
inspired by the Carla [40] project, we utilize Unreal Engine 4 to simulate diverse traffic conditions
arising from variations in vehicle behaviors and traffic densities across different urban environments.

3.4 Flexibility and use cases

One of the key strengths of CausalVerse lies in its flexibility, which enables researchers to tailor the
dataset to a wide range of CRL scenarios. By providing access to the full simulation process and
underlying generative mechanisms, users can configure the dataset to align with specific theoretical
assumptions or empirical needs.

We highlight two representative use cases:

• Controlled experiments with satisfied assumptions. In this setting, researchers can leverage
the CausalVerse simulation pipeline to generate data that strictly adheres to key assumptions
commonly required in CRL. These include, for example, the independent causal mechanism
assumption, the availability of sufficient domain variation for identifiability, and specific functional
priors such as sparsity, additivity, or linearity. By explicitly controlling the data-generating process,
users can construct datasets that match the theoretical premises of CRL algorithms, allowing
for precise and interpretable evaluation. This capability facilitates the empirical validation of
identifiability results and learning guarantees, while still using visually rich, high-fidelity data
that reflects the complexity of real-world observations.

• Evaluation under unmet assumptions. CausalVerse also supports the construction of more
challenging and realistic scenarios where the data do not strictly adhere to standard theoretical
assumptions, but instead reflect the complexity and ambiguity of real-world environments. Such
settings may involve entangled causal factors, limited domain shifts, or ambiguous structural
signals. These conditions are particularly valuable for stress-testing the robustness and gener-
alization ability of CRL methods. They also offer practical insights for researchers, especially
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newcomers, helping them better select or adapt CRL methods for real-world use, even if the
precise knowledge of the data assumptions in their target applications is unknown.

This flexibility makes CausalVerse a powerful testbed not only for benchmarking but also for
developing CRL methods that are both theoretically grounded and practically robust.

4 Evaluation

In this section, we first evaluate various CRL approaches that embody different principles under
unmet assumptions in our scenarios, including both static images and temporal sequences. We also
demonstrate how CausalVerse’s flexibility allows us to organize data that satisfies the assumptions
needed to test CRL methods. Through these experiments, we illustrate how CausalVerse enables
researchers to thoroughly explore diverse CRL scenarios and approaches from empirical insights.

4.1 Evaluation metrics

To evaluate both component-wise and block-wise identifiability in CausalVerse, we adopt three
metrics, including the Mean Correlation Coefficient (MCC), the coefficient of determination R2, and
the over-completed MCC. Specifically, let Z ∈ RD be the ground-truth latent vector and Ẑ ∈ RD̂

the estimated vector, we have:

• Mean Correlation Coefficient (MCC): To calculate MCC, we first compute the Pearson cor-
relations Rij = corr(Zi, Ẑj), then select an injective matching π : {1, . . . , D} → {1, . . . , D̂}
maximizing

∑D
i=1 |Ri,π(i)|. Finally, the MCC value is defined as MCC = 1

D

∑D
i=1

∣∣Ri,π(i)

∣∣.
• Coefficient of Determination (R2): R2 measures the proportion of variance in the ground-truth

block zb that is explained by the estimated block ẑb. Formally,

R2 = 1 −
Var

(
zb − f(ẑb)

)
Var(zb)

,

where f is the regression function (linear or non-linear) that best predicts zb from ẑb. A value of
R2 = 1 indicates perfect block-wise identifiability.

• Over-complete MCC: In real-world applications, the true number of latent variables is typically
unknown. Without model selection techniques, learned representations often become over-
complete, containing both essential information and redundant or noisy components, i.e., D̂ > D.
To address this, we refine the MCC metric to focus only on the most informative components by
selecting the top D estimated variables that best match the ground-truth ones. We then apply the
standard MCC computation over this subset to evaluate identifiability.

4.2 Implementation

To fairly compare the performance of different CRL methods on our dataset, we selected some
representative ones to conduct unsupervised learning and estimate latent variables from images under
unmet assumptions. These methods, based on established literature, include: Sufficient Change [6],
which leverages the sufficient change principle to learn a generative model while incorporating
structured assumptions from probabilistic graph modeling; Mechanism Sparsity [41], which utilizes
sparsity constraints to encourage minimal dependencies between latent variables; Multiview [16],
which learns the invariant representations by the alignment cross different views without explicit
labels; and Contrastive Learning [42], which uses contrastive learning to identify the latent variables.
Moreover, IDOL [24], CaRiNG [8], TDRL [1], TCL [43], and iVAE [44] are utilized for temporal
causal representation learning from videos. All methods adopt the same VAE architecture in their
implementations to ensure a fair comparison. Additionally, we introduced a supervised model,
Supervised (encoder + MLP head trained on ground-truth latents), as an upper bound, incorporating
an MLP layer after the ResNet output to learn latent variables with access to ground truth data.

4.3 Evaluation under unmet assumptions

To benchmark CRL methods under realistic scenarios, we directly train the models on our dataset,
even when the data do not strictly satisfy the underlying assumptions of these methods. Specifically,
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Table 2: MCC and R2 on image-based scenes under unsatisfied assumptions.

Algorithm Ball on the Slope Cylinder Spring Light Refraction Avg

MCC R2 MCC R2 MCC R2 MCC R2

Supervised 0.9878 0.9962 0.9970 0.9910 0.9900 0.9800 0.9916 0.9891
Sufficient Change [6] 0.4434 0.9630 0.6092 0.9344 0.6778 0.8420 0.5768 0.9131
Mechanism Sparsity [41] 0.2491 0.3242 0.3353 0.2340 0.1836 0.4067 0.2560 0.3216
Multiview [16] 0.4109 0.9658 0.4523 0.7841 0.3363 0.7841 0.3998 0.8447
Contrastive Learning [42] 0.2853 0.9604 0.6342 0.9920 0.3773 0.9677 0.4323 0.9734

we conduct experiments on three static scenes: Ball on the Slope, Cylinder Spring, and Light
Refraction. Table 2 reports both the MCC and block-wise R2 scores.

Justification for Dissatisfaction. The dataset is simulated to resemble realistic scenarios without
imposing explicit constraints on the generation process. Thus, the assumptions for specific methods
may not be satisfied. For example, Sufficient Change [6] requires enough (2 ∗ nz + 1) domains
to provide sufficient distribution changing, while our datasets only contain 4 views. Besides, we
don’t constrain the causal graph to be sparse, which conflicts with the assumptions in Mechanism
Sparsity [41]. The Multiview [16] and Contrastive Learning [42] are designed for block-wise
identification rather than the component-wise mapping. Nevertheless, we still evaluate MCC for
these two methods to provide researchers with additional insights into their behavior.

Results and Discussions. Across the three scenes, the supervised upper bound achieves near-perfect
performance on both metrics, confirming the encoder’s capacity. However, current CRL methods
remain unsatisfactory in terms of MCC, with all methods averaging below 0.6. This suggests a
substantial gap still exists when applying current CRL approaches in real-world applications to obtain
component-wise identifiable representations. Among current methods, Sufficient Change [6] gains
the highest average MCC because this method is designed for component-wise identifiability, and
it pays more attention to balancing reconstruction and invariance. For R2, Sufficient Change [6],
Multiview [16], and Contrastive Learning [42] all perform well, as the assumptions for block-wise
identification are satisfied.

4.4 Evaluation for temporal causal representation learning

Table 3: MCC and R2 on video-based scenes.

Algorithm Fall Simple Robotics Study

MCC R2 MCC R2

IDOL [24] 0.2527 0.5901 0.2500 0.6503
CaRiNG [8] 0.2280 0.5457 0.2225 0.6476
TDRL [1] 0.2003 0.5525 0.2440 0.6394
TCL [43] 0.1717 0.4892 0.2163 0.6150
iVAE [44] 0.1881 0.5233 0.1948 0.6165

We evaluated five temporal CRL meth-
ods on two video scenes, Fall Simple
and Robotics Study , representing the
domains of Dynamic Physical Simula-
tion and Robotic Manipulation, respec-
tively. As shown in Table 3, temporal
CRL under difficult dynamic scenar-
ios remains challenging, as all meth-
ods exhibit low MCC values. Despite
low absolute MCC values, we find that
methods incorporating sparsity constraints [24] and leveraging temporal context [8] achieve relatively
better performance. Besides, we find that the Robotics Study scene, which contains denser relational
structures, consistently yields higher R2 values than the Fall Simple scene. Upon examining the data,
we attribute this to the smaller object sizes in Fall Simple, which make the temporal relations more
difficult to capture.

4.5 Evaluation for testing assumptions

We stress-test robustness by weakening the environment signal and corrupting domain labels in
static image generation. We compare Four-Scenes (informative domains), One-Scene (insufficient
variation), and Wrong Scene Labels (incorrect environmental indices). We report MCC and block-
wise R2 in Table 4. We find that reducing the number of domains weakens the sufficient-change signal
and slightly degrades the performance of the Sufficient Change method. In contrast, injecting incorrect
domain labels is even more detrimental, sometimes resulting in large negative R2 values. Meanwhile,
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Table 4: Ablation on domain assumption violations in static image generation.

Algorithm Four-Scenes One-Scene Wrong Scene Labels Avg

MCC R2 MCC R2 MCC R2 MCC R2

Supervised 0.9001 0.6882 0.8646 0.5808 0.9001 0.6882 0.8883 0.6524
Sufficient Change [6] 0.3264 0.2898 0.3197 0.2671 0.1412 −6.7706 0.2624 −2.0712

the supervised upper bound remains stable across all settings, highlighting the requirement of
sufficient change in distribution.

4.6 Configurable evaluation under specific assumptions

satisfied unsatisfied
0.0

0.2

0.4

0.6

0.8

M
CC

 S
co

re

0.720

0.609

Figure 6: MCC comparison of
sufficient change in satisfied
and unmet dataset.

By open-sourcing the simulator with flexible control over the latent
generation process, CausalVerse enables the evaluation of CRL meth-
ods under specific assumptions. For example, Sufficient Change de-
composes the latent vector as z = (zc, zs): zc is the content/invariant
component and, in CausalVerse, aligns with the ground-truth latent
that is shared across views; zs captures view-dependent variation. A
key assumption of Sufficient Change is that at least 2ns + 1 distinct
views are available, where ns is the dimensionality of zs. For the
configurable evaluation, we generate a new Cylinder Spring scene
comprising 40040 images with enough views for testing Sufficient
Change. As shown in Figure 6, adding enough domains shows a
clear MCC improvement, which highlights the importance of suffi-
cient change assumptions. We expect that this flexible evaluation framework will enable researchers
to adapt CausalVerse to align with the specific assumptions required by their methods.

5 Ethical Considerations, Limitations, and Conclusion

Ethical considerations and limitations CausalVerse is a simulated dataset generated using tools
like Blender and Unreal Engine 4, containing no real-world or personal data, thus avoiding privacy
or consent concerns. While care was taken to avoid biased or anthropomorphized representations,
users should note that models trained on synthetic data may not generalize directly to real-world
settings. Additionally, CausalVerse’s causal structures are handcrafted and may not capture the
full complexity or ambiguity of real-world systems. Despite our efforts to make the simulations as
realistic as possible, there is still a gap between simulated data and realistic scenarios. The dataset
also lacks natural noise factors such as sensor variability, and its visual complexity remains bounded
by simulation capabilities. While full realism cannot yet be achieved, we are committed to moving in
that direction by providing the research community with datasets that are as realistic, diverse, and
large-scale as possible to support continued progress in CRL. While current rendering technologies
still have limitations, we are fortunate to be at a time of rapid advancement in simulation, physically
based rendering, and AI-generated content. These developments offer new opportunities to push the
boundaries of synthetic realism.

Conclusion We present CausalVerse, a large-scale, high-fidelity benchmark for causal represen-
tation learning that aims to reconcile both realism with controllability and ground-truth access. By
spanning a wide spectrum of domains, from static image generation to multi-agent traffic interactions,
CausalVerse enables researchers to evaluate CRL methods across a broad range of diverse and
challenging conditions. With fine-grained access to the underlying causal structures and simula-
tion parameters, it further supports both the principled evaluation under idealized assumptions and
practical stress testing in complex, realistic settings. Through empirical evaluation of representative
approaches, we provide insights into the current state of CRL and its sensitivity to both satisfied and
violated assumptions. We hope that CausalVerse serves as a stepping stone toward more reliable,
interpretable, and generalizable causal learning systems, and as a foundation for future work that
unites causal theory with complex visual environments.
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paper’s contributions and scope?
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Justification: We claim it at the end of Section 1
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Justification: The limitations are well discussed at Section 5.
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model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
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will be specifically instructed to not penalize honesty concerning limitations.
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Justification: This paper is only about dataset and benchmark.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The code is in the supplementary material and experiment detail can be found
in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification:The code is in the supplementary material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experiment settings and methods can be found in Section 4 and more details
can be found in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification:The Standard Deviation are concluded in Appendix due to limit of main text.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We reported it in Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We strictly follow the Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have a statement in Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper has no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The baselines and datasets are used and cited correctly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have a new benchmark and produced a new dataset, all of these are released
in Hugging Face, the link can be found in the abstract.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We don’t invole llm in core method development.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix for
“CausalVerse: Benchmarking Causal Representation Learning
with Configurable High-Fidelity Simulations”

A Detailed Related Work

Causal discovery. Understanding complex systems lies in causal discovery, the identification
of causal relations from observational data [45]. Causal discovery methods generally fall into
three classes: constraint-based approaches use conditional-independence tests to recover the causal
skeleton and orient edges up to a Markov equivalence class (e.g., PC [45] and its kernel-based
KCI extension [46], FCI for latent confounding and selection bias [45, 47], and CCD for feedback
loops [48]); score-based techniques frame structure learning as model selection over DAGs—most
notably Greedy Equivalence Search (GES) [49], which maximizes a penalized likelihood (such as
BIC [50]) and admits extensions for nonlinear relationships [51]; and functional causal model (FCM)
methods impose specific assumptions on the data-generating process [52] (e.g., LiNGAM for linear
non-Gaussian systems [53], nonlinear additive noise models [54, 55], and post-nonlinear models [56])
to secure identifiability of the underlying causal graph.

Latent variables and constraints. Although the causal framework is well established, in many
real-world scenarios the variables of interest are latent constructs that cannot be directly observed
or quantified. A first try to handle latent variables for causal discovery is FCI [45], however, it is
already maximally informative under nonparametric CI constraints [57, 47]. Therefore, many new
tools beyond CI constraints have thus been developed, typically by imposing additional parametric
assumptions. These include rank constraints [58, 14], which generalize the Tetrad representation
theorem from [45] and provide algebraic conditions on covariance matrices; equality constraints
derived from Gaussian structural equation models that even have rank constraints as a subclass [59],
high-order moment constraints (beyond the second-order moments in statistics, e.g., skewness,
kurtosis, etc.) [60, 61, 8], which exploit non-Gaussianity for identifiability. Additionally, constraints
based on matrix decomposition [62], copula models [63], and mixture oracles [64] have also been
developed.

Causal representation learning. Causal Representation Learning (CRL) has emerged as a crucial
paradigm in machine learning that aims to discover and model the underlying causal mechanisms
that generate observable data [9]. While achieving identifiability by assuming the generating process
is a linear mapping between latent variables and observations [10–14], extending identifiability to
nonlinear cases remains a significant challenge. Recently, different approaches have been used to
establish identifiability in nonlinear settings. One major direction relies on sufficient changes in
latent variable distributions, where nonstationary or environmental shifts enable recovery of nonlinear
independent components and causal structures [6, 15, 8, 1, 2]. Supervised learning approaches
incorporate auxiliary information, self-supervised learning, or weak supervision to constrain the
representation learning problem [16–18]. Multi-view learning exploits simultaneously observed
data modalities to identify shared causal factors through contrastive learning frameworks [19, 20].
Additionally, structural constraints like sparsity regularize either the causal graph structure or the
mixing mechanisms to achieve identifiability [21–25]. These diverse methodological directions
reflect the inherent complexity of nonlinear identifiability and highlight the necessity of systematic
benchmarking to evaluate and compare different approaches for recovering meaningful causal
representations from high-dimensional observational data.

Simulation approaches Contemporary CRL datasets emerge from four distinct simulation ap-
proaches that trace a realism–controllability spectrum. (i) At the low-fidelity extreme, Pendulum [29]
and Flow [29] exemplify analytic toy-physics worlds whose closed-form ODEs and minimalist ray
tracing enable millisecond image generation and pixel-perfect ground truth. (ii) Stepping up in
complexity, mass–spring and rigid-body engines such as MuJoCo [27], PhysX and Box2D drive
datasets like Ball [3] and Cloth [3], enriching dynamics with contact, friction, and deformable bodies.
(iii) A different flavor appears in task-oriented robotics and circuit simulators: CausalCircuit [18]
couples MuJoCo [27] robot arms with digital-logic models so that perception, action, and outcome
are co-simulated within a single loop. (iv) Pushing for visual realism, high-fidelity 3D renderers such
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as Blender Cycles, underpin 3DIdent [5], Causal3DIdent [16], and CAUSAL3D [4], where photoreal-
istic materials, lighting, and multi-view cameras expand latent spaces from a handful of factors to
dozens. Beyond Blender, CausalVerse employs simulation engines such as Unreal Engine 4 [28] to
generate high-quality images and videos. For robotic interactions, the Habitat-Sim and RoboSuite
platforms are used for simulation; these platforms are based on the Bullet and MuJoCo [27] physics
engines, respectively.

Evaluation by simple synthetics. Simplified synthetic environments serve as common testbeds for
CRL evaluation due to their precise ground-truth causal structures. Physical simulations represent a
prominent approach, with works like V-CDN [3] and LEAP [2] utilizing mass-spring systems to assess
whether methods can identify object identities and their latent interactions. Similarly, TDRL [1]
evaluates temporal disentanglement in physical settings. The Causal3DIdent [16], CAUSAL3D [4],
and CausalCircuit [18] datasets offer images through 3D rendering engines like Blender and MuJoCo,
with controlled generative factors. However, these images depict only simple observed objects and
mechanisms and are limited to static, low-dimensional latent variables. Compared to existing datasets,
CausalVerse presents more complex scenarios for causal representation learning across a wide range
of scales—from static images to dynamic video, from single-agent to multi-agent interactions, and
from simple low-dimensional variables to high-dimensional data with hundreds of features. It also
leverages the more powerful Unreal Engine 4 [28] for rendering in some domains.

Evaluation by downstream tasks. Given the limitations of simplified simulations, researchers
also evaluate CRL methods through performance on downstream tasks with real-world datasets,
prioritizing practical utility while sacrificing precise causal verification. Transfer learning serves as
a common task, with iMSDA [6] and SIG [32] assessing adaptation performance across domains
to demonstrate the usage of latent causal mechanisms, while Salaudeen et al. [7] analyze domain
generalization datasets as proxy benchmarks for CRL. Reasoning [8, 33] and discovery tasks [34]
provide another evaluation avenue for CRL. Image classification is also a widely used task for
CRL methods [19, 17]. However, without ground-truth causal annotations, it remains unclear
whether performance improvements stem from capturing genuine causal factors and mechanisms
or merely task-relevant correlations. CausalVerse integrates high-fidelity images and videos with
comprehensive metadata, thereby supporting a broad spectrum of downstream tasks while enabling
precise benchmarking against ground-truth latent variables and causal structures. In particular,
its four static image generation scenarios can serve as distinct domains for domain-adaptation
experiments, and its robotics and physical-simulation modules—each captured from multiple camera
viewpoints—provide an exacting testbed for multi-view validation of causal models.

B Data Structure, Example Showcase, Brief Comparison and Discussions

In this section, we present an overview of the dataset’s structural design, summarized in a comprehen-
sive table. We then showcase detailed examples from various scenes to illustrate the dataset’s diversity.
Finally, we provide a brief comparison of the realism between our dataset and other existing synthetic
datasets. As shown in Figure 2, our CausalVerse dataset is organized into 4 domains comprising 24
distinct scenes. In the sections that follow, we will introduce each scene’s data scale, its causal graph,
an accompanying description of the corresponding scenario, and an example showcase.

B.1 Construction of causal relationships

In our dataset, these relationships arise from three sources: (1) physical constraints, (2) basic social
rules, and (3) arbitrary human constructs. For physics-based processes and robotic domains, the
edge set and functional dependencies are chosen to align with established physical laws, so that cause
and effect follow well-known principles rather than ad hoc assumptions. For example, state updates
and interactions are specified in a way that is consistent with standard mechanics, using conventional
variables and units, and with directions of influence that reflect accepted domain knowledge. In the
traffic domain, the causal influences encode social conventions such as maintaining safe following
distances, avoiding collisions, and stopping at red lights. Here the intent is to represent plausible
driver and agent behavior as shaped by widely understood rules, without claiming to capture every
nuance of real world decision making. In the static image generation domain, the causal structures
are deliberately constructed as human designs. They are intentionally built to support flexible data
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manipulation and to make relations more complex, so that users can create controlled dependencies
and diverse appearance variations for the purpose of studying causal representation learning. These
graphs are not intended to represent realistic causality; rather, they serve as structured tools that
organize factors and expose interpretable levers for generating images under different controlled
settings. We explicitly acknowledge that these arbitrarily designed graphs apply only to the static
image generation domain and do not reflect real world causal structures. For all graphs that are
derived from physical laws or social rules, we take care to ensure plausibility and internal consistency
during design. In practice, this means we define variables with clear meanings and admissible ranges,
specify directions of influence that are consistent with accepted understanding, keep parameters
within reasonable magnitudes, and avoid cycles or contradictions at the level of the stated mechanisms.
We also check that the qualitative implications of the specified relationships are sensible under simple
variations of conditions, so that the resulting graphs remain stable and coherent.

B.2 Static image generation

The static image generation domain is fully parameterized by 19 controllable variables that jointly
govern the synthesis and rendering of a human subject in a single frame. We further partition this
domain into four distinct scenes, each corresponding to a unique indoor setting. Each setting is
characterized by diverse lighting conditions and distinct background layouts. As summarized in
Table B.1, the domain comprises four scene categories: Human in Retail Store, Human in Living
Room, Human in Modern Apartment, and Human against Background Wall. The showcase examples
can be found in Figures B.1 and B.2.

Table B.1: Causal graph, data size, and description for the domain static image generation

Showcases Data
Size Causal Graph Description

Figures B.1
and B.2 ~40 k

This figure presents a partial causal graph
for static character generation and rendering.
Variables shown are gender (gnd), cup size

(cup), clothing style (clo), body weight
(wgt), overall appearance (app), and

eyebrows (ebr). Gender directly influences
clothing style and cup size, and these two

variables together shape the character’s final
appearance. Other factors, such as weight

and eyebrows, act independently, each
contributing to the rendered appearance

without interacting with one another.

B.3 Dynamic physical simulations (aggregated image)

We provide four aggregated image-based dynamic physical scenarios in Table B.2, which are arranged
to impose a controlled escalation of causal dimensionality, ranging from a three-factor system up to a
seven-factor environment. Specifically, the Cylinder–Spring scene comprises five latent variables;
the Light Refraction scenario involves three latent variables; the Ball on the Slope configuration
encompasses seven latent variables; and the Ball Meets Plasticine sequence comprises four latent
variables. In each case, every sample provides multiple visually inferable quantities—such as
compression length, refracted angle, sliding distance, or penetration depth—from which one can,
under the physical laws, deduce additional, less immediately apparent factors (e.g., spring stiffness,
initial velocity, medium viscosity). Moreover, each sample includes multiple views of the same scene
to facilitate diverse research tasks. The detailed image examples can be found in Figures B.3 to B.6.

B.4 Dynamic physical simulations (video)

For the video-based dynamic physical simulations domain, we provide six distinct scenes: Fall
Simple, Fall Complex, Projectile Simple, Projectile Complex, Collision Simple, and Collision
Complex. Regarding the distinction between simple and complex scenes: for Fall, the simple
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Table B.2: Causal graph, data size, and scene description for aggregated images for dynamic physical
simulations

Scene Data
size

Causal
graph Description

Cylinder Spring

Figure B.3
40k

This scene simulates a homogeneous
cylinder compressing an ideal spring under

gravity until static equilibrium, with the
cylinder’s mass scaling as m ∝ hr2 (where
h and r denote the cylinder’s height and

radius, respectively) and the resulting
spring deformation scaling as l ∝ m/k,

where k is the spring stiffness coefficient.

Light Refraction

Figure B.4
40k

This scene simulates a collimated light ray
refracting at a flat boundary between air
and an aqueous ink solution of varying

concentration (and hence varying refractive
index n2). For each sample, the incident

angle θ1 and ink concentration are changed,
which determines n2, and the refracted

angle θ2 is computed via Snell’s law
sin(θ1) = n2 sin(θ2). Images capture the
resulting ray path for downstream causal

representation evaluation.

Ball on
the Slope

Figure B.5

40k

This scene simulates a small sphere given
an initial speed v1 across a horizontal
surface for a fixed time 2T . The table

friction coefficient µ1 is proportional to the
sphere’s roughness r, causing it to

decelerate to v2 = v1 − µ1g(2T ). The
sphere then ascends an incline of angle θ

with slope friction µ2 ∝ r, traveling a
distance l = v2

2

2g(sin θ+µ2 cos θ) . Each sample
varies v1, θ, and roughness r to generate

diverse sliding distances l.

Ball Meets
Plasticine

Figure B.6

40k

This scene simulates a small sphere whose
mass m ∝ r3 undergoing free fall from a
height h under gravity g. Upon striking a

viscous clay medium with viscosity
coefficient u, the sphere penetrates to a

depth l = m
u

√
2gh. Each sample varies h,

r, and u, producing diverse penetration
depths l.

version contains only a single object undergoing free fall, without additional global factors such as
lighting. For Projectile, the complex version introduces object-specific angular velocity, vertical linear
velocity, and global lighting conditions. For Collision, the complex version adds distinct angular
velocities to both objects and incorporates global lighting changes. Each scene features multiple
camera viewpoints, which opens up opportunities for exploring view-specific features and their
entanglements. We group the six scenes into three categories: Fall, Projectile, and Collision. A more
intuitive and detailed overview of the representative simple scenes is provided in Table B.3. Since
the complex scenes are essentially extensions of their simple counterparts, we selectively showcase
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representative complex examples, while illustrative examples of the complex scenes can be found in
Figures B.7 to B.9.

B.5 Robotic manipulations

For the Robotic Manipulations domain, we provide five distinct scenes: Kitchen, Living, Study,
General, and Mobile. The first four involve fixed robotic arms operating under different environmental
conditions, while the last features a mobile robot within a closed environment. Detailed examples
of robotics video ysamples can be found in Figures B.10 to B.14. We represent the temporal causal
structures of these five scenes using encapsulated temporal causal graphs. A more intuitive and
detailed overview, including data size, causal graph, and description, is provided in Table B.4.

B.6 Traffic situation analysis

For the Traffic Situation Analysis domain, we provide five distinct scenes corresponding to traffic
conditions across five different urban maps. Here, we use the indicators Town01, Town02, Town04,
Town05, and Town10 to represent different city environments. The detailed examples of traffic
videos in these maps can be found in Figure B.15 to Figure B.19. These five scenes share a similar
driving logic for vehicles, which allows them to utilize a common causal structural graph. However,
the distribution of environmental noise differs significantly in these scenes. Specifically, each city
exhibits unique road layouts, varying traffic flow patterns, and differences in both vehicle numbers
and pedestrian densities. A more intuitive and detailed overview is provided in Table B.5.

B.7 Comparative analysis of dataset realism

Bridging the domain gap is crucial for enabling effective real-world generalization from synthetic
data. Thus, we qualitatively compare our dataset with standard synthetic alternatives. Compared with
standard synthetic datasets, our collection narrows the gap between synthetic and real-world data by
explicitly increasing both rendering granularity and scene realism.

Image data comparison We take the domain of static image generation as an example to be
compared with other synthetic datasets, such as Causal3DIdent [16]. Figure B.20 presents a side-
by-side comparison between our static images and those in Causal3DIdent [16]. In contrast to the
simple backgrounds and single-light sources that dominate most synthetic datasets, we introduce
complex scenes together with multiple light types during rendering, which reproduces more realistic
illumination and richer background detail. In addition, we rely on high-resolution assets and render
every image in 1024× 1024 pixels, resulting in a sharper appearance and finer textures.

Video data comparison Taking the domain of traffic situation analysis as an example, the use of
Unreal Engine 4 combined with a carefully curated city asset library allows realistic simulation of
urban traffic. The native weather system of Unreal Engine 4 further permits diverse and dynamic
atmospheric conditions, increasing environmental realism beyond that of existing synthetic video
datasets. Figure B.21 contrasts frames from our traffic scenes with those in Cloth [3]. Our data
demonstrates greater visual complexity and realism, offering a more faithful approximation of
real-world applications.
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Table B.3: Data size, causal graph, and description for dynamic physical process analysis.

Scene Data
Size Causal Graph Description

Fall

Figure B.7
~29k

𝑔

𝑣!"#,#

𝑥!"#,#

𝑔

𝑣!,#

𝑥!,#

𝑔

𝑣!%#,#

𝑥!%#,#

This scene simulates the free
fall motion of an object. The
temporal transition function
defines the state evolution

over time as follows:
vt+1,1 = vt,1 + g ·∆t,

ht+1,1 =
ht,1+vt,1 ·∆t+0.5·g·(∆t)2,

where vt,1 denotes the
velocity in the first

dimension (i.e., the vertical
y-axis) at time step t, under
a 3D Cartesian coordinate
system. ht,1 represents the

height of the object at time t,
which is associated with the
vertical coordinate xt,1. For

convenience, we will use
coordinates for

mathematical formulation
hereafter. As the partial

causal graph of Fall Simple,
this serves as a simplified

version of Fall Complex to
some extent.

Projectile

Figure B.8

~29k

𝑔

𝑣!"#,#

𝑥!"#,#

𝑔

𝑣!,#

𝑥!,#

𝑔

𝑣!%#,#

𝑥!%#,#

𝑣!"#,& 𝑣!,& 𝑣!%#,&

𝑥!"#,& 𝑥!,& 𝑥!%#,&

This scene simulates the
horizontal projectile motion
of an object. The temporal
transition function defines

the state evolution over time
as follows:

vt+1,1 = vt,1 + g ·∆t,
xt+1,1 =

xt,1+vt,1 ·∆t+0.5·g·(∆t)2,
vt+1,0 = vt,0,

xt+1,0 = xt,0 + vt,0.
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Table 4: Data size, causal graph, and description for dynamic physical process analysis.

Scene Data
Size Causal Graph Description

Collision

Figure B.9

~30k 𝑣!"#,%
(#)

𝑥!,%
(()

𝑥!,%
(#) 𝑥!)#,%

(#)

𝑥!)#,%
(()

𝑣!"#,%
(() 𝑣!,%

(() 𝑣!)#,%
(()

𝑣!,%
(#) 𝑣!)#,%

(#)

𝑚(#)

𝑚(()

𝑚(#)

𝑚(()

𝑚(#)

𝑚(()

𝑥!"#,%
(#)

𝑥!"#,%
(()

This scene simulates the
collision motion of two
objects. The temporal

transition function defines
the state evolution over time

as follows: v(1)t+1,0 =
(m(1)−m(2))v

(1)
t,0+2m(2)v

(2)
t,0

m(1)+m(2) ,

v
(2)
t+1,0 =

(m(2)−m(1))v
(1)
t,0+2m(1)v

(1)
t,0

m(1)+m(2) ,

x
(t+1)
1,0 = x

(t)
1,0 + v

(1)
t,0 ·∆t,

x
(t+1)
2,0 = x

(t)
2,0 + v

(2)
t,0 ·∆t.

Figure B.1: Example images from the two indoor scene categories: Human in Living Room and
Human in Modern Apartment. The variations across scenes affect only the environmental context,
like background and light conditions.
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Table B.4: Data size, causal graph, and description for robotics analysis.

Showcase Data
Size Causal Graph Description

Figure B.10
to Fig-

ure B.14
~18k

𝐸

𝑅!"#

𝑂!"#

𝐸

𝑅!

𝑂!

𝐸

𝑅!$#

𝑂!$#

The figure abstractly
illustrates the interaction

processes between the robot,
the environment, and objects
across five different robotics

scenes. Here, E
encapsulates global

environmental factors such
as table texture, material,
and lighting variations. R
abstractly represents the

robot’s internal states
induced by its actions during

interactions. These states
include joint positions

reflecting the movement of
multiple robot arm joints,

gripper position,
end-effector position, and

the robot’s orientation
(rotation), among others. In
the Robotics Mobile scene,
R also involves significant

changes in the robot’s
overall position, whereas in

the other scenarios, the
robot’s position remains
fixed. As shown in the

figure, in fixed settings, the
robot’s joints and

end-effector (ee) exhibit
diverse motion patterns over
time, resulting in rich video

dynamics. Finally, O
encapsulates the positions

and rotations of manipulable
objects in the environment,
representing the interaction
between the robot and these

objects.
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Table B.5: Data size, causal graph, and description for traffic situation analysis.

Showcase Data
Size Causal Graph Description

Figure B.15
to Fig-

ure B.19
~33k

The left panel depicts a
partial causal graph

obtained after abstracting
the latent variables. All

traffic lights in the scene are
collectively represented as
Liti, the operational states
of every vehicle (including
throttle, brake, and steering
.etc) are represented as Anii,

the orientation of each
vehicle is represented as
Roti, and the position of

each vehicle is represented
as Loci, where i denotes the

current time step. Please
note that the variables and
relations are more complex
in the real case than in the

left partial graph.

Figure B.2: Example images from the two indoor scene categories Human in Retail Store and
Human against Background Wall.
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Figure B.3: Sample frame from the Cylinder Spring scene. It shows a homogeneous cylinder
compressing an ideal spring under gravity until static equilibrium is reached.

Figure B.4: Sample frame from the Light Refraction. This scene depicts a collimated light ray
refracting at the interface between air and an aqueous ink solution of varied refractive index, following
Snell’s law.
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Figure B.5: Sample frame from the Ball on the Slope scene. It illustrates a sphere decelerating
across a flat surface due to friction and then ascending an incline, with travel distance governed by
initial speed, incline angle, and surface roughness.

Figure B.6: Sample frame from the Ball Meets Plasticine scene. This sense shows a sphere in
free fall impacting a viscous clay medium, with penetration depth determined by its mass and the
medium’s viscosity.
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Color Frames Depth Frames

Figure B.7: Visualization of two samples from the Fall Complex scene. The two samples depict
free-fall scenarios involving a single object and multiple objects, respectively. For each sample, four
viewpoints—birdview, frontview, leftview, and rightview—are arranged in rows. Within each row, we
present color frames and depth frames captured by different sensors from the same viewpoint. Each
sensor-view pair includes 4 frames, sampled at a consistent rate within each sample, with one-to-one
correspondence between color and depth frames.
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Figure B.8: Visualization of two samples from the Projectile Complex scene. Sample 1 illustrates
a complex projectile motion of a large object (a table) exhibiting rotational dynamics. Sample
2 showcases projectile motion under varying scenes and lighting conditions. For each sample,
four viewpoints—birdview, frontview, leftview, and rightview—are arranged in rows. Each row
presents color frames and depth frames captured by different sensors from the same viewpoint. Each
sensor-view pair includes 4 frames, sampled at a consistent rate within each sample, with one-to-one
correspondence between color and depth frames.
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Figure B.9: Visualization of two samples from the Collision Complex scene. The two samples
depict free-fall scenarios involving a single object and multiple objects, respectively. For each sample,
four viewpoints—birdview, frontview, leftview, and rightview—are arranged in rows. Within each
row, we present color frames and depth frames captured by different sensors from the same viewpoint.
Each sensor-view pair includes 4 frames, sampled at a consistent rate within each sample, with
one-to-one correspondence between color and depth frames.
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Figure B.10: Visualization of two samples from the Robotics Kitchen scene. Sample 1 shows the
robot grasping a small bowl on the table, while Sample 2 illustrates the robot attempting to grasp
a kettle on the table — potentially for subsequent actions such as reclassification, placing it near a
heating area, or even failure. For each sample, five viewpoints are arranged in rows. Each sample is
temporally sampled at regular intervals starting from t = 0, and different views at the same timestep
provide complementary view-specific information about the robotic arm’s actions.
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Figure B.11: Visualization of two samples from the Robotics Living scene. This scene captures
various actions performed by a robot in a home living room environment. Sample 1 shows the robot
grasping a book on the table, while Sample 2 depicts the robot attempting to grasp a beverage can on
the table, potentially for later organization. For each sample, five viewpoints are arranged in rows.
Each sample is temporally sampled at regular intervals starting from t = 0, and different views at the
same timestep provide complementary view-specific information about the robotic arm’s actions.
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Figure B.12: Visualization of two samples from the Robotics Study scene. This scene showcases
various actions performed by a robot in a study room environment, where a wide variety of objects
are placed on the table. Sample 1 illustrates the robot grasping a book from the table and attempting
to place it on a small bookshelf. Sample 2 shows the robot trying to grasp another book from the
table, potentially for later organization. For each sample, five viewpoints are arranged in rows. Each
sample is temporally sampled at regular intervals starting from t = 0, and different views at the same
timestep provide complementary view-specific information about the robotic arm’s actions.
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Figure B.13: Visualization of two samples from the Robotics General scene. This scenario
captures various actions of a robot operating in an open and general environment (i.e., not limited to a
specific household setting, hence the name General). Sample 1 shows the robot grasping a small bowl
on the table, while Sample 2 illustrates the robot attempting to grasp a container on the table. For each
sample, five viewpoints are arranged in rows. Each sample is temporally sampled at regular intervals
starting from t = 0, and different views at the same timestep provide complementary view-specific
information about the robotic arm’s actions.

Figure B.14: Visualization of six frames from the Robotics Mobile scene sampled from one
sequence to illustrate temporal continuity. The scene depicts a robot moving in all directions
and waving its robotic arm in a confined environment. For each frame, we concatenate a 512×512
third-person video frame of the main agent with four 128×128 frames captured from two additional
agent perspectives (including both color and depth views), forming a complete frame. Users can
selectively extract and utilize different parts according to their specific needs.
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Figure B.15: Example traffic scene video captured in Town10. Six frames are sampled from one
sequence to illustrate temporal continuity. Although global variables such as traffic density differ
among cities, the fundamental driving logic of vehicles remains unchanged.

Figure B.16: Example traffic scene video captured in Town01.

Figure B.17: Example traffic scene video captured in Town02.
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Figure B.18: Example traffic scene video captured in Town04.

Figure B.19: Example traffic scene video captured in Town05.
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Figure B.20: Comparison of image realism. The top row shows static images from our dataset
rendered in complex scenes with multiple light sources, while the bottom row shows images from the
Causal3DIdent dataset rendered against a uniform background with a single light source.
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Figure B.21: Comparison of video data realism. The top row shows two video frames from the
Traffic Situation domain of our dataset, featuring realistic and complex urban scenes populated by
numerous interacting agents. The bottom row presents two frames from the Cloth [3] dataset, which
uses synthetic backgrounds and depicts only a single simple object per frame.
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B.8 An scene example detailing causal variables and relations

We walk through one concrete dataset example to provide visual and conceptual intuition about the
elements we expose—namely, the causal variables and their relationships. We illustrate this using
the Fall Simple scene. In this scene, global variables specify time–invariant properties of the setup,
while dynamic variables evolve across simulation steps, and observation variables record what a
sensor would see. The global layer includes the scene identifier (which selects assets and camera
placement), the object’s category (e.g., cube, sphere), and the acceleration of gravity. The dynamic
layer contains the object’s 3D position and rotation at each exported time step t ∈ {0, . . . , T − 1}.
Under a constant gravitational field, the vertical component of velocity increases approximately
linearly with time—formally, v(t+1) = v(t) + g∆t and y(t+1) = y(t) + v(t)∆t+ 1

2g(∆t)2—so the
vertical displacement between successive frames grows as the object accelerates downward. The
observation layer then renders these states to RGB (and, where applicable, depth) frames using the
selected scene context. Causally, gravity influences vertical acceleration, which in turn updates
velocity and position over time; initial conditions propagate forward through these update equations;
the object category selects a rendering asset that affects appearance but does not modify the physical
law; and the scene context (background geometry and lighting) affects only the rendering of pixels
and not the underlying state transitions. This separation lets us vary context and appearance without
confounding the physical mechanism, while still producing rich visual diversity.

Category Sub-category Variable Dim. Type Range Description
Global Scene scene (1,) D 6 types Scene identifier (assets,

camera layout)

Global Scene gravity (1,) C – Acceleration of gravity
(m s−2)

Global Object render_asset (1,) D 90 types Visual appearance of the
falling object

Dynamic Object position (T,3) C – 3D coordinates across ex-
ported time steps

Dynamic Object rotation (T,3) C – Euler angles across ex-
ported time steps

Dynamic
(derived)

Object velocity (T,3) C – Finite-difference estimate
using ∆t

Dynamic
(derived)

Object accel_y (T,1) C – Vertical acceleration;
equals g under no drag

Notes. T denotes the number of exported frames; Type: D = discrete, C = continuous. Derived variables are
computed from the primary dynamic states and the export step ∆t; they may be provided directly or recomputed
from the released states.

Details regarding the data size, causal graph, and description for dynamic physical process analysis
can be found in Table B.3. We also include a video showcase for this and other scenes in the
documentation and on our webpage.

B.9 Flexible configurations

This subsection details how the dataset exposes flexible configurations of the underlying causal
generative process while preserving a clear separation between structure, parameters, and observation
protocol. The controls cover visually grounded domain labels, temporal dependencies that govern
how present states evolve from the past, and explicit intervention histories that can be logged and
replayed. Together, these levers allow researchers to create targeted conditions that either satisfy
common assumptions in causal representation learning or deliberately violate them in a controlled
manner.

First, in the static image domain, changing the domain identifier switches the background geometry
and high dynamic range lighting without altering the semantic latent factors that generate the human
subject. Practically, the same identity, pose, clothing, and body attributes are rendered in visually
distinct environments with different illumination patterns, color temperatures, occlusions, and clutter
statistics. This isolates contextual variation as a pure domain shift while the latent causal graph for the
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subject remains unchanged. Such a setting is particularly useful when evaluating sensitivity to context
or when treating scenes as separate domains in adaptation protocols, because the supervision available
to the learner is the same set of factors even though the pixel distribution differs substantially.

Second, in the free–fall video scene, varying the gravitational constant across a small, interpretable
grid, for example g ∈ {4.9, 9.8, 14.7}ms−2, yields domains that differ only in the strength of the
mapping from height to velocity. The transition is governed by standard kinematics with time step ∆t,
namely v(t+1) = v(t) + g∆t and y(t+1) = y(t) + v(t)∆t+ 1

2g(∆t)2, while the horizontal velocity
remains constant in the absence of drag. Changing g therefore adjusts the temporal rate at which
potential energy converts to kinetic energy without modifying the graph structure or introducing
additional confounders. Because the modification is parametric and physically interpretable, it
supports crisp counterfactual statements such as “under the same initial conditions, the object would
reach the ground earlier or later solely due to a different gravitational field.”

Third, in the traffic videos, behavioral rules translate directly into temporal dependencies by altering
the stochastic mapping from the previous traffic state to the current action profile. A canonical
example is the minimum headway rule (the desired spacing between successive vehicles). Tightening
this rule increases the likelihood of braking and lane–keeping behaviors when relative distance
shrinks, which can be described as a shift in the conditional distribution P (A(t) | S(t−1)). Crucially,
the high–level causal structure that links environment, agent states, and actions is retained, but the
policy governing interactions changes in a measurable, semantically meaningful way. By sweeping
the headway target across several levels, one can move smoothly from dense, stop–and–go traffic to
free–flow conditions and examine whether a learned representation tracks the underlying decision
mechanisms rather than surface statistics.

Fourth, temporal dependencies can also be manipulated through the observation protocol by adjusting
the recording time step while keeping the simulator’s internal dynamics fixed. Increasing the export
cadence from 0.02 s to 0.10 s reduces temporal resolution and makes the visible sequence less
Markova at the frame level: information that was previously captured by immediate neighbors is now
spread across longer lags, so the effective transition kernel in the observed space becomes higher order
even though the latent physical process is unchanged. This configuration probes whether temporal
representation learners identify causal factors that are stable to sampling changes, a property that
matters in practice whenever sensors operate at heterogeneous frame rates or logs are down-sampled
for storage.

Fifth, intervention histories are supported both in robotics and in physics scenes, enabling precise
do–style manipulations and deterministic replay. In robotics, a scripted, deterministic motion such as
a full–arc sweep imposes a hard intervention on the action channel; each call is timestamped so that
the same initial state and random seed reproduce the identical trajectory for counterfactual comparison
against an alternative script. In physical environments, mechanism parameters like the gravitational
constant, the spring stiffness, or the restitution coefficient can be overwritten at designated frames
to realism either soft interventions that momentarily perturb the mechanism or hard interventions
that reset and hold it thereafter. Because these edits are localized in time and recorded alongside the
sequence, one can align pre– and post–intervention segments, quantify the causal effect on latent
variables and observables, and evaluate whether the learned representation follows the intervened
mechanism rather than spurious correlations.

Each control is designed to be minimal with respect to the causal graph (structure held fixed whenever
possible) while still inducing a detectable and interpretable change in the data–generating process,
thereby supporting fine–grained diagnosis of model behavior. We just show some examples of flexible
configurations and research can use the ground truth of causal graphs to do further configurations.
Besides, we have released all the source codes and documents of data generation so researchers can
create their own data to further corroborate their experiments.

C Experiments

C.1 Image-based method implementation details

Model design To fairly compare the performance of different CRL methods on our dataset, we select
four representative unsupervised approaches and one supervised upper bound: Sufficient Change [6]
(domain-shift based identifiability), Sparsity [41], Multiview [16], Contrastive Learning [42], and
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Supervised. All methods share a ResNet-18 backbone pretrained on ImageNet: we drop its final fully
connected layer, apply adaptive average pooling followed by flattening to produce a 512-dimensional
feature vector, and then attach a lightweight head. Sparsity adopts a variational autoencoder design:
the pooled feature passes through two linear–ReLU stages and then splits into parallel linear heads
that output the mean µ and log-variance log σ2 of a latent vector z; during training we sample
z ∼ N (µ, σ2) via the reparameterization trick and reconstruct back to 512 dimensions with a
symmetric decoder, optimizing an ℓ2 reconstruction loss plus KL

[
N (µ, σ2) ∥N (0, I)

]
. Multiview

attaches a three-stage MLP projection head (linear–ReLU–linear–ReLU–linear) that maps the 512-
dimensional feature into a compact embedding whose dimensionality is set by the dataset metadata; it
is trained with a contrastive objective that pulls together samples sharing the same causal attribute and
pushes apart the others. Sufficient Change instantiates the sufficient-changes principle [6]. We split
the latent space of dimension d into a content subspace zcont ∈ Rc and a style subspace zsty ∈ Rs.
The style branch is passed through a conditional normalizing flow whose parameters are generated by
an auxiliary MLP from a learned domain embedding u. The flow output is concatenated with zcont to
form a deconfounded latent z̃, which is used both for reconstruction via a symmetric decoder and for
classification via a downstream MLP head. The total loss jointly optimizes the evidence lower bound,
the flow log-determinant, and a classification cross-entropy term. Contrastive Learning follows a
SimCLR-style instance discrimination realization [42]: a projection MLP (linear–ReLU–linear) maps
the 512-dimensional feature to an embedding of dimension dproj used by an InfoNCE loss with two
stochastic augmentations per image. Positives are two views of the same image; all other in-batch
views serve as negatives. At evaluation, the projection head is discarded and the pre-projection
representation is used as the learned latent. Supervised is a purely supervised variant: after pooling
to 512 dimensions it applies a simple MLP (linear–ReLU–linear–ReLU–linear) to produce a d-
dimensional embedding trained with a supervised regression objective, without any reconstruction or
latent regularization.

Loss and data arrangement All models train on the same metadata-annotated image collection,
which is split once into training and test subsets with a fixed ratio. Mini-batch formation differs by
method: Sparsity and Supervised use standard random sampling of individual images; Multiview
samples images at random and applies two stochastic augmentations per image to form positives
according to the shared causal attribute; Contrastive Learning also uses two augmentations per
image but defines positives as two views of the same image and uses all other in-batch views as
negatives; Sufficient Change replaces random batching with a BalancedBatchSampler so that each
batch contains an equal number of examples from each of the four view domains. In optimization,
Sparsity minimizes a VAE reconstruction plus KL divergence loss (weighted by λVAE), a Jacobian
sparsity penalty (weighted by λsparsity), and a mean squared error on the latent codes; Multiview
optimizes a contrastive objective over pairwise augmented views defined by shared causal attributes;
Contrastive Learning minimizes an InfoNCE loss with temperature τ over instance-discrimination
pairs; Sufficient Change jointly minimizes a per-domain VAE loss (reconstruction plus a clamped KL
term) and a Gaussian-prior log-likelihood penalty on the flow-transformed style subspace (weighted
by λgauss); and Supervised uses a regression loss on its final embeddings. All methods employ
identical Adam settings (same learning-rate schedule and weight decay) and report per-epoch global
Pearson MCC and uniform-average R2 on both training and test splits.

C.2 Video based method implementation details

Model design Due to the high resolution of videos in our datasets—even the smallest scenes
reach 512×512—we employ pretrained high-quality VAE encoders to convert videos into compact
superpixel-level representations. This design enables stable baseline training while allowing subse-
quent temporal causal representation learning (CRL) methods to operate directly on the superpixels
with minimal influence.

We explore two pretrained VAEs: a frame-based VAE from Stable Diffusion [65] and a video-
based VAE from CogVideoX [66]. Their downsampling factors are (8, 8, 1) and (8, 8, 4) along the
(H,W, T ) dimensions, respectively. The Stable Diffusion VAE provides temporally independent
latents that better preserve per-frame spatial fidelity, while the CogVideoX VAE exhibits stronger
long-term temporal reconstruction capability. Under our experimental setup—randomly sampling 16
consecutive frames per video—the Stable Diffusion VAE produces more stable and length-consistent
latent representations, making it our default choice for generating superpixels.
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For the inner VAE architecture, we adopt a lightweight convolutional VAE operating on per-frame
superpixels. Each superpixel clip is encoded independently and reconstructed frame by frame. The
encoder consists of two stride-2 convolutions with bias compensation, generating spatial feature
maps for both the mean and log-variance branches. Latent variables are obtained via a standard
reparameterization step, and the decoder mirrors the encoder to reconstruct each frame from an
explicit spatial latent. We further introduce Bias-Compensated Convolution, where a learned per-
channel bias term is adaptively adjusted whenever pre-bias activations exhibit excessive negativity.
All nonlinearities employ Adaptive LeakyReLU, whose slopes can be dynamically tuned based on
layer-wise activation statistics collected by an ActivationAnalyzer. This analysis–adjustment process
is optional and does not alter the forward computation during training. These two mechanisms
improve numerical stability without changing the overall architecture. The model processes frames
independently over time; temporal dynamics and causal dependencies are entirely modeled by CRL
methods built atop this baseline representation.

The rationale for using this inner VAE configuration is to maximize the recovery of latent variables.
In searching for the optimal model, we aim to achieve observational equivalence—that is, to make
the reconstructed video as close as possible to the ground-truth video. When we increase the network
depth (e.g., using more than three strided convolutional layers) to achieve stronger compression,
the model inevitably loses temporal details and background information, leading to reconstructions
that fail to preserve human-perceptible motion dynamics. The situation worsens when employing
pooling or high-compression MLP-based designs, where the reconstructed video may retain overall
structure but appears static, lacking any meaningful temporal variation. Alternative architectures
such as U-Net offer skip connections that pass high-resolution features from the encoder to the
decoder, helping preserve fine spatial details and enabling highly accurate reconstructions. However,
these skip pathways also leak excessive information to the decoder without proper selection, making
the estimated latent variables entangled and semantically ambiguous. Consequently, the encoder’s
representations lose their exclusive explanatory power—a crucial property for causal modeling.

Therefore, our chosen architecture strikes a balance between preserving dynamic temporal information
and maintaining static spatial detail. It serves as an effective and interpretable framework for video-
based causal representation learning, providing both reconstruction fidelity and a semantically
plausible latent space.

Loss and data arrangement All models are trained on the same metadata-annotated video col-
lection, which is split once into training and test subsets with a fixed ratio. For iVAE, the model
performs reconstruction while keeping the latent variables close to the domain-conditioned Gaussian
prior p(z | u). It penalizes dependencies between latent dimensions using mutual information and
total correlation terms, with their weights aligned with those of the KL divergence and reconstruction
losses. For TCL, latent features from consecutive time steps are treated as positive pairs, while
another frame sampled from a different time step forms a negative pair. Both pairs are concatenated
and passed through a lightweight temporal discriminator. The contrastive loss weight is set to 0.1.
For TDRL and CaRiNG , we set the latent space is eight-dimensional (z_dim = 8), all of which
are treated as time-dependent (z_dim_fix = 8, z_dim_change = 0). The transition prior looks back
two steps (lag = 2) and uses temporal embeddings of size 8 for 16 discrete time indices (nclass =
16, embedding_dim = 8) to capture dynamics. The networks inside the encoder and priors have a
hidden width of 128 (hidden_dim = 128). The training loss is weighted key hyperparameters: gamma
= 0.0075 enforces consistency with the Laplacian transition prior for future states. For IDOL, an
additional sparsity weight with 0.2 encourages sparsity in the Jacobian of instantaneous and historical
influences, promoting interpretable temporal structure. For other hyperparameters, the pretrained
VAE yields 4 channels. The inner VAE uses a convolutional kernel size of 4 and a stride of 2. The
learning rate is set to 1e-4 for iVAE and TCL, and 1e-5 for the remaining methods.

D Statement

CausalVerse provides a high-fidelity, open-source benchmark for causal representation learning that
combines realistic visual complexity with fully known, configurable causal generating processes. By
enabling reproducible evaluation across diverse domains—static images, dynamic physics simulations,
robotic control, and traffic scenarios—our dataset accelerates methodological progress, fosters
transparent comparison, and lowers the barrier to entry for both researchers and newcomers in CRL.
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Because CausalVerse is built on controlled, simulated data and is intended solely as a research
tool rather than for direct deployment, we do not identify any immediate negative societal impacts.
We anticipate that broad adoption of this benchmark will strengthen the reliability and real world
applicability of future CRL methods without introducing adverse consequences.
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