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ABSTRACT

While multimodal deception detection methods improve detection efficiency, they
inevitably introduce higher data collection and processing costs. Deceptive behav-
ior is often accompanied by emotional fluctuations such as tension, anxiety, and
guilt, which can lead to contradictory, inconsistent, or suppressed emotional ex-
pressions in individuals’ facial expressions.This paper regards deceptive behavior
detection as an abnormal signal recognition problem, aiming to capture abnormal
features from regular behavior patterns. First, faces in videos are converted into
a set of learnable facial emotion embedding sequences. Subsequently, a Time-
LSTM-GCN module is proposed to model the spatiotemporal relationships be-
tween these facial emotion embedding sequences. The combined adversarial loss
optimizes the decision boundary for deceptive behaviors. This loss function con-
sists of two main components: first, semi-supervised learning of dominant facial
emotions enhances the representational power of the embedding sequence; sec-
ond, by comparing the similarity between embedding nodes with the same emo-
tion (positive samples) and embedding nodes with different emotions (negative
samples), the model is encouraged to capture both local structure within the se-
quence and global differences between sequences. Experimental results show that
our new baseline model outperforms existing deception detection methods based
on multimodal or multi-type features. Code is provided in the supplementary ma-
terial.

1 INTRODUCTION
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Figure 1: The process of facial expression changes between deceptive and non-deceptive behaviors.

With the rapid development and widespread application of digital media, ethical issues and security
risks caused by human-centered deceptive behaviors are becoming increasingly prominent. Humans
have a limited ability to detect deception, and without the aid of tools, their accuracy is only slightly
above chance. Some behavioral cues may enhance its accuracy, but they are difficult for untrained
people to detect 2018). Automatic deception detection is a human-centric video anal-
ysis technique that has found applications in many real-world scenarios, including airport security

checks, court trials, job interviews, and personal credit risk assessment (Ding et al., [ 2019).
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Recent studies have explored multimodal approaches for integrating diverse deception cues (Wu
et al., 2018 |Krishnamurthy et al.| |2023}; [Karimi et al., 2018} |[Karnati et al., 2022). However, col-
lecting complete cross-modal data in real-world scenarios remains challenging, and inconsistent
modality configurations across datasets hinder effective validation. Moreover, multimodal methods
often incur high data costs. This motivates a deeper investigation into single-modality cues. Prior
work (Ding et al.,|2019; Zhu et al., 2025;Zhang et al.,2022; |Khan et al.| | 2021} |Yang et al., [2020) has
shown that eye movements, lip dynamics, gestures, and body motions in the video modality provide
rich contextual information, highlighting the potential of video-based deception detection.

Deception is influenced by subjective emotions and intentions, making it difficult to extract universal
features across scenarios. Within the same context, deceptive and truthful behaviors often exhibit
contrasting emotional patterns (see fig[I). Psychological studies show that when people conceal
genuine emotions, involuntary micro-expressions may occur, such as stiff mouth corners, shifting
gaze, or frequent blinking. Thus, deception is a dynamic process formed by subtle facial cues, which
requires analyzing temporal evolution across frames rather than relying on a single static image.

This paper proposes a low-cost end-to-end automatic deception detection framework FMGTranDD.
First, an automatic face acquisition strategy is adopted to systematically extract the sequential facial
frames of the subjects in the video and generate the corresponding main emotion labels. Secondly,
the Transformer facial representation encoder is used to extract basic facial features, map them into
seven categories of emotion embeddings and construct time series. To distinguish between genuine
and deceptive behaviors, we design a Time-LSTM-GCN module to model the spatiotemporal cor-
relation features of sentiment embedding, and finally optimize the decision boundary of deceptive
behaviors by combining adversarial losses. The main contributions of this work are:

* We designed a low-cost, end-to-end automatic deception detection framework, FMG-
TranDD, based on LSTM-GCN. This framework automatically collects facial informa-
tion and extracts facial representations, mapping them into facial emotion embedding se-
quences, thereby constructing a novel deception cue representation method.

* A Time-LSTM-GCN module is proposed to construct the spatiotemporal relationship of
facial emotion sequences, and combined with a combined adversarial loss function to opti-
mize the decision boundary of deceptive behavior.

* The experimental results show that the proposed new baseline model outperforms most of
the existing methods using multi-modal or multi-type feature fusion in terms of perfor-
mance indicators.

2 RELATED WORK

Automatic Deception Detection. In recent years, machine learning methods have significantly
advanced the field of automatic deception detection. Early work, such as Krishnamurthy et al. (Kr-
ishnamurthy et al.| [2023)), proposed the first neural network-based model that leveraged multimodal
features for deception detection. Wu et al. (Wu et al., |2018) systematically analyzed the importance
of visual, audio, and textual modalities, while Karimi et al. (Karimi et al.,[2018)) introduced an end-
to-end framework (DEV) to avoid the need for complex feature engineering. Subsequently, some
studies shifted toward single-modality optimization. For example, Ding et al. (Ding et al., 2019)
developed FFCSN focusing on facial and body features, Avola et al. (Avola et al., 2020) explored
gesture features, and Yang et al. (Yang et al.||2020) proposed emotion transition features (ETF) for
deception detection under limited data conditions. These methods highlight the contrast between
truthful and deceptive behaviors but have yet to fully address the issue of cross-domain transfer-
ability. In terms of multimodal extensions, Karnati et al. (Karnati et al., [2022) incorporated EEG
signals, Zhang et al. (Zhang et al 2022) decomposed deceptive behaviors into question—answer
units and proposed a graph-based cross-modal fusion model (GCFM), and Zhu et al. (Zhu et al.,
2025)) exploited inconsistencies among body parts to design a dynamic learning framework (DLF-
BRAM). However, these approaches often rely on labor-intensive feature engineering. On the other
hand, some studies focus on identifying key deception cues. For instance, Rill-Garcia et al. (Rill-
Garcia et al.|[2019) reported that gaze direction, eye landmarks, and acoustic features serve as stable
indicators across cultures, while Khan et al. (Khan et al., 2021) emphasized the importance of eye
and facial micro-movements as salient features for automatic deception detection.
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Although existing research generally emphasizes the importance of multimodal fusion, it faces many
limitations in cross-scenario applications. Current research on automatic deception detection often
relies on multimodal features. However, in different scenarios (e.g., personal testimony(Gupta et al.,
2019; |Guo et al.l [2023), interrogations(Xu et al.l [2025)), court trials(Pérez-Rosas et al [2015)), the
available modalities are not consistent, making it difficult for multimodal methods to generalize
effectively. Moreover, multimodal approaches lack broad interpretability: although combining mul-
tiple modalities may appear to provide richer cues, deception signals are inherently hard to define,
and errors in one modality can interfere with others. Therefore, this study focuses solely on the video
modality from public datasets, analyzing emotional dynamics presented by subjects and assuming
that truthful and deceptive behaviors exhibit contrasting emotional expressions.

Abnormal Signal Detection. In the field of anomaly detection, Long Short-Term Memory net-
works (LSTMs) and Graph Convolutional Networks (GCNs) have been widely adopted due to their
strengths in temporal modeling and spatial relation learning. LSTMs are effective in capturing long-
term dependencies in sequential data, and prior studies have applied them with OC-SVM or SVDD
for unsupervised detection (Vos et al.| [2022; Ergen & Kozat, [2020), leveraged autoencoder recon-
struction errors for ECG anomaly detection (Roy et al., [2023), and utilized them in domains such
as railway system monitoring (Wang et al., 2022). On the other hand, GCNs exploit the inherent
graph structure of data for representation learning, such as integrating LOF for intrusion detection
(Qin et al.l|2025), combining with TCN for cloud server performance anomaly detection (Tan et al.
2024]), and enabling weakly supervised video anomaly detection (Park et al.,|2023). More recently,
hybrid models that combine LSTMs and GCNs have shown effectiveness by jointly modeling tem-
poral and spatial features, including applications in network traffic anomaly detection (Kaya et al.,
2023)), encrypted traffic classification (Yuan et al., 2025), and EEG signal analysis (Kang et al.,
2026). Distinct from these works, our approach focuses on facial emotion embedding sequences
extracted from video modality, treating them as anomalous signals for modeling and detection.

3 PROPOSED METHOD
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Figure 2: Emotional probability scores of facial categories.

Yang et al. (Yang et al.l 2020) formulated deception detection as a binary classification task by
analyzing emotional tag features (ETF) from facial frames and demonstrated its effectiveness on a
single-scene dataset. Inspired by their work, we argue that directly using discrete emotion labels may
overlook latent emotional cues. Recent deep learning—based facial emotion recognition methods
(Georgescu et al., [2019} [Serengil & Ozpinar, 2024) typically generate emotion probability matrices
and determine the final category using a maximum-probability selection strategy, which may discard
informative secondary emotions. As shown in fig]2] classifying a sample as “neutral” ignores a 0.2
probability of “happy”, while labeling it as “happy” fails to reflect a 0.34 probability of “fear”. Such
hidden emotions and their temporal variations provide critical clues for deception detection. As
illustrated in fig[3] our proposed FMGTranDD framework addresses this by integrating three core
components: (i) automated face acquisition and feature encoding, (ii) a hybrid Time-LSTM-GCN
module, and (iii) a composite contrastive loss. The following subsections describe each component
in detail.

Automatic Facial Capture and Facial Feature Coding. Recent studies generally rely on com-
plex feature engineering processing. For example, the method proposed by Zhu et al. (Zhu et al.,
2025) needs to obtain the segmentation results of the head and limb regions in advance and use
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Figure 3: Automatic deception detection framework FMGTranDD model framework.

them as model input data after fine screening. This method has limitations in cross-scene migration
(‘such as not applicable to scenes where the limbs are not visible ), and will increase the cost of data
acquisition and processing. For this reason, we have optimized and simplified the process. Since
facial expression is the key carrier of emotional expression, it is necessary to accurately capture the
facial area of the video subject. As shown in fig]3} given a video V' € RT>*3*HxW . ¢ represents
the number of video frames ; H, W denotes the width and height of the video frame. According to
the discrete uniform sampling, the index of t video frames is obtained, as shown in equation T}

end — start

; = start +1
X SaT+ZO|: 1

:|,i€{0,1,'~',t—1}, (1)
where start represents the starting frame index, end represents the end frame index, and ¢ represents
the number of frames collected. In order to avoid too many interference faces in the first and last
clips of the video, we set the time interval as start = T/10, end = T — T'/10 to effectively filter
non-target faces. According to the calculated index value, the facial image data is collected in turn
and the main emotional categories are labeled. The industrial-grade Deepface tool developed by
Serengil et al. (Serengil & Ozpinarj,2024) integrates multiple types of face recognition and emotion
recognition algorithms. We use its extract_faces and analyze functions to extract facial features and
label the main emotion types in turn. During the data processing, when the face is not detected in
the index frame, the preset compensation mechanism will be automatically triggered to ensure the
integrity of the data acquisition. For example, when the face is not detected in the x; frame, the face
of the x; — j or x; + j index is obtained by decreasing or increasing the strategy. When the ana-
lyze function or other emotion recognition methods cannot effectively recognize facial emotions, the
sample is automatically marked as an ° unknown ’ category. The FaceClip and ExpressionRecog-
nition processes shown in fig[3]automatically complete facial cutting and emotion recognition. The
emotion labels generated in this process are defined as * emotion pseudo-labels *. The process is
fully automated and does not require manual intervention frame selection.

Finally, each video generates a facial sequence f € R**3*"X% where h and w represent the width
and height of the facial image, which is uniformly set to 112 x 112 pixels. In order to extract effective
facial features, we compared and evaluated the performance of various feature coding backbones,

including traditional CNN convolution, CNN3D (Tran et al.| [2018), ResNet (He et al., [2016), and
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Figure 4: Time-LSTM-GCN module structure diagram.

TransFace (Dan et al.,|2023). Finally, TransFace based on Transformer architecture is selected as the
feature extractor. The pre-training model can directly extract facial features without fine-tuning. The
output f; € R**" sequence processed by TransFace contains facial key detail feature information.

Time-LSTM-GCN Hybrid Module. The LSTM and GCN models have wide application value
in various abnormal signal detection tasks. Inspired by the research of |[Kaya et al.| (2025); Roy et al.
(2023); Kang et al.[(2026), we treat the extracted basic facial representation sequence f; as a spe-
cial type of signal data for processing and analysis. In order to better mine the decision boundary
between real and deceptive behavior in f;, we designed the Time-LSTM-GCN module. As shown
in figH] the Time-LSTM-GCN module is a two-branch structure. Inspired by the attention mecha-
nism proposed in|{Hu et al.| (2018);|Qilong Wang & Hu|(2020), the first branch of Time-LSTM-GCN
uses the LSTM network to capture the inter-frame temporal correlation of the facial representation
sequence f;, and generates the spatio-temporal attention weight T,, € R**! after linear transforma-
tion. The weight matrix quantifies the importance of each facial frame in the deception detection
task. As shown in equation [Z}equation [3]:

fi=LSTM (f);, 2)

T, = L(Tanh (L (Softmazx (f;)))), 3)

where ¢ represents the number of LSTM layers ; L denotes the linear mapping layer ;
Tanh, Softmaz is the corresponding activation function. The second branch first encodes the
facial representation sequence f; into the facial emotion embedding sequence f. € R**7, as shown
in equation [4}

fe= L (LN (Relu (L (L (£))))), )

where LN represents layer normalization, and Relu is the corresponding activation function. The
facial emotion embedding sequence f, is regarded as an advanced signal, which reflects the changes
of the main subjects ’ facial display emotions and hidden emotions in the video. In order to mine
the decision boundary between real and deceptive behaviors, we use dynamic graph convolution (
DGC ) to model the spatio-temporal relationship of f.. In addition, this process will continuously
update the node relationship of f.. Specifically. The adjacency matrix is generated according to the
neighbor relationship of f., as shown in equation

B fo N [t N\
M‘damp[(mnwe) (ese) 1]’ ®

where clamp represents the numerical constraint function, and the numerical range is constrained
between 1 and-1 ; ||-||2 denotes L2 regularization, ¢ = le — 8 prevents division of 0. Further, f. and
M are introduced into DGC to construct a spatio-temporal relationship. The emotional probability
matrix of each frame is regarded as a node, and the node relationship is updated repeatedly through
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multi-layer DGC. The specific representation process is shown in equation[6]:

L(fe)
clamp_min ZZ fe t+ e, 1.0}

G; = Relu | fe + o M| , (6)

J
where clamp_min represents the minimum value of 1.0, and j represents the number of DGC
layers. Finally, we combine the information from both branches, fc,q = ToG;. We pass feyq into

the classification head to get the probability scores of the real and deceptive pairs. The classification
head consists of a simple linear mapping layer.

Combined Opposition Loss. In the previous section, we elaborated on the core module Time-
LSTM-GCN of the framework. The module takes the basic facial representation sequence f; as
the signal input, transforms it into a discriminative facial emotion embedding sequence by learning
mapping, and establishes its spatio-temporal correlation features. In order to enhance the effect of
spatio-temporal relationship modeling, we specially design a combined opposition loss function to
improve the performance of the method by simultaneously optimizing the decision boundaries of
real and deceptive behaviors.

Semi-supervised emotional loss. The actual meaning expressed by the facial emotion embedding
sequence is the seven emotion scores of each frame. Therefore, we designed a semi-supervised loss
to improve the representation ability of facial emotion embedding sequences. Specifically, based on
the available pseudo-labels generated in the previous section, we calculate the cross-entropy loss for
data with valid sentiment annotations. As shown in equation:

ﬁsup (pz] ayzj 7? Z ylj ° lOg plj)] (7)

where p;; is the multi-class emotion prediction probability of the ¢ th frame of the model ; y;; is
the effective real emotion label ; T is the number of frames ; C is the total number of emot10nal
categories, defaulted to 7. Secondly, inspired by the research of Dwibedi et al. (Qilong Wang & Hul,
2020), considering the high correlation of adjacent expression features, we use the tridiagonal mask
constraint model to learn the smooth transition of adjacent frame features, so that it conforms to the
continuity prior of expression changes. Specifically, as shown in equation [8equation|[9]:

SF_ explsu/7) - Mm>
Lunsu pz E log s (8)
P ( S exp(su/7)

1, ifft—k <1
M — Y — ?
t {0, otherwise. ©)

where p;; is the multi-class emotion prediction probability of the i th frame of the model ;s =
cos(hy, hy)/T, hy is the L2 normalized feature of the ¢ frame, and cos refers to the cosine similarity
function; 7 is the temperature scaling coefficient, which enlarges the similarity difference ; My is
a tridiagonal matrix, the main diagonal and adjacent 1 positions are 1, and the rest are 0. The total
emotional semi-supervised loss is shown in equation [T0}

Lgs (pij> yij) = Supﬁunsup (pijv yij) + unsupﬁunsup (pij) 5 (10)
where sup and unsup are the loss control coefficients, defaulted to 1.0 and 0.4.

Graph contrastive loss. In order to further optimize the decision boundary, we draw on the ideas of
various graph comparison learning methods (Xu et al., 2024} |Liu et al.l 2024} Zhang et al., [2023)).
The facial emotion embedding sequence f. output by the DGC module is constructed as a graph
structure data, in which each frame emotion probability matrix is used as a graph node. By com-
paring the similarity between the nodes in the same sequence ( positive samples ) and the nodes
between different sequences ( negative samples ), the model can simultaneously learn the local
structure and global difference characteristics of the emotional embedding sequence. In the specific
implementation, firstly, the anchor nodes are randomly selected. The positive samples come from
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the random nodes of the same sequence, and the negative samples come from the random nodes of
other sequences. The specific comparison loss is shown in equation[TT}

iy o exp(s; /1)
Ni=11g<exp< /1) + expls, /T>) (an
N

where s;", s, are positive and negative sample similarity respectively ; 7 is the temperature coeffi-
cient ; NN is the effective contrast logarithm.

Lo =

Total loss. Combined with semi-supervised emotional loss and graph comparison loss, the total loss
is as shown in equation[I2]- equation[I3]:

C
Las (piryi) = Z [yilog (pi)] (12)
Etotal = ACcls + a‘css + ﬂ‘ch7 (13)

where mathcalL;s is a common cross-entropy loss used to calculate the label difference between
true and deceptive ; p; is the probability of predicting truth or deception ; y; is a true or deceptive
label, a3 is the loss control coefficient default to 1/7" and 1.

4 EXPERIMENTALS

Datasets. Commonly used datasets for deception detection include DOLOS (Guo et al.| [2023)),
Bag-of-Lies (Gupta et al.l 2019), RLT (Pérez-Rosas et al.,|2015), and SEUMLD (Xu et al., [2025).
DOLOS originates from a game show and contains 1,675 video clips (899 deceptive, 776 truthful),
while Bag-of-Lies is collected in laboratory settings with 325 clips (162 deceptive, 163 truthful).
Both are relatively large and suitable for model evaluation. In contrast, RLT (121 clips) and SE-
UMLD (76 participants with multimodal data) are limited in scale. Therefore, our experiments are
primarily conducted on DOLOS and Bag-of-Lies.

Implementation Details. We implemented our method using the PyTorch framework and trained
it on an NVIDIA A6000 GPU. The model was optimized with the AdamW optimizer for approx-
imately 300 epochs with a learning rate of le-4. Following the evaluation protocol in [Zhu et al.
(2025)), we report accuracy (ACC), F1 score (F1), and area under the ROC curve (AUC) as perfor-
mance metrics.

Table 1: Comparison of deception detection performance of different methods on the DOLOS and
BagofLies datasets (evaluation metrics are ACC, F1, and AUC)
| DOLOS (Guo et al.;[2023) | Bag-of-Lies (Gupta et al.[2019)

Method

ACC F1 AUC ACC F1 AUC
TimeSformer (Bertasius et al.|[2021) | 0.6649 0.6642 0.7352 | 0.5296 0.4455 0.5407
VideoMAEv2 (Wang et al.|[2023) 0.6740 0.7174 0.7080 | 0.5231 0.3130 0.5211
VideoMamba (L1 et al.[[2024) 0.6914 0.7358 0.7287 | 0.5816 0.4256 0.4569
LieNet (Karnati et al.][2022) 0.5650 0.6972 0.5102 | 0.5978 0.5814 0.5809
FacialCueNet (Nam et al.[[2023) 0.6098 0.6865 0.6199 | 0.5623 0.6326 0.5953
PECL (Guo et al.|[2023) 0.6475 0.7120 0.6271 | 0.5951 0.5106 0.5941
GLDD (Kang et al.|[2024) 0.5547 0.6252 0.5213 | 0.5666 0.5517 0.5789
DLF-BRAM (Zhu et al.[[2025) 0.7886 0.8227 0.7772 | 0.6050 0.5563 0.6107
Proposed 0.7870 0.7866  0.8285 | 0.6667 0.6667 0.6380

Contrast Experiment. In this subsection, we compare our proposed FMGTranDD with DLF-
BRAM (Zhu et al. 2025), LieNet (Karnati et al., 2022), FacealCueNet (Nam et al.| [2023)), PECL
(Guo et al. [2023), GLDD (Kang et al.| 2024), as well as representative video understanding ap-
proaches, including TimeSformer (Bertasius et al., |2021), VideoMAEv2 (Wang et al., |2023), and
VideoMamba (Li et al.| 2024). Among them, LieNet integrates facial and audio features; PECL
combines facial, textual, and body-motion cues; DLF-BRAM fuses facial and body-motion fea-
tures; while FacealCueNet and GLDD rely solely on facial features. Following the protocol in (Zhu
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Table 2: Ablation results (ACC, F1, AUC) on the DOLOS dataset using different backbones, spa-
tiotemporal modeling modules, and loss function configurations.

Module \ Loss \ ACC Fi AUC

Backbone | Only-LSTM  Only-GCN  Time-GCN-LSTM | L., Lo Ly |
CNN3D (Tran et al.|[2018) v 0.7229 0.7220 0.7738
CNN2D v v 0.7470  0.7465 0.7420
ResNet-152 (He et al.|[2016) v v 0.7952 0.7953 0.8517
v v 0.8133 0.8128 0.8171
v v 0.8313 0.8313 0.8763
TransFace (Dan et al.||2023) v v v 0.8554 0.8553 0.8803
v v v v 108614 0.8615 0.8943
v v v v | 0.8675 0.8675 0.9158

et al} |2025), we adopt the corresponding train/validation/test splits for evaluation. On the DOLOS
dataset, three predefined train—test splits are used, and we report the average performance across
three metrics. On the Bag-of-Lies dataset, we adopt a 7:1:2 split for training, validation, and testing.
The results are summarized in Table[I]

On the DOLOS dataset, FMGTranDD achieves the best AUC, significantly outperforming all com-
peting methods. This demonstrates the model’s superior ability to learn clearer decision boundaries
and discriminative features. The improvement primarily stems from the Time-LSTM-GCN module,
which effectively models the spatiotemporal dependencies of facial emotion embeddings, together
with the contrastive loss, which enforces local and global discriminative constraints. Although DLF-
BRAM slightly outperforms FMGTranDD in ACC and F1, it relies on multi-modal inputs (facial +
body motion), whereas our method achieves comparable or superior performance using only a sin-
gle modality, highlighting its efficiency and robustness. In contrast, general-purpose video models
perform noticeably worse on DOLOS, indicating that while such models excel in generic video un-
derstanding, they fail to capture the subtle facial variations critical for deception detection. In the
Bag-of-Lies dataset, FMGTranDD consistently achieves the best results across all three metrics, out-
performing all baselines. Notably, multi-modal methods such as LieNet, PECL, and DLF-BRAM
perform worse than single-modality approaches, suggesting that when domain shifts and modality-
specific noise are present, simple feature fusion does not guarantee performance gains and may even
degrade results. By contrast, FMGTranDD, through spatiotemporal modeling of facial expression
embeddings, effectively captures micro-expression conflicts and suppression patterns commonly as-
sociated with deceptive behavior, leading to stronger generalization and cross-dataset robustness.
Meanwhile, general-purpose video models achieve no more than 0.58 ACC on Bag-of-Lies, further
confirming that such models favor global semantic representations but fail to encode the abnor-
mal cues required for deception detection. In summary, the comparative experiments validate the
advantages of FMGTranDD in terms of discriminative power, generalization, and single-modality
efficiency. They also underscore the importance of task-specific modeling of abnormal signals for
deception detection, rather than relying solely on generic video understanding frameworks.

Ablation Experiment. To assess the contribution of different components in our proposed frame-
work, we conducted systematic ablation studies on the DOLOS dataset. These experiments covered
the impact of the backbone, spatiotemporal modeling modules, and loss functions, as well as two
key hyperparameters: the number of input frames and the number of DGC layers. The results
are summarized in Tables As shown in Table [2] the choice of backbone and model structure
plays a critical role in overall performance. When trained with only the classification loss, both
CNN3D and CNN2D exhibit limited discriminative ability. Replacing them with ResNet-152 sig-
nificantly boosts the AUC to 0.8517, while leveraging the face-recognition—pretrained TransFace
(112x112) further strengthens representation quality, confirming that high-quality facial features are
essential for deception detection. Building on this foundation, introducing spatiotemporal model-
ing leads to substantial improvements: using LSTM alone raises the AUC to 0.8763, and further
combining it with GCN improves ACC/F1 to 0.8554/0.8553 and AUC to 0.8803. With the full
Time-GCN-LSTM architecture, all metrics reach new highs, indicating that temporal dependencies
and graph-structured relationships are complementary for deception detection. In addition, fig[3]
visualizes the raw features and those processed by the Time-LSTM-GCN module. In the unmod-
eled raw features (a) and (c), genuine and deceptive samples exhibit significant overlap with blurred
inter-class boundaries. After applying Time-LSTM-GCN (b) and (d), the features form clearer clus-
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Figure 5: Feature distribution visualization before and after applying the Time-LSTM-GCN module
on different datasets. (a) Raw feature distribution of the DOLOS dataset; (b) DOLOS features
encoded by Time-LSTM-GCN; (c) Raw feature distribution of the Bag-of-Lies dataset; (d) Bag-of-
Lies features encoded by Time-LSTM-GCN.

Table 3: Effect of different input frame lengths  Table 4: Effect of DGC layer depths on DOLOS

on DOLOS dataset (ACC, F1, AUC). dataset (ACC, F1, AUC).
Frames | ACC F1 AUC DGC Layers | ACC F1 AUC
8 0.8434 | 0.8434 | 0.8420 2 0.8675 | 0.8675 | 0.9158
16 0.8675 | 0.8674 | 0.9109 4 0.8313 | 0.8308 | 0.8803
24 0.8434 | 0.8434 | 0.9092 6 0.7952 | 0.7953 | 0.8636
32 0.8675 | 0.8675 | 0.9158 8 0.7892 | 0.7893 | 0.8529

ters in the emotional embedding space, and the separation between truthful and deceptive samples
is substantially enhanced. This also shows that Time-LSTM-GCN can effectively capture the spa-
tiotemporal dependencies of sequences and increase the distance between different categories in
the latent space, thereby optimizing the decision boundary. The ablation on loss functions further
highlights their necessity. With only the classification loss, the model shows limited discriminative
power. Adding the semi-supervised loss L5 increases the AUC to 0.8803, demonstrating its effec-
tiveness in enhancing emotion embedding representations. Incorporating the graph-contrastive loss
L4 provides additional gains, pushing AUC to 0.9158 and ACC to 0.8675, the overall best. These
results suggest that semi-supervised and contrastive learning are complementary, jointly improving
both local representation quality and global decision boundaries, thereby enhancing robustness and
generalization.

As shown in Tables [3H4] both the number of input frames and the depth of DGC layers substantially
influence performance. Increasing the number of frames generally improves results, though not
monotonically. With only 8 frames, the AUC is limited to 0.8420, indicating that short sequences
fail to capture complete facial dynamics and miss deception-related cues. Expanding to 16 frames
yields a marked improvement, suggesting this length adequately covers a full cycle of facial emotion
changes. However, at 24 frames, performance drops, although the AUC remains high (0.9092).
Finally, with 32 frames, performance rises again to the overall best, showing that longer windows
can still provide marginal gains in decision boundaries, albeit with diminishing returns. For DGC
layers, the best performance is observed with 2 layers. As the depth increases, performance steadily
declines, reflecting the effects of over-smoothing and overfitting, which reduce the discriminative
capacity of embedding sequences. Thus, a moderate depth (e.g., 2 layers) strikes the best balance,
effectively modeling graph relations while preserving feature distinctiveness.

5 CONCLUSION

This paper proposes FMGTranDD, which models the spatio-temporal relationships of facial emo-
tion embeddings and incorporates adversarial optimization strategies to enhance the recognition of
anomalous signals. The method not only demonstrates strong discriminative and generalization
abilities in deception detection but also provides a feasible pathway for broader anomaly behavior
recognition tasks. In the future, this approach can be extended to emotion recognition and behav-
ioral analysis of patients with depression and other mental disorders, enabling the capture of subtle
facial dynamics and emotional abnormalities, and offering new technical support for mental health
monitoring and clinical-assisted diagnosis.
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A APPENDIX

A.1 ETHICS STATEMENT
We have ensured that all data used in this research comply with ethical guidelines and proper cita-

tions. The study follows responsible Al practices and avoids any data manipulation or misrepresen-
tation.
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A.2 REPRODICIBILITY STATEMENT
The experiments in this work are fully reproducible. All datasets and code used for model train-

ing and evaluation are publicly available. Detailed information on the experimental setup, model
configurations, and hyperparameters is provided to enable independent reproduction of results.

A.3 USE OF LLMs

This work does not involve the use of any large language models (LLMs), such as GPT, BERT, or
similar models.
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