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Abstract

Although reinforcement learning has found widespread use in dense reward set-
tings, training autonomous agents with sparse rewards remains challenging. To
address this difficulty, prior work has shown promising results when using not
only task-specific demonstrations but also task-agnostic albeit somewhat related
demonstrations. In most cases, the available demonstrations are distilled into an
implicit prior, commonly represented via a single deep net. Explicit priors in the
form of a database that can be queried have also been shown to lead to encouraging
results. To better benefit from available demonstrations, we develop a method
to Combine Explicit and Implicit Priors (CEIP). CEIP exploits multiple implicit
priors in the form of normalizing flows in parallel to form a single complex prior.
Moreover, CEIP uses an effective explicit retrieval and push-forward mechanism
to condition the implicit priors. In three challenging environments, we find the
proposed CEIP method to improve upon sophisticated state-of-the-art techniques.

1 Introduction

Reinforcement learning (RL) has found widespread use across domains from robotics [57] and game
AI [44] to recommender systems [6]. Despite its success, reinforcement learning is also known to be
sample inefficient. For instance, training a robot arm with sparse rewards to sort objects from scratch
still requires many training steps if it is at all feasible [46].

To increase the sample efficiency of reinforcement learning, prior work aims to leverage demonstra-
tions [4, 34, 40]. These demonstrations can be task-specific [4, 17], i.e., they directly correspond to
and address the task of interest. More recently, the use of task-agnostic demonstrations has also been
studied [14, 16, 34, 46], showing that demonstrations for loosely related tasks can enhance sample
efficiency of reinforcement learning agents.

To benefit from either of these two types of demonstrations, most work distills the information within
the demonstrations into an implicit prior, by encoding available demonstrations in a deep net. For
example, SKiLD [34] and FIST [16] use a variational auto-encoder (VAE) to encode the “skills,” i.e.,
action sequences, in a latent space, and train a prior conditioned on states based on demonstrations
to use the skills. Differently, PARROT [46] adopts a state-conditional normalizing flow to encode a
transformation from a latent space to the actual action space. However, the idea of using the available
demonstrations as an explicit prior has not received a lot of attention. Explicit priors enable the agent
to maintain a database of demonstrations, which can be used to retrieve state-action sequences given
an agent’s current state. This technique has been utilized in robotics [32, 47] and early attempts of
reinforcement learning with demonstrations [4]. It was also implemented as a baseline in [14]. One
notable recent exception is FIST [16], which queries a database of demonstrations using the current
state to retrieve a likely next state. The use of an explicit prior was shown to greatly enhance the
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performance. However, FIST uses pure imitation learning without any RL, hence losing the chance
for trial and remedy if the imitation is not good enough.

Our key insight is to leverage demonstrations both explicitly and implicitly, thus benefiting from
both worlds. To achieve this, we develop CEIP, a method which combines explicit and implicit
priors. CEIP leverages implicit demonstrations by learning a transformation from a latent space to
the real action space via normalizing flows. More importantly, different from prior work, such as
PARROT and FIST which combine all the information within a single deep net, CEIP selects the
most useful prior by combining multiple flows in parallel to form a single large flow. To benefit from
demonstrations explicitly, CEIP augments the input of the normalizing flow with a likely future state,
which is retrieved via a lookup from a database of transitions. For an effective retrieval, we propose a
push-forward technique which ensures the database to return future states that have not been referred
to yet, encouraging the agent to complete the whole trajectory even if it fails on a single task.

We evaluate the proposed approach on three challenging environments: fetchreach [36], kitchen [11],
and office [45]. In each environment, we study the use of both task-specific and task-agnostic demon-
strations. We observe that integrating an explicit prior, especially with our proposed push-forward
technique, greatly improves results. Notably, the proposed approach works well on sophisticated
long-horizon robotics tasks with a few, or sometimes even one task-specific demonstration.

2 Preliminaries

Reinforcement Learning. Reinforcement learning (RL) aims to train an agent to make the ‘best’
decision towards completing a particular task in a given environment. The environment and the task
are often described as a Markov Decision Process (MDP), which is defined by a tuple (S,A, T, r, γ).
In timestep t of the Markov process, the agent observes the current state st ∈ S, and executes an
action at ∈ A following some probability distribution, i.e., policy π(at|st) ∈ ∆(A), where ∆(A)
denotes the probability simplex over elements in space A. Upon executing action at, the state of
the agent changes to st+1 following the dynamics of the environment, which are governed by the
transition function T (st, at) : S×A → ∆(S). Meanwhile, the agent receives a reward r(st, at) ∈ R.
The agent aims to maximize the cumulative reward

∑
t γ

tr(st, at), where γ ∈ [0, 1] is the discount
factor. One complete run in an environment is called an episode, and the corresponding state-action
pairs τ = {(s1, a1), (s2, a2), . . . } form a trajectory τ .

Normalizing Flows. A normalizing flow [24] is a generative model that transforms elements z0 drawn
from a simple distribution pz , e.g., a Gaussian, to elements a0 drawn from a more complex distribution
pa. For this transformation, a bijective function f is used, i.e., a0 = f(z0). The use of a bijective
function ensures that the log-likelihood of the more complex distribution at any point is tractable
and that samples of such a distribution can be easily generated by taking samples from the simple
distribution and pushing them through the flow. Formally, the core idea of a normalizing flow can be
summarized via pa(a0) = pz(f

−1(a0)) log
∣∣∣∂f−1(a)

∂a |a=a0

∣∣∣, where |·| is the determinant (guaranteed
positive by flow designs), a is a random variable with the desired more complex distribution, and z is
a random variable governed by a simple distribution. To efficiently compute the determinant of the
Jacobian matrix of f−1, special constraints are imposed on the form of f . For example, coupling
flows like RealNVP [8] and autoregressive flows [31] impose the Jacobian of f−1 to be triangular.

3 CEIP: Combining Explicit and Implicit Priors

3.1 Overview

As illustrated in Fig. 1, our goal is to train an autonomous agent to solve challenging tasks despite
sparse rewards, such as controlling a robot arm to complete item manipulation tasks (like turning on
a switch or opening a cabinet). For this we aim to benefit from available demonstrations. Formally,
we consider a task-specific dataset DTS = {τTS

1 , τTS
2 , . . . , τTS

m }, where τTS
i is the i-th trajectory of

the task-specific dataset, and a task-agnostic dataset DTA = {
⋃
Di|i ∈ {1, 2, 3, . . . , n}}, where

Di = {τ i1, τ i2, . . . , τ imi
} subsumes the demonstration trajectories for the i-th task in the task-agnostic

dataset. Each trajectory τ = {(s1, a1), (s2, a2), . . . } in the dataset is a state-action pair sequence
of a complete episode, where s is the state, and a is the action. We assume that the number of
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Figure 1: Overview of our proposed approach, CEIP. Our approach can be divided into three steps: a) cluster
the task-agnostic dataset into different tasks, and then train one flow on each of the n tasks of the task-agnostic
dataset; b) train a flow on the task-specific dataset, and then train the coefficients to combine the n+ 1 flows
into one large flow fTS, which is the implicit prior; c) conduct reinforcement learning on the target task; for each
timestep, we perform a dataset lookup in the task-specific dataset to find the state most similar to current state s,
and return the likely next state ŝnext in the trajectory, which is the explicit prior.

available task-specific trajectories is very small, i.e.,
∑n

i=1 mi ≫ m, which is common in practice.
For readability, we will also refer to DTS using Dn+1.

Our approach leverages demonstrations implicitly by training a normalizing flow fTS, which trans-
forms the probability distribution represented by a policy π(z|s) over a simple latent probability
space Z , i.e., z ∈ Z , into a reasonable expert policy over the space of real-world actions A. As
before, s is the current environment state. Thus, the downstream RL agent only needs to learn a policy
π(z|s) that results in a probability distribution over latent space Z , which is subsequently mapped
via the flow fTS to a real-world action a ∈ A. Intuitively, the MDP in the latent space is governed
by a less complex probability distribution, making it easier to train because the flow increases the
exposure of more likely actions, while reducing the chance that a less-likely action is chosen. This is
because the flow reduces the probability mass for less likely actions given the current state.

Task-agnostic demonstrations contain useful patterns that may be related to the task at hand. However,
not all the task-agnostic data are always equally useful, as different task-agnostic data may require to
expose different parts of the action space. Therefore, different from prior work where all data are
fed into the same deep net model, we first partition the task-agnostic dataset into different groups
according to task similarity so as to increase flexibility. For this we use a classical k-means algorithm.
We then train different flows fi on each of the groups, and finally combine the flows via learned
coefficients into a single flow fTS. Beneficially, this process permits to expose different parts of the
action space as needed and according to perceived task similarity.

Lastly, our approach further leverages demonstrations explicitly, by conditioning the flow not only
on the current state but also on a likely next state, to better inform the agent of the state it should
try to achieve with its current action. In the following, we first discuss the implicit prior of CEIP
in Sec. 3.2; afterward we discuss our explicit prior in Sec. 3.3, and the downstream reinforcement
learning with both priors in Sec. 3.4.

3.2 Implicit Prior

To better benefit from demonstrations implicitly, we use a 1-layer normalizing flow as the backbone
of our implicit prior. It essentially corresponds to a conditioned affine transformation of a Gaussian
distribution. We choose a flow-based model instead of a VAE-based one for two reasons: 1) as the
dimensionality before and after the transformation via a normalizing flow remains identical and since
the flow is invertible, the agent is guaranteed to have control over the whole action space. This ensures
that all parts of the action space are accessible, which is not guaranteed by VAE-based methods
like SKiLD or FIST; 2) normalizing flows, especially coupling flows such as RealNVP [8], can be
easily stacked horizontally, so that the combination of parallel flows is also a flow. Among feasible
flow models, we found that the simplest 1-layer flow suffices to achieve good results, and is even
more robust in training than a more complex RealNVP. Next, in Sec. 3.2.1 we first introduce details
regarding the normalizing flow fi, before we discuss in Sec. 3.2.2 how to combine the flows into one
flow fTS applicable to the task for which the task-specific dataset contains demonstrations.
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Figure 2: An illustration of how we combine different flows into one large flow for the task-specific dataset.
Each red block of “NN” stands for a neural network. Note that ci(u) and di(u) are vectors, while µi and λi are
the i-th dimension of µ(u) and λ(u).

3.2.1 Normalizing Flow Prior. For each task i in the task-agnostic dataset, i.e., for each Di, we
train a conditional 1-layer normalizing flow fi(z;u) = a which maps a latent space variable z ∈ Rq

to an action a ∈ Rq, where q is the number of dimensions of the real-valued action vector. We let u
refer to a conditioning variable. In our case u is either the current environment state s (if no explicit
prior is used) or a concatenation of the current and a likely next state [s, snext] (if an explicit prior is
used). Concretely, the formulation of our 1-layer flow is

fi(z;u) = a = exp{ci(u)} ⊙ z + di(u), (1)

where ci(u) ∈ Rq, di(u) ∈ Rq are trainable deep nets, and ⊙ refers to the Hadamard product.
The exp function is applied elementwise. When training the flow, we sample state-action pairs
(without explicit prior) or transitions (with explicit prior) (u, a) from the dataset Di, and maximize
the log-likelihood E(u,a)∼Di

log p(a|u); refer to [24] for how to maximize this objective.

In the discussion above, we assume the decomposition of the task-agnostic dataset into tasks to be
given. If such a decomposition is not provided (e.g., for the kitchen and office environments in our
experiments), we perform a k-means clustering to divide the task-agnostic dataset into different parts.
The clustering algorithm operates on the last state of a trajectory, which is used to represent the whole
trajectory. The intuition is two-fold. First, for many real-world MDPs, achieving a particular terminal
state is more important than the actions taken [12]. For example, when we control a robot to pick
and place items, we want all target items to reach the right place eventually; however, we do not care
too much about the actions taken to achieve this state. Second, among all the states, the final state is
often the most informative about the task that the agent has completed. The number of clusters k
in the k-means algorithm is a hyperparameter, which empirically should be larger than the number
of dimensions of the action space. Though we assume the task-agnostic dataset is partitioned into
labeled clusters, our experiments show that our approach is robust and good results are achieved even
without a precise ground-truth decomposition.

In addition to the clusters in the task-agnostic dataset, we train a flow fn+1(z;u) = a on the task-
specific dataset Dn+1 = DTS, using the same maximum log-likelihood loss, which is optional but
always available. This is not necessary when the task is relatively simple and the episodes are short
(e.g., the fetchreach environment in the experiment section), but becomes particularly helpful in
scenarios where some subtasks of a task sequence only appear in the task-specific dataset (e.g., the
kitchen environment).

3.2.2 Few-shot Adaptation. The flow models discussed in Sec. 3.2.1 learn which parts of the action
space to be more strongly exposed from the latent space. However, not all the flows expose useful
parts of the action space for the current state. For example, the target task needs the agent to move its
gripper upwards at a particular location, but in the task-agnostic dataset, the robot more often moves
the gripper downwards to finish another task. In order to select the most useful prior, we need to tune
our set of flows learned on the task-agnostic datasets to the small number of trajectories available in
the task-specific dataset. To ensure that this does not lead to overfitting as only a very small number
of task-specific trajectories are available, we train a set of coefficients that selects the flow that works
the best for the current task. Concretely, given all the trained flows, we train a set of coefficients to
combine the flows f1 to fn trained on the task-agnostic data, and also the flow fn+1 trained on the
task-specific data. The coefficients select from the set of available flows the most useful one. To
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achieve this, we use the combination flow illustrated in Fig. 2 which is formally specified as follows:

fTS(z;u) =

(
n+1∑
i=1

µi(u) exp{ci(u)}

)
⊙ z +

(
n+1∑
i=1

λi(u)di(u)

)
. (2)

Here, µi(u) ∈ R, λi(u) ∈ R are the i-th entry of the deep nets µ(u) ∈ Rn+1, λ(u) ∈ Rn+1,
respectively, which yield the coefficients while the deep nets ci and di are frozen. As before, the
exp function is applied elementwise. We use a softplus activation and an offset at the output of µ to
force µi(u) ≥ 10−4 for any i for numerical stability. Note that the combined flow fTS consisting of
multiple 1-layer flows is also a 1-layer normalizing flow. Hence, all the compelling properties over
VAE-based architectures described at the beginning of Sec. 3.2 remain valid. To train the combined
flow, we use the same log likelihood loss E(u,a)∼DTS log p(a|u) as that for training single flows. Here,
we optimize the deep nets µ(u) and λ(u) which parameterize fTS.

Obviously, the employed combination of flows can be straightforwardly extended to a more compli-
cated flow, e.g., a RealNVP [8] or Glow [22]. However, we found the discussed simple formulation
to work remarkably well and to be robust.

3.3 Explicit Prior

Beyond distilling information from demonstrations into deep nets which are then used as implicit
priors, we find explicit use of demonstrations to also be remarkably useful. To benefit, we encode
future state information into the input of the flow. More specifically, instead of sampling (s, a)-pairs
from a dataset D for training the flows, we consider sampling a transition (s, a, snext) from D. During
training, we concatenate s and snext before feeding it into a flow, i.e., u = [s, snext] instead of u = s.

However, we do not know the future state snext when deploying the policy. To obtain an estimate, we
use task-specific demonstrations as explicit priors. More formally, we use the trajectories within the
task-specific dataset DTS as a database. This is manageable as we assume the task-specific dataset to
be small. For each environment step of reinforcement learning with current state s, we perform a
lookup, where s is the query, states skey in the trajectories are the keys, and their corresponding next
state snext is the value. Concretely, we assume snext belongs to trajectory τ in the task-specific dataset
DTS, and define ŝnext as the result of the database retrieval with respect to the given query s, i.e.,

ŝnext = argminsnext|(skey,a,snext)∈DTS
[(skey − s)2 + C · δ(snext)],where

δ(snext) =

{
1 if ∃s′next ∈ τ, s.t. s′next is no earlier than snext in τ and has been retrieved,
0 otherwise.

(3)

In Eq. (3), C is a constant and δ is the indicator function. We set u = [s, ŝnext] as the condition, feed
it into the trained flow fTS, and map the latent space element z obtained from the RL policy to the
real-world action a. The penalty term δ is a push-forward technique, which aims to push the agent to
move forward instead of staying put, imposing monotonicity on the retrieved ŝnext. Consider an agent
at a particular state s and a flow fTS, conditioned on u = [s, ŝnext] which maps the chosen action z to
a real-world action a that does not modify the environment. Without the penalty term, the agent will
remain at the same state, retrieve the same likely next state, which again maps onto the action that
does not change the environment. Intuitively, this term discourages 1) retrieving the same state twice,
and 2) returning to earlier states in a given trajectory. In our experiments, we set C = 1.

3.4 Reinforcement Learning with Priors

Given the implicit and explicit priors, we use RL to train a policy π(z|s) to accomplish the target
task demonstrated in the task-specific dataset. As shown in Fig. 1, the RL agent receives a state s and
provides a latent space element z. The conditioning variable of the flow is retrieved via the dataset
lookup described in Sec. 3.3 and the real-world action a is then computed using the flow. Note, our
approach is suitable for any RL method, i.e., the policy π(z|s) can be trained using any RL algorithm
such as proximal policy optimization (PPO) [43] or soft-actor-critic (SAC) [15].

4 Experiments

In this section, we evaluate our CEIP approach on three challenging environments: fetchreach
(Sec. 4.1), kitchen (Sec. 4.2), and office (Sec. 4.3), which are all tasks that manipulate a robot arm.
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In each experiment, we study the following questions: 1) Can the algorithm make good use of the
demonstrations compared to baselines? 2) Are our core design decisions (e.g., state augmentation
with explicit prior and the push-forward technique) indeed helpful?

Baselines. We compare the proposed method to three baselines: PARROT [46], SKiLD [34], and
FIST [16]. In all environments, we use reward as our criteria (higher is better), and the results are
averaged over 3 runs for SKiLD (which is much slower to train than other baselines) and 9 runs for
all other methods unless otherwise mentioned. To differentiate variants of the PARROT baseline and
our method, we use suffixes. We use “EX” to refer to variants that use an explicit prior, and “forward”
to denote variants with the push-forward technique. For our method, if we train a task-specific flow
on DTS = Dn+1, we append the abbreviation “TS.” For PARROT, the use of the task-specific data
is indicated with “TS” and the use of task-agnostic data is indicated with “TA.”1 See Table 3 and
Table 4 for precise correspondence.

4.1 FetchReach Environment

Environment Setup. The agent needs to control a robot arm to move its gripper to a goal location in
3D space, and remain there. During an episode of 40 steps, the agent receives a 10-dimensional state
about its location and outputs a 4-dimensional action, which indicates the change of coordinates of
the agent and the openness of the gripper. It will receive a reward of 0 if it arrives and stays in the
vicinity of its target. Otherwise, it will receive a reward of −1. This environment is a harder version
of the FetchReach-v1 robotics environment in gym [36], where we increase the average distance
of the starting point to the goal, effectively increasing the training difficulty. Moreover, to test the
robustness of the algorithm, we sample a random action from a normal distribution at the beginning
of each episode, which the agent executes for x steps before the episode begins. We use x ∼ U [5, 20].
For simplicity, we denote the goal generated with azimuth πd

4 as “direction d” (e.g., direction 4.5).

Dataset Setup. We use trajectories from directions d ∈ {0, 1, . . . , 7} as the task-agnostic data. Each
task includes 40 trajectories, and each of the trajectories has 40 steps, i.e., 1600 environment steps in
total. The task-specific datasets contain directions 4.5, 5.5, 6.5, and 7.5. (The robot cannot reach the
other four .5 directions due to physical limits.) For each task-specific dataset, we use 4 trajectories,
for a total of 160 environment steps.

Experimental Setup. For fetchreach, we use a fully-connected deep net with one hidden layer of
width 32 and ReLU [1] activation as a standard “block” of our algorithm (each block corresponds
to a red “NN” rectangle in Fig. 2). We have a pair of blocks for ci(s) and di(s) for each flow fi.
For flow training, we train 8 flows for 8 directions in the task-agnostic dataset without the explicit
prior. We use a batch size of 40 and train for 1000 epochs for both each flow and the combination of
flows, with gradient clipping at norm 10−4, learning rate 0.001, and Adam optimizer [21]. We use
the model that has the best performance on the validation dataset at the end of every epoch. For each
dataset, we randomly draw 80% state-action pairs (or transitions in ablation) as the training set and
20% state-action pairs as the validation set. The combination of flow is also a block, which outputs
both µ(s) and λ(s). See the Appendix for the implementation details of SKiLD, FIST, and PARROT.
For each method with RL training, we use a soft-actor-critic (SAC) [15] with 30K environment steps,
a batch size of 256, and 1000 steps of initial random exploration. Unless otherwise noted, all other
RL hyperparameters in all experiments use the default values of Stable-baselines3 [38].

Main Results. Fig. 3 shows the results for different methods without explicit priors or task-specific
single flow fn+1. In all four tasks, our method significantly outperforms the other baselines. This
indicates that the flow training indeed helps boost the exploration process. Naïve reinforcement
learning from scratch fails in most cases, which underscores the necessity of utilizing demonstrations
to aid RL exploration. As this is a simple task with only a few wildly varied trajectories, adding
a flow for the task-specific dataset does not improve our method. Noteworthy, neither SKiLD nor
FIST works on fetchreach. Their VAE-based architecture with each action sequence as the agent’s
output (“skill”) can not be trained with the little amount of wildly varied data with short horizon.
Flow-based models like ours and PARROT, which only consider the action of the current step instead
of the action sequence, work better.

1The original PARROT in [46] is essentially PARROT+TA. It is straightforward to use PARROT directly on
the task-specific dataset. Hence, we tried PARROT+TS and PARROT+(TS+TA) as well.
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Figure 3: Main performance results on the fetchreach environment for different directions, where the lines are
the mean reward (higher is better) and shades are the standard deviation. FIST is represented by a dashed line as
it does not require RL.
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Figure 4: Ablation on the number of flows used in our method. We observe more flows to lead to better
performance, likely because expressivity increases which helps in fitting the expert policy.

Are more flows helpful for CEIP? Fig. 4 shows the performance of our method using a different
number of flows, which are trained on the data of the directions that are the closest to the task-specific
direction (e.g., directions 5 and 6 for 2 flows with the target being direction 5.5). The result shows that
within a reasonable range, increasing the number of flows improves the expressivity and consequently
results of our model. See Appendix D for more ablation studies.

4.2 Kitchen Environment

Environment Setup. We use the kitchen environment adopted from D4RL [11], which serves
as a testbed for many reinforcement learning and imitation learning approaches, like SPiRL [33],
SKiLD [34], relay policy learning [14], and FIST [16]. The agent needs to control a 7-DOF robot arm
to complete a sequence of four tasks (e.g., move the kettle, or slide the cabinet) in the correct order.
The agent will receive a +1 reward only upon finishing a task, and 0 otherwise. The action space
is 9-dimensional and the state space is 60-dimensional. This environment is very challenging, as
high-precision control of the robot arm is needed and also a long horizon of 280 timesteps is needed.
Moreover, there is a small noise applied to each agent action, which requires the agent to be robust.

Dataset Setup. We use two dataset settings, which are adopted from SKiLD and FIST (denoted as
Kitchen-SKiLD and Kitchen-FIST below). In Kitchen-SKiLD, we use 601 teleoperated sequences
that perform a variety of task sequences as the task-agnostic dataset, and use only one trajectory for
the task-specific dataset. In Kitchen-FIST, we use part of the task-agnostic dataset (about 200− 300
trajectories) that does not contain a particular task in the task-specific dataset, and use only one
trajectory for the task-specific dataset. There are two different task-specific datasets in Kitchen-
SKiLD, and four different task-specific datasets in Kitchen-FIST. The latter is significantly harder, as
the agent must learn a new task from very little data. For simplicity, we denote them as “SKiLD-A/B”
and “FIST-A/B/C/D” respectively. See Appendix C for details on each task.

Experimental Setup. We use k-means to partition the task-agnostic datasets into 24 different clusters,
and train 24 flows accordingly. For each flow, we use a fully-connected network with 2 hidden layers
of width 256 with ReLU activation as a “block” for our algorithm. For the combination of flows, we
use a fully-connected network with 1 hidden layer of width 64 with ReLU activation. Each layer of
the deep net (except the output layer) described above has a 1D batchnorm function. The blocks are
used analogously to the fetchreach environment. We use a batch size of 256 for the task-agnostic
dataset and a batch size of 128 for the task-specific dataset. Other training hyperparameters are
identical to the fetchreach environment. For each RL training, we use proximal policy optimization
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Figure 5: Comparison on Kitchen-SKiLD and Kitchen-FIST environments.

(PPO) [43] for 200K environment steps, with update interval being 2048 (Kitchen-SKiLD) / 4096
(Kitchen-FIST), 60 epochs per update, and a batch size of 64.

Main Results. Fig. 5 shows the main results on Kitchen-SKiLD and Kitchen-FIST. Our method
outperforms all other baselines in all of the 6 settings of the task-agnostic and task-specific datasets.
For our method, we use the task-specific single flow fn+1, explicit prior, and the push-forward
technique. We compare to the original PARROT formulation. See Appendix D for ablation studies of
PARROT with explicit prior and our method without fn+1 or explicit prior.

Does CEIP overly rely on the task-specific flow if it is used? One concern for our method could be:
does the task-specific single flow dominate the model? Theoretically, when all flows are perfect, a
trivial combination of flows that minimizes the training objective is to set λn+1 = 1, µn+1 = 1 for the
task-specific single flow, and λi ≈ 0, µi ≈ 0 for i ̸= n+1. To study this concern, we plot the change
of the coefficient µ during an episode in Fig. 6. We observe that the single flow on the task-specific
dataset is not dominating the combination of the flow, despite being trained on the task-specific
dataset. The blue curve with legend ‘TA-8’ in Fig. 6 shows the coefficient for the 8th flow trained
in the task-agnostic dataset. It exhibits an increase of µ at the end of an episode, as the last subtask
in the target task is more relevant to the prior encoded in the 8th flow. Intuitively, over-reliance in
our design (Fig. 8 in the Appendix) is discouraged, because of the softplus function and the positive
offset applied on µ. For over-reliance, all task-agnostic flows fi with i ∈ {1, 2, . . . , n} should have
a coefficient of µi = 0, which is hard to approach due to the offset of µ and softplus. In fact, a
degenerated CEIP is essentially PARROT+TS(+EX+forward), which is worse than our method but
still a powerful baseline.

Is reinforcement learning useful in cases with a perfect initial reward? Fig. 6 shows the episode
length of our method on Kitchen-SKiLD-A. Even if the reward is already perfect, the reinforcement
learning process is still able to maximize discounted reward, which optimizes the path.

4.3 Office Environment

Environment and Dataset Setups. We follow SKiLD, where a robot with 8-dimensional action
space and 97-dimensional state space needs to put three randomly selected items on a table into three
containers in the correct, randomly generated order. The agent will receive a +1 reward when it
completes a subtask (e.g., picking up an item, or dropping the item at the right place), and 0 otherwise.
This environment is even harder than the kitchen environment, as the agent must manipulate freely
movable objects and the number of possible subtasks in the task-agnostic dataset is much larger than
that in the kitchen environment. We use the same task-agnostic dataset as SKiLD, which contains

8



0 25 50 75 100 125 150 175
step

0.00

0.01

0.02

0.03

0.04

0.05

m
u

TA-8
TS

(a) Illustration of coefficient

0 25000 50000 75000 100000 125000 150000 175000 200000
Steps

176

178

180

182

184

186

188

190

Ep
iso

de
 L

en
gt

h

CEIP (ours)

(b) Average episode length

Figure 6: a) Illustration of the coefficient change of a trained CEIP model during an episode of Kitchen-SKiLD-A.
This CEIP model is trained with the task-specific single flow and without the explicit prior. ‘TA-8’ is the 8-th
single flow for the task-agnostic dataset, and ‘TS’ is the single flow for the task-specific dataset. The grey dotted
lines are the partition of different subtasks. b) Average episode length of our method on the Kitchen-SKiLD-A
task. The episode ends immediately when all the tasks are completed; thus, shortening length means that RL
helps to find policy with more efficient completion of tasks.

2400 trajectories with randomized subtasks sampled from a script policy. For the task-specific dataset,
we use 5 trajectories for a particular combination of tasks.

Experimental Setup. Similar to the kitchen environment, we use k-means over the last state of
each trajectory and partition the task-agnostic dataset into 24 clusters. The architecture and training
paradigm of the flow model are identical to those used in the kitchen environment. For RL training,
we use PPO for 2M environment steps, with update interval being 4096 environment steps, 60 epochs
per update, and a batch size of 64. All other hyperparameters follow the kitchen environment setting.
We run each method with 3 different seeds.
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Figure 7: Main result and ablation of our method and PARROT on the office
environment.

Main Results and
Ablation. Fig. 7a shows
the main result across
different methods. Our
method with explicit
prior, push-forward tech-
nique, and task-specific
flow outperforms all
baselines. FIST works
well in this environment,
probably because of two
reasons: 1) there are
a sufficient number of
task-specific trajectories for the VAE-architecture, and 2) the office environment is less noisy than the
kitchen environment. However, as FIST does not contain a reinforcement learning stage, it has no
chance to improve on a decent policy which could have been a good start for an RL agent. Fig. 7b
shows the ablation of our method. While the task-specific single flow fn+1 does not help in this
environment, the explicit prior greatly improves results. Also, as illustrated, the reward curve of the
variants with the explicit prior but without the push-forward skill does not grow, which is due to the
agent getting stuck as described at the end of Sec. 3.3. Fig. 7c shows the ablation result of PARROT,
which also emphasizes that the explicit prior and push-forward skill greatly improve results.

5 Related Work

Reinforcement Learning with Demonstrations. Using demonstrations to improve the sample
efficiency of RL is an established direction [13, 26, 41, 55]. Recently, the use of task-agnostic
demonstrations has gained popularity, as task-specific data need to be sampled from a particular
expert and can be expensive to acquire [33, 34, 46]. To utilize the prior, skill-based methods such as
SPiRL [33], SKiLD [34], and SIMPL [30] extract action sequences from the dataset with a VAE-based
model, while TRAIL [58] recovers transitions from a task-agnostic dataset with uniformly randomly
sampled action. Our method considers the situation where both task-agnostic and task-specific data
exist and significantly improves results over prior work with similar settings, e.g., SKiLD [34].
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Action Priors. An action prior is a common way to utilize demonstrations for reinforcement
learning [34] and imitation learning [16]. Most work uses an implicit prior, where a probability
distribution of actions conditioned on a state is learned by a deep net and then used to rule out
unlikely attempts [3], to form a hierarchical structure [34, 46], or to serve as a regularizer for RL
training [34, 40], preventing the agent to stray too far from expert demonstrations. Explicit priors
are less explored. They come in the form of nearest neighbors [2] (as in our work) or in the form of
locally weighted regression [32]. They are utilized in robotics [2, 32, 42, 47] and early work of RL
with demonstrations [4]. Another way to explicitly use demonstrations includes filling the buffer of
offline RL algorithms with transitions sampled from an expert dataset to help exploration [17, 29, 54].
Different from all such work, we propose a novel way of using both implicit and explicit priors.

Normalizing Flow. Normalizing flows are a generative model that can be used for variational
inference [23, 52] and density estimation [18, 31] and come in different forms: RealNVP [8],
Glow [22], or autoregressive flow [31]. Many methods use normalizing flows in reinforcement learn-
ing [20, 27, 28, 48, 49, 56] and imitation learning [5]. However, most prior work uses normalizing
flows as a strong density estimator to exploit a richer class of policies. Most closely related to our
work is PARROT [46], which trains a single normalizing flow as an implicit prior. Different from
our work, PARROT does not differentiate tasks among the task-agnostic dataset and does not use an
explicit prior. More importantly, different from prior work, we develop a simple yet effective way to
combine flows using learned coefficients. While there are some approaches that combine flows via
variational mixtures [7, 35], they have not been shown to succeed on challenging RL tasks.

Few-shot Generalization. Few-shot generalization [50] is broadly related, as a model is first trained
across different datasets, and then adapted to a new dataset with small sample size. For example,
similar to our work, FLUTE [51], SUR [9], and URT [25] use models for multiple datasets, which
are then combined via weights for few-shot adaptation. Other methods have shared parameters across
different tasks and only used some components within the model for adaptation [10, 37, 39, 51, 59].
While most work focuses on classification tasks, we address more complex RL tasks. Also, different
from existing work, we found training of independent 1-layer flows without shared layers to be more
flexible, and free from negative transfer as also reported by [19].

6 Discussion and Conclusion

We developed CEIP, a method for reinforcement learning which combines explicit and implicit priors
obtained from task-agnostic and task-specific demonstrations. For implicit priors we use normalizing
flows. For explicit priors we use a database lookup with a push-forward retrieval. In three challenging
environments, we show that CEIP improves upon baselines.

Limitations. Limitations of CEIP are as follows: 1) Training time. The use of demonstrations
requires training a decent number of flows which can be time-consuming, albeit mitigated to some
extent by parallel training. 2) Reliance on optimality of expert demonstrations. Similar to prior work
like SKiLD [34] and FIST [16], our method assumes availability of optimal state-action trajectories
for the target task. Accuracy of those demonstrations impacts results. Future work will focus on
improving robustness and generality. 3) Balance between the degree of freedom and generalization
in fitting the flow mixture. Fig. 4 reveals that more degrees of freedom in the flow mixture improve
results of CEIP. Our current design uses a linear combination which offers O(n) degrees of freedom
(µ and λ), where n is the number of flows. In contrast, too many degrees of freedom will result in
overfitting. It is interesting future work to study this tradeoff.

Societal impact. Our work helps to train RL agents more efficiently from demonstrations for the
same and closely related tasks, particularly when the environment only provides sparse rewards. If
successful, this expands the applicability of automation. However, increased automation may also
cause job loss which negatively impacts society.
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