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ABSTRACT

3D medical imaging is in high demand and essential for clinical diagnosis and
scientific research. Currently, diffusion models have become an effective tool for
medical imaging reconstruction thanks to their ability to learn rich, high-quality
data priors. However, learning the 3D data distribution with diffusion models
in medical imaging is challenging, not only due to the difficulties in data col-
lection but also because of the significant computational burden during model
training. A common compromise is to train the diffusion model on 2D data
priors and reconstruct stacked 2D slices to address 3D medical inverse prob-
lems. However, the intrinsic randomness of diffusion sampling causes severe
inter-slice discontinuities of reconstructed 3D volumes. Existing methods often
enforce continuity regularizations along the z-axis, which introduces sensitive
hyper-parameters and may lead to over-smoothing results. In this work, we re-
visit the origin of stochasticity in diffusion sampling and introduce Inter-Slice
Consistent Stochasticity (ISCS), a simple yet effective strategy that encourages
inter-slice consistency during diffusion sampling. Our key idea is to control the
consistency of stochastic noise components during diffusion sampling, thereby
aligning their sampling trajectories without adding any new loss terms or op-
timization steps. Importantly, the proposed ISCS is plug-and-play and can be
dropped into any 2D-trained diffusion-based 3D reconstruction pipeline without
additional computational cost. Experiments on several medical imaging problems
show that our method can effectively improve the performance of medical 3D
imaging problems based on 2D diffusion models. Our findings suggest that control-
ling inter-slice stochasticity is a principled and practically attractive route toward
high-fidelity 3D medical imaging with 2D diffusion priors. The code is available
at: https://anonymous.4open.science/r/ICLR-ISCS-3281.

1 INTRODUCTION

Diffusion models (DMs) (Ho et al., 2020; Song et al., 2020b) have demonstrated the unparalleled
ability to learn data distribution across various modalities, achieving remarkable success in both data
generation and image restoration. In medical imaging, current DMs have shown effectiveness in
modeling the distribution of 2D image slices. By leveraging powerful diffusion priors, DMs integrated
with conventional optimization frameworks have achieved state-of-the-art (SOTA) performance in
solving inverse problems in medical imaging (Song et al., 2021; Jalal et al., 2021; Chung et al., 2022;
2024; Du et al., 2024; Hu et al., 2024; Xiang et al., 2023; Wu et al., 2025), such as accelerated
magnetic resonance imaging (MRI) and undersampled X-ray computed tomography (CT).

In clinical practice, medical data is fundamentally large 3D volumes. While individual 2D slices are
crucial for review, a complete and accurate 3D volumetric reconstruction is often essential for critical
downstream tasks such as precise tumor volume assessment, surgical planning, and tracking disease
progression over time. However, translating the success of 2D DM-based solvers to 3D medical
imaging presents significant practical challenges. Due to the “curse of dimensionality”, training DMs
directly on high-dimensional volumetric data is often infeasible. The memory, computational, and
data requirements for training a 3D diffusion prior are prohibitively expensive for most academic and
even industrial labs (Pinaya et al., 2022; Guo et al., 2025; Wang et al., 2025). A common and practical
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workaround is to train a DM on 2D image slices and then apply this 2D prior in a slice-by-slice
manner for 3D reconstructions (Chung et al., 2023; 2024; Chung & Ye, 2025).

While this 2D-to-3D approach mitigates the training burden, it introduces a critical new problem: The
resulting 3D volumes always lack consistency along the third dimension (i.e., z-axis). Because each
2D slice is processed independently during the reverse diffusion process, the intrinsic randomness
of the sampling procedure leads to severe inter-slice discontinuities and artifacts, degrading the
quality of the final 3D volume. Existing methods have attempted to address this issue through several
strategies. The most direct approach involves augmenting the 2D diffusion prior with hand-crafted
regularizers, such as Total Variation (TV), to enforce smoothness between adjacent slices (Chung
et al., 2024; 2023). While effective, these methods often introduce sensitive hyperparameters that
require careful tuning, and can lead to over-smoothing that erases fine details. More sophisticated
approaches aim to learn a more complete 3D prior, for instance by training models on 3D patches
(Song et al., 2024) or by combining priors from two perpendicular 2D planes (Lee et al., 2023).
Although these methods are more principled, they increase the complexity of the training or inference
pipeline and may impose constraints on the data, such as requiring cubic volumes.

A similar phenomenon of discontinuity arises in the field of video restoration, where applying a pre-
trained 2D image DMs to video inverse problems often leads to the lack of temporal coherence across
frames. Kwon & Ye (2025; 2024) pointed out that this temporal flickering is due to the uncoordinated
stochasticity inherent in the diffusion sampling process, and introduced batch-consistent sampling
(BCS) to alleviate it by synchronizing stochastic noise components across frames.

In this work, we systematically investigate how the same uncoordinated stochasticity becomes the
fundamental cause of inter-slice inconsistency when extending 2D diffusion priors to 3D medical
reconstruction. Motivated by resulting insights, we propose Inter-Slice Consistent Stochasticity
(ISCS), a plug-and-play strategy that explicitly synchronizes the random noise component across
adjacent slices using a smooth interpolation. This aligns their sampling trajectories to ensure 3D
coherence without imposing excessive constraints. Extensive experiments on diverse 3D medical
imaging inverse problems, including limited-view CT and MRI isotropic super-resolution (SR),
demonstrate that ISCS consistently improves reconstruction quality and surpasses existing approaches,
all without introducing additional loss terms, hyperparameters, or computational overhead.

2 PRELIMINARIES

Diffusion Models Diffusion models are a class of generative models that consist of a forward and a
reverse process (Ho et al., 2020; Song et al., 2020b). The forward process is a fixed Markov chain
that gradually adds Gaussian noise to a clean data sample x0 ∼ pdata(x) over T discrete timesteps.
At each step t, the transition is defined as:

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI), (1)

where {βt}Tt=1 is a predefined variance schedule. A key property of this process is that we can sample
xt directly from x0 in a closed form:

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I), (2)

where αt = 1− βt and ᾱt =
∏t

i=1 αi. As t → T , xT approaches a standard Gaussian distribution.

The reverse process learns to reverse this noising procedure, starting from a random noise sample
xT ∼ N (0, I) and iteratively generating a clean sample x0. This is achieved by training a neural
network ϵθ(xt, t) to predict the noise ϵ that was added to create xt. The network is optimized using a
simplified mean squared error objective:

L(θ) = Et,x0,ϵ

[
||ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)||22

]
. (3)

Once trained, the reverse process generates xt−1 from xt by removing the predicted noise. Determin-
istic samplers like DDIM can be used to accelerate this generation process (Song et al., 2020a).

Medical Imaging Inverse Problem In general, the forward acquisition process of medical imaging
can be formulated as follows:

y = Ax+ n, (4)
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where x ∈ RN represents the vectorized high-dimensional image to be recovered, y ∈ RM is the
acquired measurement, A : RN → RM is the physical-informed forward model, and n ∈ RM

denotes the system noise.

It is an inverse problem to reconstruct the unknown image x from the observed measurement y.
For many critical applications, such as sparse-view CT or MRI isotropic super-resolution (SR), this
problem is severely ill-posed (i.e., M ≪ N ), where A is non invertible, resulting in the analytical
solution being infeasible. A robust approach is to frame the reconstruction within a Bayesian
framework, seeking a Maximum A Posteriori (MAP) estimate of the image:

x̂ = argmax
x

p(x|y) = argmin
x

∥y −Ax∥22︸ ︷︷ ︸
data fidelity term

− λ · log p(x)︸ ︷︷ ︸
prior term

. (5)

This formulation decomposes the objective into two components: a data fidelity term, ∥y −Ax∥22,
which enforces consistency with the measurements y, and a prior term, log p(x), which regularizes
the solution by constraining it to a plausible data manifold. λ is a weighting parameter. The power
of diffusion models lies in their ability to implicitly learn a strong, complex data prior p(x) from
a training dataset. Instead of defining an explicit regularization function, they integrate this prior
through a guided reverse sampling process. The update at each step is guided by the gradient of the
posterior log-likelihood, which combines the unconditional score learned by the model ∇xt log p(xt)
with a guidance term derived from the likelihood ∇xt log p(y|xt).

DM-based Medical Inverse Problem Solvers The prevailing diffusion-based inverse problem
solvers (DIS) integrate the data-consistency term derived from the likelihood into the reverse sampling
process. To further formalize the reconstruction process, we outline a general iterative framework for
solving inverse problems with a pre-trained diffusion model. The process starts with pure Gaussian
noise xT ∼ N (0, I) and iteratively refines the solution for each reverse timestep t from T down to
1. Each iteration, which aims to generate xt−1 from xt, can be decomposed into three fundamental
steps:

(1) Denoising Prediction: We denote the estimate of the clean data, as x0|t, which is first predicted
from the current noisy state xt. Leveraging Tweedie’s formula, this can be achieved using the
pre-trained noise prediction network ϵθ:

x0|t = E [x0 | xt] =
1√
ᾱt

(xt −
√
1− ᾱtϵθ(xt)), (6)

where ᾱt is the noise schedule parameter at step t. This step effectively projects the noisy data onto
the learned data manifold.

(2) Data Fidelity Update: The predicted clean image x0|t is then corrected to be consistent with the
physical measurements y. This is achieved by solving a data fidelity problem, yielding an updated
estimate x̂0|t. This step can be expressed as a general optimization problem:

x̂0|t = argmin
z

∥y −Az∥22 + λ∥z− x0|t∥22, (7)

For many linear inverse problems, this sub-problem has a closed-form solution or can be efficiently
solved using a few gradient descent steps.

(3) Re-noising to Timestep t−1: Finally, the data-consistent estimate x̂0|t is used to generate the next
iteration, xt−1. This is accomplished by applying the forward diffusion process to x̂0|t, effectively
injecting a controlled amount of noise corresponding to timestep t − 1. Taking the DDIM style
sampler as an example, this process can be define as:

xt−1 =
√
ᾱt−1x̂0|t +

√
1− ᾱt−1 − η2β̃2

t ϵ
(t)
θ∗ (xt)︸ ︷︷ ︸

deterministic noise

+ ηβ̃tϵ︸︷︷︸
stochastic noise

, (8)

where ϵ ∼ N (0, I), η is a parameter that controls the strength of the stochastic noise component.
This step re-introduces stochasticity and prepares the estimate for the subsequent iteration.

By iteratively applying these three steps, the reconstruction framework progressively refines the
solution, ensuring it simultaneously adheres to the learned data prior and remains faithful to the
observed measurements, thereby converging to a high-quality reconstruction.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 PROPOSED METHOD

In this section, we first provide a detailed analysis of the problem’s origin, identifying uncoordinated
stochasticity in the slice-wise diffusion sampling process as the fundamental cause (Sec. §3.1). Then,
we introduce our ISCS framework. We present its mechanism for generating correlated noise via
Spherical Linear Interpolation (Slerp) and its seamless integration into existing DM-based solvers
(Sec. §3.2). A geometric overview of our proposed noise strategy in comparison to conventional
methods is illustrated in Fig. 1.

3.1 INTER-SLICE INCONSISTENCY IN 2D DM-BASED 3D RECONSTRUCTION

Slice-wise Approximation of 3D Diffusion Prior The application of DMs to 3D medical imaging
inverse problems presents a fundamental dilemma. Ideally, the denoising network ϵθ used in the
reconstruction framework (Eq. 6) should be a 3D model trained on volumetric data. However, the
immense computational and data requirements for training high-quality 3D DMs make this approach
often infeasible. A common alternative is to leverage a powerful, pre-trained 2D DM and apply it in a
slice-by-slice manner along a chosen axis (e.g., the z-axis). This procedure effectively approximates
the 3D denoising operation as a concatenation of independent 2D operations:

ϵ̃θ(xt) := [ϵθ(xt,1), ϵθ(xt,2), . . . , ϵθ(xt,S)] , (9)

where xt,i denotes the i-th slice of the noisy 3D volume xt.

Root Cause of Inter-Slice Inconsistency While computationally efficient, this slice-wise approach
introduces a significant challenge: inter-slice inconsistency. The root cause of this problem is
a complex interplay between the highly ill-posed nature of many medical inverse problems and
the inherent stochasticity of the diffusion sampling process. Specifically, in these problems, the
undersampled measurement data often fails to provide sufficient constraints to uniquely determine
the solution. DMs are powerful precisely because they can fill these ambiguous regions with a strong,
data-driven prior. However, this generative capability is actualized through a reverse process that,
as detailed in the re-noising step (Eq. 8), repeatedly injects random noise. When this process is
applied independently to each 2D slice, the combination of weak data constraints and independent
stochasticity becomes highly problematic. The lack of strong guidance from the measurements
gives the independently sampled noise for each slice excessive freedom to steer the sampling path.
Consequently, the sampling trajectories for adjacent slices become entirely uncorrelated, leading to
substantial and arbitrary variations between them. When stacked, the resulting 3D volume inevitably
suffers from noticeable structural discontinuities and artifacts along the slice axis, severely degrading
its diagnostic and analytical quality.

Limitations of Post-Hoc Regularization A prevalent strategy to mitigate these artifacts is to apply
post-hoc regularization, such as Total Variation (TV), in an additional optimization step. While
effective at smoothing discontinuities, this remedy often introduces new, undesirable artifacts, such as
over-smoothing or cartoon-like textures, which can erase fine diagnostic details and compromise data
fidelity. More fundamentally, such methods act as an external corrective step; they do not address
the intrinsic cause of the problem. They merely mask the symptoms of the underlying issue: the
uncorrelated nature of the slice-wise diffusion sampling.

Our Motivation This observation motivates our central research question: Is it possible to enhance
inter-slice consistency directly within the diffusion sampling process itself, obviating the need for
external, artifact-inducing optimization? We posit that the key lies in redesigning the re-noising
step. A direct and intuitive strategy is to impose consistency control on the random perturbations
applied across adjacent slices. Specially, instead of allowing the stochastic noise to be independent
for each slice, we aim to impose a structured correlation on the random perturbations applied across
the volume. By coupling the sampling paths of adjacent slices, we can fundamentally constrain the
solution space and reduce stochastic inconsistencies, thereby promoting the generation of a coherent
and continuous 3D volume directly from the generative process.

4
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(a) Independent noise (b) Identical noise (BCS) (c) Slerp noise (Ours)

Figure 1: Geometric interpretation of how different noise strategies in the re-noising step affect the
stochasticity and resulting consistency in diffusion sampling. (a) Independent Noise (Conventional):
Independently sampled noise for each slice, leading to uncorrelated sampling paths. (b) Identical
Noise (BCS (Kwon & Ye, 2025)): Applying the same noise to all slices forces identical sampling
paths. (c) Slerp Noise (Ours): Our proposed ISCS interpolates noise on the hypersphere, generating
smoothly correlated information across slices.

3.2 INTER-SLICE CONSISTENT STOCHASTICITY

Building on our motivation to control sampling stochasticity, we introduce a novel technique named
Inter-Slice Consistent Stochasticity (ISCS). The core principle of ISCS is to replace the independent
Gaussian noise injection in the re-noising step (Eq. 8) with a structured, smoothly varying noise
volume, which we denote as ϵISCS. This modification ensures that the stochastic perturbations applied
to adjacent slices are highly correlated, thereby coupling their reverse sampling trajectories. A
key advantage of our approach is its simplicity; it can be seamlessly incorporated into any existing
diffusion-based inverse problem solver (as shown in Sec. §2) to enforce inter-slice consistency without
introducing additional optimization steps or requiring model retraining.

Batch-Consistent Sampling & Limitations To construct the noise volume ϵISCS ∈ RS×H×W , we
require a mechanism that generates inter-slice correlation while ensuring each slice’s noise map still
adheres to a standard gaussian distribution. A straightforward approach would be to apply the exact
same noise to every slice. This strategy, known as batch-consistent sampling (BCS) (Kwon & Ye,
2025), has proven effective for improving temporal consistency in video inverse problems. However,
naively adapting BCS to high-dimensional medical volume reconstruction is problematic. Video
restoration often deals with short sequences, e.g., under 16 frames in (Kwon & Ye, 2025), where
inter-frame changes are minor and dynamics are largely preserved in the measurements (Zhang et al.,
2025). In contrast, medical volumes feature a much larger axial dimension (e.g., more than 300 slices
for CT) with potentially significant anatomical variation between slices. Enforcing identical noise in
this context is an overly rigid constraint that suppresses anatomical changes and introduces ”copying
artifacts,” where features are improperly replicated across anatomically distinct slices.

Correlated Noise Generation via Slerp This motivates a more nuanced approach. We hold that
an ideal noise volume should exhibit a spatially varying correlation structure. Specifically, the
correlation should satisfy two key properties: (i) it should be strong between adjacent slices to
ensure local consistency, and (ii) it should decay as the distance between slices increases, permitting
necessary global structural divergence. In other words, we seek to define a smooth trajectory between
two independent random noise instances at the boundaries of the volume. An interpolation-based
strategy is therefore a natural fit. To ensuring that every interpolated state remains a valid sample
from the prior N (0, Id), we leverage the concentration of measure phenomenon in high-dimensional
spaces (Vershynin, 2018). It is a classical result that the probability mass of a high-dimensional
isotropic Gaussian concentrates tightly in a thin shell around a hypersphere of radius

√
d. Formally,

the Gaussian Annulus Theorem states that for z ∼ N (0, Id) and any β > 0, there exists a constant c
such that:

P
(∣∣∣∥z∥2 −√

d
∣∣∣ ≥ β

)
≤ 2 exp

(
−cβ2

)
. (10)

This inequality implies that standard linear interpolation, which traverses the chord of the hypersphere
(where ∥z∥ <

√
d), would yield states deviating from the typical set of the distribution. Consequently,

5
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to respect the geometry of the high-probability manifold, we employ Spherical Linear Interpolation
(Slerp). By tracing the geodesic path on the hypersphere surface, Slerp preserves the vector norm and
distributional statistics throughout the transition.

The procedure is as follows. For a 3D volume composed of S slices, we first sample two anchor noise
vectors, z1, zS ∈ RH×W , from the standard normal distribution N (0, I). These anchors define the
start and end points of a geodesic path on the hypersphere. We then generate the noise map for each
intermediate slice ϵISCS

i by interpolating along this path:

ϵISCS
i = slerp(z1, zS ;αi) =

sin((1− αi)Ω)

sin(Ω)
z1 +

sin(αiΩ)

sin(Ω)
zS , (11)

where αi = (i − 1)/(S − 1) is the normalized position of the i-th slice, and Ω =
arccos(⟨z1, zS⟩/(∥z1∥ · ∥zS∥)) is the angle between the anchor vectors. The resulting set of noise
maps {ϵISCS

i }Si=1 constitutes the correlated noise volume, which varies smoothly along the slice
dimension while maintaining inter-slice correlation. At the same time, each individual slice is ensured
to follow a standard Gaussian distribution N (0, I).

Integration with Diffusion Samplers The generated noise volume ϵISCS directly replaces the
independently sampled noise in the re-noising step of any diffusion sampler. For instance, in the
context of a DDIM-like sampler, the update rule can be formulated as:

xt−1 =
√
ᾱt−1x̂0|t +

√
1− ᾱt−1 − σ2

t · ϵθ(xt) + σt · ϵISCS. (12)

Here, x̂0|t is the data-consistent prediction of the clean image, the second term represents the
deterministic component of the reverse step, and the final term introduces our inter-slice consistent
stochasticity, with σt controlling its magnitude. By construction, this process perturbs each 2D slice
with similar yet smoothly distinct randomness, effectively suppressing the uncorrelated uncertainty
that leads to inter-slice artifacts and thereby improving the overall consistency of the final result.

Algorithm 1 2D DIS for 3D medical imaging with ISCS

1: Input: Measurements y, Pre-trained DM ϵθ∗ , Timesteps T , Noise schedule {αt}Tt=0.
2: xT ∼ N (0, I);
3: for t = T − 1, . . . , 0 do
4: ▷ 1. Denoising Prediction
5: x0|t = E [x0 | xt] =

1√
ᾱt
(xt −

√
1− ᾱtϵθ∗(xt))

6: ▷ 2. Data Fidelity Update
7: x̂0|t = argmin

z
∥y −Az∥22 + λ∥z− x0|t∥22

8: ▷ 3. Re-noising via ISCS
9: ϵISCS

i = slerp(z1, zS ;αi), z1, zS
i.i.d.∼ N (0, I)

10: xt−1 =
√
ᾱt−1x̂0|t +

√
1− ᾱt−1 − η2β̃2

t ϵ
(t)
θ∗ (xt) + ηβ̃tϵ

ISCS

11: end for
12: return x0

4 EXPERIMENTS

To demonstrate the effectiveness and generalization of the proposed ISCS, we conduct experiments
on three typical yet challenging 3D medical imaging inverse problems: (i) sparse-view (SV) CT re-
construction, (ii) limited-angle (LA) CT reconstruction, and (iii) MRI isotropic super-resolution
(SR). In addition, we conduct ablation study comparing identical noise and Slerp noise to evaluate
the advantages of our approach in medical 3D volume reconstruction.

4.1 EXPERIMENTAL SETTINGS

CT Dataset & Pre-processing. We use the AAPM 2016 low-dose CT grand challenge dataset (Mc-
Collough et al., 2017), which contains 5936 CT slices from 10 patients. All slices are first resized

6
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DDNM+ISCS

30.34/0.869

36.58/0.920

DDS+ISCS

33.16/0.925

38.87/0.958

DDS+TV

32.51/0.918

38.03/0.952

DDS

31.84/0.890

37.04/0.933

DDNM

29.28/0.804

32.13/0.807

FDK

22.33/0.463

23.23/0.364

Figure 2: Qualitative results of compared methods on a representative sample for SVCT of 30 views.
The display window is set as [-480, 820] HU.

to 256×256. We use 5410 slices from 9 patients for training the diffusion model, and reserve one
patient’s data (L506) for evaluation. The size of the evaluation volume is 256×256×300. We employ
torch-radon1 library with cone-beam (CB) geometry to simulate projections. For sparse-view, we
sample 30 views uniformly from [0◦, 360◦); for limited-angle, 100 views from [0◦, 100◦]. Detailed
CBCT geometry setting can be found in the Appendix.

MRI Dataset & Pre-processing. We use the public IXI dataset2 which contains multiple modality
human brain scans. For our experiments, we use the T1-weighted images. The evaluation volume has
a size of 256×256×150 with voxel spacing of 1.2×0.9375×0.9375 mm3. We first resample the data
to isotropic 1 mm3 resolution, then pad it to a size of 256×256×256. To simulate anisotropic scans,
we apply a 5× downsampling along the z-axis.

Implementation Details. For the diffusion prior, we adopt the Variance Exploding (VE) diffusion
model Song et al. (2020b), following the architecture in Chung et al. (2023). For the CT reconstruction
task, the model is trained on the AAPM dataset as described above, while for the MRI isotropic SR
task, we use the pretrained checkpoint trained on coronal axis slice provided by Lee et al. (2023). To
ensure a fair comparison across different DIS methods, we employ 30 NFEs for CT and 20 NFEs for
MRI throughout all experiments, all DIS methods use the same pre-trained diffsuion prior.

Methods in Comparison & Metrics. For 3D medical inverse problems, we compared two repre-
sentative state-of-the-art (SOTA) DIS methods: DDNM (Wang et al., 2022) and DDS (Chung et al.,
2024). Since our approach is DM-agnostic and can be seamlessly integrated into existing frameworks,
we denote the variants as DDNM+ISCS and DDS+ISCS. In addition, we compare with traditional
reconstruction baselines: FDK and ADMM-TV for CT reconstruction, and cubic upsampling and
ADMM-TV for MRI super-resolution. For quantitative evaluation of reconstructed volumes, we
adopt two classical data-fidelity metrics, peak signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM), and one perceptual metric, LPIPS (Zhang et al., 2018).

4.2 MAIN RESULTS

SVCT and LACT Table 1 shows the quantitative results of the compared methods with and
without the proposed ISCS strategy. Incorporating ISCS into both DDNM and DDS yields consistent
improvements across all three views, in some cases even surpassing TV regularization that relies
on additional optimization steps. The gains are particularly pronounced in SSIM and LPIPS for
the coronal and sagittal planes, indicating that ISCS effectively mitigates inter-slice discontinuities
along the z-axis while preserving structural fidelity. Representative qualitative results on SVCT

1https://github.com/carterbox/torch-radon
2https://brain-development.org/ixi-dataset
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Table 1: Quantitative results of compared methods and slice-to-slice difference for three 3D medical
imaging tasks: SVCT of 30 views, LACT of [0, 100]◦, and MRI SR of 5×. The best performance
is highlighted in bold. |∆| denotes the absolute gap between the inter-slice difference of the
reconstruction and that of the ground truth (smaller is better; see Sec. C.1 for details).

Task Methods
Axial Coronal Sagittal

|∆|
PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

SVCT

FDK 23.91 0.323 0.324 23.92 0.414 0.311 23.79 0.348 0.310 0.005584
ADMM-TV 32.94 0.882 0.113 33.67 0.895 0.113 33.72 0.893 0.107 0.001617
DDNM 32.55 0.851 0.076 32.51 0.837 0.227 32.79 0.834 0.200 0.009342
DDNM+ISCS 33.97 0.885 0.076 33.53 0.896 0.114 33.97 0.893 0.106 0.001785
DDS 34.76 0.919 0.069 35.12 0.906 0.149 35.33 0.904 0.141 0.005588
DDS+TV 36.26 0.931 0.073 37.08 0.938 0.095 37.50 0.936 0.088 0.002937
DDS+ISCS 36.97 0.937 0.064 37.75 0.944 0.070 38.16 0.942 0.065 0.001835

LACT

FDK 15.85 0.381 0.233 16.30 0.453 0.240 16.71 0.413 0.223 0.000898
ADMM-TV 27.27 0.795 0.125 27.85 0.794 0.123 27.83 0.799 0.120 0.000877
DDNM 28.40 0.854 0.076 28.75 0.774 0.245 28.22 0.775 0.235 0.016443
DDNM+ISCS 30.89 0.898 0.066 31.88 0.906 0.084 31.59 0.908 0.076 0.001899
DDS 29.07 0.885 0.086 29.93 0.829 0.196 29.20 0.830 0.193 0.011592
DDS+TV 31.40 0.898 0.086 33.33 0.906 0.110 32.83 0.909 0.104 0.002566
DDS+ISCS 31.65 0.911 0.071 32.90 0.917 0.082 32.49 0.920 0.077 0.001966

MRI SR

Cubic 38.02 0.925 0.032 36.22 0.908 0.095 36.85 0.904 0.111 0.004168
ADMM-TV 39.34 0.940 0.044 38.27 0.934 0.060 36.86 0.906 0.097 0.005074
DDNM 38.32 0.954 0.051 38.83 0.954 0.039 37.84 0.933 0.068 0.001480
DDNM+ISCS 39.62 0.963 0.019 39.84 0.959 0.022 38.65 0.939 0.045 0.001913
DDS 39.32 0.952 0.038 38.84 0.951 0.027 37.94 0.925 0.082 0.001853
DDS+TV 40.12 0.958 0.031 39.36 0.955 0.038 38.53 0.932 0.075 0.004732
DDS+ISCS 40.33 0.968 0.019 39.84 0.965 0.035 39.35 0.948 0.052 0.002096

Ax
ia
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GTDDNM+ISCS DDS+ISCSDDS+TVDDSDDNMCubic

PSNR/SSIM31.58/0.893 32.35/0.91830.49/0.88131.60/0.90431.32/0.89330.06/0.853

PSNR/SSIM35.31/0.958 36.07/0.96733.91/0.94934.36/0.95834.66/0.95033.26/0.943

Figure 3: Qualitative results of compared methods on a representative sample for MRI SR of 5×.

and LACT are shown in Fig. 2 and Fig. 8. Without any constraint on inter-slice continuity, DDNM
and DDS produce acceptable reconstructions on axial slices but suffer from severe discontinuities
and fragmented artifacts in sagittal views due to independent stochasticity. Although adding TV
regularization alleviates these artifacts, it introduces blurring and cartoon-like artifacts that degrade
fine anatomical details. In contrast, ISCS markedly reduces inter-slice inconsistency in both DDNM
and DDS without introducing such artifacts, preserving sharp edges and yielding reconstructions that
are most consistent with the GT.

MRI Isotropic SR Quantitative comparisons and qualitative visualizations are presented in Table 1
and Fig. 3, respectively. The compared methods exhibit trends consistent with those observed in
the CT task when evaluated with and without the proposed ISCS strategy. It is worth noting that
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Figure 4: Qualitative results of adopting identical (BCS)
and slerp noise (ISCS) during re-noising, where the red
arrows denote the noticeable “copying artifacts”. The
display window is set as [-480, 820] HU.

Table 2: Quantitative results of adopt-
ing identical (BCS) and slerp noise
(ISCS) during re-noising.

Noise Type BCS ICSC

Coronal
PSNR 38.00 38.16
SSIM 0.937 0.941
LPIPS 0.081 0.074

Sagittal
PSNR 38.24 38.78
SSIM 0.933 0.937
LPIPS 0.081 0.073

Figure 5: Performance curves across the sampling process, where a higher PSNR and lower LPIPS
and inter-slice difference reflect improved data fidelity and better inter-slice consistency.

the pretrained DM we adopt was trained on coronal slices, so inter-slice inconsistencies mainly
manifest in the axial and sagittal views. The results show that ISCS substantially alleviates these
inconsistencies without introducing blurring artifacts. In particular, the zoomed sagittal view of
the cerebellum in Fig. 3 highlights that, without any inter-slice constraint, both DDNM and DDS
produce noticeable streak-like artifacts, whereas TV-based regularization suppresses these artifacts at
the cost of oversmoothing structural details. By contrast, incorporating the proposed ISCS yields
reconstructions that best preserve fine anatomical structures and are most consistent with the GT.

4.3 DISCUSSIONS

Effectiveness of Correlated Noise Generation via Slerp We examine the impact of the proposed
ISCS strategy (Slerp-based noise) and the BCS strategy (Kwon & Ye, 2025) (identical noise) on
reconstruction performance in Eq. 12. Under the same experimental setting, each strategy is run five
times. Quantitative results are reported in Table 2 and visualizations in Fig. 4. The results of BCS
exhibit noticeable streak artifacts along the z-axis. This observation is consistent with the analysis in
Sec. § 3.2, suggesting that in high-dimensional medical volumes, enforcing identical stochasticity
across all slices suppresses natural structural variations and leads to replicated artifacts.

Trajectory of the sampling process Fig. 5 plots the evolution of performance over diffusion time
steps T (i.e., intermediate reconstructions as T → 0). With ISCS, the inter-slice difference drops
close to the ground-truth reference early in the trajectory, while PSNR/LPIPS continue to improve
thereafter. Compared with the DDS baseline, which maintains larger inter-slice gaps until later steps,
ISCS achieves cross-slice coherence earlier and sustains it across sampling. This early stabilization
may reduce the effective search space and help the sampler converge more reliably.

5 CONCLUSION

We identify uncoordinated stochasticity in diffusion sampling as a key driver of inter-slice incon-
sistency when 2D diffusion priors are applied to 3D medical reconstruction. To address this, we
introduce ISCS, a plug-and-play strategy that correlates per-slice noise via spherical linear inter-
polation, aligning sampling trajectories without adding loss terms, hyperparameters, retraining, or

9
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extra compute. In our experiments on SVCT, LACT and MRI isotropic SR, ISCS generally yields
better quantitative scores and smoother cross-view continuity while largely preserving edges and
fine anatomy. We view stochasticity control as a practical path to narrow the gap between 2D priors
and 3D fidelity, and we plan to explore learned, data-adaptive correlation fields and integration with
multi-plane or 3D priors.
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A APPENDIX

A.1 USE OF LLMS

We affirm that our work was conducted in accordance with the ICLR guidelines regarding the use of
large language models (LLMs). LLMs were utilized solely for minor text editing, specifically for
correcting spelling and grammar errors. No LLM was used to generate or alter any core technical
content, including the research methodology, experimental design, results, or conclusions. The ideas,
data analysis, and scientific conclusions presented in this paper are the sole product of the authors’
original work.
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A.2 ADDITIONAL DETAILS OF EXPERIMENT

CT Datasets & Pre-processing To standardize the input data, the Hounsfield Unit (HU) values
were clipped to the range [−1000, 1600] and linearly rescaled to [0, 1]. For the cone-beam geometry,
we adopt a configuration with detector dimensions of 512× 512, detector spacing of 2 mm in both u-
and v-directions, source-to-isocenter distance of 700 mm, and source-to-detector distance of 500 mm.

A.2.1 NETWORK TRAINING

A VE-form (Song et al., 2020b) diffusion model based on the ncsnpp architecture was trained on
the AAPM dataset for 70 epochs with a batch size of 16 and a learning rate of 2 × 10−4, using a
single NVIDIA A100 GPU. The model was optimized with Adam (β1 = 0.9, ϵ = 10−8) without
weight decay.

A.3 ADDITIONAL DETAILS OF BASELINES

ADMM-TV Following the protocol of Chung et al. (2023), the solution is to optimize the following
objective:

x∗ = argmin
x

1

2
∥Ax− y∥22 + λ∥Dx∥2,1, (13)

where D := [Dx,Dy,Dz], and is solved with standard ADMM and CG. Hyper-parameters are set
identical to Chung et al. (2023).

DDNM (Wang et al., 2022) DDNM enforces measurement consistency through a range–null space
decomposition. The update rule can be expressed as

E[x0 | xt,y]
(DDNM) ≈

(
I−A†A

)
Dθ∗(xt) +A†y, (14)

where A† denotes the pseudo-inverse of the measurement operator A. For CT reconstruction, SIRT
is adopted as the pseudo-inverse operator for stability.

DDS (Chung et al., 2024) DDS can be interpreted as solving the following proximal optimization
problem:

E[x0 | xt,y]
(DDS) ≈ argmin

x0

γ

2
∥y −Ax0∥22 +

1

2
∥x0 −Dθ∗(xt)∥22 , (15)

which is equivalent to solving the following linear system:(
γA⊤A+ I

)
x∗
0 = γy +Dθ∗(xt), (16)

typically using the conjugate gradient (CG) method. In our experiments, the number of CG iterations
was set to 10, which we found to be the most suitable value based on tuning with the validation data.

B EXTENDED THEORETICAL ANALYSIS

In this section, we deepen the theoretical grounding of the proposed Inter-Slice Consistency Sampling
(ISCS). Specifically, we analyze the geometric stability of our stochastic interpolation strategy and
discuss the compatibility of ISCS with deterministic sampling trajectories (ODEs).

B.1 GEOMETRIC STABILITY OF RANDOM ANCHOR SELECTION

A core component of ISCS is the generation of spatially correlated noise via interpolation between
anchor noise vectors. A natural question arises regarding the sensitivity of the method to the random
selection of these anchors. Here, we provide a theoretical justification for using independent random
sampling as a robust default.
Proposition B.1 (Concentration of Angular Distance in High Dimensions). Let z1, z2 ∼ N (0, Id)
be two independent random vectors in Rd. As the dimension d → ∞, the angle θ(z1, z2) between
them converges in probability to π/2:

lim
d→∞

P
(∣∣∣θ(z1, z2)− π

2

∣∣∣ ≥ ϵ
)
= 0, ∀ϵ > 0. (17)
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Remark B.1. (Implication for ISCS) Since CT reconstruction typically involves high-dimensional
latent spaces (d ≫ 1), any two independently sampled anchor vectors are approximately orthogonal
(≈ 90◦) with high probability. This concentration of measure phenomenon implies that the ”random”
selection of anchors actually yields a geometrically consistent interpolation path length across
different runs. Consequently, our method is inherently stable and does not require hyperparameter
tuning for the angular separation of anchors, a claim we validate empirically in Section C.4.

B.2 COMPATIBILITY WITH DETERMINISTIC SAMPLERS

While diffusion models often employ stochastic samplers, ISCS is fundamentally compatible with
deterministic ODE solvers (e.g., DDIM with η = 0).

Let the reverse diffusion process be modeled as an ODE dxt = f(xt, t)dt. The trajectory of this
ODE is uniquely determined by the terminal condition xT . Although deterministic sampling removes
stochasticity from the reverse denoising trajectory, the entire reconstruction process remains fully
conditioned on the choice of initial latent xT . By applying ISCS to correlate the initial noise volume
xT across slices, we enforce that the starting points of the reverse process lie on a spatially smooth
manifold. Since the subsequent integration steps are deterministic maps, this initial coherence is
preserved throughout the trajectory. We provide empirical verification of this property in Section C.3.

C ADDITIONAL EMPIRICAL RESULTS

We present comprehensive experiments to evaluate the robustness of ISCS against 3D-aware baselines,
its performance under deterministic sampling, and its sensitivity to anchor selection.

C.1 QUANTITATIVE EVALUATION OF INTER-SLICE CONSISTENCY

To provide a holistic evaluation beyond standard 2D metrics (PSNR, SSIM), we introduce a dedicated
metric to quantify inter-slice consistency while accounting for natural anatomical variations.

Metric Definition. We define the Slice Difference (SDiff) as the mean absolute difference between
adjacent slices along the z-axis:

SDiff =
1

S − 1

S−1∑
i=1

Mean(|xi+1 − xi|), (18)

where S is the total number of slices and xi represents the i-th slice.

Crucially, simply minimizing SDiff is insufficient, as it favors over-smoothed solutions (where
SDiff → 0) that lack texture. Therefore, to evaluate fidelity, we report the Absolute Gap (|∆|)
between the reconstruction and the Ground Truth (GT):

|∆| = |SDiffrecon − SDiffGT|. (19)

A smaller |∆| indicates that the reconstructed volume successfully replicates the natural anatomical
coherence of the GT, rather than enforcing artificial smoothness.

Results Analysis. As detailed in Table 1 and Table 3, our method consistently achieves the lowest
|∆| compared to baselines. This quantitative evidence confirms that ISCS not only mitigates flickering
artifacts but also restores 3D coherence to a level that closely matches real anatomy, avoiding the
over-smoothing pitfalls common in explicit regularization methods.

C.2 COMPARISON WITH EXPLICIT 3D-AWARE PRIORS

We compare our method against state-of-the-art 3D-aware diffusion priors, specifically Diffusion-
Blend (Song et al., 2024) and TPDM (Lee et al., 2023). While 3D-aware methods generally offer
strong performance in ideal settings, our results highlight distinct trade-offs regarding flexibility,
robustness, and computational complexity.

Experimental Setup. To ensure a fair comparison, all priors were trained on the same AAPM CT
dataset (1mm slice thickness). We evaluate on two distinct subjects to test generalization:

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 3: Slice-to-slice difference of compared methods for three 3D medical imaging tasks: SVCT
of 30 views, LACT of [0, 100]◦, and MRI SR of 5×. SDiffrecon and SDiffGT denote the mean
absolute difference between adjacent slices for the reconstruction and ground truth, respectively;
∆ = SDiffrecon − SDiffGT measures the signed gap, and |∆| is its absolute value (smaller is better).

Task Methods
Slice difference

SDiffrecon SDiffGT ∆ |∆|

SVCT

FDK 0.011893 0.006309 0.005584 0.005584
ADMM-TV 0.004692 0.006309 -0.001617 0.001617
DDNM 0.015652 0.006309 0.009342 0.009342
DDNM+ISCS 0.004524 0.006309 -0.001785 0.001785
DDS 0.011897 0.006309 0.005588 0.005588
DDS+TV 0.003372 0.006309 -0.002937 0.002937
DDS+ISCS 0.004474 0.006309 -0.001835 0.001835

LACT

FDK 0.007208 0.006309 0.000898 0.000898
ADMM-TV 0.005432 0.006309 -0.000877 0.000877
DDNM 0.022753 0.006309 0.016443 0.016443
DDNM+ISCS 0.004410 0.006309 -0.001899 0.001899
DDS 0.017901 0.006309 0.011592 0.011592
DDS+TV 0.003743 0.006309 -0.002566 0.002566
DDS+ISCS 0.004344 0.006309 -0.001966 0.001966

MRI SR

Cubic 0.007766 0.011934 -0.004168 0.004168
ADMM-TV 0.006861 0.011934 -0.005074 0.005074
DDNM 0.013414 0.011934 0.001480 0.001480
DDNM+ISCS 0.010021 0.011934 -0.001913 0.001913
DDS 0.013787 0.011934 0.001853 0.001853
DDS+TV 0.007202 0.011934 -0.004732 0.004732
DDS+ISCS 0.009838 0.011934 -0.002096 0.002096

• Subject L506 (In-Distribution): Standard 1mm thickness (300× 256× 256), matching
the training distribution.

• Subject L221 (Out-of-Distribution): Thick 5mm slices (99× 256× 256), representing a
significant domain shift.

Note that TPDM requires cubic volumes (D ≥ 256) for orthogonal consistency checks and thus
cannot be applied to Subject L221 (D = 99).

Results Analysis. Quantitative comparisons for SVCT and LACT tasks are presented in Table 4 and
Table 5, respectively.

1. Performance on Ideal Data: On Subject L506, explicit 3D methods (DiffusionBlend,
TPDM) generally outperform the 2D baseline (DDS), confirming the value of 3D priors.
However, ISCS significantly narrows this gap, recovering high-frequency details without
requiring 3D architectural changes.

2. Robustness to Domain Shift: On Subject L221 (5mm slices), the advantage of 3D-aware
methods diminishes due to the mismatch between the training prior (1mm) and test data
(5mm). Notably, ISCS achieves comparable or superior performance (e.g., higher SSIM in
SVCT), demonstrating that regulating stochasticity offers greater flexibility than enforcing
rigid 3D spatial constraints.

While 3D-aware methods offer high performance, they necessitate task-specific network designs,
3D-aware architectures, and additional training, which significantly increases computational cost
and engineering complexity. ISCS focuses on a different axis of improvement: enhancing 2D priors
through sampling-time noise correlation without architectural changes. Crucially, ISCS is orthogonal
to 3D-aware methods. In principle, ISCS can be integrated into frameworks like DiffusionBlend or
TPDM to further enhance their consistency, a direction we plan to explore in future work.
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Table 4: Quantitative comparison on the SVCT task of 30 views. Higher PSNR/SSIM and lower
LPIPS indicate better performance.

Axial Coronal Sagittal
Subject Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

L506
(1mm)

DDS 34.76 0.919 0.069 35.12 0.906 0.149 35.33 0.904 0.141
DDS+ISCS 36.97 0.937 0.064 37.75 0.944 0.070 38.16 0.942 0.065
TPDM 37.59 0.944 0.063 38.40 0.950 0.068 38.64 0.948 0.062
DiffusionBlend 38.22 0.943 0.034 38.95 0.945 0.047 39.29 0.943 0.042

L221
(5mm)

DDS 37.83 0.952 0.045 37.96 0.952 0.055 38.62 0.950 0.045
DDS+ISCS 38.70 0.956 0.045 39.03 0.963 0.037 39.70 0.961 0.031
TPDM – – – – – – – – –
DiffusionBlend 38.84 0.944 0.046 39.05 0.946 0.054 39.44 0.946 0.045

Table 5: Quantitative comparison on the LACT task of [0, 100]°. Higher PSNR/SSIM and lower
LPIPS indicate better performance.

Axial Coronal Sagittal
Subject Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

L506
(1mm)

DDS 29.03 0.885 0.086 29.84 0.828 0.197 29.13 0.829 0.194
DDS+ISCS 31.65 0.911 0.071 32.90 0.917 0.082 32.49 0.920 0.077
TPDM 30.95 0.912 0.062 32.48 0.920 0.070 32.49 0.924 0.064
DiffusionBlend 31.11 0.915 0.037 33.16 0.917 0.053 32.76 0.922 0.049

L221
(5mm)

DDS 29.15 0.895 0.053 29.94 0.860 0.139 30.12 0.862 0.124
DDS+ISCS 30.45 0.908 0.042 31.42 0.910 0.053 31.85 0.912 0.046
TPDM – – – – – – – – –
DiffusionBlend 31.10 0.918 0.029 32.94 0.921 0.045 33.02 0.923 0.037

C.3 ANALYSIS OF ISCS WITH DETERMINISTIC SAMPLERS

We investigate the interaction between ISCS and the stochasticity of the sampler (DDIM parameter
η).

Effectiveness on Deterministic Samplers (η = 0). As discussed in Section B.2, ISCS is applicable
to deterministic paths by correlating the initialization. We conducted an evaluation on the SVCT
task with 30 views using DDIM with η = 0. As summarized in Table 6, incorporating ISCS into the
initialization phase leads to substantial performance gains over independent per-slice initialization.
Improvements are particularly pronounced in the Coronal and Sagittal orientations: for instance,
Coronal LPIPS decreases from 0.239 to 0.065, and PSNR increases from 32.67 to 37.10. These
results demonstrate that ISCS alleviates slice-wise discontinuities even when the sampling dynamics
themselves are deterministic.

Necessity of Stochasticity. Despite the compatibility with η = 0, further analysis indicates that
deterministic sampling is not optimal for the inverse problems considered in this work. Table 7 reports
an ablation over η values in DDIM. Reconstruction quality improves monotonically as η increases,
with the fully stochastic setting (η ≈ 1) achieving the best PSNR and SSIM. This observation is
consistent with recent findings in diffusion-based inverse problems (Kwon & Ye, 2025; Zhu et al.,
2023; Nie et al., 2024; Wang et al., 2022; Kawar et al., 2022), which emphasize the importance
of controlled stochasticity for escaping local minima and recovering high-frequency structures.
Accordingly, although ISCS remains effective at η = 0, the main experiments in the manuscript adopt
stochastic sampling to obtain the best overall reconstruction fidelity.

C.4 STABILITY OF ANCHOR SELECTION IN ISCS

This section analyzes the stability of ISCS with respect to the choice of anchor noise vectors
(z1, zS) and random seeds. As shown in Proposition B.1, the angle between two independently
sampled Gaussian vectors concentrates sharply around 90◦ with vanishing variance. Consequently,
independent random sampling of anchor vectors naturally yields a consistent path length across runs,
implying that the ISCS interpolation manifold is robust to variations in z1 and zS .
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Table 6: ISCS with Deterministic Sampling. Effect of
ISCS on initial noise under DDIM η = 0 (SVCT-30).
Significant improvements in auxiliary views demonstrate
successful consistency enforcement.

PSNR SSIM LPIPS
Axial
DDIM (η = 0) 32.30 0.864 0.065
+ ISCS 36.19 0.924 0.053
Coronal
DDIM (η = 0) 32.67 0.806 0.239
+ ISCS 37.10 0.935 0.065
Sagittal
DDIM (η = 0) 32.93 0.805 0.228
+ ISCS 37.58 0.932 0.059

Table 7: Stochasticity Ablation. Per-
formance vs. η on SVCT-30. Higher
stochasticity yields better reconstruc-
tion.

η PSNR SSIM
0.0 34.48 0.916
0.1 34.56 0.918
0.2 34.77 0.923
0.3 35.06 0.927
0.4 35.38 0.932
0.5 35.70 0.936
0.6 35.99 0.939
0.7 36.26 0.942
0.8 36.52 0.945
0.9 36.77 0.948
1.0 37.08 0.951

To further quantify this robustness, we perform an ablation in which the angle between z1 and zS
is no longer random but fixed to prescribed values θ ∈ {30◦, 60◦, 90◦, 120◦, 150◦, 175◦}. For each
angular constraint, we generate 10 independent trials on the SVCT-30 task. The results, summarized
in Table 8, demonstrate highly consistent performance across the entire angular spectrum. The
fluctuations in PSNR, SSIM, and LPIPS remain extremely small, with standard deviations mostly
below 0.2 dB. Notably, even the difference between the lowest- and highest-performing settings (e.g.,
150◦ vs. 175◦) remains under 0.15 dB in the Axial view. These results confirm that ISCS exhibits
strong invariance to the anchor angle and random seeds, validating the use of simple independent
sampling (yielding θ ≈ 90◦ by default) as a robust and parameter-free design choice.

Table 8: Stability of Anchor Selection Strategy. Quantitative results (Mean ± Std) of ISCS under
different anchor angles (10 independent runs each) on SVCT-30 task. The method shows minimal
sensitivity to the specific geometric configuration of the latent noise.

Axial Coronal Sagittal
Angle (θ) PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

30◦ 36.84 ± 0.14 0.937 0.064 37.66 ± 0.14 0.944 0.068 38.04 ± 0.15 0.942 0.063
60◦ 36.83 ± 0.13 0.937 0.064 37.65 ± 0.15 0.944 0.067 38.06 ± 0.16 0.942 0.063
90◦ 36.84 ± 0.07 0.937 0.066 37.69 ± 0.08 0.945 0.069 38.07 ± 0.09 0.943 0.065
120◦ 36.86 ± 0.05 0.937 0.067 37.69 ± 0.07 0.945 0.069 38.09 ± 0.08 0.943 0.065
150◦ 36.79 ± 0.20 0.936 0.065 37.61 ± 0.23 0.944 0.069 38.00 ± 0.24 0.942 0.064
175◦ 36.90 ± 0.04 0.938 0.065 37.74 ± 0.03 0.945 0.069 38.12 ± 0.06 0.943 0.064

C.5 SCALABILITY AND GENERALIZATION ASSESSMENT

In this section, we critically evaluate the scalability and generalization capabilities of ISCS, focusing
on two challenging scenarios: pathological cases with abrupt structural changes and data acquisition
with varying slice thicknesses.

C.5.1 PRESERVATION OF PATHOLOGICAL STRUCTURES

A common concern with consistency-enforcing methods is the potential risk of over-smoothing,
which might obscure critical pathological details such as tumors or lesions. It is crucial to distinguish
the operating mechanism of ISCS from explicit smoothness priors like Total Variation (TV).
Intuition C.1 (Noise Consistency vs. Intensity Smoothness). Traditional priors (e.g., TV) operate
directly on the signal intensity space X , explicitly penalizing high-frequency gradients: minx ∥∇x∥1.
This often leads to ”cartoon-like” artifacts or the blurring of sharp boundaries, which can be detri-
mental for small lesions.
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In contrast, ISCS operates in the stochastic sampling trajectory (noise space Z). We enforce
consistency on the noise zt, not on the pixel intensity x0. The structural details of the reconstruction
are primarily determined by the measurement operator and the data consistency term. Consequently,
ISCS encourages inter-slice coherence without suppressing the high-frequency signal components
required to represent abrupt pathological changes.

Validation on DeepLesion Dataset. We empirically validated this hypothesis using the DeepLesion
dataset. We selected two representative subjects: Case A (1mm slice with a large lesion) and Case B
(5mm slice with a small lesion). The visual results in Fig. 6 indicate:

• Case A (Large Lesion, 1 mm): ISCS successfully reconstructed the sharp boundaries and
internal texture of the large tumor, demonstrating that Slerp interpolation in noise space
does not blur structural transitions.

• Case B (Small Lesion, 5 mm): We observed that TV regularization, in its effort to enforce
inter-slice intensity consistency, nearly obliterated the small tumor. In contrast, ISCS
preserved the small lesion with high fidelity, yielding a result closest to the GT.

These results confirm that ISCS is robust in pathological scenarios, avoiding the detail destruction
common in strong explicit smoothness regularizers.

GTDDS+ISCSFDK

1 
m

m

DDS+TV

5 
m

m

Figure 6: Qualitative comparison of compared methods for SVCT of 30 views. Two representative
subjects with slice thicknesses of 1 mm (top) and 5 mm (bottom) are shown. Cyan boxes mark the
lesion regions. The display window is [-175, 275] HU.
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C.5.2 ROBUSTNESS TO VARYING SLICE THICKNESS

To evaluate the generalization of ISCS across different data acquisition protocols, we conducted
experiments on datasets with varying slice thicknesses (non-uniform z-spacing), ranging from thin
(3mm) to thick (7.5mm) slices. Specifically, we utilized subjects from the LDCT-PD dataset (3mm,
5mm) and the AbdomenAtlas1.0 dataset (7.5mm). Crucially, we applied the exact same experimental
settings and hyperparameters across all cases, without any dataset-specific tuning.

Table 9: Quantitative Results under Varying Slice Thicknesses. ISCS demonstrates consistent
performance gains over the baseline (DDS) across all slice thicknesses (3mm, 5mm, 7.5mm). The
method effectively mitigates inter-slice discontinuities regardless of z-spacing, confirming its robust-
ness to variations in acquisition protocols.

Axial Coronal Sagittal
Thickness Method PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

3mm DDS 36.17 0.945 0.046 37.06 0.932 0.082 36.97 0.932 0.073
DDS + ISCS 37.48 0.951 0.049 38.54 0.956 0.044 38.45 0.956 0.038

5mm DDS 37.83 0.952 0.045 37.96 0.952 0.055 38.62 0.950 0.045
DDS + ISCS 38.70 0.956 0.045 39.03 0.963 0.037 39.70 0.961 0.031

7.5mm DDS 34.97 0.934 0.043 35.34 0.938 0.027 37.15 0.940 0.026
DDS + ISCS 36.02 0.941 0.040 36.68 0.950 0.023 38.14 0.951 0.021

The quantitative results in Table 9 show that ISCS consistently outperforms the DDS baseline across
all metrics and axes. This robustness suggests that ISCS is a scalable solution for 3D reconstruction
that does not require retraining or extensive hyperparameter tuning for different clinical protocols.

C.6 ADDITIONAL VISUAL RESULTS
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Figure 7: Qualitative results of compared methods on representative sample for SVCT of 30 views.
The display window is set as [-480, 820] HU.
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Figure 8: Qualitative results of compared methods on representative sample for LACT in [0, 100◦].
The display window is set as [-480, 820] HU.
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Figure 9: Qualitative results of compared methods on a representative sample for MRI SR of 5×.
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