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ABSTRACT

This work demonstrates that automatic differentiation has strong limitations when
employed to compute physical derivatives in a general physics-informed frame-
work, therefore limiting the range of applications that these methods can address.
A hybrid approach is proposed, combining deep learning and traditional numer-
ical solvers such as the finite element method, to address the shortcomings of
automatic differentiation. This novel approach enables the exact imposition of
Dirichlet boundary conditions in a seamless manner, and more complex, non ana-
lytical problems can be solved. Finally, enriched inputs can be used by the model
to help convergence. The proposed approach is flexible and can be incorporated
into any physics-informed model. Our hybrid gradient computation proposal is
also up to two orders of magnitude faster than automatic differentiation, as its
numerical cost is independent of the complexity of the trained model. Several
numerical applications are provided to illustrate the discussion.

1 INTRODUCTION

Solving Partial Differential Equations (PDEs) with deep-learning based approaches has received a
growing interest over the past few years, mainly due to the early promising results of Raissi et al.
(2019). Their dataless, physics-informed approach, allows to leverage the physical knowledge of
a problem to train deep learning models, without having access to numerically costly accurate
simulations of the problem.

With this growing interest, many variations of the physics-informed framework have emerged.
The main improvements are focused on the model’s architecture, the loss construction and the
optimization procedure during training. However, few works address the computation of residuals
by automatic differentiation, and how some improvements can be made in this direction. In the
following, it is argued that this step constitutes a bottleneck of the physics-informed framework and
that an hybrid numerical approach could be beneficial, both in terms of global performance and
generalization capabilities. More precisely, it is demonstrated in Section 3 that the computation of
physical derivatives can lead to wrong results in many settings, for instance when the PDE coeffi-
cients do not have an analytic form, or when enriched input data is fed to the deep learning model.
In light of these constraints, in Section 4, we propose a new framework, where physical derivatives
are computed by numerical operators. A comparison between our new approach and the traditional
Physics-Informed framework is presented in Section 5. Finally, we present a numerical experiment
in Section 6 to test our hybrid approach for the strong inclusion of Dirichlet boundary conditions on
a challenging geometry. We compare our results with the existing Automatic-Differentiation based
PINNS, both in terms of accuracy and computation time.

2 PRELIMINARIES

Physics-Informed neural networks Consider a smooth, open and connex domain ) € R?, with
d > 1. Consider a general PDE in the following form:
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N(u)=f inQ, (D
B(u) =0 on 9. )

In this formulation, N and B are general, possibly non linear partial differential and boundary
operators. The seeked solution is u, and f is a given source term.

A neural network with trainable parameters 6 is used to produce a prediction ug, which should
approximate the true solution u. Physics-informed neural networks, as introduced in Raissi et al.
(2019) are based on the following framework. In the training phase, the parameters 6 are updated
to reach a correct approximation. For this, IV,. sample points are sampled inside the domain 2, and
Ny, are chosen on the boundary 0f2. For a comprehensive discussion on the choice of these points,
see for instance Wu et al. (2023). These points are used to approximate the PDE residuals inside the
domain, therefore the loss term associated to the partial differential operator N is:

N,
£6) = 5 D IN () (w) — )| ®

Similarly, the loss term associated to the boundary operator is simply:

Ny,
1
Ly(0) = FZIIB(W)(%)H? )
bz
The total loss function £(6) is finally obtained by summing the two loss terms:

L(60) = A L,(6) + MLy (6). 5)

The weighting coefficients A, and ), are hyperparameters allowing to balance the two loss terms
during training. They play a key role in the performance of the neural network and are often hard to
determine in practise. For a thorough study of these parameters, see Wang et al. (2021a).

Physics-informed models have proven to be very effective in several academic cases (Raissi et al.,
2019; Kharazmi et al., 2021), and many variations of these models have been applied to a wide
range of problems, such as fluid and solid mechanics (Winchenbach & Thuerey, 2024; Chenaud
et al., 2024), climate modelling (Bonev et al., 2023), biology (Yazdani et al., 2020) and many others.
For an overview of physics-informed models and their applications, see, for instance, Cuomo et al.
(2022); Karniadakis et al. (2021). However, unlike their traditional numerical solver counterparts,
such as finite element methods, they lack theoretical guarantees of convergence. Recent works,
including Hong et al. (2021); Siegel & Xu (2020), have made some first steps in this direction.

Since the first attempts at solving PDEs with neural networks, which can be traced back to Dis-
sanayake & Phan-Thien (1994); Lagaris et al. (1998a;b), and especially since the work of Raissi
et al. (2019), many efforts have been conducted to enhance the physics-informed framework. Leake
& Mortari (2020); van der Meer et al. (2022); Berg & Nystrom (2018); Wang et al. (2021a); Sheng
& Yang (2022) have addressed the complex issue of balancing the different loss terms accounting
for the PDE residuals and the data knowledge (boundary or initial conditions for instance) to ensure
an efficient training. In a similar fashion, weak PDE formulations have been used too (Samaniego
et al., 2020; Zang et al., 2020). Other approaches have investigated more suitable model architec-
tures, using graph networks (Gao et al., 2022; Belbute-Peres et al., 2020; Pfaff et al., 2020) or other
machine learning models (Dong & Li, 2021; Geneva & Zabaras, 2020; 2022). For generalization
purposes, some works have been focusing on enriching the model, through the loss function (Yu
et al., 2022) or by changing the learning task to learn operators instead of functions to a single
problem (Wang et al., 2021b; Podina et al., 2023).
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Finally, closer to this paper, some works, such as Belbute-Peres et al. (2020); Meethal et al.
(2023); Xiang et al. (2022a); Gao et al. (2022) have combined numerical methods with the deep
learning approach. However, in Belbute-Peres et al. (2020); Meethal et al. (2023), the idea was
not to compute the loss terms differently, but rather to decompose the problem of solving the PDE
between the numerical solver and the deep learning model. In Lim et al. (2022); Xiang et al.
(2022bsa); Gao et al. (2022), the residuals are computed without automatic differentiation, using
respectively classical, hybrid and generalized finite difference methods, and discretized Galerkin
analytic formulations. However, to the best of our knowledge, these works did not emphasize the
theoretical limitations of automatic differentiation for loss computation. Some works, such as
Meethal et al. (2023); Eshaghi et al. (2024) present a hybrid Finite Element- Physics-Informed
framework. Howedver, instead of extracting the gradient operator, which we do in this work, they
use the whole Finite Element formulation of the PDE as a loss term, which must be built for every
instance of a PDE. We argue that our approach is more general, since the operator only depends on
the geometry and the mesh, and can be reused for other limit conditions and PDEs.

Automatic differentiation (AD) plays now a key role in machine learning and deep learning. There
are many ways of implementing this set of techniques, and each deep learning framework, such as
Pytorch (Paszke et al., 2019), Tensorflow (Abadi et al., 2015) or JAX (Frostig et al., 2018) has its
own specificities. Here, we only describe briefly the reverse mode AD, since it is the most common
in machine learning settings. For a broader overview of AD and its applications, see Baydin et al.
(2018).

AD is based on the fact that computational operations are obtained by combinations of a finite
number of elementary, differentiable operations, for which the analytical derivatives are known. In
reverse mode AD, computations are decomposed into two phases: a forward and a backward phase.
In the forward phase, every computation made is recorded hierarchically, inside a computational
graph. This register allows to pile up all the dependencies between the variables. In the backward
phase, the registered operations are run through backward, from the outputs to the inputs. At each
step, the derivative of the associated elementary operation is computed in a formal way, and evalu-
ated at the corresponding value. Next, with the chain rule, the derivatives are multiplied, to obtain as
a global result the derivative of the outputs, with respect to every input. This allows for any gradient
computation, for instance to compute the derivative of a neural network’s output with respect to its
parameters. Since most of the optimization processes in deep learning are gradient-based and are
variations of the gradient descent procedure, AD has proven to be very efficient and succesful in
these applications.

3  WHEN AND WHY AUTOMATIC DIFFERENTIATION FAILS

3.1 NON-ANALYTICAL PDE COEFFICIENTS

While many applications of physics-informed models have been published recently, the vast majority
of the cases are academic, analytical PDEs, where the target solution and the PDE coefficients have a
known, analytical expression. However, for many real-life cases in Physics or engineering, the PDE
coefficients are not of this type, and can only be tabulated. For instance, this may be the case for
thermal and electrical conductivity for diffusion processes, viscosity in fluid mechanics, or material
properties in solid mechanics. When this situation arises, the computation of the PDE residuals
by AD is compromised. As an example, consider the following one-dimensional static diffusion
equation:

—(e(z)u’)" = 0. (6)

Suppose the diffusion coefficient « is given by tabulated data, and is not known analytically. Con-
sequently, the diffusion term of (6) will be computed as —«(x)u”, since the spatial derivative of «
cannot be computed by the AD framework. Therefore, in this case, the PDE residuals computed by
AD will not be accurate, preventing the model from converging to the true solution. This limitation
is illustrated in Section 5.
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3.2 STRONG IMPOSITION OF DIRICHLET BOUNDARY CONDITIONS

Respecting boundary and limit conditions is a challenge for Physics-Informed models. Many works
have focused on weak or strong imposition of boundary conditions, first for simple geometries (La-
garis et al., 1998a), then for more complex ones (Leake & Mortari, 2020; van der Meer et al.,
2022; Berg & Nystrom, 2018; Wang et al., 2021a; Sheng & Yang, 2022; Sukumar & Srivastava,
2022). While these methods can give accurate results, they often require additional preprocessing
and computations. Moreover, weak imposition approaches do not guarantee an exact satisfaction of
these boundary conditions. On the other hand, classical numerical approaches can usually impose
Dirichlet boundary conditions exactly, by modifying the linear system of equations to account for
these conditions. A similar approach, within the physics-informed framework, would be to proceed
as follows.

Suppose one wants to solve the following PDE, with Dirichlet boundary conditions:

N(u)=f inQ, )
u=up onO. 3

Here, © can be any arbitrary open and connex domain of R%, d > 1, and up is the Dirichlet
boundary condition. Suppose a neural network My is used to approximate the solution u. A simple,
straightforward way of strongly imposing the boundary conditions is to simply modify the neural
network’s outputs when on the boundary. The predicted solution 4 of the PDE (7) - (8) would
therefore simply be:

ﬁ(a:) = (1 — ]laQ(I))Mg(x) + ]lag(x)up(x). ©)]

Here, 14 is the characteristic function of the set 9€).

While this very simple trick guarantees that the boundary conditions are fulfilled, to the best of our
knowledge, no work has been published using this approach for Physics-Informed Neural Networks.
Once again, the reason comes from the inability of AD to include spatial fields (in this case, 1pq,
and eventually up if the Dirichlet conditions do not have an analytical expression) that have not
been recorded inside of its computational graph. Therefore, the gradient of @ will be computed by
AD as:

Vi = (1= 1pa(x))VM(x). (10)
auto. diff.

While this computation is correct on the interior of the domain, this leads to singularities close to the
boundary, and the Dirichlet condition (8) will not be taken into account in the training. In particular,
for a PDE where the zero function (or any constant function) would be a solution to (7), but not
to (8), an AD-based training would converge to such solution. For an example of this behavior, along
with a comparison with our proposed framework, which is described in Section 4, see Section 5.2.
Conceptually, our approach intends to demonstrate that the model does not need to learn explicitly
the boundary conditions. Rather, by strongly applying the BC as external unknowns, the model can
expand its capacity to generalization as it should learn how to propagate the information throughout
the domain.

Other conditions, such as Neumann or Robin conditions, may not be addressed as directly as what
has been proposed here. For these conditions, a variational approach could be considered, in the
same fashion as Samaniego et al. (2020). For periodic conditions, a preprocessing step could be
implemented. For a more thorough discussion on this point, see Wang et al. (2023).

3.3 ENRICHED INPUTS TO THE MODEL

Since the first works on the physics-informed framework, many of its aspects have been challenged
and optimized to yield better results on various academic application cases. However, to the best of
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our knowledge, there has been little to no discussion on optimizing the inputs of such models. The
enriched physical knowledge of the problems have been applied to the models’ architecture and
inside the loss function to optimize the training, but no discussion have been conducted on using
this knowledge to enrich the models’ input fields. This limitation of the framework is significant
in terms of both global performance and generalization capabilities. Providing information on
changes, to the source term or boundary conditions for example, as input to the model would be
beneficial, enabling it to expand its range of application without requiring re-training for every
modification of the initial problem. This limitation is strongly linked with the failure of automatic
differentiation pointed out in Theorem 3.2, since any additional input to the model leads to wrong
evaluations of spatial derivatives, therefore to wrong estimations of PDE residuals.

Theorem 3.2 provides a formal proof of the failure of automatic differentiation as a tool to compute
spatial derivatives on the fairly general setting of Assumption 3.1.

Assumption 3.1 Let Q be an open, connex and smooth domain of R% (d > 1), in which one needs
to solve a PDE. Suppose that there exists a smooth scalar field ¢ on Q) which is not constant in each
direction: Yx = (x1,..., xd)T e OVl <i<d, g—;’; # 0. Suppose a physics-informed model
M : R¥*1 — R takes as input the coordinates x and the additional scalar field . Additionnaly,
suppose that the computation of ¢ as a function of x has not been done inside the deep learning
framework. Therefore, the computational graph of the automatic differentiation process will not
record any dependency between ¢ and x.

Regarding the last part of the assumption, this statement is mostly verified in general, industrial
settings, where complex geometries prevent the construction of analytical fields. It could also be
verified when some additional information to the solution is provided in the form of data points,
obtained from observations. For instance, as described in Section 3.1, when dealing with a Solid
Mechanics problem, physical data such as material properties may be available only in a tabular
form inside the domain.

Theorem 3.2 With the hypotheses made in Assumption 3.1, the partial derivatives of M with respect
to the coordinate x as computed by automatic differentiation will not correspond to the physical
spatial derivatives of the scalar field M (x, p(x)).

Proof 3.3 The proof'is given in Appendix A.

The recent development of neural operators (Li et al., 2020a; Lu et al., 2019; Li et al., 2020b) offers
promising perspectives in the domain of scientific machine learning, since this class of models of-
fers better generalization capabilities compared to plain neural networks. The aim of these models
is to learn an operator mapping a PDE parameter (initial or boundary conditions, PDE coefficient or
other) to the corresponding solution, rather than learning a single solution of a given PDE. The gen-
eralization capacities of these models are improved, since they do not require to be re-trained for each
PDE instance that must be solved. However, few works directly use this class of operators within
a physics-informed framework. One of the reasons of the difficulty to implement physics-informed
neural operators is a direct consequence of Theorem 3.2: the PDE parameter given as input to the
model should be constructed analytically in order to compute the PDE residuals with AD, therefore
preventing the use of these models to real-life problems. For instance, Wang et al. (2021b) presented
results based on analytic data, and Li et al. (2024) proposed function-wise differentiation as an alter-
native to AD. Such works could be adapted within the AD-based Physics-Informed framework, for
instance by fitting tabulated data with splines or other interpolation techniques, however this would
involve an additional layer of preprocessing complexity.

4  SPATIAL GRADIENT COMPUTATION AS A SPARSE NUMERICAL OPERATOR

As an alternative to AD, in the proposed hybrid numerical physics-informed model, the spatial
derivative computations are handled by a numerical solver, which can be very general (finite dif-
ference, finite element, ...). These numerical operations are algebraic computations consisting of
mainly matrix-vectors multiplications. Therefore, once the operator is built from the discretized
domain, in can be directly integrated in the machine learning framework, both for the forward and
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Figure 1: Main steps of the proposed hybrid approach of spatial gradient computations. The purple
squares refer to computations made inside the deep learning framework and recorded by the auto-
matic differentiation graph, while the blue square refers to the outside computation of derivative,
with any numerical gradient kernel (finite difference, finite element,. .. ).

backward calls. Moreover, this sparse matrix-vector multiplication is independent of the model’s
complexity, which makes it far less expensive in terms of computational cost. On the other hand,
the loss calculation does not require a call to AD, which drastically simplifies the computational
graph. This further reduces the training time, which we demonstrate in Section 6. A step-by-step
decomposition of the inclusion of the proposed framework in the Physics-Informed training is given
in Appendix B. Figure 1 illustrates the computation of the loss derivative with the proposed hybrid
numerical approach.

Our main experiment is presented in Section 6, and it has been realized with a hybrid Finite Element-
Physics Informed approach, therefore we provide a detailed explaination of the gradients computa-
tion with this framework.

On a domain 2 C R™ where a mesh has been built, we consider a nodal field v = (uq,...,uy), N
being the number of nodes. For the node x;, 1 < ¢ < N, u; is the value of the field v on the node
x;. The P1 finite element approximation is based on the consideration of the set of piecewise linear
functions (¢;); <, <y such that ¢;(z;) is equal to 1 if ¢ = j, and 0 otherwise. The nodal field u is

therefore approximated by u ~ ) . u;;.

The gradient approximation of v is computed as:

1 -
Vu~Gu, G;;= MZ/Q ZV(pj(l'g)dQ (11

i g=1

Here, (2, is the set of elements surrounding node 7, x4, the Gauss points associated to these elements
and n4 the number of elements. This formula recovers 2 steps: the actual P0 gradient computation,
and the gradient smoothing to recover a P1 field. Numerically, applying the operator G corresponds
to a sparse matrix-vector multiplication in terms of computational complexity.

5 VALIDATION OF THE HYBRID NUMERICAL APPROACH

As proposed in Section 4, in the current framework the gradient computations could be handled
by outside numerical operators. This flexibility allows for the use of complex operators with high
accuracy, without having to implement them inside the deep learning framework. However, for
simple cases, the use of in-place operators such as finite difference operators could still be efficient.
In that case, there is no need to extract the numerical operator and to convert is as a sparse matrix,
since in-place operators are traced back inside the computational graph. In the following section,
a simple one-dimensional geometry will be used, as a proof of concept of the approach. The deep
learning framework used is Pytorch (Paszke et al., 2019).

5.1 A NUMERICAL EXAMPLE OF A FAILURE OF AUTOMATIC DIFFERENTIATION

To illustrate the limitation of AD pointed out in Section 3.3, the setting of Assumption 3.1 has been
reproduced. A simple neural network has been initialized with random weights, and two inputs
are given to the model: a position field z, of evenly placed points in (0,1), and another input
field ¢, given by ¢(x) = sin(10mx). The computation of ¢ has been done outside of the AD
computational graph. The output of the neural network, M (z, ¢(x)), is then differentiated, both
by AD and by a finite difference method. To further validate the finite difference computation,
two operators have been used: one inside the Pytorch framework, with the torch.gradient
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Figure 2: Derivative of the neural network’s output with respect to . ‘In place’ and ‘Num. Diff” re-
fer to the two finite difference derivative estimations, respectively computed by torch.gradient
and findiff. ‘AD’ is the automatic differentiation computation, and ‘Corr. AD’ is the corrected
automatic differentiation computation, to account for the missing terms of equation 20.

function, and one with another package, findiff (Baer, 2018), to illustrate the call to outside
numerical operators. Moreover, the error made by AD when computing physical derivatives has been
identified, and corresponds to the gap between the quantities written in (20) and (21). Therefore, in
this simple case, it is straightforward to correct the derivative computed by AD to account for the
missing term. This corrected derivative has been computed as well. The result is given in Figure 2.

As expected, the derivative computed by AD does not correspond to the actual derivative of
M (z,¢(x)). On the other hand, the two numerical methods approximations are close, and are
also close to the corrected analytical derivative. This result illustrates the limitation of AD on a
simple setting. While a correction of the AD prediction is possible in this case, this should not be
true in general, when analytical derivatives of ( cannot be computed.

5.2 A ONE-DIMENSIONAL DIFFUSION EQUATION

In this section, a simple one-dimensional diffusion equation is considered, to illustrate the discus-
sions of Sections 3.1 and 3.2. The considered domain is 2 = (0, 1), and the PDE is the following:

—(a(z)/(2)) =0, 2€Q, alx)=01+ux, (12)
w(0) =1, wu(l)=—1. (13)

The solution to this problem is u*(z) = Alog;,(0.1 + z) + (1 + A), where A = —2/log,,(11).

Two experiments have been conducted for this problem. In the first one, the diffusion coefficient
« is computed and tabulated. In the second one, the Dirichlet boundary conditions are strongly
imposed, as described in Section 3.2. In both cases, a plain PINN has been trained, and the results
are compared with a model with the same architecture, but trained with our hybrid approach. The
model is a multi-layer perceptron (MLP) with 3 hidden layers of width 50. The tanh activation
function has been used. The trainings have been conducted with the Adam optimizer for 25,000
epochs, on a single CPU Intel Core i7 with 32Go of RAM, with a learning rate of 5 x 10~3. The
results are displayed in Figure 3.

While our proposed model converges to the true solution in both cases, the plain PINN does not.
In the case of a tabulated coefficient «, the model converges to a linear function, which would be
solution to equations (12) - (13) if the coefficient o was constant. For the strong imposition of
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Figure 3: Predicted solution to (12) - (13). Grey: analytical solution. Predicted solution of the
plain PINN, for tabulated o (Blue) and strong imposition of Dirichlet Boundary conditions (Purple).
Predicted solution of our hybrid numerical PINN, for tabulated o (Pink) and strong imposition of
Dirichlet Boundary conditions (Dark Red).

Dirichlet boundary conditions, the plain PINN converges to a constant function, which would be
solution to equations (12) - (13) if the boundary conditions were not imposed.

6 A TWO-DIMENSIONAL STATIC LINEAR ELASTICITY PROBLEM

6.1 PROBLEM PRESENTATION

To generalize our approach to a more complex setting, we have addressed a two-dimensional static
problem. The target field is the vector displacement, with Dirichlet boundary conditions on the
domain §2 plotted in Figure 4 and representing the Olympic rings. The target function u* = (u}, u;‘/)
is obtained with Finite Element Method (FEM). The mathematical formulation of the problem is the

following:

dive(e) =0, (14)
e(u) = Vu+ Vu’, o(e) = ATr(e)I + 2pe, (15)
u(z,y) =u*(z,y), (r,y) e T C Q. (16)

The Lamé parameters A and p are set to 1, and I denotes the identity matrix. A mesh was built
on this complex geometry and is made of 5104 nodes. The FEM computation took 0.21 second
and 1452 iterations for a relative tolerance of 10~%, and 0.4 second (2843 iterations) for a relative
tolerance of 10~® using a preconditioned conjugate gradient method with Jacobi preconditioner.
The experiments were made on a single Intel Xeon Gold CPU. The FEM gradient kernel has been
used for our hybrid approach, following the framework presented in Section 4.

6.2 RESULTS AND DISCUSSION

Three models were trained on this problem: one with our hybrid approach with strong imposition
of boundary conditions, and two models trained with AD: one with strongly enforced boundary
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Figure 4: Meshed domain €2, prediction of our model and target displacement. The boundary nodes
where the target X displacement is equal to -1 and 1 are the nodes with Dirichlet boundary condi-
tions.

conditions following our approach, and one with a weak imposition of this constraint. The training
has been conducted for 20000 epochs with the Adam optimizer, and a learning rate of 0.005. The
models are Multi-Layer Perceptrons with 3 hidden layers of width 100, and with the Tanh activation
function. The results and the training time are presented in Table 1.

Table 1: Results on the linear elasticity case. The relative Mean Squared Error is reported. ‘Hybrid
FE-PINN’ refers to our hybrid Finite Element (FE) PINN. ‘AD PINN, Strong BC’ (resp.‘AD PINN,
Weak BC’) refers to the AD PINN, with strongly (resp. weakly) enforced boundary conditions.

Model Relative error (%) Training time (s)
Hybrid FE-PINN (ours) 0.05 4.97x102
AD PINN, Strong BC 19300 1.80x10?
AD PINN, Weak BC 94 1.82x103

With a relative mean squared error of 0.05%, our model can accurately reconstruct the target so-
lution; the predicted solution is plotted in Figure 4. In contrast, the AD model trained with weak
imposition of boundary constraints only achieves a relative error of 94% due to the complexity of the
geometry. The AD method with strongly enforced boundary conditions performs even worse, with
a relative error of 19300%, demonstrating the difficulty of strongly enforcing boundary conditions
with plain PINNs. While more complex models like Fourier Neural Operators or Graph models
could have better accuracy than plain neural networks, this case highlights the performance of our
hybrid approach, and its ability to address real-life geometries and equations.

To further demonstrate the competitiveness of our method in terms of computational complexity, we
performed forward and inverse gradient computations using AD and FEM on the same geometry.
Fifty runs were conducted for each computation, and the standard deviation is reported. Two models
were used: a shallow neural network (one hidden layer of width 64) and a deep one (twenty layers
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of width 256). The average computation time and the associated standard deviation are reported in

Figure 5.

Execution Time of gradient computations

3.727e-01

—— Standard Deviation

7.841e-03

2.080e-03

1.980e-03

Autograd, shallow MLP Autograd, deep MLP FE grad, shallow MLP FE grad, deep MLP

s]

Execution Time

Execution Time of backward gradient computations

14840400 — Standard Deviation

3.033e-02

Autograd, shallow MLP Autograd, deep MLP FE grad, shallow MLP FE grad, deep MLP

1.027e-02 1.008e-02

Figure 5: Execution time of forward (left) and backward (right) gradient computation. The four
values correspond to the computation with AD, for the shallow (magenta) and deep (pink) models,
and with our FE gradient computation, for both models (purple and navy).

Our method is slightly faster than AD on the shallow network, but the main improvement is seen
with the deep network. As expected, our method is independent of the model’s complexity, whereas
the AD technique needs to trace back all intermediate operations to compute the final physical
gradient. Therefore, for more complex models, our numerical differentiation technique significantly
outperforms AD: there is a speed-up of up to almost 180 and 150 times for the forward and backward
pass respectively. The computational graph of our model is also way simpler, since no backtracking
is needed for the loss computation. This simplification, combined with the results presented in
Figure 5, explain the shorter training time of our hybrid method compared to AD PINNs.

7 CONCLUSION AND PERSPECTIVES

In this paper, a novel framework, hybrid numerical PINNs, has been presented. This general
procedure is flexible and can be combined with any improvement regarding the model’s archi-
tecture or the training step. Our hybrid approach allows to strongly impose Dirichlet boundary
conditions on arbitrary shapes, with no preprocessing complexity. This new framework overcomes
the limitations of automatic differentiation, paving the way for further enhancements to physics-
informed applications. The new capabilities have been demonstrated on several numerical problems.

Important future directions include the extension of this setting to more complex problems, for
instance with more challenging boundary conditions and equations, and its application with state-
of-the-art models such as Fourier Neural Operators or Graph Networks.
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A  PROOF OF THEOREM 3.2

Proof A.1 (Proof of Theorem 3.2) The proof is a straightforward application of the chain rule,
which is detailed here for completeness. First, define

¥: R — R
2 (2, 0(2)).
For1 <i < dandx € R%, the partial derivative of M (x, ) with respect to x; is:
OM(z,p(x)) _ O (M o)

o; T o (z) 17
d+1
- ZajM X 8%, (18)
= 8Z‘L

where 0; M is the partial derivative of M with respect to its j-th input component. Moreover, by
definition of 1, for 1 < j < d+ 1:

1 ifj=1
8 . b
8% =1{ glifj=d+1, (19)
Ti 0 otherwise.
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Combining 17 and 19, we finally get:
OM(z, p(x)) d¢
On the other hand, since, by Assumption 3.1, the computational graph of the automatic differentia-

tion process does not record any dependency between  and x, the derivative of ¢ with respect to x;
will be recorded as null. Therefore, the automatic differentiation computation will simply yield the

result: Y
3I¢ auto. diff.
The difference between equation 20 and equation 21 concludes the proof.

=M + 041 M x

(20)

B STEP-BY-STEP DECOMPOSITION OF THE PROPOSED FRAMEWORK

We consider a model My, such as a neural network, 6 being its trainable parameters. My takes as
input the position coordinates x, along with any additional field ¢(z). We focus on a generic first
order static PDE, and we detail the main steps of the loss residuals computation. Note that this
discussion can be generalized to any time-dependent PDE. The considered PDE on any domain {2
is the following:

N(u,Vu) =0. (22)

We focus on the PDE residuals loss, therefore the boundary conditions are omited. Given N sample
points x1, . ..,z inside the domain €2, the PDE residuals loss is computed as follows:

£0) = 5 Y IN Moo, 0(e0), VMoo oI = D0 LMy, VML (23)

Here, £; is the loss term corresponding to the collocation point z;. In order to perform gradient-
based training, the gradient of the loss with respect to the model’s parameters 6 needs to be

2 899
computed. The computation is made as follows:
0My oL; OVMy  O0My
— . 24
NZ(aMg o0 tova, < on, oo (24)

Each term of equation 24 is computed as follows:

. 5)161; and agﬁM Both these terms directly depend on the loss considered in equation 23,

and the PDE (22). Once provided with an approximation of V My, the loss computation is
straightforward, and these derivatives are computed by automatic differentiation.

. 8VMG This term corresponds to the derivative of the numerical gradient computation.

Once th1s operator is stored as a sparse matrix, its backward call can be computed by AD.

. aévg[" : This term is simply the derivative of the model’s output with respect to its parameters,

computed by AD.

14



	Introduction
	Preliminaries
	When and why automatic differentiation fails
	Non-analytical PDE coefficients
	Strong imposition of Dirichlet boundary conditions
	Enriched inputs to the model

	Spatial gradient computation as a sparse numerical operator
	Validation of the hybrid numerical approach
	A numerical example of a failure of automatic differentiation
	A one-dimensional diffusion equation

	A two-dimensional static linear elasticity problem
	Problem presentation
	Results and discussion

	Conclusion and perspectives
	Proof of Theorem 3.2
	Step-by-step decomposition of the proposed framework

