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Abstract

Large language model (LLM) watermarks enable authentication of text provenance,
curb misuse of machine-generated text, and promote trust in AI systems. Current
watermarks operate by changing the next-token predictions output by an LLM.
The updated (i.e., watermarked) predictions depend on random side information
produced, for example, by hashing previously generated tokens. LLM watermark-
ing is particularly challenging in low-entropy generation tasks – such as coding –
where next-token predictions are near-deterministic. In this paper, we propose an
optimization framework for watermark design. Our goal is to understand how to
most effectively use random side information in order to maximize the likelihood
of watermark detection and minimize the distortion of generated text. Our analysis
informs the design of two new watermarks: HeavyWater and SimplexWater.
Both watermarks are tunable, gracefully trading-off between detection accuracy
and text distortion. They can also be applied to any LLM and are agnostic to
side information generation. We examine the performance of HeavyWater and
SimplexWater through several benchmarks, demonstrating that they can achieve
high watermark detection accuracy with minimal compromise of text generation
quality, particularly in the low-entropy regime. Our theoretical analysis also reveals
surprising new connections between LLM watermarking and coding theory.

1 Introduction

Watermarking large language models (LLMs) consists of embedding a signal into the text generation
process that allows reliable detection of machine-generated text. Over the past two years, there
have been increasing calls for LLM watermarking by both policymakers [1–3] and industry [4].
Watermarks enable authentication of text provenance [5], promote trust in AI systems [6], and can
address copyright and plagiarism issues [7, 8]. Ideally, watermarks should be detectable directly from
text without access to the underlying LLM. Watermarks should also be tamper-resistant – i.e., robust
to minor edits or paraphrasing of watermarked text [9] – and incur little degradation in text quality.

LLMs are watermarked by changing their next-token distributions according to random side infor-
mation (see Fig. 2 for a visualization). Side information is typically generated by hashing previous
tokens and secret keys, then using the hash to seed a random number generator to produce a sample s
[10–12]. The side information s is then used to change the distribution from which the next token x
is sampled. Watermarks are detected by mapping a token x and corresponding side information s to
a score f(x, s). By averaging scores across a sequence of tokens, we can perform statistical tests
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to decide if the text is watermarked. Watermarking is particularly challenging when the next-token
distribution has low entropy, as is often the case in tasks such as code generation [13].

Our goal is to design watermarks that optimally use side information to maximize detection accuracy
and minimize distortion of generated text. Our starting point is a minimax optimization framework
for watermark design. This framework allows us to jointly optimize how side information is em-
bedded into next-token distributions and the score function used for watermark detection. When
restricting the optimization to binary-valued scores, we uncover a surprising new connection between
LLM watermarking and coding theory: designing minimax-optimal watermarks is equivalent to
constructing codes with large Hamming distance between codewords. We use this finding to design
a new watermark called SimplexWater based on Simplex codes [14]. In the low-entropy regime,
SimplexWater is optimal across binary watermarks and empirically outperforms competing methods
that use binary scores (cf. Red-Green [15], and Correlated Channel [16] in Fig. 1).

Figure 1: HeavyWater and SimplexWater demon-
strate favorable detection performance (measured by
p-values) with minimal distortion to the base unwa-
termarked model (measured by Cross-Entropy). See
Section 5 for details.

Next, we relax the binary restriction on the score
function. We consider score functions whose
outputs are independently and identically (i.i.d.)
drawn from a continuous distribution prior to the
start of watermarking. Interestingly, we show that
the Gumbel watermark [17] is a specific instan-
tiation of our framework when scores are drawn
from a Gumbel distribution. We prove that, in
the low-entropy regime, watermark detection de-
pends on the weight of the tail of the distribution
from which scores are sampled. This observation
leads to HeavyWater, whose scores are drawn
from a heavy-tailed distribution. HeavyWater out-
performs competing state-of-the-art watermarks in
terms of detection-distortion trade-offs (cf. Gum-
bel [17] in Fig. 1).

In practice, SimplexWater and HeavyWater are
implemented by solving an optimal transport (OT) problem [18] that maximizes the average score
across all couplings between the side information and the next-token distributions. We efficiently
solve the OT problem using Sinkhorn’s algorithm [19]. Since the OT preserves the average next-token
distribution, both watermarks are distortion-free, and a user without knowledge of the side information
would not perceive an average change in generated text. SimplexWater and HeavyWater are also
tunable: we provide a simple scheme to further increase watermark detection accuracy at a small
distortion cost by upweighting high-score tokens.

Our main contributions are:

• We introduce SimplexWater, a binary score watermark rooted in coding theory, and derive
optimality guarantees across all binary-score watermarks.

• We analyze watermarks that use randomly generated score functions drawn from a continuous
distribution, and show that the Gumbel watermark [17] is a special case of this construction.

• We prove that the detection power of watermarks with randomly generated score functions depends
on the tail of the score function. This leads to HeavyWater, a new watermark whose scores are
randomly drawn from a heavy-tailed distribution.

• We demonstrate the favorable performance of HeavyWater and SimplexWater across an array of
models, datasets, and tasks, relative to state-of-the-art watermarks.

Related Works

We discuss the related work most closely related to ours next, and provide a broader survey of the
watermarking literature in Appendix A.1. The first LLM watermark was proposed in [15] – referred
here as the Red-Green watermark. This method partitions the token vocabulary into two lists, which
are then used to reweigh the token distribution via exponential tilting. The Red-Green watermark
was extended via different random side information generation schemes in [10]. Watermarking has
since been extensively studied, with more recent work introducing new sampling schemes to improve
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Figure 2: Visualization of the components of watermarking design.

watermarking [20] and multi-draft watermark generation methods [21]. The use of threshold tests
over average scores to detect watermarks – a common paradigm in the literature, a design decision we
make here – was questioned in [22, 23]. [23], in particular, shows that more sophisticated statistical
tests can boost watermark detection. We note that our watermarks can be paired with multi-draft
methods such as [21] to boost detection, though we do not explore this here.

Distortion-free Watermarking. In watermarking, distortion quantifies how much a watermark
distribution differs from the original LLM output and is a proxy for textual quality. [17] uses
the Gumbel-max trick to design a distortion-free watermark. This scheme was relaxed to a soft
reweigh of the next-token distribution [24] following the idea from the Red-Green watermark. The
Gumbel watermark achieves excellent performance in our benchmarks, though it is outperformed
by HeavyWater. Another popular distortion-free watermark is [13], which uses inverse transform
sampling. SynthID [11], in turn, produces watermarked tokens via a strategy called tournament
sampling. This watermark was extensively evaluated in real-world user tests, and we also select
it as a competing benchmark. More recently, [16] proposed a binary-score watermark based on
partitioning the token vocabulary into an arbitrary number of sets, followed by a simple binary test for
watermark detection. The method in [16] is simple to implement and incurs little runtime overhead.
However, it underperformed both HeavyWater and SimplexWater in our benchmarks. Additional
distortion-free watermarks include [25], which combines a surrogate model with the Gumbel-max
trick to boost watermark detection.

Low-Entropy Watermarks. Several schemes were proposed to address the challenge of watermark-
ing low-entropy distributions [10, 26]. [27] proposes a resampling method that is applied to adapt
the Red-Green watermark to low-entropy distributions, while [28] turns to semantic sentence-level
watermarks. [29] uses a logit-free method that injects the texts with words from an input-dependent
set, and [30] weights the tokens’ scores according to their entropy. We share a similar design goal of
optimizing the watermark for the low-entropy regime.

In practice, side information will not be perfectly random: it will depend on previous tokens and a
secret shared key through various hashing schemes [15, 31]. Hashing schemes range from simple
max/min operations to elaborate adaptive context windows [11] and semantic hashing [32]. We
view side information generation as a separate yet no less important problem. Instead, we focus on
how to optimally use side information, and we develop a principled and theory-guided approach for
watermark design.

2 LLM Watermarking Framework

In this section, we outline an optimization formulation for LLM watermarking. We denote random
variables using capital letters (e.g., X and S), their realizations by lower-case letters (e.g., x and s),
and their distributions by sub-scripted P or Q (e.g., PX and PS). We consider an LLM with token
vocabulary X = [1 : m] ≜ {1, . . . ,m}. During generation, the t-th token is drawn auto-regressively
from a distribution QXt|X1,...,Xt−1

with support in X . We assume watermarking is performed on a
per-token basis, so we denote PX = QXt|X1,...,Xt−1

for simplicity.

Consider two parties: the watermarker and the detector (see Fig. 2). For each token generated by the
model, both parties share random side information, represented by a random variable S ∼ PS over a
discrete alphabet S = [1 : k]. The watermarker has access to the next-token distribution PX . Their
goal is to change PX using the side information S. The detector, in turn, identifies the watermark
from a sequence of observed tokens and side information pairs (X,S) and does not know PX . We
divide the watermarking procedure into three main components.
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The first component is random side information generation. Both the watermarker and the detector
must produce the same side information S. In practice, this is accomplished by employing hashing
strategies: previous tokens and a secret key are combined and hashed to produce a seed for a random
number generator [11, 15]. This generator then serves as the distribution PS from which side
information S is sampled. Popular hashing strategies consider min, max or sum operations over
some finite context window of previously generated tokens. Note that both the watermarker and the
detector can produce the side information since it only depends on previously generated text and
shared keys.

The second component deals with how randomness is used. We begin by designing a score function
f : X × S → R that maps a token x and corresponding side information s onto a score f(x, s). The
score function f is fixed and known to both the watermarker and the detector. In the watermarking
stage, we use f and the shared randomness s to change the next-token distribution. Specifically,
the watermarker samples from the conditional distribution PX|S=s instead of PX . The distribution
PX|S=s is designed to increase the probability of tokens with high scores f(·, s). We call the altered
distribution PX|S=s the watermarked distribution.

The last component is watermark detection. In the detection stage, the detector receives a sequence
of tokens and side information realizations {(xt, st)}nt=1, from which they compute a sequence of
scores {f(xt, st)}nt=1. We assume the sequence of tokens is declared as watermarked if the averaged
score 1

n

∑n
t=1 f(xt, st) ≥ τ , where τ is a threshold that trades off between specificity and sensitivity

of watermark detection. See Figure 2 for a visualization of the watermarking procedure.

Most existing watermarks can be instantiated in terms of the three components above. For example-1,
in the Red-Green watermark [15], S is a sequence of m bits (k = 2m), assigning one bit per token. A
realization s of side information is used to partition X into two lists, corresponding to the entries
that are drawn as 1 or 0. Tokens marked as 1 (“green list”) are upweighted, and tokens marked as 0
(“red list”) are downweighted, resulting in the watermarked distribution PX|S=s from which the next
token is sampled. The score function is binary: f(x, s) = 1 if x is in the green list determined by s,
or 0 otherwise. Detection is done by averaging binary scores and performing a threshold test.

An Optimization Formulation for Watermarking. Given the framework above, we present an
optimization formulation from which we derive and analyze SimplexWater and HeavyWater. Our
focus is on optimizing the watermarked distribution PX|S and the score function f(x, s) when PS
is the uniform distribution and we generate a sample S ∼ PS for each token. We also assume
watermark detection is based on thresholding the average score 1

n

∑n
t=1 f(xt, st) which, in turn,

acts as a proxy for E[f(X,S)]. When the text is watermarked, this expectation is with respect to
PXS = PX|SPS , and otherwise, it is taken with respect to PXPS .0 Our goal is to design a pair
(f, PX|S) that maximizes the gap between average score when text is watermarked relative to when
the text is not watermarked.

Watermark performance will inevitably depend on the entropy of the next-token distribution PX
[10, 13]. We focus on low-entropy distributions, whose watermarking is considered to be challenging
[30]. We adopt the low-entropy constraint given the following definition.
Definition 1 (Low-entropy distributions). We use min-entropy as our measure of uncertainty for the
next-token distribution PX , defined as

Hmin(PX) = − log2 max
x

PX(x).

A distribution PX is said to be low-entropy if its min-entropy satisfies Hmin(PX) ≤ 1 bit/token, i.e.,
at least one token has probability mass greater than 1

2 .

Remark 1 (Watermarking in Low-Entropy Regime). Our theoretical guarantees imply favorable
watermarking performance in low-entropy scenarios. The ‘low-entropy’ constraint used in our
analysis is not merely a theoretical assumption. It is based on the empirical observation that LLMs’
next-token distributions are inherently low entropy. Even though coding, Q&A, and summarization
tasks are commonly understood as having varying degrees of ‘entropy’ – with coding assumed to
have lower entropy – we still observe > 90% of next-token predictions across these tasks falling

-1See Appendix A.2 in which we instantiate additional watermarks within the proposed setting.
0Observe that PXPS corresponds to the null hypothesis (non-watermarked text): the generated tokens are

independent of the side information S.
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well within the low-entropy considered in our theoretical analysis for practical temperature values
(see Appendix C.1 Figures D.14 and D.15). Refer to [33, Page 13] and [34, Page 4] for a similar
discussion.

Given the aforementioned assumptions, the optimal score function f and the joint distribution PXS
that maximize detection performance for the worst-case distribution in Pλ are the solution of the
optimization problem

Dgap(m, k, λ,F) = max
f∈F︸︷︷︸
Score

min
PX∈Pλ︸ ︷︷ ︸

LLM
distribution

max
PXS︸︷︷︸

Watermarked
distribution

(
EPX|SPS

[f(X,S)]− EPXPS
[f(X,S)]

)
. (1)

We call (1) the maximum detection gap. We restrict the inner maximization in (1) to couplings
between the marginals (PX , PS), i.e., PX|S induces a joint distribution PX,S on X × S whose
marginals are PX and PS . As a result, the inner maximization is an OT problem [35, 36]. We denote
the class of couplings of (PX , PS) as ΠX,S . By limiting watermarked distributions to couplings, we
ensure that the watermark is distortion-free: we have ES [PX,S ] = PX . From the perspective of a
user who does not know S, distortion-free watermarks incur (in theory) no perceptible change in
text quality. In Section 3 we propose a simple scheme that distorts the coupling solution to further
increase Dgap.

Proposed method. Following the optimization (1), we propose two watermarking schemes in
Sections 3 and 4, respectively. Both watermarks differ on the nature of the score function f , but share
the same underlying algorithmic structure given in Algorithm 1 and described next.

Our watermarks receive as input the next-token distribution PX , side information sample s ∈ S , and
a score function f . Given a pair (PX , f), the inner maximization in (1) amounts to an OT problem
between PX and PS , which is set to be uniform on [1 : k]. The OT problem is given by

P ∗
XS = arg max

PXS∈ΠX,S

(EPXS
[f(X,S)]− EPXPS

[f(X,S)]) . (2)

We solve (2) using Sinkhorn’s algorithm [19]. Note that the score function f can be equivalently
denoted as the (m× k)-dimensional OT cost matrix C, which is defined as Cx′,s′ = −f(x′, s′) for
(x′, s′) ∈ [1 : m]×[1 : k]. Sinkhorn’s algorithm yields a coupling PX,S , from which the watermarked
distribution is obtained via PX|S=s(·|s) = k · PX,S(·, s). The watermarked distribution is used to
sample the next token.

Tilting. The watermarked distribution returned by the OT optimization does not change the average
next-token probabilities. To further increase watermark detectability, we propose a tilting operation
to PX|S=s, which we denote by tilt. The tilting operation increases the probability of higher scoring
tokens, at the cost of incurring distortion to PX|S=s. This is done by increasing the probability
of x ∈ X with f(x, s) > EPX,S

[f(X,S)] and decrease the probability of x ∈ X with f(x, s) <
EPX,S

[f(X,S)]. The amount of tilting (and thereby the level is distortion) is determined by a
parameter δ ∈ (0, 1). The structure of tilting depends on the structure of f and is later defined for
each watermark separately. See Algorithm 1 for the list of steps.

Detection. Watermark detection is performed as follows: Given a token sequence (x1, . . . , xn) and
a score f we recover the set of side information samples (s1, . . . , sn) and compute f(xt, st) for
each observed pair (xt, st). We declare the text watermarked if the average score 1

n

∑n
t=1 f(xt, st)

exceeds a user-defined threshold τ ≥ 0.

Limitations. As we will see shortly, (1) will inform the design of watermarking schemes with
favorable empirical performance. However, this optimization framework is not without limitations.
First, it is restricted to threshold tests applied to the averaged score, which are potentially suboptimal
[37]. Second, we assume perfect randomness for side information generation, i.e., we can sample
a uniformly distributed and i.i.d. random variable S for each token. When X is not watermarked,
we also assume it is independent of S. In sequential hashing schemes this is not necessarily the
case, since both S and X will depend on previous tokens. We emphasize that generating high-
quality side information remains an important practical challenge relevant to all existing watermarks,
including ours. Nevertheless, from a design perspective, this challenge is somewhat orthogonal to our
guiding question of how to optimally use side information. We examine the impact of non-i.i.d. side
information on our watermark design in Appendix D.2.
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Algorithm 1 SimplexWater and HeavyWater Watermark Generation

1: Inputs: Token distribution PX , score function f , side information s, tilting parameter δ.
2: Outputs: Watermarked distribution PX|S=s
3: Calculate OT cost matrix Cx′,s′ = −f(x′, s′), for all (x′, s′) ∈ [1 : m]× [1 : k]
4: PX,S = Sinkhorn (C, PX , PS), where PS = Unif([1 : k])
5: PX|S=s(x|s) = k · PX,S(x, s)
6: if δ > 0 then
7: PX|S=s ← tilt(PX|S=s, s, δ)
8: Normalize PX|S=s
9: end if

10: Return PX|S=s

3 SimplexWater: Watermark Design With Binary Scores

In this section, we consider the class of binary score functions, i.e., F = Fbin ≜ {f : X × S 7→
{0, 1}}. Within this class, we solve (1) to obtain the optimal binary score function f , and present the
corresponding optimal watermark, which we call SimplexWater. We first present a simplification of
the maximum detection gap in (1) for f ∈ Fbin and the low-entropy regime λ ∈ [1/2, 1).

Proposition 1. Let λ ∈
[
1
2 , 1
)
. For f ∈ Fbin, define the vector fi = [f(i, 1), . . . , f(i, k)]∈{0, 1}k

for each i ∈ X . Then,

Dgap(m, k, λ,Fbin) = max
f∈Fbin

min
i,j∈X ,i̸=j

(1− λ)dH(fi, fj)

k
, (3)

where dH(a, b) =
∑k
i=1 1{ai ̸=bi} denotes the Hamming distance between a, b ∈ {0, 1}k and 1{·} is

the indicator function.

Remarkably, (3) is equivalent to a classical problem in coding theory: the design of distance-
maximizing codes! In this problem [14], the goal is to design a set of m binary vectors of length
k – called codewords – with maximum pairwise Hamming distance [14, 38]. There is a one-to-one
equivalence between designing a code with maximum distance between codewords and designing
a binary score function for watermarking LLMs: for a fixed token x, the score function vector
[f(x, 1), . . . , f(x, k)] can be viewed as a codeword. Conversely, a distance-maximizing code can be
used to build a binary score function that maximizes the detection gap. This connection with coding
theory allows us to use classic coding theory results – specifically the Plotkin bound [39] – to derive
an upper bound for Dgap in (3). This result is stated in the next theorem.
Theorem 1 (Maximum Detection Gap Upper Bound). Consider the class of binary score functions
Fbin and uniform PS . Then, for any λ ∈

[
1
2 , 1
)
, the maximum detection gap can be bounded as

Dgap(m, k, λ,Fbin) ≤
m(1− λ)
2(m− 1)

(4)

The proof of Theorem 1 is given in Appendix B.2. For a fixed token vocabulary size m, this bound
remains the same for any choice of k. Therefore, any score function constructed with any k that
achieves this bound is optimal. This observation serves as the starting point for our optimal watermark
design, leading to SimplexWater.

SimplexWater: An Optimal Binary-Score Watermark. The upper bound in (4) is achievable
when the score function is constructed using a simplex code – a family of codes that attain the Plotkin
bound [40, 41]. A simplex code is defined as follows:
Definition 1 (Simplex Code). For any x, s ∈ [0 : m − 1], let bin(x), bin(s) denote their binary
representations respectively using log2m bits. A simplex code fsim : [0 : m−1]×[1 : m−1]→ {0, 1}
is characterized by

fsim(x, s) ≜ dot(bin(x), bin(s)), (5)

where dot(bin(x), bin(s)) ≜
∑log2m
i=1 bin(x)i · bin(s)i and bin(v)i denotes the ith bit in the binary

representation of v.
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We present next SimplexWater, a watermark that employs the simplex code as its score function.
SimplexWater operates according to the steps of Algorithm 1, where the cost matrix is derived from
fsim. Specifically, given a token distribution, side information and the cost matrix derived from fsim,
SimplexWater solves the OT via Sinkhorn’s algorithm to compute the watermarked distribution
PX|S . The optimality of SimplexWater follows directly from its one-to-one correspondence to the
Simplex code that attains the Plotkin bound and is stated formally in the following theorem.
Theorem 2 (SimplexWater Optimality). For any λ ∈

[
1
2 , 1
)

the maximum detection gap upper
bound (4) is attained by SimplexWater.

The proof of Theorem 2 is given in Appendix B.3. Together, Theorems 1 and 2 imply that
SimplexWater is minimiax optimal among all watermarks with binary-valued score functions
in the low-entropy regime.

As outlined in Algorithm 1, we further increase detection by tilting the watermarked distribution
obtained by SimplexWater. For binary-valued scores, the tilting operation (Alg. 1, step 7) is

tilt(P ∗
X|S=s, s, δ) = P ∗

X|S=s(x, s)
(
1 + δ · (1{f(x,s)=1} − 1{f(x,s)=0})

)
. (6)

In Section 5 we show that by adding mild distortion we significantly increase the detection power of
SimplexWater.

4 HeavyWater: Watermarking using Heavy-Tailed Distributions

So far, we restricted our analysis to binary scores, i.e., f(x, s) ∈ {0, 1}. In this case, the detection
gap is bounded by m(1−λ)/(2(m− 1)) as shown in Theorem 1 – and SimplexWater achieves this
bound. However, the binary constraint is quite restrictive. Watermarks such as [17] are not restricted
to binary scores – and achieve excellent performance in practice (see Gumbel in Fig. 1). In what
follows, we relax the binary constraint to improve variation in the score values, enabling us to break
the binary detection barrier (4) and significantly enhance detection performance.

We consider score functions where each score f(x, s) is sampled independently from a continuous
distribution prior to the watermarking process1. Remarkably, under this formulation, the popular
Gumbel watermark [17] emerges as a special case when scores are drawn from a Gumbel distribution
[42]. Our framework allows us to explore a broader class of heavy-tailed distributions that improve
upon the Gumbel approach (Figure 1).

HeavyWater: Heavy-Tailed Score Distributions for Improved Detection. Consider the water-
marking setting where we draw each score value f(x, s) i.i.d. from a continuous finite variance
distribution PF . This score is used in the OT problem in (2) and Algorithm 1 to obtain the wa-
termarked distribution. Next, we show that the Gumbel watermark [17] falls into this category of
watermarks when PF is a Gumbel distribution.
Theorem 3 (Gumbel Watermark as OT). When the score random variables f(x, s), are sampled i.i.d.
from Gumbel(0, 1), the solution to the OT problem in (2) converges to the Gumbel watermark [17]
as |S| = k →∞.

This connection situates the Gumbel watermark within our broader framework (1). Can the Gumbel
watermark be improved by selecting a different score distribution PF ? Intuitively, a heavy-tailed
PF (which Gumbel is not) could increase the probability of sampling large values of f(x, s), thus
also increasing the likelihood of watermark detection. To make this intuition precise, we analyze the
maximum detection gap (1) when the score function is randomly generated instead of selected from a
set F .

For fixed |X | = m, |S| = k, and λ ∈
[
1
2 , 1
)
, denote the worst case detection gap achieved by some

fixed distribution PF as,
D[PF ]

gap (m, k, λ) = min
PX∈Pλ

max
PXS

(EPXS
[f(X,S)]− EPXPS

[f(X,S)]) (7)

Note that D[PF ]
gap (m, k, λ) is a random variable due to the randomness of the f(x, s) samples. We pro-

vide high-probability guarantees on the achievable maximum detection gap for any fixed distribution
PF in the regime of large k.

1A natural first step would be to extend SimplexWater by using q-ary instead of binary codes. This, however,
results in marginal performance gain, as we discuss in Appendix C.3.
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Theorem 4 (Detection Gap). Let λ ∈
[
1
2 , 1
)
, and consider the score difference random variable

∆ = f(x, s) − f(x′, s′) for some (x, s) ̸= (x′, s′), where f(x, s) and f(x′, s′) are sampled i.i.d.
from PF . Let the cumulative distribution function of ∆ be F , and let Q = F−1 be its inverse. Then,

lim
k→∞

D[PF ]
gap (m, k, λ) =

∫ 1

1−λ
Q(u)du, (8)

Theorem 4 shows that detection performance improves when the distribution of ∆ = f(x, s) −
f(x′, s′) have heavier tails, where both f(x, s), f(x′, s′) ∼ PF . We analyze several choices of
heavy-tailed PF for maximizing

∫ 1

1−λQ(u)du (see details in Appendix C.2).

HeavyWater: A watermark with heavy-tailed scores. We propose HeavyWater, a watermark that
leverages Theorem 4 and samples the score function from a heavy-tailed distribution. HeavyWater
follows the steps of Algorithm 1 but uses scores that are generated by sampling i.i.d. from a heavy-
tailed PF prior to generation. We explored several options for selecting PF . In theory, the Gamma
distribution maximizes (8) across several common heavy-tailed distribution (Appendix C.2). However,
in practice, we observed that choosing PF to be lognormal achieved the highest detection accuracy.2
Assuming that PF is normalized to have zero-mean, the tilting operation in HeavyWater is given by

tilt(P ∗
X|S=s, s, δ) = P ∗

X|S=s(x, s) (1 + δ · sign(f(x, s))) .

5 Numerical Experiments

Experimental Setting. We evaluate the detection-distortion-robustness tradeoff of HeavyWater
and SimplexWater following the experimental benchmarking guidelines in Waterbench [43] and
MarkMyWords [44]. We use two popular prompt-generation datasets: Finance-QA [45] (covering
Q&A tasks) and LCC [46] (covering coding tasks). We evaluate on three open-weight models:
Llama2-7B [47], Llama3-8B [48], and Mistral-7B [49]. Implementation details are provided in
Appendix C.4, and full results, including ablation studies, are presented in Appendix D.

Baseline Watermarks. We benchmark SimplexWater and HeavyWater against the Gumbel wa-
termark [17], the Inverse-transform watermark [13], the Correlated Channel watermark [16], and
the SynthID watermark [11] with binary scores and K = 15 competition layers. We select these
methods based on code availability or ease of implementation. These watermarks are distortion-free
(i.e., they preserve the average next token distribution). To our knowledge, they also do not have
an out-of-the-box method for trading off distortion with detection accuracy. We also consider the
Red-Green watermark [10], which can be tuned for such trade-offs.

Evaluation Metrics. We use p-value as the primary detection power metric (plotted as − log10 p)
because it offers a threshold-independent measure of statistical power of a watermark. Moreover, p-
values are the metric of choice in [11, 13, 15, 43, 44, 50, 51]. The p-value measures the probability of
obtaining a given test statistic – or a more extreme one – under the unwatermarked (null) distribution.
This provides a direct connection to the false-alarm rate, avoids the need to choose arbitrary detection
thresholds, and is well-suited for comparing different watermarking schemes on equal footing. When
the distribution of the test statistic is not available, we use a z-test, which approximates the statistic as
Gaussian under the Central Limit Theorem. For methods like Gumbel [17], where the test statistic
distribution is known analytically, we use the exact form. At a generation length of T = 300, we
observe that the Gaussian approximation provided by the z-test is very accurate, ensuring that p-values
remain reliable even when the exact distribution is unknown.

Distortion is measured using the estimated cross entropy (CE) between the watermarked and
unwatermarked distribution, defined as− 1

n

∑n
t=1 logPX(x̃t), where (x̃t)nt=1 are watermarked tokens

and PX is the LLM’s distribution. This is proportional to relative perplexity – a commonly used proxy
for quality evaluation [21, 22]. We also measure watermark size, proposed by [44] and defined as
the number of tokens it takes to detect the watermark with a certain p-value. We provide results for
task-specific metrics for generation quality in Appendix D.5, including document summarization
[52], document and long-form QA [53, 54], and code completion [46] as curated by [43].

2Since detection is evaluated via z-scores and p-values which standardize by mean and variance, the specific
mean and variance of the selected distributions do not affect detection accuracy.
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(a) Detection-Distortion Tradeoff. Mistral-7B, Coding.
(b) Watermark improvement over Red-Green [10] with
several hashing strategies, δ = 2. Llama2-7B, Coding.

Figure 3: Left: Tradeoff between detection (measured by p-value) and distortion (measured by Cross-Entropy) —
SimplexWater and HeavyWater achieve higher detection rates while preserving token distributions close to the
base unwatermarked model. Right: Detection gained by employing our watermark under various randomness
generation schemes and several sliding window sizes h. Both SimplexWater and HeavyWater provide a
significant improvement of up to 250% and a decrease in distortion.

Detection-Distortion Tradeoff. We compare the tradeoff between watermark detection (p-value)
against distortion (cross entropy). The results are given in Figures 1 and 3a. We make two key
observations. First, considering watermarks with binary scores, SimplexWater Pareto dominates the
red-green method. Second, HeavyWater provides the top performance along the baseline watermarks,
incurring zero distortion. When we tune the watermarked distribution, both SimplexWater and
HeavyWater obtain significant gains in detection, with mild distortion incurred.

Additional Quality Metrics for Textual Tasks. In addition to cross entropy, we have reported
additional performance metrics for text quality: ROUGE-L and F1 scores for four additional tasks
in Appendix D.5. In Table D.2, we assess the impact of watermarking on generation quality across
four additional tasks from WaterBench [43]: LongformQA, Multi-news Summarization, Knowledge
Memorization, and Knowledge Understanding. For these, we report ROUGE-L scores (LongformQA
and Multi-news) and F1 scores (Knowledge Memorization and Knowledge Understanding). Our
methods (SimplexWater and HeavyWater) maintain competitive detection performance across all
datasets, with a generation metric comparable to unwatermarked text (see Table D.2). Together, these
results provide significant evidence that our watermarks preserve output quality in textual tasks.

Additional Quality Metrics for Coding Tasks. We report additional tasks and metrics for low-
entropy generation in coding. For LCC code completion tasks[46], since human-written codes are
used as the ground truth, Edit_Similarity is the generation-quality metric. For the HumanEval
dataset [46], we take the standard metric pass@K with K=1,5,10 generation metric. We benchmark
our watermarking methods against prior work using this metric, and HeavyWater achieves the highest
Edit_Similarity score for the code completion task. On the HumanEval dataset, SimplexWater
achieves the highest score on pass@5, while HeavyWater performs best on pass@10. These results
demonstrate that our watermarks preserve both functional correctness and syntactic quality of
generated code. For detailed results, see Tables D.3 and D.4).

Watermark Size. We consider p = 10−3, which corresponds to a 0.1% false-positive rate and report
the average generation length to reach this p value. As seen in Figure 4, where Llama2-7B is run on
Q&A dataset, both the SimplexWater and HeavyWater schemes provide the lowest watermark size
in terms of the number of tokens required to attain a watermark detection strength, as measured by
the p-value.

Figure 4: Our watermarks require fewer tokens to
reach a given detection strength (p-value) with zero
distortion.

Gain and Performance Under Hashing. We
illustrate how SimplexWater and HeavyWater
can be coupled with different side information
generation methods to boost watermark detection.
We consider an experiment in which we replace
the Red-Green watermark cost function and water-
marked distribution with ours and report the gain
in detection under several seed hashing methods
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adopted in [10]. As seen in Figure 3b, simply
switching Red-Green (δ = 2) with our methods
– while keeping the same hashing scheme – in-
troduces significant detection gain (up to 250%
improvement in the aggregated − log10 p value).

Additional Results. The following experimental
results and ablation studies are included in Ap-
pendix D: 1) An evaluation on the WaterBench
dataset [43] in which we show that our methods do not degrade textual quality across an array of
generation metrics (Appendix D.5); 2) A robustness study in which evaluate tamper resistance of
our watermarks (Appendix D.3), and 3) computational overhead measurements, where we compare
generation wall-clock times of various watermarking schemes (Appendix D.4).

6 Conclusion

We developed two new watermarking schemes by characterizing and analyzing an optimization
problem that models watermark detection in low-entropy text generation. When restricting attention
to binary scores, we draw connections to coding theory, which we then use to develop SimplexWater.
We prove that SimplexWater is minimax optimal within our framework. When we sample the scores
i.i.d. at random, we show that watermark detection depends on the tail of the score distribution. This
leads to HeavyWater, where the scores are sampled from a heavy-tailed distribution. We further
show that the Gumbel watermark is a special case of this construction. Both SimplexWater and
HeavyWater demonstrate favorable performance on an array of LLM watermarking experiments
when compared to various recent schemes. An interesting direction for future work is further
optimizing the score function. This could be done by exploring other heavy-tailed score distributions,
or using alternative strategies to optimize f(x, s) such as backpropagating through (1). We also
restrict our analysis to threshold tests – more powerful statistical tests could improve detection
accuracy (see [23]). Our work contributes to better authentication of text provenance and fostering
trust in AI systems. Agnostic to how side information is generated, our watermarks can be paired
with new research in side information generation strategies that are more robust to tampering and
adversarial attacks.

Disclaimer. This paper was prepared for informational purposes by the Global Technology Applied
Research center of JPMorgan Chase & Co. This paper is not a product of the Research Department
of JPMorgan Chase & Co. or its affiliates. Neither JPMorgan Chase & Co. nor any of its affiliates
makes any explicit or implied representation or warranty and none of them accept any liability in
connection with this paper, including, without limitation, with respect to the completeness, accuracy,
or reliability of the information contained herein and the potential legal, compliance, tax, or accounting
effects thereof. This document is not intended as investment research or investment advice, or as a
recommendation, offer, or solicitation for the purchase or sale of any security, financial instrument,
financial product or service, or to be used in any way for evaluating the merits of participating in any
transaction.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction explicitly present the optimization framework
and the two watermarking schemes (HeavyWater and SimplexWater) together with their
theoretical properties and empirical evaluation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 2 presents a passage in which we discuss the limitations of the proposed
setting.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Both watermarks operate under specific assumptions on the token distribution
and score function. Those assumption appear in Sections 3 and 4 for SimplexWater and
HeavyWater, respectively.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The appendix provides full implementation details on the considered experi-
ments, benchmarks and parameter choice. Furthermore, we provide the code which can be
used to recreate the results we report.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the data used in the paper’s experiments, is released alongside the paper’s
code.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: This paper does not involve the training of any parametric model. Hyperpa-
rameters of the proposed methods are mentioned in the implementation details appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report statistical significance of our results using error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The experiments section in the main paper provides information on the type of
GPUU used to run our experiments (Namely, a single A-100 GPU).
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The work promotes text provenance and misuse mitigation and raises no
conflicts with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the societal impact of our method in the Conclusion section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper does not release any models or data that can be misused. We propose
new watermaring algorithms and analyze their performance.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all external methods, models and datasets we are discussing and using
in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We provide code implementation of the proposed algorithms and methods.
Those are provided in the Supplement material in an anonymized version and will be made
public upon acceptance.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This research does not involve human participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper did not involve any human participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We propose new LLM watermarking algorithms, but do not rely on any
external LLM usage in our core method development.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional Information on Related Works

A.1 Additional Information on Related Work

Optimization Framework Several optimization frameworks have been proposed for watermark
analysis. [16, 25, 26, 33] adopts a hypothesis-testing framework for analyzing the statistical power of
watermarking schemes. [33] goes beyond the vanilla threshold test to determine the optimal detection
rule by solving a minimax optimization program. The authors of [25] consider an optimization
under an additional constraint of controlled false-positive error. The watermarking scheme follows
by learning a coupling that spreads the LLM distribution into an auxiliary sequence of variables
(with alphabet size greater than m). While the proposed scheme is the optimal solution for the
considered optimization, the scheme requires access to the (proxy of) LLM logits on both generation
and detection ends. The authors of [55] consider a multi-objective optimization — maximization of
the green list bias while minimizing the log-perplexity. Building on the hypothesis testing framework,
we optimize over classes of score functions, by observing that the detection power of a watermark
boils down to the separation of expected scores between the null and alternative hypotheses.

Hashing Schemes in LLM Watermarking Current LLM watermarking schemes derive their per-
token pseudorandom seed through five recurring hashing patterns. LeftHash hashes the immediately
preceding token and feeds the digest to a keyed Psaudorandom function (PRF), yielding a light-weight,
self-synchronising seed that survives single-token edits [15]. Window-hash generalises this by hashing
the last h tokens, expanding the key-space and hindering brute-force list enumeration at the cost
of higher edit sensitivity [7, 15]. SelfHash (sometimes dubbed right-hand hashing”) appends the
candidate token to the left context before hashing, so the seed depends on both history and the
token being scored; this hardens the scheme against key-extraction attacks and is used in multi-bit
systems such as MPAC [31]. Orthogonally, counter-based keystreams drop context altogether and
set the seed to PRF(K, position), a strategy adopted by inverse-transform and Gumbel watermarks
to preserve the original LM distribution in expectation [13, 17]. Finally, adaptive sliding-window
hashing—popularised by SynthID-Text—hashes the last H=4 tokens together with the secret key
and skips watermarking whenever that exact window has appeared before (K-sequence repeated
context masking”), thereby avoiding repetition artefacts while retaining the robustness benefits of a
short window [11]. Semantic extensions build on these primitives: SemaMark quantises sentence
embeddings [32], while Semantic-Invariant Watermarking uses a learned contextual encoder [56].
Collectively, these hashing families balance secrecy, robustness to editing or paraphrasing, and
computational overhead, offering a rich design space for practical watermark deployments. Both
SimplexWater and HeavyWater are agnostic to and can be applied on top of any hashing scheme.
We provide the detection gain over Red-Green using various hashing schemes in Fig. 3b.

Additional Distortion-Free Watermarks An array of recent works propose distortion-free water-
marks that preserve the original LLM distribution [13, 16, 17, 20, 51, 57–59]. In addition to the ones
that we have introduced in Section 1, [58] constructs undetectable watermarks using one-way func-
tions, which is a cryptography-inspired technique. [59] proposes a watermark using error-correcting
codes that leverages double-symmetric binary channels to obtain the watermarked distribution. [51]
designs a distortion-free watermark based on multiple draws from a black-box LLM, which involves
fixing a score function, drawing multiple tokens in each step, and outputting the highest-score token.

A.2 Instantiation of Existing Watermarks As Score, Distribution and Randomness Design

Existing watermarks can be represented under the proposed outlook of side information, score
function and watermarked distribution from Section 2. We next demonstrate that by instantiating
several popular schemes through our lenses.

The Red-Green watermark [15] randomly partitions X into a green list and a red list. Here, S is a
set of m binary random variables, representing the random list assignment. The function f has binary
outputs, which are used to increase the probability of green list tokens though exponential tilting of
PX .

The SynthID watermark [11] employs tournament sampling: a tournament between a set of Nm

token candidates along m-layers with N competing token groups. Each tournament is performed
given a sample of shared randomness (denoted r [11]). On the ℓth layer the winners are taken to
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Watermark # Bits
Red-Green [15] m

Inverse Transform [13] mF
Gumbel [17] mF

SimplexWater (ours) log(m)
HeavyWater (ours) log(k)

Table A.1: Amount of random bits generated per step in popular watermarks. m is the vocabulary
size, F is the floating point precision and k is the side information alphabet size.

be the token with highest score fℓ(x, s) within each N -sized set. The value of the score function
f is obtained from the side information for each token candidate. Different domains of f induce a
different construction of the function (See [11, Appendix E] for more information). The watermarked
distribution PX|S=s is the obtained with a closed form in specific cases of (f,N,m) and can be
directly used instead of the instantiating a tournament. This form of watermarking is termed vectorized
tournament sampling, in which the tournament is not applied, but the induced conditional distribution
is employed instead. In this paper we consider vectorized tournament sampling with binary-valued
scores, as this is the formulation given in [11] with a closed form, and the one that was utilized in
their proposed experiments.

In the Gumbel watermark [17], the side information consists of m i.i.d., uniform random variables
on [0, 1], each one corresponding to a single element in the vocabulary x ∈ X . The score function
f is obtained by assigning each x ∈ X with a value lx = − 1

PX(x) log(ux), where ux the uniform
variable corresponding to x and PX(x) is the probability of x ∈ X under the unwatermarked model.
The watermarked distribution is then given by assigning probability 1 to argmaxx∈X lx(x) and
probability 0 to the rest of x ∈ X (i.e., a singleton distribution).

In the Correlated Channel watermark [16], the side information corresponds to a partition of X into
k ≥ 2 lists and a single shared uniform variables S′ that is uniformly distributed on [1 : k]. The score
function is then an indicator of the matching between the additional variable realization and the token
random assignment, i.e., f(x, s) = 1(B(x) = s), where B(x) ∈ [1 : k] is the assignment of x into
one of the k lists. The watermarked distribution is then given in closed form by solving the maximum
coupling problem.

A.3 Discussion on Randomness Efficiency

Given a hashing procedure that determines the random number generator seed value, we sample
the side information S ∼ PS over S. The size of S determines the amount of side information we
are required to sample. As described in Appendix A.2, each watermarks corresponds to a different
size fo S. We interpret that as randomness efficiency. That is, the bigger S is, the more bits of
randomness we are required to extract from the random seed. We argue that a byproduct of our
method is randomness efficiency, i.e., SimplexWater and HeavyWater require less random bits to
sampled from the random seed compared to existing schemes. To that end, we compare with several
popular watermarks (see Table A.1 for a summary).

The Red-Green watermark [15] corresponds to sampling a single bit for each element in X , whose
value determines the token’s list assignment (red or green), thus resulting in a total of m bits.
The inverse transform watermark [13] requires sampling a single uniform and sampling a random
permutation of [1 : m]. Thus, it asymptotically requires F log(m!) bits, where F is the resolution
of the floating point representation used to sample the sampled uniform variable in bits (e.g. 32 for
float32). For the Gumbel watermark, we sample a uniform variable for each x ∈ X , resulting in a
total of mF bits.

In SimplexWater, the side information size is |S| = m− 1. To that end, we required log(m) bits
to sample a single s ∈ [1 : m− 1]. Furthermore, HeavyWater is not constrained to a specific size
of |S| = k, and in the proposed experiments we take k = 1024 which is significantly smaller than
both m and 2F. The resulting amount of bits to be sampled from the random seed is log(1024) = 10
bits. Consequently, we observe that HeavyWater is the most randomness-efficient watermark across
considered schemes, while also being the best-performing watermark across considered experiments
(see Section 5).

24



Minimizing the number of random bits extracted from a random number generator directly reduces
computational and energy overhead in watermark embedding as less information is to be stored
on the GPU. This eases implementation in resource-constrained hardware by lowering entropy
demands and memory usage. Additionally, it limits side-channel leakage by shrinking an adversary’s
observable output [60], which may lead to more secure watermarking. We leave an extensive study
and quantification of the benefits of randomness efficiency to future work.

B Proofs for Theorems from Section 3 and 4.

We prove Proposition 1, Theorem 1, Theorem 2, Theorem 3 and Theorem 4

B.1 Proof of Proposition 1

In this section, we prove Proposition 1, which connects the watermark design problem to a coding
theoretic problem when the score function class is chosen to be binary.

Proposition 1 (restated): Let λ ∈
[
1
2 , 1
)
. For f ∈ Fbin, define the vector fi =

[f(i, 1), . . . , f(i, k)]∈{0, 1}k for each i ∈ X . Then,

Dgap(m, k, λ,Fbin) = max
f∈Fbin

min
i,j∈X ,i̸=j

(1− λ)dH(fi, fj)

k
, (B.9)

where dH(a, b) =
∑k
i=1 1{ai ̸=bi} denotes the Hamming distance between a, b ∈ {0, 1}k and 1{·} is

the indicator function.

Proof of Prop.1. Recall that we consider PS ∼ U(1 : k). For any PX , let Ψ(PX) =
maxPXS

(EPXS
[f(X,S)]− EPXPS

[f(X,S)]).

Claim 1. argminP∈Pλ
Ψ(P ) ∈ Pspike,λ, where

Pspike,λ = {P ∈ ∆m | {PX(x1), PX(x2), . . . , PX(xm)} = {λ, 1− λ, 0, 0, . . . , 0}} . (B.10)

Here PX(xi) denotes the xith element of the PX probability vector with (x1, . . . , xm) representing
any permutation of (1, . . . ,m). ∆m is the m-dimensional probability simplex.

Proof of Claim 1. To prove Claim 1, we first show that Ψ(PX) is concave in PX . By definition, for
any given PX and uniform PS , we have,

Ψ(PX) = max
PXS

(EPXS
[f(X,S)]− EPXPS

[f(X,S)]) .

Define P ∗
XS as the optimal joint distribution that achieves the maximum for a given PX . Then, we

have:
Ψ(PX) = EP∗

XS
[f(X,S)]− EPXPS

[f(X,S)].

Now, consider the mixture P θX = θP
(1)
X + (1 − θ)P (2)

X for some θ ∈ [0, 1] and P (1)
X , P

(2)
X ∈ ∆m.

Given P (1)∗
XS and P (2)∗

XS , the maximizing couplings of Ψ(P
(1)
X ) and Ψ(P

(2)
X ) respectively, we define a

mixed joint distribution: P θ∗XS = θP
(1)∗
XS + (1− θ)P (2)∗

XS . Note that,∑
s

P θ∗XS = θ
∑
s

P
(1)∗
XS + (1− θ)

∑
s

P
(2)∗
XS (B.11)

= θP
(1)
X + (1− θ)P (2)

X (as P (i)∗
XS is the optimal coupling of P (i)

X and PS . ) (B.12)

= P
(θ)
X (B.13)∑

x

P θ∗XS = θ
∑
x

P
(1)∗
XS + (1− θ)

∑
x

P
(2)∗
XS (B.14)

=
θ

k
+ (1− θ)P (2)

X (as P (i)∗
XS is the optimal coupling of P (i)

X and PS . ) (B.15)

=
1

k
(B.16)
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which shows that P θ∗XS is a valid coupling of P (θ)
X and uniform PS . Using the linearity of the

expectation operation, the expectation under the mixed distribution P θ∗XS is:
EP θ∗

XS
[f(X,S)] = θE

P
(1)∗
XS

[f(X,S)] + (1− θ)E
P

(2)∗
XS

[f(X,S)].

Similarly, for the independent case:
EP θ

XPS
[f(X,S)] = θE

P
(1)
X PS

[f(X,S)] + (1− θ)E
P

(2)
X PS

[f(X,S)].

Since Ψ(P θX) by definition takes the maximum coupling among all PXS , it upper bounds the value
attained by the specific mixture P θ∗XS . Thus,

Ψ(P θX) ≥ EP θ∗
XS

[f(X,S)]− EP θ
XPS

[f(X,S)]

= θE
P

(1)∗
XS

[f(X,S)] + (1− θ)E
P

(2)∗
XS

[f(X,S)]− θE
P

(1)
X PS

[f(X,S)]

− (1− θ)E
P

(2)
X PS

[f(X,S)])

= θΨ(P
(1)
X ) + (1− θ)Ψ(P

(2)
X ),

which proves concavity.

We now show that for any λ ∈
[
1
2 , 1
]
, the minimizer of Ψ(PX) lies in the set Pspike,λ,where

Pspike,λ = {P ∈ ∆m | {PX(x1), PX(x2), . . . , PX(xm)} = {λ, 1− λ, 0, 0, . . . , 0}} , (B.17)

Recall that Pλ = {P ∈ ∆m, ∥P∥∞ ≤ λ}. This is a convex set and the extreme points of this set are
precisely the spike distributions in Pspike,λ, which correspond to permutations of (λ, 1− λ, 0, . . . , 0).
Since Ψ(PX) is concave, its minimum over the convex set Pλ occurs at an extreme point of Pλ.
Hence, the minimizer of Ψ(PX) belongs to Pspike,λ, which completes the proof.

Using Claim 1, we prove Proposition 1 as follows. Let p⋆ ∈ Pspike,λ be the minimizer in the
minimization of Dgap(m, k, λ,Fbin) in (1), and let (i, j) be its non-zero entries, i.e., p⋆i = λ and
p⋆j = 1− λ. Under such p⋆ and uniform PS , any coupling can be written as

PXS(x, s) =


λQX|S(s | i) if x = i,

(1− λ)QX|S(s | j) if x = j

0 if x ̸= i, j

where QS|X = PXS/PX denotes the conditional distribution of the shared randomness S given the
selected token X . The coupling constraint for each s ∈ S becomes

λQS|X(s | i) + (1− λ)QS|X(s | j) = 1

k
,

To that end, we represent such coupling as

QS|X(s | i) = as, QS|X(s | j) =
1
k − λas
1− λ

for some set of parameters (as)s∈S , such that as ∈ [0, 1
kλ ]. Under this construction, considering the

worst case (i, j) pair of non-zero PX indices, we have,

Dgap (m, k, λ,Fbin) = max
f :X×S7→[0,1]

min
i ̸=j

max
QX|S

k∑
s=1

λQS|X(s|i)f(i, s) + (1− λ)QS|X(s|j)f(j, s)

−
(
λ

k
f(i, s) +

1− λ
k

f(j, s)

)
(B.18)

= max
f :X×S7→[0,1]

min
i ̸=j

max
as∈[0, 1

kλ ]

k∑
s=1

λasf(i, s) + (1− λ)
( 1
k − λas
1− λ

)
f(j, s)

−
(
λ

k
f(i, s) +

1− λ
k

f(j, s)

)
(B.19)

= max
f :X×S7→[0,1]

min
i ̸=j

max
as∈[0, 1

kλ ]

k∑
s=1

λ

(
as −

1

k

)
(f(i, s)− f(j, s)) (B.20)

26



The design of the coupling PXS boils down to choosing {as}s∈S such that (B.20) is maximized.
Moreover, since

∑k
s=1QS|X(s|x) = 1 for x = i and x = j, we have,

k∑
s=1

QS|X(s|x) = 1 =⇒
k∑
s=1

as = 1 (B.21)

For a given f and any two indices (i, j), we characterize optimal as as follows. Let mi,j
+ = #{s :

f(i, s)− f(j, s) = 1} and mi,j
− = #{s : f(i, s)− f(j, s) = −1} where # denotes the cardinality of

a set. Assume that the score functions f satisfy mi,j
+ ≤ kλ and mi,j

− +mi,j
− < k. These assumptions

are needed to eliminate trivial edge cases for which the inner minimization in (B.20) is zero, which
leads to zero detection (see Appendix B.1.1). The inner-most maximum in (B.20) is obtained when:

as =


1
kλ , s : f(i, s)− f(j, s) = 1

0, s : f(i, s)− f(j, s) = −1
1− 1

kλm
i,j
+

k−mi,j
+ −mi,j

−
, s : f(i, s)− f(j, s) = 0

(B.22)

The optimal values of as are obtained by allocating the maximum probability mass to the highest
scores f(i, s)− f(j, s) in (B.20). Continuing from (B.20), we have,

Dgap (m, k, λ,Fbin) = max
f :X×S7→[0,1]

min
i̸=j

1

k

∑
s:fi−fj=−1

λ|f(i, s)− f(j, s)|

+
1

k

∑
s:fi−fj=1

(1− λ)|f(i, s)− f(j, s)| (B.23)

= max
f :X×S7→[0,1]

min
i̸=j

1

k
(λmi,j

− + (1− λ)mi,j
+ ) (B.24)

Let dij = #{s : f(i, s) ̸= f(j, s)}. Then, mij
− +mij

+ = dij . Let mij
− = βdij and mij

+ = (1− β)dij
for some β ∈ [0, 1]. From (B.24), we have,

Dgap (m, k, λ,Fbin) = max
f :X×S7→[0,1]

min
i ̸=j

min
β∈[0,1]

1

k
(λβ + (1− λ)(1− β))di,j (B.25)

= max
f :X×S7→[0,1]

min
i ̸=j

min
β∈[0,1]

1

k
(β(2λ− 1) + (1− λ))di,j (B.26)

= max
f :X×S7→[0,1]

min
i ̸=j

di,j
k

(1− λ) (B.27)

since the inner minimum is achieved when β = 0, as λ ≥ 1
2 . The proof is complete as dij is exactly

the Hamming distance between f(i, ·) and f(j, ·).

B.1.1 Edge Cases

In Appendix B.1, we assumed that the score functions f satisfy mi,j
+ ≤ kλ and mi,j

+ +mi,j
− < k. In

this section, we show what happens when these constraints are violated.

Case 1: mi,j
+ > kλ: In this case, we obtain the optimal values of as as in the proof of Proposition

1 above, by assigning the probability masses to the high score cases as follows. Let J ⊂ mi,j
+ ,

|J | = kλ be any subset of kλ values of s, each satisfying f(i, s)− f(j, s) = 1. In this case, similar
to case 1, the inner maximum in (B.20) is obtained when:

as =

{
1
kλ , s ∈ J
0, s /∈ J (B.28)
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Continuing from (B.20), we have,

Dgap (m, k, λ,Fbin) = max
f :X×S7→[0,1]

min
i ̸=j

λ(1− λ)−
λ(mi,j

+ − kλ)
k

+
λmi,j

−
k

(B.29)

= max
f :X×S7→[0,1]

min
i ̸=j

λ+
λ

k
(mi,j

− −m
i,j
+ ) (B.30)

= max
f :X×S7→[0,1]

min
i ̸=j

min
β∈[0,1]

λ+
λ

k
(2β − 1)dij (B.31)

= max
f :X×S7→[0,1]

min
i ̸=j

λ

(
1− 1

k
dij

)
(B.32)

= 0 (B.33)

where the last equality follows from the fact that the inner minimum is achieved when dij = k, i.e.,
f(i, ·) is the all zeros vector and f(j, ·) is the all ones vector. The score functions f that result in
such cases are uninteresting as the detection can not be improved.

Case 2: mi,j
+ ≤ kλ and mi,j

+ +mi,j
− = k: In this case, we obtain the optimal values of as as in

Appendix B.1, by assigning the probability masses to the high score cases as follows. Note that in
this case |s : f(i, s)− f(j, s) = 0| = 0. Therefore,

as =


1
kλ , s : f(i, s)− f(j, s) = 1
1− 1

kλm
i,j
+

k−mi,j
+

, s : f(i, s)− f(j, s) = −1 (B.34)

Continuing from (B.24), we have,

Dgap (m, k, λ,Fbin) = max
f :X×S7→[0,1]

min
i ̸=j

(1− λ)mij
+

k
− λ

(
1

k
−

1− 1
kλm

ij
+

k −mi,j
+

)
(k −mij

+) (B.35)

= max
f :X×S7→[0,1]

min
i ̸=j

2mij
+

k
(1− λ) (B.36)

= 0 (B.37)

where the last equality follows from the fact that the inner minimum is achieved when mij
+ = 0, i.e.,

f(i, ·) is the all zeros vector and f(j, ·) is the all ones vector. The score functions f that result in
such cases are uninteresting as the detection can not be improved.

B.2 Proof of Theorem 1.

In this section, we derive an upper bound for the detection gap in (1) using the Plotkin bound from
coding theory [14].

Theorem 1 (restated): Consider the class of binary score functions Fbin and uniform PS . Then, for
any λ ∈

[
1
2 , 1
)
, the maximum detection gap can be bounded as

Dgap(m, k, λ,Fbin) ≤
m(1− λ)
2(m− 1)

(B.38)

Proof of Thm. 1. Thm. 1 follows directly from the Plotkin bound [14], which provides an upper
bound on the minimum normalized Hamming distance between any two codewords, considering any
code construction. Indeed,

Dgap(m, k, λ,Fbin) = max
f∈Fbin

min
i,j∈X ,i̸=j

(1− λ)dH(fi, fj)

k
≤ (1− λ) m

2(m− 1)
. (B.39)
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B.3 Proof of Theorem 2.

In this section, we show that SimplexWater achieves the upper bound in (B.39).

Theorem 2 (restated): For any λ ∈
[
1
2 , 1
)

the maximum detection gap upper bound (4) is attained by
SimplexWater.

Proof. SimplexWater uses the Simplex code construction in Definition 1 as the score function. The
simplex code achieves the Plotkin bound [14], i.e.,

min
i ̸=j

dH(fsim(i, ·), fsim(j, ·))
k

=
m

2(m− 1)
(B.40)

Therefore,

Dgap(m, k, λ,Fbin) ≥ min
i,j∈X ,i̸=j

(1− λ)dH(fsim(i, ·), fsim(j, ·))
k

= (1− λ) m

2(m− 1)
. (B.41)

Considering the upper and lower bounds in (B.39) and (B.41), we have,

Dgap(m, k, λ,Fbin) = (1− λ) m

2(m− 1)
, (B.42)

which is achieved by SimplexWater.

B.4 Proof of Theorem 3.

In this section, we establish that the Gumbel watermark scheme [17] can be understood within our
optimal transport framework, i.e., we prove Theorem 3, restated below.
Theorem 5 (Gumbel Watermark as OT). When the score random variables f(x, s), are sampled i.i.d.
from Gumbel(0, 1), the solution to the OT problem in (2) converges to the Gumbel watermark [17]
as |S| = k →∞.

To prove this, we first write down the Kantorovich dual of our optimal transport formulation and
identify the dual potentials {αx, βs} that generate the arg-max coupling. We then analyze the
behavior of these potentials in the limit k →∞, showing that the resulting arg-max rule converges
to the classical Gumbel-Max sampling procedure. A final concentration argument ensures that
the random coupling concentrates around its expectation, thereby establishing that the OT-derived
sampler coincides with the Gumbel watermarking scheme.

To understand this connection, we first review the Gumbel watermarking scheme. The Gumbel-Max
trick states that sampling from a softmax distribution can be equivalently expressed as:

yt = argmax
y∈V

ut(y)

T
+Gt(y) (B.43)

where ut(y) are the logits, T is the temperature parameter, and Gt(y) ∼ Gumbel(0, 1) independently
for each token position t and vocabulary element y. A Gumbel(0, 1) random variable can be generated
via:

Gt(y) = − log(− log(rt(y))) (B.44)
where rt(y) ∼ Uniform([0, 1]).

In the Gumbel watermarking scheme, the uniform random variables are replaced with pseudo-random
values:

rt(y) ∼ Uniform([0, 1]) (in unwatermarked model) (B.45)
rt(y) = Fyt−m:t−1,k(y) (in watermarked model) (B.46)

Here, Fyt−m:t−1,k(y) uses a secret key k and previously generated tokens yt−m:t−1 to deterministi-
cally generate values that appear random without knowledge of k.

To establish the connection to our OT framework (2), in the case when randomness is i.i.d. generated,
we analyze the dual formulation of the optimal transport problem. In this formulation, we seek to
minimize

∑
x PX(x)αx +

1
k

∑
s βs subject to αx + βs ≥ f(x, s). The optimal values for these dual
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variables satisfy specific conditions that link to the Gumbel-Max construction. The key insight comes
from the optimality condition in our framework:

PX(i) = P(argmax
j

[f(j, s)− α∗
j ] = i) (B.47)

This can be directly mapped to the Gumbel-Max trick by identifying that f(j, s) corresponds to the
Gumbel noise Gt(y) and α∗

j corresponds to −ut(y)
T (the negative normalized logits). With these

identifications, the Gumbel-Max sampling expression:

yt = argmax
y∈V

ut(y)

T
+Gt(y) = argmax

y∈V
[Gt(y)− (−ut(y)

T
)] (B.48)

Takes exactly the same form as our framework’s expression argmaxj [z(j, s) − α∗
j ]. Further, the

probability that this argmax equals i is precisely PX(i) in our framework. Therefore, when f(j, s) ∼
Gumbel(0, 1), we will show below that our optimal transport solution exactly recovers the Gumbel
watermarking scheme.

The detailed proof proceeds by analyzing the convergence of the discretized dual problem to its
continuous limit as k →∞. The optimality conditions in the limit confirm that our OT framework
generalizes the Gumbel watermark as a special case when scores are drawn from the Gumbel
distribution. We start by defining a general optimal transport problem and its Kantorovich duality.
Definition 2 (Optimal Transport Problem). Given probability measures µ and ν on spaces X and
Y respectively, and a cost function c : X × Y → R, the optimal transport problem seeks to find a
coupling π (a joint distribution with marginals µ and ν) that minimizes the expected cost:

inf
π∈Π(µ,ν)

∫
X×Y

c(x, y) dπ(x, y) (B.49)

where Π(µ, ν) is the set of all probability measures on X × Y with marginals µ and ν.

The Kantorovich duality is a fundamental result that provides an equivalent formulation of this
problem. For more details, see [35, Chapter 5].
Theorem 1 (Kantorovich Duality). The optimal transport problem is equivalent to:

sup
(φ,ψ)∈Φc

{∫
X
φ(x) dµ(x) +

∫
Y
ψ(y) dν(y)

}
(B.50)

where Φc = {(φ,ψ) : φ(x) + ψ(y) ≤ c(x, y)} is the set of functions satisfying the c-inequality
constraint.

This duality relationship (i.) transforms a non-trivial constrained optimization problem over probabil-
ity measures into an optimization over functions, (ii.) provides a way to certify optimality through
complementary slackness conditions and (iii.) enables us to analyze the convergence properties of OT
problems through the convergence of dual objective functions. In many applications, the Kantorovich
duality is rewritten with the constraint reversed (potential functions sum to ≥ c), transforming the
problem into a minimization rather than maximization. We adopt this convention in our formulation
below.

Primal Formulation. Let us consider an optimal transport problem described by the inner maximiza-
tion of (1), that is, given by Equation (2). Recall that given a pair (PX , f), the inner maximization in
(1) amounts to an OT problem between PX and PS , which is set to follow an uniform distribution on
[1 : k]. There, the score function f can be equivalently denoted as the (m× k)-dimensional OT cost
matrix C, which is defined as Cx′,s′ = −f(x′, s′) for (x′, s′) ∈ [1 : m]× [1 : k]. This matrix is only
generated once.

Now, let PX be a probability distribution over a finite set {1, 2, . . . ,m} and PS be a uniform
distribution with mass 1/k at each point in {1, 2, . . . , k}. We have a cost function f(x, s) with zero
mean and unit variance, i.e., EP [z] = 0 and EP [z2] = 1. The inner optimization in (1) aims to find a
coupling PXS that maximizes:

C∗
P,k = max

PXS

∑
x,s

PXS(x, s) · f(x, s) (B.51)
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s.t.
∑
s

PXS(x, s) = PX(x) ∀x (B.52)

∑
x

PXS(x, s) =
1

k
∀s (B.53)

PXS(x, s) ≥ 0 ∀x, s (B.54)

Dual Formulation. In order to analyze this primal optimal transport problem we can look at the dual
by using a Kantorovich duality argument. The equivalent dual problem is given by:

C∗
D,k = min

αx,βs

∑
x

PX(x)αx +
∑
s

1

k
βs (B.55)

Subject to: αx + βs ≥ f(x, s) ∀x, s (B.56)

In this dual formulation, αx and βs are the Kantorovich potentials (i.e., Lagrange multipliers)
enforcing the marginal constraints

∑
s PXS(x, s) = PX(x) and

∑
x PXS(x, s) =

1
k respectively.

For any fixed values of αx, we need to determine the optimal values of βs that minimize the dual
objective function. Since we aim to minimize the objective and the coefficients of βs are positive
( 1k > 0), we want to make each βs as small as possible while still satisfying the constraints. For a
given s, the constraint becomes:

βs ≥ f(x, s)− αx ∀x (B.57)

This means that βs must be at least as large as f(x, s) − αx for every value of x. To ensure all
constraints are satisfied while keeping βs minimal, we set:

βs = max
x′

[f(x′, s)− αx′ ] (B.58)

This is the smallest value of βs that satisfies all constraints for a given s. Any smaller value would
violate at least one constraint, and any larger value would unnecessarily increase the objective
function. Substituting this expression back into the dual objective yields:

C∗
D,k = min

αx

m∑
x=1

PX(x)αx +
1

k

k∑
s=1

max
x′

[f(x′, s)− αx′ ] (B.59)

This reformulation reduces the dual problem to an unconstrained minimization over αx only.

To establish convergence of the dual problem, which is the key to embedding the Gumbel water-
marking scheme in our framework, we will first recall a few fundamental concepts from variational
analysis and convex optimization.
Definition 3 (Epi-convergence). A sequence of functions fk : Rn → R ∪ {±∞} is said to epi-
converge to a function f : Rn → R ∪ {±∞} if the following two conditions hold:

(i) For every x ∈ Rn and every sequence xk → x, lim infk→∞ fk(xk) ≥ f(x).

(ii) For every x ∈ Rn, there exists a sequence xk → x such that lim supk→∞ fk(xk) ≤ f(x).

Epi-convergence is particularly important in optimization because it guarantees that minimizers and
minimal values converge appropriately. For more details on epi-convergence, see [61].
Definition 4 (Equi-lower semicontinuity). A family of functions {fk} is equi-lower semicontinuous
if for every x ∈ Rn and every ε > 0, there exists a neighborhood V of x such that

inf
y∈V

fk(y) > fk(x)− ε (B.60)

for all k.

The following result connects pointwise convergence with epi-convergence for convex functions:
Theorem 2 ([62, Theorem 2]). If {fk} is a sequence of convex, continuous, and equi-lower semi-
continuous functions that converge pointwise to a function f on Rn, then {fk} epi-converges to
f .

31



As a first step toward applying our framework to the Gumbel watermarking scheme, we now
characterize how the optimal transport cost behaves in the limit k →∞.
Theorem 3. As k →∞, the optimal value of the discrete problem converges to the expected value
problem:

C∗
D,k → C∗

D = min
x∈Rm

pTx+ E[max
j

(f(j, s)− xj)] (B.61)

where pj = PX(j) and f(j, s) are random variables with the distribution matching the problem’s
cost function.

Proof of Theorem 3. Let us rewrite the objective function in vector notation:

fk(x) = pTx+
1

k

k∑
s=1

max
j

[f(j, s)− xi] (B.62)

where z⃗j = [z1,j , . . . , zm,j ] and zi,j := f(i, sj) denote the sampled scores, i.e., each column
z⃗j corresponds to the vector of scores across tokens for a fixed side-information sample sj , and
x = [α1, . . . , αm].

We need to establish that the functions fk are continuous and convex. Note that

1. The term pTx is linear and therefore continuous and convex.

2. The function gs(x) = maxj [f(j, s)− xj ] is continuous for each j because:

(a) The functions hj(x) = f(j, s)− xj are continuous for each j.
(b) The maximum of a finite number of continuous functions is continuous. It is also

convex as the maximum of linear functions.

3. The sum 1
k

∑k
s=1 gs(x) is continuous as a linear combination of continuous functions and

convex as a positive linear combination of convex functions.

As k → ∞, by the Law of Large Numbers, for any fixed x, the sample average converges to the
expected value:

1

k

k∑
s=1

max
j

[f(j, s)− xj ]→ E[max
j

(f(j, s)− xj)] (B.63)

Therefore,

fk(x)→ f(x) = pTx+ E[max
i

(zi − xi)] (B.64)

This establishes pointwise convergence of fk to f . Next, we need to prove that the family of functions
{fk} is equi-lower semicontinuous.

Lemma B.1. The family of functions {fk} defined above is equi-lower semicontinuous under mild
assumptions on the boundedness of the data points z⃗j .

Proof. First, observe that each fk is continuous (and hence lower semicontinuous). For any x ∈ Rn
and ε > 0, consider the neighborhood

V = {y : ∥y − x∥∞ < ε/2} (B.65)

For any y ∈ V and any j, i, we have

zi,j − yi > zi,j − xi − ε/2 (B.66)

Therefore,

max
i

[zi,j − yi] ≥ max
i

[zi,j − xi − ε/2] = max
i

[zi,j − xi]− ε/2 (B.67)
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This implies

1

k

k∑
j=1

max
i

[zi,j − yi] ≥
1

k

k∑
j=1

max
i

[zi,j − xi]− ε/2 (B.68)

Combined with the linear term, we get

fk(y) = pT y +
1

k

k∑
j=1

max
i

[zi,j − yi] (B.69)

≥ pTx− ∥p∥1 · ε/2 +
1

k

k∑
j=1

max
i

[zi,j − xi]− ε/2 (B.70)

= fk(x)− ∥p∥1 · ε/2− ε/2 (B.71)

By choosing ε small enough, we ensure that ∥p∥1 · ε/2 + ε/2 < ε, which gives us

inf
y∈V

fk(y) > fk(x)− ε (B.72)

This holds for all k, establishing the equi-lower semicontinuity of the family {fk}.

Since we have established that the functions fk are convex, continuous, and equi-lower semicontinu-
ous, and that they converge pointwise to f , we can apply Lemma 2 to conclude that fk epi-converges to
f . By the fundamental properties of epi-convergence, if fk epi-converges to f , then min fk → min f .
Also, every limit point of minimizers of fk is a minimizer of f . This establishes that C∗

D,k → C∗
D as

k →∞.

Optimality Conditions and Characterization. Now, we analyze the optimality conditions for the
dual problem. Consider our objective function:

fk(α) =

m∑
i=1

PX(i)αi +
1

k

k∑
s=1

max
j

[f(j, s)− αj ] (B.73)

To find the derivative with respect to αi, we note that the derivative of the first term is simply PX(i).
For the second term, we need to understand how the max function behaves. At points where a unique
index j achieves the maximum value of f(j, s)− αj , the derivative is:

∂

∂αi
max
j

[f(j, s)− αj ] =
{
−1 if i = argmaxj [f(j, s)− αj ]
0 otherwise

(B.74)

The negative sign appears because αi has a negative coefficient in the expression inside the
max.For simplicity, we often write the optimality condition using the indicator function 1[i ∈
argmaxj [f(j, s)− αj ]], which equals 1 when i is in the argmax set and 0 otherwise.

∂

∂αi
max
j

[f(j, s)− αj ] = −1[i = argmax
j

[f(j, s)− αj ]] (B.75)

If there are ties (multiple indices achieve the maximum), then the max function is not differentiable.
Instead, we use the concept of subdifferential. A valid subgradient can be written as −1[i ∈
argmaxj [f(j, s)− αj ]] · wi, where wi ≥ 0 are weights such that

∑
i∈argmax wi = 1.

The derivative (or subgradient) of the entire objective function with respect to αi is:

∂fk
∂αi

= PX(i)− 1

k

k∑
s=1

1[i ∈ argmax
j

[f(j, s)− αj ]] (B.76)
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Then, for the optimal dual variables α∗, the first-order optimality condition gives:

∂fk
∂αi

(α∗) = PX(i)− 1

k

k∑
s=1

1[i ∈ argmax
j

[f(j, s)− α∗
j ]] = 0 (B.77)

We interpret this optimality condition as follows: the probability PX(i) equals the empirical probabil-
ity that i is in the argmax set of f(j, s)− α∗

j across all samples s. Rearranging, we have:

1

k

k∑
s=1

1[i ∈ argmax
j

[f(j, s)− α∗
j ]] = PX(i) (B.78)

To fully understand the emergence of the Gumbel-Max connection, we must carefully analyze how
the discrete optimality condition converges to its continuous counterpart as k →∞. The key step is
understanding how the empirical average on Equation B.78 becomes the probability statement:

Pr[argmax
j

(zj − α∗
j ) = i] = PX(i) (B.79)

In other words, it remains to show that

1

k

k∑
s=1

1
{
i ∈ argmax

j

[
f(j, s)− α∗

j

]}
−→ E

[
1
{
i ∈ argmax

j

[
f(j, s)− α∗

j

]}]
. (B.80)

In order to show this convergence, let α∗
k denote the optimal dual variables for the problem with k

samples. From the epi-convergence of fk to f , we know that α∗
k → α∗ as k →∞.

For any fixed α, the indicator functions 1{i ∈ argmaxj [f(j, s)−αj ]} are independent and identically
distributed across s, since f(j, s) are sampled independently. Therefore, by the Strong Law of Large
Numbers:

1

k

k∑
s=1

1{i ∈ argmax
j

[f(j, s)− αj ]}
a.s.−−→ E[1{i ∈ argmax

j
[f(j, s)− αj ]}] (B.81)

To address the case where α is replaced by α∗
k which depends on the samples, we decompose:

∣∣∣∣∣1k
k∑
s=1

1{i ∈ argmax
j

[f(j, s)− α∗
k,j ]} − E[1{i ∈ argmax

j
[f(j, s)− α∗

j ]}]

∣∣∣∣∣ (B.82)

≤

∣∣∣∣∣1k
k∑
s=1

1{i ∈ argmax
j

[f(j, s)− α∗
k,j ]} −

1

k

k∑
s=1

1{i ∈ argmax
j

[f(j, s)− α∗
j ]}

∣∣∣∣∣ (B.83)

+

∣∣∣∣∣1k
k∑
s=1

1{i ∈ argmax
j

[f(j, s)− α∗
j ]} − E[1{i ∈ argmax

j
[f(j, s)− α∗

j ]}]

∣∣∣∣∣ (B.84)

The second term converges to zero by the Strong Law of Large Numbers. For the first term, we
exploit the fact that the argmax function is stable under small perturbations except at ties, which
occur with probability zero for continuous distributions of f .

Specifically, let ∆k = ∥α∗
k − α∗∥∞. For any realization of f(j, s), the argmax changes only if the

perturbation ∆k exceeds the minimum gap between the maximum value and the second-largest value.
Let Gs = minj ̸=j∗ [f(j

∗, s)− α∗
j∗ ]− [f(j, s)− α∗

j ], where j∗ = argmaxj [f(j, s)− α∗
j ]. Then:

1{i ∈ argmax
j

[f(j, s)− α∗
k,j ]} ≠ 1{i ∈ argmax

j
[f(j, s)− α∗

j ]} =⇒ ∆k > Gs (B.85)

Since α∗
k → α∗, we have ∆k → 0 as k → ∞. The probability P(∆k > Gs) converges to zero

because Gs > 0 almost surely for continuous distributions. By dominated convergence, the first term
also converges to zero.
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Consequently:

1

k

k∑
s=1

1{i ∈ argmax
j

[f(j, s)− α∗
k,j ]}

p−→ E[1{i ∈ argmax
j

[f(j, s)− α∗
j ]}] (B.86)

Combined with our optimality condition in equation (B.78), we obtain:

PX(i) = E[1{i ∈ argmax
j

[f(j, s)− α∗
j ]}] = P(argmax

j
[f(j, s)− α∗

j ] = i) (B.87)

In other words, the random mapping S 7→ argmaxj [f(j, s)− α∗
j ] reproduces the original law PX

exactly. This fact is precisely what Theorem 3 asserts: the Gumbel-Max procedure constitutes the
optimal-transport coupling between PX and the side-information mechanism.

Connection to Gumbel Watermarking. The Gumbel watermarking scheme described above can
be directly interpreted within our optimal transport framework by noticing that this same arg-max
coupling is exactly what underlies the Gumbel-Max trick: adding Gumbel noise Gt(j) to (negative)
logits −ut(y)

T and taking argmax samples from the softmax. In our formulation, the cost function
f(j, s) corresponds to the Gumbel noise Gt(j), while the dual variables αj correspond to −ut(j)

T .
The optimality condition

PX(i) = P(argmax
j

[f(j, s)− α∗
j ] = i) (B.88)

is precisely the Gumbel-Max trick, which states that sampling from a softmax distribution is equivalent
to adding Gumbel noise to logits and taking the argmax.3 In practice, under the watermarking process,
the Gumbel scheme replaces the uniform variables rt(y) with pseudo-random values Fyt−m:t−1,k(y)
that depend on the secret key and previously generated tokens. This creates a coupling between the
original token distribution and the side information, exactly as prescribed in our optimal transport
approach. Thus, when we assume i.i.d. scores, the Gumbel watermarking scheme represents a
specific instantiation of our general optimal transport framework, where the coupling is designed to
preserve the original distribution in expectation while maximizing detectability through heavy-tailed
score distributions.

B.5 Proof of the Detection Gap, Theorem 4.

In Section 4, we introduced the HeavyWater scheme by generalizing the scores beyond the binary
case. Since f(x, s) is random, D[PF ]

gap (m, k, λ) given by

D[PF ]
gap (m, k, λ) = min

PX∈Pλ

max
PXS

(EPXS
[f(X,S)]− EPXPS

[f(X,S)]) (B.89)

is also a random variable. Now, we will show that we can go beyond Theorem 3, improving on the
watermarking scheme like Gumbel, and prove Theorem 4 that connects the asymptotic detection gap
with the quantiles of the distribution of the score difference ∆ = f(x, s)− f(x′, s′).
Theorem 4 (Detection Gap, asymptotic randomness). Let λ ∈

[
1
2 , 1
)
, and consider the score

difference random variable ∆ = f(x, s) − f(x′, s′) for some (x, s) ̸= (x′, s′), where f(x, s) and
f(x′, s′) are sampled i.i.d. from PF . Let the cumulative distribution function of ∆ be F , and let
Q = F−1 be its inverse. Then,

lim
k→∞

D[PF ]
gap (m, k, λ) =

∫ 1

1−λ
Q(u)du. (B.90)

Proof. We begin by characterizing the structure of the optimal coupling PXS that attains the maxi-
mum in (B.91) below.

3To see this precisely, substitute the jth logit as −α∗
j on the RHS of (B.88), and simplify the RHS using the

same steps as in Appendix B.1 of [24]. This shows that (B.88) holds when −α∗
j = jth logit. Which means that

the Gumbel watermark is a special case of our construction in sec. 4 (which boils down to (B.88)), with f(x, s)
specifically chosen has Gumbel(0, 1).
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max
PXS

E[k]
PXS

[f(X,S)]− E[k]
PXPS

[f(X,S)]

s.t.
k∑
s=1

Px,s = px, x ∈ {1, . . . ,m}

m∑
x=1

Px,s =
1

k
, s ∈ {1, . . . , k} (B.91)

Lemma 1. The minimum in (B.89) is achieved by the PX ∈ Pλ satisfying

PX(x) =


λ, x = i,

1− λ x = j,

0, x ̸= i, j.

(B.92)

as shown in (B.17). Assume that λ ≥ 1
2 . Then, the optimal PXS , solution of Equation (B.91), is

given by  s1 · · · sr sr+1 sr+2 · · · sk
λ 1

k · · · 1
k λ− r

k 0 · · · 0
1− λ 0 · · · 0 r+1

k − λ
1
k · · · 1

k


where r is the integer satisfying r

k ≤ λ <
r+1
k .

The optimal coupling assigns the probability mass of x = i sequentially to the first r side-information
bins until its total mass λ is exhausted, after which the remaining bins are filled by x = j. This is
intuitive as PX(i) ≥ PX(j).

For a given k, maxPXS
E[k]
PXS

[f(X,S)] is given by

max
PXS

E[k]
PXS

[f(X,S)] (B.93)

=
1

k

r∑
s=1

f(1, s) +
(
λ− r

k

)
f(1, r + 1) +

(
r + 1

k
− λ

)
f(2, r + 1) +

1

k

k∑
s=r+2

f(2, s) (B.94)

=
1

k

k∑
s=1

f(2, s) +
(
λ− r

k

)
∆r+1 +

1

k

r∑
s=1

∆s (B.95)

For E[k]
PXPS

[f(X,S)], we have

E[k]
PXPS

[f(X,S)] =
λ

k

k∑
s=1

f(1, s) +
1− λ
k

k∑
s=1

f(2, s). (B.96)

Therefore, the difference is given by

max
PXS

E[k]
PXS

[f(X,S)]− E[k]
PXPS

[f(X,S)] (B.97)

=
1

k

k∑
s=1

f(2, s) +
(
λ− r

k

)
∆r+1 +

1

k

r∑
s=1

∆s −
λ

k

k∑
s=1

f(1, s)− 1− λ
k

k∑
s=1

f(2, s) (B.98)

=
λ

k

k∑
s=1

f(2, s) +
(
λ− r

k

)
∆r+1 +

1

k

r∑
s=1

∆s −
λ

k

k∑
s=1

f(1, s) (B.99)

Let us define the following terms that we will analyze precisely:

f̄1,k =
1

k

k∑
s=1

f(1, s), f̄2,k =
1

k

k∑
s=1

f(2, s) and Ik =
1

k

r∑
s=1

∆s. (B.100)

36



With these definitions, we can rewrite the detection gap as:

max
PXS

E[k]
PXS

[f(X,S)]− E[k]
PXPS

[f(X,S)] = λf̄2,k +
(
λ− r

k

)
∆r+1 + Ik − λf̄1,k (B.101)

To establish the exact limit, we need to analyze each term with greater precision.

Exact characterization of λ(f̄2,k− f̄1,k): Both f(1, s) and f(2, s) are i.i.d. sub-exponential random
variables with parameters (ν2, b). By the strong law of large numbers, we have almost surely:

lim
k→∞

f̄1,k = E[f(1, 1)] and lim
k→∞

f̄2,k = E[f(2, 1)] (B.102)

Since f(x, s) are i.i.d. with zero mean, we have E[f(1, 1)] = E[f(2, 1)] = 0. Therefore, almost
surely:

lim
k→∞

λ(f̄2,k − f̄1,k) = 0 (B.103)

Exact characterization of
(
λ− r

k

)
∆r+1: By definition of r = ⌊λk⌋, we have 0 ≤ λ − r

k <
1
k .

Since ∆r+1 is a sub-exponential random variable with parameters (4ν2, 2b), it is almost surely finite.
Combining this with the above inequality:

lim
k→∞

(
λ− r

k

)
∆r+1 = 0 almost surely. (B.104)

Exact characterization of Ik: For this term, we use order statistics. Let ∆(1) ≤ ∆(2) ≤ · · · ≤ ∆(k)

denote the ordered values for the difference of scores ∆s. Then:

Ik =
1

k

k∑
j=k−r+1

∆(j). (B.105)

Let F be the CDF of ∆s and Fk be the empirical CDF given by

Fk(x) :=
1

k

k∑
s=1

1{∆s ≤ x}, (B.106)

By the Glivenko-Cantelli theorem, we have:

sup
x∈R
|Fk(x)− F (x)| ≤ ηk where ηk → 0 almost surely as k →∞ (B.107)

For each order statistic ∆(j), the empirical CDF by definition gives Fk(∆(j)) =
j
k . The bound from

Glivenko-Cantelli gives:
j

k
− ηk ≤ F (∆(j)) ≤

j

k
+ ηk. (B.108)

Let Q = F−1 be the quantile function. By definition of the quantile function, if p ≤ F (x) then
Q(p) ≤ x, and if F (x) ≤ q then x ≤ Q(q). Applying these relationships:

Q

(
j

k
− ηk

)
≤ ∆(j) ≤ Q

(
j

k
+ ηk

)
(B.109)

Now we perform a change of index. We want to rewrite the sum in Ik which uses index j ranging
from k − r + 1 to k. Let’s set j = k − i+ 1, so i ranges from 1 to r. This gives:

j

k
=
k − i+ 1

k
= 1− i− 1

k
(B.110)

Substituting this into our bounds on ∆(j):

Q

(
1− i− 1

k
− ηk

)
≤ ∆(k−i+1) ≤ Q

(
1− i− 1

k
+ ηk

)
(B.111)
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Summing over i from 1 to r and dividing by k:

1

k

r∑
i=1

Q

(
1− i− 1

k
− ηk

)
≤ 1

k

r∑
i=1

∆(k−i+1) (B.112)

=
1

k

k∑
j=k−r+1

∆(j) (B.113)

= Ik (B.114)

≤ 1

k

r∑
i=1

Q

(
1− i− 1

k
+ ηk

)
(B.115)

As k → ∞, we know that ηk → 0 almost surely by the Glivenko-Cantelli theorem. The points
ui := 1− i−1

k for i = 1, . . . , r where r = ⌊λk⌋, form a partition of the interval [1− λ, 1] as follows:

u1 = 1, u2 = 1− 1

k
, u3 = 1− 2

k
, . . . , ur = 1− r − 1

k
≈ 1− λ. (B.116)

As k →∞, the number of points r = ⌊λk⌋ also increases, and the distance between adjacent points
1
k → 0. Therefore, these points {ui}ri=1 form an increasingly fine partition of the interval [1− λ, 1].
For any fixed u ∈ [1 − λ, 1], as k → ∞, there exists a sequence of indices ik such that uik → u.
Specifically, we can take ik = ⌈k(1− u) + 1⌉, which ensures uik → u as k →∞. Our bounds for
Ik can be written as:

1

k

r∑
i=1

Q(ui − ηk) ≤ Ik ≤
1

k

r∑
i=1

Q(ui + ηk) (B.117)

Since Q is non-decreasing, it is bounded on the compact interval [1− λ− β, 1 + β] for some β > 0.
Let

M := sup
t∈[1−λ−β,1+β]

|Q(t)| <∞, (B.118)

then |Q(ui − ηk)| ≤M and |Q(ui + ηk)| ≤M for all i and sufficiently large k.

The lower sum 1
k

∑r
i=1Q(ui − ηk) is a perturbed lower Riemann sum for the integral

∫ 1

1−λQ(u) du,
and similarly the upper sum is a perturbed upper Riemann sum. As k → ∞, two things happen
simultaneously, namely, (i) the mesh width 1

k → 0, so the Riemann sums converge to the integral and
(ii) the perturbation ηk → 0, so Q(ui ± ηk)→ Q(ui). By the Dominated Convergence Theorem, we
have

lim
k→∞

1

k

r∑
i=1

Q(ui − ηk) =
∫ 1

1−λ
Q(u) du (B.119)

lim
k→∞

1

k

r∑
i=1

Q(ui + ηk) =

∫ 1

1−λ
Q(u) du (B.120)

Since Ik is bounded between these two quantities that converge to the same limit, we have

lim
k→∞

Ik =

∫ 1

1−λ
Q(u)du almost surely. (B.121)

Combining all terms: From our asymptotic analysis of each term, we have:

lim
k→∞

max
PXS

E[k]
PXS

[f(X,S)]− E[k]
PXPS

[f(X,S)] = lim
k→∞

Ik =

∫ 1

1−λ
Q(u)du almost surely.

(B.122)

Therefore:

lim
k→∞

D[PF ]
gap (m, k, λ) =

∫ 1

1−λ
Q(u)du. (B.123)
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Theorem 4 implies that distributions with heavier tails imply larger values of the integral
∫ 1

1−λQ(u)du,
which in turn imply higher detection gaps. Indeed, fix λ. We say that a distribution F2 is (right-
)heavier-tailed than F1 when 1− F2(x) ≤ 1− F1(x) for all large x, equivalently Q2(u) ≥ Q1(u)
for every u in a neighbourhood of 1. In particular, for all u ∈ [1− λ, 1]:

Q2(u) ≥ Q1(u)

which implies: ∫ 1

1−λ
Q2(u)du ≥

∫ 1

1−λ
Q1(u)du

Therefore, keeping the same confidence levels:

heavier tail =⇒ larger
∫ 1

1−λ
Q(u)du =⇒ larger guaranteed detection gap.

The asymptotic detection gap, given by
∫ 1

1−λQ(u)du, represents the average value of the quantile
function over the upper λ fraction of the distribution. This integral captures how much signal can
be extracted from the tail of the score differences. Distributions whose upper tail places more mass
far from zero (resulting in larger values of the integral

∫ 1

1−λQ(u)du directly increase the detection
capability of the watermark. This explains why the choice of score distribution fundamentally impacts
watermark detectability. Consequently, among distributions with the same mean and variance, the
heavier-tailed ones yield strictly higher guaranteed detection rates. Therefore, if we constrain
ourselves to the ensemble of sub-exponential probability distributions, by choosing something with a
heavier tail than Gumbel, e.g., Log-Normal, we can achieve a better detection scheme, as we show in
our experiments, cf. Figure 1.
Remark 2. By using Bernstein’s inequality for sub-exponential variables and Dvoret-
zky–Kiefer–Wolfowitz inequality instead of Glivenko-Cantelli, it is possible to show a non-asymptotic
version of the theorem above:
Theorem 5 (Detection gap, formal). Let 0 < λ < 1 be fixed, write r = ⌊λk⌋ and define

Ik =
1

k

r∑
s=1

∆s, f̄1,k =
1

k

k∑
s=1

f(1, s), f̄2,k =
1

k

k∑
s=1

f(2, s),

where ∆s = f(1, s)− f(2, s). For any confidence levels δ, δ′, δ‡ ∈ (0, 1) set

εk(δ) =

√
2ν2 log(1/δ)

k
+
b log(1/δ)

k
, t∗(δ

′) = max
{
2ν
√

log 1
δ′ , 2b log

1
δ′

}
,

ηk(δ
‡) =

√
log(2/δ‡)

2k
.

Then, with probability at least 1− δ − δ′ − δ‡,

max
PXS

E[k]
PXS

[
f(X,S)

]
− E[k]

PXPS

[
f(X,S)

]
≥ 1

k

r∑
i=1

Q
(
1− i− 1

k
− ηk(δ‡)

)
.−
[
2εk(δ) +

t∗(δ
′)

k

]
,

(B.124)
where Q = F−1 is the quantile function of ∆s, and E[k] denotes an expectation where the side
information alphabet is of size k.

C Additional Information and Implementation Details

C.1 Low-Entropy Distributions in LLMs

To motivate the low-entropy regime, we compute summary statistics of token distributions of popular
open-weight LLMs. We consider the densities of three statistics: infinity norm (connects directly to
min-entropy4), entropy, and L-2 norm, all calculated on the next token prediction along a collection
of responses.

4An infinity norm of λ, i.e. maxs P (x) < λ, translates directly to min-entropy constraint of − log λ.
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We observe that 90% LLM token distributions fall into the low-entropy regime we consider with
infinity norm greater than 1/2, i.e. maxx P (x) ≥ 1

2 , across the three open LLMs (Llama2-7B[47],
Llama3-8B[63], Mistral-7B) and two on popular prompt-generation datasets (Q&A tasks from
Finance-QA[45] and coding tasks from LCC[46]). We show the histogram and CDF plots in Fig.
D.14 and D.15.

C.2 Theoretical effect of different tails of distributions

To further improve the detection performance, we go beyond binary score functions to explore the
flexibility in the design space that continuous score distributions offer. Motivated by the Gumbel
watermark [17], we observe that we can significantly improve detection by using continuous score
distributions, particularly those with heavy tails. Recall that our minimax formulation considers the
low-entropy regime (λ ∈ [1/2, 1]), where the worst-case token distribution PX has only two non-zero
elements with values {λ, 1− λ}. Working with this distribution, consider score matrices where each
entry f(x, s) is sampled independently from a distribution PF with zero mean and unit variance.
We additionally assume that f (and hence every ∆s = f(1, s) − f(2, s)) is sub-exponential with
parameters (ν2, b), i.e., E[eλf ] ≤ exp

(
ν2λ2

2

)
for all |λ| ≤ 1/b. Many distributions, such as Gamma,

Gaussian, and Lognormal satisfy this property. This formulation leads to Theorem 4, which formally
characterizes the achievable maximum detection gap for any PF for large k, in terms of quantile tail
integrals of various candidate distributions as its score distribution PF . We visualize the result in Fig.
C.5.

In Fig. C.5, we present the quantile tail integrals of four different distributions: Lognormal, Gamma,
Gaussian, and Gumbel. A higher value on the y-axis (quantile tail integral) indicates a greater
detection gap under the low-entropy regime, which translates to a greater probability of detection
under adversarial token distributions. In theory and as seen from Figure C.5, drawing score functions
i.i.d from either the Lognormal or Gamma distribution outperforms that from Gumbel. Recall that
the significance of adopting the Gumbel score function is that we have established its equivalence
with the Gumbel watermark by [17] in Theorem 3. Although the Gamma distribution maximizes the
detection gap in the worst-case regime, we observe that choosing PF to be lognormal achieves the
highest detection accuracy in practice, which is what we eventually adopt for HeavyWater.

Figure C.5: Tail integrals of different score difference distributions: Higher the tail integral, better the detection.

C.3 Q-ary Code

We provide a discussion of the direct extension of SimplexWater to go beyond binary-valued scores.
Recall that SimplexWater uses the binary Simplex Code as its score function. For a given prime
field-size q, a Q-ary SimplexWater adopts the corresponding Q-ary Simplex Code [14], which we
define next. Besides the score function, the algorithm for Q-ary SimplexWater is identical to the
binary case, which we have provided in the main text.

Given an alphabet of size m and field size q > 2, the size of a Q-ary codeword is q to the power
of the ceiling of log m with base q, i.e. n = q⌈logq m⌉. For any x, s ∈ [0 : n − 1], let qary(x),
qary(s) denote their Q-ary representations respectively using n bits. A Q-ary simplex code fsim : [0 :
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n− 1]× [1 : n− 1]→ [0 : q − 1 is characterized by

fsim(x, s) ≜ dot(qary(x), qary(s)), (C.125)

where dot(qary(x), qary(s)) ≜
∑n
i=1 qary(x)i · qary(s)i and qary(v)i denotes the ith bit in the

Q-ary representation of v.

There are two main limitations of Q-ary SimplexWater, which motivated us to explore a continuous
score function directly and ultimately led to HeavyWater. The first limitation is that we do not have
optimality guarantees for the Q-ary code. Recall that to maximize watermark detection, the optimal
code maximizes the L1 distance. Simplex Code achieves the Plotkin bound, which maximizes the
pair-wise Hamming distance between codewords. In the binary case, maximizing the Hamming
distance and L1 distance are equivalent, where 1i,j = |i − j|; in the Q-ary case, this equivalence
doesn’t hold. Hence, we do not have an optimality guarantee in detection for Q-ary SimplexWater.
The second limitation is that the size of Q-ary codewords is potentially very large, leading to memory
issues in actual implementation on a GPU. Recall that in the binary case, we have n = m− 1. In the
Q-ary case, however, the use of the ceiling function when converting m to base-q artificially inflates
n, often far beyond the actual vocabulary size. For example, with q = 7 and a vocabulary size of
m = 100,000, we compute ⌈log7(100,000)⌉ ≈ ⌈5.92⌉ = 6, which corresponds to n = 76 = 117,649
codewords—more than 18% larger than the original vocabulary. Furthermore, the required alphabet
size to implement a Q-arry code grows with q.

C.4 Implementation Details

In this section we provide additional implementation details for SimplexWater and HeavyWater.
Our code implementation employs the code from the two benchmark papers, namely WaterBench5

[43] and MarkMyWords6 [44].

Score Matrix Instantiation We sample the score matrix once during the initialization stage of
HeavyWater generation and it has shape (m, k). Each row maps a vocabulary token to a cost vector
over the side information space S. This matrix is stored as a torch.Tensor and reused across
watermarking calls. During generation, the score matrix is used as the cost matrix for Sinkhorn-based
optimal transport computations.

Normalization of f As described before, for each element in the vocabulary, k samples for the
score f are drawn from a heavy-tailed distribution (log-normal in the experiment). To ensure
numerical stability and suitability for optimal transport computations, each row of the score matrix
(size vocab_size ∗ k) is normalized to have zero mean and unit variance.

Top-p Filtering To reduce the computational cost of watermarking, top-p filtering is applied prior
to watermarking. Identical to the common definition of top-p, we take the minimal set of tokens
whose cumulative softmax probability exceeds a threshold (e.g., p = 0.999). The watermarking
algorithm is then restricted to this filtered subset. We emphasize that, in the considered experiments,
top-p filtering was applied to all considered watermarks to maintain consistency in the experimental
setting.

Detection Algorithm We outline in Algorithm 2 a standard watermark detection algorithm that
employs a threshold-test with a score matrix F. Given the sampled token x and side information s,
the corresponding score is Fx,s = f(x, s), which is obtained in a similar fashion to its construction in
generation: If SimplexWater is used, then it is obtained from the Simplex code, and if HeavyWater
it is randomly sampled using the shared secret key as the initial seed. This maintains the generation
of the same cost matrix F on both ends of generation and detection. A watermark is detected if the
sum of scores exceeds a certain predetermined threshold.

5https://github.com/THU-KEG/WaterBench
6https://github.com/wagner-group/MarkMyWords
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Algorithm 2 Detection using a threshold-test with a score matrix

1: Input: Token sequence xn, side information s, seed, score matrix F ∈ Rm×k

2: Outputs: p-value based detection outcome
3: for t = 1 to T do
4: Compute score ϕt := Fxt,s

5: end for
6: Z ←

∑T
t=1 ϕt

7: if Z > τ then return “Watermark Detected”
8: else return “No Watermark”

Fresh Randomness Generation Fresh randomness is crucial to ensure side information is sampled
independently from previous tokens to avoid seed collision. Our implementation supports several
seeding strategies. In majority of our experiment, we use the ’fresh’ strategy, which generates
a unique seed for each token by incrementing a counter and combining it with the shared secret
key. This allows both ends to share the same seed that dynamically changes, but is independent of
previously generated tokens. Our implementation of HeavyWater and SimplexWater also allows
for various forms of temporal or token-based encoding strategies, such as sliding-window hashing.

C.5 Information on Optimal Transport and Sinkhorn’s Algorithm

In this section, we provide preliminary information on the considered OT problem and its solution
through Sinkhorn’s algorithm. Let p ∈ ∆m and q ∈ ∆k be two probability vectors. For a given cost
matrix C ∈ Rm×k, the OT between p and q is given by

OT(p, q) = min
P∈Πp,q

m∑
i=1

k∑
j=1

Ci,jPi,j ,

where Πp,q is the set of joint distributions with marginals p and q, which we call couplings. Efficiently
solving the optimization OT(p, q) is generally considered challenging [36]. To that end, a common
approach to obtain a solution efficiently is through entropic regularization. An entropic OT (EOT)
with parameter ϵ is given by

OTϵ(p, q) = min
P∈Πp,q

 m∑
i=1

k∑
j=1

Ci,jPi,j − ϵH(P )

 ,

whereH(P ) ≜ −
∑
i,j Pi,j log(Pi,j) and C is the OT cost. The EOT is an ϵ-strongly convex problem,

which implies its fast convergence to the unique optimal solution. However, the EOT provides an
approximate solution which converges to the unregularized solution with rate O(ϵ log(1/ϵ)).

One of the main reasons EOT has gained its popularity is due to Sinkhorn’s algorithm [64], which is
a matrix scaling algorithm that has found its application to solve the dual formulation of the EOT
problem [19]. Sinkhorn’s algorithm looks for a pair of vectors u, v that obtain the equality

P ∗ = diag(u)Kdiag(v),

where P ∗ is the EOT solution and K = exp(−C/ϵ) is called the Gibbs Kernel. Consequently,
Sinkhorn’s algorithm follows from a simple iterative procedure of alternately updating u and v. The
steps of Sinkhorn’s algorithm are given in Algorithm 3. Having solved Sinkhorn’s algorithm, we
obtain the optimal EOT coupling. When using Sinkhorn’s algorithm, the stopping criteria is often
regarding the marginalization of the current coupling against the corresponding marginal, i.e., we
check wether

∥∥u⊙ (Kv) − p
∥∥
1
≤ δ where ≜

∑n
i=1

∣∣ui (Kv)i − pi
∣∣ and δ > 0 is some threshold.

In our implementation, we solve Sinkhorn’s algorithm using the Python optimal transport package
[65].
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Algorithm 3 Sinkhorn’s Algorithm for Entropic OT

1: Input: Marginals PX ∈ ∆m, PS ∈ ∆k, cost matrix C ∈ Rm×k regularization parameter ε > 0,
Threshold δ > 0.

2: Output: Optimal coupling P ∈ Rn×m≥0

3: Calculate kernel K ← exp
(
−C/ε

)
4: u← 1m, v ← 1k
5: while

∥∥u⊙ (K v)− PX
∥∥
1
> δ do

6: u← a/(K v) ▷ element-wise division
7: v ← b/(K⊺u)
8: end while
9: P ← diag(u) K diag(v)

10: return P

D Additional Numerical Results and Ablation Study

D.1 Ablation Study

We perform an ablation study to investigate the effect of various hyperparameters set in
SimplexWater and HeavyWater. The ablation study is performed in a curated subset of prompts
from the Finance-QA dataset [45] considered in Section 5.

Sinkhorn Algorithm Parameters. We study the effect of Sinkhorn’s algorithm’s parameter on the
performance of the proposed watermarking scheme. We note that, while the Sinkhorn’s algorithm is
set with a predetermined maximum iterations parameters, in the considered experiments the algorithm
runs until convergence. We study this effect through three cases.

1. We analyze the effect of Sinkhorn’s algorithm’s regularization parameter ϵ on the overall
runtime. While lower values of ϵ provide solution that are closer to the underlying OT
solution, often a smaller value of ϵ required more time for convergence of the algorithm. As
seen from Figure D.6a, as expected, smaller ϵ increase overall runtime. In our experiments
we chose ϵ = 0.05 which resulted in overall satisfactory performance, while incurring mild
runtime overhead.

2. We analyze the effect of the error threshold on runtime. The lower the error threshold, the
higher the higher the accuracy in the solution and the higher the overall algorithm runtime.
This is indeed the case, and the effect on the watermarking procedure runtime is visualized
in Figure D.6b.

3. We analyzed the effect of the error threshold on the watermarked distribution cross entropy
(see Section 5 for definition). As seen from Figure D.6c, while a lower threshold results
with a higher runtime, the improvement on the cross entropy, which is a proxy for textual
quality, becomes negligible from some point. In our experiments, we chose a threshold
value of 10−5, which demonstrated the best performance between runtime, cross entropy
and detection.

D.2 Impact of Non i.i.d. Side Information Generation

As we previously mentioned, most of the considered experiments in Section 5 operate under a ’fresh
randomness’ scheme, in which we try to replicate independence between the random side information
and the LLM net token distribution. However, in practice various hashing scheme are employed,
often with the purpose of increasing the overall watermarking scheme’s robustness to attacks. Such
hashing schemes aggregate previous tokens (using some sliding window with context size h) and a
shared secret key r ∈ N. We are interested in verifying that indeed, robustness-driven seed generation
scheme do not degrade the performance of our methods.

To that end, in this section we test the effect of various popular hashing schemes in the performance of
our watermarks. As both SimplexWater and HeavyWater follow the same watermarking algorithm
we anticipate them to demonstrate similar dependence on the hashing scheme. We therefore prioritize
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(a) Generation time vs. Sinkhorn
regularization parameter ϵ.

(b) Generation time vs. Sinkhorn
error threshold.

(c) Cross Entropy of watermarked
text vs. Sinkhorn error threshold.

Figure D.6: Effect of Sinkhorn Algorithm’s parameters on Runtime and distortion.

an extensive study on a single watermark - SimplexWater. For a given sliding window size h, we
consider the following seed generation functions:

1. min-hash, which takes the minimum over token-ids and multiplies it with the secret key, i.e.
seed = min(xt−1, . . . , xt−h) · r.

2. sum-hash, which takes the sum of the token-ids and multiplies it with the secret key, i.e.
seed = sum(xt−1, . . . , xt−h) · r.

3. prod-hash, which takes the product of the token-ids and multiplies it with the secret key, i.e.
seed = prod(xt−1, . . . , xt−h) · r.

4. Markov-1 scheme, which considers h = 1.

We present performance across the aforementioned schemes, considering several values of h. As
seen from Figure D.8, the change of seed generation scheme is does have a significant effect on the
overall detection-distortion tradeoff. Furthermore, as emphasize in Figure D.7, the size of the sliding
window also results in a negligible effect on the watermark performance.

(a) Cross entropy vs. context win-
dow size, min-hash.

(b) Cross entropy vs. context win-
dow size, sum-hash.

(c) − log10(p) vs. context window
size, min-hash.

Figure D.7: Seed Ablation: The effect of the context window is is negligible on the performance of
SimplexWater.

D.3 Experiment: Robustness To Textual Attacks

The watermarks in this paper are obtained by optimizing a problem that encodes the tradeoff between
detection and distortion under worst case distribution. To that end, the proposed watermarks are
not theoretically optimized for robustness guarantees. However, robustness is often a byproduct of
the considered randomness generation scheme, as text edit attacks mainly effect the context from
which the seed is generated. A discrepancy in the seed results in a discrepancy in the shared side
information sample s. However, regardless of the seed generation scheme, one has to choose a score
function and a watermarked distribution design.

In this section, we show that, while not optimized for robustness directly, SimplexWater and
HeavyWater demonstrate competitive performance in terms on robustness to common textual edit
attacks. We consider the setting from the watermarking benchmark MarkMyWords [44]. We
compare our performance with the Red-Green watermark and the Gumbel watermark. We choose
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(a) Cross Entropy vs − log10(p). (b) Cross Entropy vs − log10(p).

Figure D.8: Seed Ablation visualized in the detection-distortion plane. It is visible that the performance of our
watermark is consistent across an array of hashing scheme and context window sizes.

the value of δ for the Red-Green watermark such that its cross-entropy distortion is comparable with
SimplexWater, HeavyWater and Gumbel (δ = 1).

We consider three attacks:

1. A Lowercase attack, in which all the characters are replaced with their lowercase version.

2. A Misspelling attack, in which words are replaced with a predetermined misspelled version.
Each word is misspelled with probability 0.1.

3. A Typo attack, in which, each character is replaced with its neighbor in the QWERTY
keyboard. A character is replaced with probability 0.05.

As seen in Figure D.9, our schemes demonstrate strong robustness under the considered attacks,
resulting in the highest detection capabilities in 3 out of 4 cases and competitive detection power
in the 4th. This implies that, even though SimplexWater and HeavyWater are not designed to
maximize robustness, the resulting schemes show competitive resilience to common text edit attacks.

Figure D.9: Robustness to attacks — HeavyWater demonstrates equal or superior detection performance, as
measured by − log10(p), across a variety of attacks involving edits to generated outputs.
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D.4 Computational Overhead

We analyze the computational overhead induced by the considered watermarking scheme. Theoreti-
cally, Sinkhorn’s algorithm has an iteration computational complexity of O(km) for token vocabulary
of size |X | = m and side information of alphabet |S| = k due to its vector-matrix operations. In
practice, watermarking is a single step within the entire next token generation pipeline.

We analyze the computational overhead induced by applying SimplexWater and HeavyWater.
Figure D.10 shows the overhead of watermarking in a few common watermarks - Red-Green [15],
Gumbel [17], Inverse-transform [13], SynthID [11] and our watermarks. It can be seen that The
Gumbel, Inverse transform and Red-Green watermarks induce a computational overhead of ∼ 10%,
while SimplexWater, HeavyWater and SynthID induce an overhead of∼ 30%. While this overhead
is not negligible, our methods demonstrate superior performance over considered methods. However,
replacing a ’fast’, yet ’weaker’ watermark with ours boils down to a difference in ∼ 20% increase
in generation time. We consider an implementation of the SynthID through vectorized tournament
sampling with a binary score function and 15 tournament layers, which is the method reported in
the main text experiments. As we previously mentioned, we consider top-p sampling with p=0.999.
We note that, in many text generation schemes, lower top-p values, which accelerate Sinkhorn’s
algorithm’s runtime, thus further closing the computational gap.

Figure D.10: Computational overhead over unwatermarked text generation, Llama2-7b.

D.5 Experiment: Alternative Quality Metrics for Textual and Coding Tasks

This paper focused on distortion as the proxy for textual quality. This is a common practice in
watermarking (e.g. [11, 13, 16, 17, 24, 25]). Distortion is measured by the discrepancy between the
token distribution PX and the expected watermarked distribution ES [PX|S ]. In practice, distortion
and textual quality are often measured with some perplexity-based measure (e.g. cross-entropy in this
paper). However, as explored in the WaterBench benchmark [43], such measures are not guaranteed
to faithfully represent degradation in textual quality.

To that end, WaterBench proposed an array of alternative generation metrics, whose purpose us to
evaluate the quality of generated watermarked text, and are tailored for specific text generation tasks.
We consider 4 datasets from the WaterBench benchmark [43]:

1. Longform QA [54]: A dataset of 200 long questions-answer generation prompts. The
considered generation metric is the ROGUE-L score.

2. Knowledge memorization: A closed-ended entity-probing benchmark drawn from KoLA
[66], consisting of 200 triplets sampled at varying frequencies from Wikipedia the test an
LLM’s factual recall. The considered generation metric is the F1 score as it is a factual
knowledge dataset.

3. Knowledge understanding [67]: A dataset of 200 questions that demonstrate the LLM’s
understanding of various concepts. The considered generation metric is the F1 score as it is
a factual knowledge dataset.

4. Multi-news summarization: A collection of 200 long news clusters, coupled with summa-
rization prompts. The score here is the ROGUE-L score.
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As seen in Table D.2, our watermarks maintain competitive performance in the considered set of
textual generation tasks, even under alternative text generation evaluation metrics.

To better evaluate quality of generated watermarked code, we include two coding-centric evaluation
metrics that assess different aspects of code quality.

Pass@K Evaluation (Functional Correctness) We evaluate functional correctness using the Hu-
manEval dataset [46], which is a popular benchmark for code generation. Pass@K measures the
empirical probability of a solution passing all unit tests among K generated solutions. We measure
pass@k with k ∈ 1, 5, 10, where we execute the generated code against unit tests provided in the
dataset in a sandbox environment. As shown in the table below, our methods outperformed the
competitors: (i) SimplexWater achieves the highest pass@5 (22.7%), outperforming all baselines
including unwatermarked text (20.7%) and (ii) HeavyWater achieves the highest pass@10 (27.8%),
nearly matching unwatermarked performance (28.1%). In all cases, performance is comparable to
unwatermarked code (see Table D.3).

Edit_Sim (Edit Similarity) We use this metric on the LCC coding dataset [46] which focuses on
code completion: generating the next few lines of code given a long context. Since the dataset is
sourced from GitHub, human-written ground-truth completions are available. Edit_Sim is defined as
the Levenshtein similarity between generated and ground-truth code.

Let s1, s2 ∈ Σ∗ be two strings over an alphabet Σ. The Levenshtein distance dL(s1, s2) is defined
as the minimum number of single-character edit operations (insertions, deletions, or substitutions)
required to transform s1 into s2. The Levenshtein similarity (normalized form) is then defined as:

LevSim(s1, s2) = 1− dL(s1, s2)

max(|s1|, |s2|)

where |s| denotes the length of string s. Thus, LevSim(s1, s2) ∈ [0, 1], with LevSim(s1, s2) = 1 if
and only if s1 = s2.

We benchmark our watermarking methods against prior work using this metric. The results are
provided in the Table D.4. Specifically, HeavyWater ties for best performance 0.52. These two
metrics support that HeavyWater and SimplexWater have no significant impact on the quality of
generated code relative to unwatermarked code, and perform favorably when compared to competing
methods both in terms of detection accuracy and generation quality.

Code Examples. We also include an example of generated code before and after watermarking with
HeavyWater.

Unwatermarked Output:

1 def has_close_elements(numbers: List[float], threshold: float) -> bool:
2 # Sort the list of numbers
3 numbers = sorted(numbers)
4

5 # Find the first two numbers in the list
6 that are closer to each other than the threshold
7 min_distance = float(’inf’)
8 for i in range(1, len(numbers )):
9 distance = abs(numbers[i] - numbers[i - 1])

10 if distance < min_distance and distance < threshold:
11 min_distance = distance
12

13 # If we found a pair of numbers that are
14 closer to each other than the threshold , return True
15 return min_distance < threshold

Unit Tests result: Pass→ Pass@1 = 100% on this example prompt.

HeavyWater’s Watermarked Output:

1 def has_close_elements(numbers: List[float], threshold: float) -> bool:
2 close_pairs = []
3 for i in range(len(numbers )):
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4 closest = None
5 closest_distance = float("inf")
6 for j in range(i+1, len(numbers )):
7 distance = abs(numbers[i] - numbers[j])
8 if distance < closest_distance:
9 closest = numbers[j]

10 closest_distance = distance
11 if closest and closest_distance <= threshold:
12 close_pairs.append (( numbers[i], closest ))
13 return len(close_pairs) > 0

Unit Tests result: Pass→ Pass@1 = 100% on this example prompt.

Example: Code Completion under Long Context

This example was shortened for brevity.

Prompt: Please complete the code given below.
1 #!/usr/bin/env python
2 # -- coding: utf -8 --
3

4 from HttpUtils import App , buildOpener
5

6 class Device(object ):
7 def __init__(self , token ):
8 self.token = token
9 self.app = App()

10

11 def check_inspection(self):
12 data = self.app.check_inspection ()
13 return data
14 [abbreviated]
15

16 class Exploration(object ):
17 def __init__(self , app):
18 self.app = app
19

20 def getAreaList(self):
21 data = self.app.exploration_area ()
22 return data
23 [abbreviated]
24

25 class User(object ):
26 [abbreviated]
27

28 class RoundTable(object ):
29 [abbreviated]
30

31 class Menu(object ):
32 [abbreviated]
33

34 if __name__ == "__main__":
35 from config import deviceToken , loginId , password

Answers provided by different methods:

Human Answer / Ground Truth:
1 device = Device(deviceToken)

No Watermark→ Edit_Sim = 0.94
1 dev = Device(deviceToken)

HeavyWater / Inverse-Transform / SimplexCode→ Edit_Sim = 1
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1 device = Device(deviceToken)

Red/Green→ Edit_Sim = 0.9

1 d = Device(deviceToken)

D.6 Alternative Detection Metric

In this section we provide results on an additional detection metric. We consider the detection
probability under a false-alarm (FA) constraint. As we consider watermarks from which p-values
can be calculated, we can impose such a FA constraint. For a given set of responses obtained from a
dataset of prompts, we are interested in calculating an estimate of the detection probability at some
FA constraint, given a set of p-values, each calculated for one of the responses. We obtain an estimate
of the detection probability at a given FA constraint by taking the ratio of responses whose p-value is
lower than the proposed p-value threshold, over the total number of responses.

We provide results on the FinanceQA dataset using Llama2-7b. We consider several FA values and
visualize the resulting tradeoff curves in Figures D.11 and D.12. To obtain error-bars, we consider
the following bootstrapping technique: Out of the 200 responses, we randomly sample 200 subsets
with 150 responses and calculate the corresponding metric. From the set of 150 results we provide
error-bars, considering the average value and standard deviation. It can be seen that the trends
presented in Figures 1 and 3a are preserved under the considered detection metric.

(a) PD at PFA = 10−3 (b) PD at PFA = 10−5

Figure D.11: Detection probability at a given false alarm constraint. LLama2-7b, Finance-QA dataset.

D.7 Additional Detection-Distortion Tradeoff Results

We provide results that explore the detection-distortion tradeoff, in addition to ones presented in Fig.
1 and Fig. 3a. We run three models (Llama2-7b, Llama3-8b, Mistral-7b) on two tasks (Q&A and

Figure D.12: PD at PFA = 10−6, LLama2-7b, Finance-QA dataset.
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coding). We employ the popular Q&A dataset, FinanceQA, and code-completion dataset LCC. Fig. 1
shows the result for Llama2-7b on Q&A, while Fig. 3a shows the result for Mistral-7B on coding. In
Fig. D.13, we present this tradeoff over the remaining datasets and LLMs.

Figure D.13: Detection-distortion tradeoffs on multiple models and tasks.

Table D.2: Performance of Watermarking Methods across Four Datasets
Dataset Watermark Gen. Metric ↑ % Drop in GM ↓ − log10 p ↑

Longform

Gumbel 21.20 -0.856 8.006
HeavyWater 21.48 -2.188 8.089
Simplex 21.90 -4.186 4.985
Inv. Tr. 21.27 -1.189 3.687
RG, δ = 1 21.25 -1.094 1.456
RG, δ = 3 21.19 -0.809 7.078

Memorization

Gumbel 5.66 -2.536 1.085
HeavyWater 5.73 -3.804 1.605
Simplex 5.71 -3.442 0.977
Inv. Tr. 5.38 2.536 0.792
RG, δ = 1 5.35 3.080 0.482
RG, δ = 3 5.82 5.435 0.912

Understanding

Gumbel 33.42 -9.574 0.396
HeavyWater 32.59 -6.852 0.308
Simplex 31.50 -3.279 0.920
Inv. Tr. 27.93 8.426 1.045
RG, δ = 1 32.96 8.066 0.184
RG, δ = 3 33.83 10.918 0.300

MultiNews

Gumbel 25.69 2.579 3.172
HeavyWater 25.67 2.655 3.491
Simplex 25.86 1.934 2.701
Inv. Tr. 25.74 2.389 1.586
RG, δ = 1 25.85 1.940 0.963
RG, δ = 3 25.74 2.389 3.781
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Figure D.14: Histograms of statistics of token distributions on Q&A dataset. 90% token distributions fall into
the low-entropy regime with infinity norm greater than 1/2, i.e. maxx P (x) ≥ 1

2
.
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Figure D.15: Histograms of statistics of token distributions on coding dataset. 93% token distributions fall into
the low-entropy regime with infinity norm greater than 1/2, i.e. maxx P (x) ≥ 1

2
.
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Table D.3: Results on HumanEval Functional Coding Dataset (pass@k, higher is better)
Watermark Scheme pass@1 (%) ↑ pass@5 (%) ↑ pass@10 (%) ↑
No Watermark 14.0 20.7 28.1
HeavyWater (Ours) 13.1 18.9 27.8
Gumbel 14.3 20.5 25.6
SimplexWater (Ours) 13.7 22.7 25.3
Inverse Transform 13.8 22.0 27.5
Red/Green δ = 3 11.6 19.5 23.2

Table D.4: Results on LCC Code Completion Dataset (Edit_Similarity, higher is better)
Watermark Method Edit_Similarity ↑
No Watermark 0.45
Gumbel 0.52
HeavyWater (Ours) 0.52
SimplexWater (Ours) 0.44
Inverse Transform 0.45
Red/Green δ = 3 0.43
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