
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ECO: ENHANCED CODE OPTIMIZATION VIA
PERFORMANCE-AWARE PROMPTING FOR CODE-
LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Code runtime optimization—the task of rewriting a given code to a faster one—
remains challenging, as it requires reasoning about performance trade-offs involv-
ing algorithmic and structural choices. Recent approaches employ code-LLMs
with slow-fast code pairs provided as optimization guidance, but such pair-based
methods obscure the causal factors of performance gains and often lead to su-
perficial pattern imitation rather than genuine performance reasoning. We intro-
duce ECO, a performance-aware prompting framework for code optimization.
ECO first distills runtime optimization instructions (ROIs) from reference slow-
fast code pairs; Each ROI describes root causes of inefficiency and the rationales
that drive performance improvements. For a given input code, ECO in parallel
employs (i) a symbolic advisor to produce a bottleneck diagnosis tailored to the
code, and (ii) an ROI retriever to return related ROIs. These two outputs are then
composed into a performance-aware prompt, providing actionable guidance for
code-LLMs. ECO’s prompts are model-agnostic, require no fine-tuning, and can
be easily prepended to any code-LLM prompt. Our empirical studies highlight
that ECO prompting significantly improves code-LLMs’ ability to generate effi-
cient code, achieving speedups of up to 7.81× while minimizing correctness loss.

1 INTRODUCTION

Code runtime optimization—the task of rewriting a given code to a faster one—is a fundamen-
tal problem in software engineering, as it directly affects user experience and system perfor-
mance (ISO/IEC, 2011). Recent advances in large language models for code (code-LLMs) demon-
strated remarkable ability in ensuring functional correctness through tasks such as code synthesis,
translation, and summarization (Chen et al., 2021; Xu et al., 2022). However, correctness alone does
not imply efficiency; generating faster code requires performance-oriented reasoning that goes be-
yond code semantics. This gap makes code optimization particularly challenging for approaches that
rely solely on the intrinsic capabilities of code-LLMs (Shypula et al., 2024).

Early works in code optimization utilized compiler-driven techniques, which applied rule-based
analysis at the intermediate representation level, such as dead code elimination or loop un-
rolling (Wegman & Zadeck, 1991; Booshehri et al., 2013). These approaches are effective for ad-
dressing well-defined low-level inefficiencies, but they fail to capture the dominant performance
bottlenecks—program-level, context-dependent optimizations including algorithmic restructuring or
data-structure selection. Recent studies adopt code-LLMs to address this issue, with methods such
as chain-of-thought (Wei et al., 2022) attempting to leverage their intrinsic reasoning ability. How-
ever, code-LLMs alone lack the capacity to optimize code and therefore require external guidance.
Building on this, Shypula et al. (2024) and Gao et al. (2025) exploit slow-fast code pairs through
prompting techniques such as in-context learning (ICL) and retrieval-augmented generation (RAG),
where the example pairs are chosen randomly or by code-similarity retrieval. In parallel, fine-tuning
approaches directly train models directly on slow-fast mapping.

Despite methodological diversity, existing LLM-based approaches shared a fundamental limitation:
they guide models by presenting slow-fast code pairs as labeled transformation instances, which en-
courage pattern imitation rather than intent-aligned reasoning. Without interpretable guidance, the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Comparison of ECO’s performance-aware prompt with conventional retrieval.

model is left to infer why certain edits improve efficiency—a task that exceeds its intrinsic capabil-
ities, so the guidance remains underutilized. As a result, retrieval often returns functionally similar
snippets whose performance characteristics are misaligned with the target, and fine-tuned models
tend to memorize recurring edits without recognizing their underlying rationale. This limitation
suggests that code optimization requires more than exposing raw slow–fast pairs: models should
instead be guided by performance-aware prompts that capture optimization intent.

In this context, we introduce ECO, a performance-aware prompting framework that provides code-
LLMs with optimization insights tailored to the input code. Concretely, ECO first distills runtime
optimization instructions (ROIs) from reference slow–fast code pairs—for example, identifying that
a dynamic vector was replaced by a fixed-size array to reduce allocation overhead—and stores them
as a knowledge base. At inference time, ECO leverages this knowledge to construct performance-
aware prompts, combining complementary outputs from two modules: the symbolic advisor and the
ROI retriever. Fig. 1 illustrates how ECO’s performance-aware prompting leads to more effective
optimizations.

The symbolic advisor runs graph-based queries over the input code’s Code Property Graph (CPG) to
deterministically identify structural inefficiencies and a bottleneck diagnosis—specifying where the
bottlenecks lie and what type of transformation is required. In parallel, the ROI retriever retrieves
performance-relevant ROIs grounded in prior examples, offering optimization instructions that gen-
eralize beyond fixed rules. Together, the two modules combine deterministic precision with contex-
tual breadth, yielding performance-aware prompts that localize bottlenecks and prescribe transfor-
mations, which downstream code-LLMs can directly apply without fine-tuning.

We evaluate ECO on both the in-distribution PIE benchmark and the out-of-distribution Codeforces
dataset, as well as across models of varying scales. ECO consistently achieves substantial runtime
improvements while minimizing the loss in correctness. As model size and capacity grow, ECO fully
utilizes the expanded capability, leading to state-of-the-art results. Due to its model-agnostic design,
this property extends naturally to closed-source systems: for example, on GPT-o4-mini, standard
prompting yields only a 1.99× speedup, whereas ECO raises to 7.81×—nearly a four-fold gain.
These results underscore the effectiveness and practicality of ECO’s performance-aware prompting.

Our key contributions are:

• Performance-aware prompting: We move beyond raw slow-fast code pairs by distilling
runtime optimization instructions and composing them into performance-aware prompts.

• Complementary module design: We design a rule-based symbolic advisor for deterministic
bottleneck detection and an ROI retriever for context-aware, generalizable guides.

• Model-agnostic, plug-in framework: ECO requires no fine-tuning or model-specific adap-
tation. Its directives integrate seamlessly into the prompt of any code-LLM.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Table 1: Characteristics of code optimization methods. Upper rows correspond to generic LLM ap-
proaches, lower rows correspond to code optimization-oriented methods. Optimization Knowledge
denotes the underlying origin that drives the guidance.

Program Scope Train-Free Non-Iterative Bottleneck
Diagnosis

Optimization
Knowledge

Intruction-only ⃝ ⃝ ⃝ × none
ICL ⃝ ⃝ ⃝ × code-pair
RAG ⃝ ⃝ ⃝ × code-pair
Fine-tune (PIE) ⃝ × ⃝ × code-pair

Compiler × ⃝ ⃝ × rule-based
Supersonic ⃝ × ⃝ × diff patch
SBLLM ⃝ ⃝ × × code-pair
ECO (Ours) ⃝ ⃝ ⃝ ⃝ ROI

2 RELATED WORKS

Traditional compiler infrastructures such as LLVM (Lattner & Adve, 2004) and GCC (Free Soft-
ware Foundation, 2025) apply rule-based optimizations at the intermediate representation (IR) level.
While effective at eliminating low-level inefficiencies, these techniques remain limited in addressing
program-level, context-dependent bottlenecks, including algorithmic restructuring or data-structure
selection. This limitation motivated the emergence of approaches that leverage code-LLMs.

PIE (Shypula et al., 2024) explored this direction by fine-tuning models on slow-fast code pairs,
while Supersonic (Chen et al., 2024) extended this paradigm by training to predict the edit operations
(i.e., diff patches) that lead to its optimized counterpart, rather than raw code pairs. Such approaches
require costly retraining for model update and provide limited gains, as the supervision essentially
encodes before-after patterns without exposing the underlying rationale for runtime improvements.
In contrast, SBLLM (Gao et al., 2025) adopted a retrieval-augmented prompting (RAG) combined
with iterative revision. At each step, the system retrieves the code pair most similar to the current
candidate in embedding space and uses it to guide the code-LLM in refining candidates. This process
increases inference cost and often leads to semantic drift, where repeated rewriting gradually alters
or even breaks the original functionality of the code.

Existing LLM-based approaches typically draw on past optimization instances directly—such as
code pairs or diff patches—which present surface-level transformations without translating them
into performance-aware signals. As a result, they do not provide bottleneck diagnoses or any direct
optimization guidance, leaving models to infer performance bottlenecks on their own and often
producing suboptimal fixes. In contrast, ECO introduces runtime optimization instructions (ROIs)
and delivers bottleneck diagnoses, supplying richer and more targeted information for optimization.
In this way, ECO directly addresses the lack of precise diagnoses and actionable knowledge that
limits prior methods.

3 PROPOSED FRAMEWORK

We introduce ECO, a performance-aware prompting framework. Given input codes to be optimized,
ECO generates performance-aware prompts, offering actionable hints that the model can immedi-
ately act upon. Unlike prior approaches that merely expose slow–fast code pairs and leave code-
LLMs to implicitly infer optimization patterns, ECO directly provides two complementary forms
of guidance: (i) a bottleneck diagnosis that pinpoints where inefficiencies occur and what type of
transformation is required, and (ii) related runtime optimization instructions (ROIs) from past op-
timizations that offer concrete, performance-relevant examples. This design allows code-LLMs to
bypass the effort of discovering bottlenecks themselves and instead focus on applying the suggested
transformations. Moreover, ECO operates in a model-agnostic manner: its prompts can be simply
prepended to any code-LLM input, requiring no fine-tuning or model-specific adaptation.

Figure 2 provides an overview of ECO. It builds on an ROI distillation step, where ROIs are extracted
from reference slow-fast code pairs and stored in an ROI DB. This repository serves as the foun-
dation for two modules. The symbolic advisor produces bottleneck diagnoses by applying graph-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Analysis of Input Code

CPG Graph of
Input Code

Inefficient
Algorithm

Performance
Analysis:
Multiplying in loop
leads to an O(n)
time complexity due
to the ...

Performance-Aware
ROI Selection

Similarity: 0.85

Similarity: 0.42

Similarity: 0.13Code Pair

Slow-Fast
Code Pair B

Slow-Fast
Code Pair A

Slow-Fast
Code Pair C

Runtime Optimization
Instruction (ROI)

Unnecessary
Library

ROI A

ROI C

{Category: iostream library,
Variable: cin, Line: 6 }

"Slow I/O detected: cin (at line 6).
Use scanf/prinf for instead of ..."

Bottleneck Diagnosis
Rule-based

Graph Query

ROI Distillation (§ Section 3.1)

Cluster &
Curate Rules

Retrieve
ROIs

Symbolic Advisor (§ Section 3.2)

ROI Retriever (§ Section 3.3)

**Precomputing
Multiplication Results:
In slow code, ..., but in

the fast code

Identify bottlenecks
in slow code

Explain why improved
in fast code

+

Reasoning
Model

Retrieved Example

"Optimize code with
following examples:

{Code Pair B}, {ROI B}"

Detected Bottleneck

**Precomputing Multiplication: ...

Reduced Overhead in Loops: ...

Early Termination: ...

ROI DB

ROI B

Distilled ROIReference
Code Pair

Figure 2: Overview of our ECO framework. ECO locates bottleneck code snippets using the sym-
bolic advisor and the strategy retriever module, and then generates directives for code-LLMs.

based rules derived from clustered ROIs, deterministically identifying inefficiency patterns in the
input code. In parallel, the ROI retriever matches an input-conditioned analysis against the database
to return related ROIs, supplying broad-coverage optimization knowledge that extends beyond fixed
rules. Together, these modules transform distilled ROI knowledge into performance-aware prompts
that effectively steer downstream code-LLMs.

3.1 ROI DISTILLATION

The first step of ECO is to construct a database of runtime optimization instructions (ROIs) that
can serve as prior knowledge for later performance-aware prompting. We use the PIE HQ dataset
with 4,085 slow-fast code pairs, each solving the same problem but exhibiting substantial runtime
differences. ECO leverages these examples to distill generalizable optimization knowledge. Rather
than consuming raw pairs directly, ECO abstracts them into ROIs, which capture not only what
changed but also why the changes improve efficiency.

For each code pair i, we prompt a reasoning-oriented LLM to analyze the slow and fast implemen-
tations and to extract a compact ROI Oi. The prompting design encourages the model to reason
explicitly about the root cause of inefficiency and producing a compact natural-language instruction
Oi. We then build an ROI database of triplets that link each slow–fast code pair with its distilled
ROI,

D = {(slowi, fasti, Oi)}.
This corpus serves as ECO’s knowledge base, effectively transforming raw code pairs into structured
optimization knowledge that can be systematically reused across models and tasks. Details of the
prompting template and LLM configuration are in Appendix A.1.

3.2 SYMBOLIC ADVISOR

The symbolic advisor applies rule-based queries to capture deterministic inefficiency patterns and
generates bottleneck diagnoses with matched templates. Built on top of Joern1, which constructs
Code Property Graphs (CPGs) from source code, we design carefully crafted graph queries and
explanatory templates that detect inefficient program entities and articulate how to address them.
These rules and templates are grounded in the ROI database distilled in Section 3.1. We manu-
ally cluster similar ROIs and translate each cluster into formal rule-template pairs, enabling the
symbolic advisor to convert distilled knowledge into precise, program-level bottleneck diagnoses.
Unlike linters (GmbH, Accessed: 2025-05-31) that only match shallow syntax patterns or compiler
optimizations (Free Software Foundation, 2025; Lattner & Adve, 2004) that operate on low-level
intermediate representations, our approach enables program-level structural analysis—such as iden-
tifying redundant recursion through call-graph inspection or detecting dynamic containers that do
not exploit resizing by tracing object operations.

1https://joern.io/

4

https://joern.io/

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The symbolic advisor operates on a set of rule–template pairs P = {(r1, t1), . . . , (rm, tm)}, where
each rule r is a Joern query that isolates an inefficiency pattern and the associated template t specifies
how to verbalize the match into a natural language directive. Concretely, the rule set covers four
categories of inefficiency: (i) Inefficient Algorithms, (ii) Data Structure Usage, (iii) Library Usage,
and (iv) Loop Structures. Detailed examples of these categories are provided in Appendix A.2.

Algorithm 1 Detect Recursion Methods with-
out Memoization

1: Input: Code Property Graph G
2: Output: MatchesM ▷ set of recursive

methods w/o memoization

3: S ← SELFCALLMETHODS(G)
4: for each f in S do
5: Rf ← INDIRECTREADS(f)
6: Wf ← INDIRECTWRITES(f)
7: Cf ← Rf ∩Wf

8: end for
9: M ← { f ∈ S | ∃ id ∈ Cf ∧
¬DECLARES(f, id) }

10: returnM

Algorithm 2 Symbolic Advisor Pipeline
1: Input: Input code C, rule–template pairs
P = {(r1, t1), . . . , (rm, tm)}

2: Output: Bottleneck Diagnoses B

3: G← BUILDCPG(C) ▷ returns a CPG
4: B ← ∅
5: for each (r, t) ∈ P do
6: Mr ← r(G)
7: for each match m ∈Mr do
8: b← INSTANTIATE(t,m)
9: B ← B ∪ {b}

10: end for
11: end for
12: return B

As an example, Algorithm 1 defines a rule in ‘Inefficient Algorithm’ category to detect recursive
functions that recompute overlapping subproblems without memoization. The rule first identifies
all self-call methods from the given CPG (line 3), then collects identifiers that are both read and
written inside each function (line 4-8), and finally checks whether these identifiers are declared as
memoization tables (line 9). Functions without such declarations are flagged as inefficient recur-
sive implementations. These rules are implemented in Scala using Joern’s query language, and the
complete code are provided in our public repository.

Algorithm 2 summarizes the overall pipeline of the symbolic advisor. Given an input code C, it
builds a CPG G (line 3), applies each rule in P to extract matches (line 5-6), and instantiates the
corresponding templates into bottlenecks diagnoses (line 7-10). The resulting set B specifies ineffi-
ciency patterns and prescribes corresponding directives for improvement. In practice, the symbolic
advisor reliably identifies deterministic inefficiencies but delegates concrete code transformations to
the LLM refinement stage.

3.3 ROI RETRIEVER

The ROI retriever complements the symbolic advisor by supplying performance-aware guidance
from past optimizations. Whereas traditional retrieval-augmented methods rely on code embeddings
capturing only syntactic or semantic similarity, our retriever instead extracts a performance-aware
description of the input code and matches it against distilled runtime optimization instructions
(ROIs). First, this makes retrieval explicitly performance-relevant: the returned cases are aligned
with the input code’s performance characteristics rather than merely resembling it at the surface
level. Second, beyond providing the slow-fast code pair itself, the ROI retriever also delivers the
corresponding ROI, giving the model an explicit description of the inefficiency and its remedy.

Formally, ROI retriever builds on the ROI database D distilled in Section 3.1, where each entry
(slowi, fasti, Oi) is paired with a vector representation vi = Φ(Oi) produced by an embedding
model Φ. At inference time, given an input code C, we prompt the inference model itself with a
structured query asking it to describe C’s performance-related characteristics. For a practical on-line
setting, we reuse the inference model instead of invoking a separate reasoning model. This prompt
is designed to mirror the ROI distillation step, so that the input is analyzed under a similar reasoning
environment. The resulting explanation EC is then embedded as vC = Φ(EC) and compared against
all vi ∈ D. The retriever selects the top-k most similar entries and returns their associated triples
(slowi, fasti, Oi). This provides the LLM with not only relevant code examples but also richer and
more interpretable ROI descriptions, offering accessible and performance-aware prompts.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 EMPIRICAL STUDIES

4.1 EXPERIMENTAL SETTINGS

4.1.1 MODELS

ECO employs three types of models with distinct roles. (i) the reasoning model distills optimiza-
tion strategies from slow–fast code pairs to construct the ROI database; we adopt DeepSeek-r1:32b.
(ii) the embedding model vectorizes both code and instructions for similarity-based retrieval in the
instruction retrieve; we adopt Qodo-Embed-1-1:5b, designed to capture both code and natural lan-
guage characteristics. (iii) the inference model serves as the downstream code-LLM that refines
the input code under the provided directives. We adopt the Qwen2.5-Coder family for open-source
models, and GPT-4o-mini and GPT-o4-mini for closed-source models with the temperature 0.7.

4.1.2 BASELINE METHODS

The following methods were originally designed as generic LLM prompting techniques and later
adapted to code optimization in PIE (Shypula et al., 2024). The instruction-only method provides
standard instruction prompts to perform optimization without any additional guidance. Chain-of-
Thought (CoT) (Wei et al., 2022) augments prompts by encouraging explicit step-by-step reasoning.
In-Context Learning (ICL) (Brown et al., 2020) supplies randomly selected slow-fast code pairs,
while dynamic retrieval (RAG) (Poesia et al., 2021) supplies pairs based on code-to-code similarity.
However, RAG primarily captures syntactic resemblance rather than reflecting optimization intent.

The following methods are explicitly designed for code optimization. Supersonic (Chen et al., 2024)
employs CodeBERT (Feng et al., 2020), an encoder model rather than an LLM, and trains it to gener-
ate refinement patches that transform a given slow code into its optimized fast version. SBLLM (Gao
et al., 2025) combines a search-based approach with RAG. Starting from an initial program, it iter-
atively scores candidates, retrieves examples via code-level similarity, and applies a code-LLM to
generate its optimized version. Detailed implementations of methods are provided in Appendix B.

4.1.3 DATASET

We use the widely adopted Performance Improvement Edits (PIE) C++ benchmark, which originates
from CodeNet Puri et al. (2021). For training and reference, we leverage its high-quality set (HQ)
consisting of 4,085 slow-fast code pairs, which is used for tasks such as fine-tuning, strategy distil-
lation, and retrieval in both baseline methods and ECO. For evaluation, the PIE test set suffers from
severe imbalance in problem distribution; we construct a balanced subset of 255 slow codes, each
accompanied by 10 test cases. For assessing out-of-distribution (OOD) generalization, we addition-
ally curate the Codeforce C++ dataset, from which we sample 300 slow codes, each also paired with
10 test cases. Details on dataset construction are provided in Appendix C.

4.1.4 EVALUATION METRICS

We use three standard evaluation metrics to assess both optimization effectiveness and functional
correctness. We follow the best@k protocol—selecting one candidate with the highest speedup from
the k generated candidates. Given original and optimized runtime T (o) and T (n) of a code,

• Percent optimized (OPT): The percentage of solutions that are both correct and at least 10%
faster than the original code, i.e., T (o)− T (n) > 0.1× T (o).

• Speedup rate (SP): The runtime reduction ratio, defined as SP = T (o)/T (n). If the opti-
mized code is incorrect or slower, we assign SP = 1.0.

• Accuracy (ACC): The percentage of optimized codes that are functionally equivalent to the
original code, i.e., pass all provided test cases.

We compile all C++ programs using GCC 9.3.0 with the C++17 and the -O3 flag. Reported per-
formance gains exclude compiler-level optimizations and reflect improvements beyond the compile-
time baseline. We measure code runtime by employing Gem5 Binkert et al. (2011), a cycle-accurate
system simulator that provides deterministic measurements essential for reliable benchmarking.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Average performance of baseline methods and ECO, reported with standard deviations over
10 trials. We use Qwen2.5-coder:7b as an inference model.

Methods Best@1 Best@5

ACC(%) SP OPT(%) ACC(%) SP OPT(%)

Instruction-only 33.61 (±2.18) 1.17× (±0.06) 5.92 (±1.41) 68.12 (±1.54) 1.44× (±0.03) 15.92 (±1.20)

CoT (Wei et al., 2022) 34.67 (±1.44) 1.16× (±0.03) 6.04 (±0.44) 63.61 (±1.21) 1.39× (±0.02) 15.18 (±0.79)

ICL (Brown et al., 2020) 35.33 (±2.00) 1.27× (±0.05) 8.12 (±1.22) 70.75 (±1.24) 1.82× (±0.04) 23.10 (±0.94)

RAG (Poesia et al., 2021) 29.69 (±3.01) 1.52× (±0.15) 11.41 (±1.43) 64.51 (±1.78) 2.51× (±0.12) 30.31 (±1.12)

Supersonic (Chen et al., 2024) 7.06 (±3.63) 1.00× (±0.01) 0.04 (±0.12) 14.75 (±0.61) 1.01× (±0.01) 0.20 (±0.20)

SBLLM (Gao et al., 2025) 21.73 (±2.21) 1.06× (±0.01) 2.35 (±0.53) 55.80 (±3.15) 1.22× (±0.04) 7.61 (±0.95)

ECO 36.27 (±2.88) 2.15× (±0.11) 23.84 (±1.13) 74.24 (±1.46) 3.26× (±0.09) 48.04 (±1.17)

4.2 COMPARISON WITH BASELINES

We evaluate ECO and baselines on the PIE dataset to assess their ability in code optimization. As
shown in Table 2, ECO attains the highest SP and OPT with minimal loss in correctness. This
demonstrates that ECO, by providing direct bottleneck diagnoses and relevant ROIs, is more effec-
tive than approaches that rely solely on raw slow–fast code pairs. Notably, ECO attains these gains
without any additional model training or iterative search, underscoring the importance of supplying
performance-aware information through carefully designed prompts.

Instruction-only and CoT achieve low performance as they provide no external guidance, relying
solely on the intrinsic ability of code-LLMs. In contrast, ICL and RAG supply raw slow–fast code
pairs directly as guidance—either randomly or based on code-level similarity. While this helps more
than unguided prompting, such examples still fail to align with the actual performance bottlenecks
of the input code. Our ECO, instead, retrieves examples by matching performance characteristics
between the given code and candidates, and further augments them with distilled ROIs, thereby
providing aligned and informative guidance.

Interestingly, Supersonic and SBLLM show even lower speedup than generic baselines, primarily
due to their very low accuracy. Supersonic trains model to output the code differences (i.e., diff
patches) between slow and fast code. However, this formulation frequently results in invalid outputs,
with over 80% of produced patches as malformed. SBLLM employs an iterative search process
that modifies the code over multiple steps, but this iterative nature increases the risk of semantic
degradation. We interpret these results as evidence that both methods fail to leverage recent code-
LLMs effectively and instead suffer from additional accuracy overhead.

Table 3: Average performance of ECO variants, reported with standard deviations over 10 trials. We
use Qwen2.5-coder:7b as an inference model. The variants are denoted as ECO with ablations: SA
refers to the symbolic advisor and RR to the ROI retriever. The best results are in and the
second-best are in .

Methods Best@1 Best@5

ACC(%) SP OPT(%) ACC(%) SP OPT(%)

ECO 36.27 (±2.88) 2.15× (±0.11) 23.84 (±1.13) 74.24 (±1.46) 3.26× (±0.09) 48.04 (±1.17)

w/o RR 48.59 (±1.47) 1.97× (±0.14) 21.61 (±1.10) 83.45 (±1.29) 3.08× (±0.10) 42.75 (±1.19)

w/o SA 32.98 (±2.14) 1.87× (±0.15) 18.39 (±2.06) 70.39 (±2.00) 3.10× (±0.12) 42.12 (±1.11)

w/o RR+SA 36.20 (±2.04) 1.38× (±0.13) 9.41 (±1.58) 73.80 (±1.79) 2.26× (±0.16) 30.75 (±2.49)

4.3 ABLATION STUDIES: ROLE OF SUBMODULES IN ECO

We conduct ablation study in Tab. 3. ECO without both modules essentially behaves like RAG: it
selects reference code pairs by code similarity. The only addition is that it also provides the corre-
sponding ROIs extracted from those pairs. Interestingly, its performance is slightly lower than RAG,
even though it provides more information. This suggests that ROIs associated with code-level sim-
ilar pairs may not align with the actual performance bottlenecks of the given input and can even
introduce mismatches that hinder optimization. This highlights that merely supplying ungrounded
ROIs is insufficient; the key is to select relevant ROIs and transform them into explicit prompts.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Both ECO variants with a single module individually surpass all baseline methods, showing that
either module alone already provides helpful guidance than prior approaches. The symbolic advisor
variant achieves the highest correctness due to its deterministic, rule-based nature. In contrast, the
ROI retriever variant explores diverse optimization scenarios through retrieval, yielding comparable
speedup but relatively lower correctness due to its exploratory search. When combined, ECO softens
the trade-off in correctness (ACC 74.24%) while further enhancing speedup (SP 3.26×) in Best@5,
indicating that each module compensates for the other’s blind spots and yields the best optimization.

Table 4: Performance of ECO evaluated on the in-distribution PIE benchmark and the out-of-
distribution Codeforce benchmark, using models of different scales and including closed-source
models. The results demonstrate that ECO generalizes effectively across both models and datasets.

Model Prompting PIE (Best@5) Codeforce (Best@5)

ACC(%) SP OPT(%) ACC(%) SP OPT(%)

Qwen2.5-Coder:3b Instruction-only 55.22 1.30× 11.18 18.87 1.01× 0.40
ECO 37.80 1.85× 16.67 16.17 1.11× 2.57

Qwen2.5-Coder:7b Instruction-only 68.12 1.44× 15.92 29.20 1.01× 0.47
ECO 74.24 3.26× 48.04 35.20 1.78× 13.83

Qwen2.5-Coder:14b Instruction-only 67.76 1.48× 17.92 39.50 1.09× 2.13
ECO 79.84 3.67× 53.69 45.40 2.30× 23.83

GPT-4o-mini Instruction-only 83.53 1.53× 19.61 49.23 1.01× 0.33
ECO 94.51 3.97× 60.78 59.93 2.01× 18.70

GPT-o4-mini Instruction-only 95.29 1.99× 36.08 65.63 1.41× 7.33
ECO 97.25 7.81× 84.71 73.67 4.55× 42.07

4.4 GENERALIZABILITY OF ECO

As shown in Table 4, we evaluate ECO on Qwen2.5-coder models of different sizes. On the smallest
3B model, applying ECO decreases accuracy: with limited capacity, the model often fails to faith-
fully implement the provided guidance, whereas instruction-only prompting makes fewer edits and
thus retains higher correctness. As model capacity increases, however, our strategy-driven guidance
takes full advantage of stronger reasoning ability—both accuracy and speedup rise substantially,
with the 14B model achieving the largest gains.

We conduct experiments on closed-source LLMs, GPT-4o-mini (general-purpose) and GPT-o4-
mini (reasoning-oriented). ECO can be used as plug-in guidance without any fine-tuning or model-
specific adaptation, underscoring its model-agnostic design. Instruction-only prompting yields only
marginal speedups under 2×, which is the standard way of utilizing LLMs, whereas ECO improves
substantially, with GPT-o4-mini achieving a remarkable 7.81× speedup on the PIE dataset. These
results indicate that ECO is not tied to any specific model and can be readily applied to new LLMs
as they emerge. They further suggest that when a higher-capacity model is supplied with explicit,
high-quality guidance, it can faithfully follow it and achieve significant performance improvements.

We assess ECO’s robustness under out-of-distribution (OOD) conditions using the more challenging
Codeforces benchmark. While ECO’s ROIs are distilled from the PIE HQ dataset, the OOD setting
introduces problems whose performance characteristics differ from the training distribution. This
benchmark is highly difficult: under instruction-only prompting, all models except GPT-o4-mini
achieved speedups below 1.1×. In contrast, applying ECO guidance in the Codeforce setting leads
to substantial improvements across models, with the most dramatic case showing a jump from 1.01×
to 2.01× speedup. These results demonstrate that ECO provides robust guidance even under OOD
conditions and enables significant gains on difficult optimization tasks.

4.5 CASE STUDY

Fig. 3 shows the distribution of ECO’s outputs across single-trial generations, largely categorized
into optimized, correct but not optimized, and failed. Compared to baselines, ECO yields a much
higher proportion of optimized outputs, while the share of ‘correct but not optimized’ results is
relatively lower. This trade-off arises from the stochastic nature of the ROI retriever. Although it

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Instruction CoT ICL RAG Supersonic SBLLM ECO0

20

40

60

80

Pe
rc

en
ta

ge
 (%

)

24.0% 25.6% 25.3% 30.6%

89.9%

64.0%

39.1%

42.1% 40.7% 39.8%
39.8%

13.9%

26.6%

27.6% 27.7% 26.8%
18.0%

9.7%
20.3%

10.8%
3.2% 3.3% 4.0% 4.8%

12.7%3.2% 2.7% 4.1% 6.8%

10.7%

Compilation Error ()
Functionally Incorrect ()

Correct but Not Optimized (-) Optimized ()
Faster than Human ()

Figure 3: Detailed analysis of errors (↓) and correct but not optimized (-), and optimized (↑) cases
for each method. Lower error percentages and higher optimized percentages are better.

sometimes selects less relevant examples, it also enables stronger optimizations when the match is
effective, leading to variability. Allowing multiple generations (e.g., Best@5) mitigates this issue
by increasing the chance of retrieving more relevant ROIs. In contrast, Instruction-only, ICL, and
RAG produce a larger fraction of ‘correct but not optimized’ outputs, indicating that they often fail
to identify meaningful optimization opportunities.

Algorithm Data structure Library Loop usage
Categories

0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 (%

)

29.8%

12.4%

56.4%

1.5%

32.4%

14.9%

48.6%

4.2%

PIE
Codeforce

Rank RAG ROI retriever
Keyword TF-IDF Keyword TF-IDF

1 sum 0.4127 ans 0.2432
2 mid 0.3761 string 0.2350
3 cnt 0.2743 long 0.1778
4 rep 0.2352 max 0.1270
5 ans 0.2298 scanf 0.1142
6 long 0.1727 cin 0.1119
7 size 0.1599 cout 0.1055
8 string 0.1511 vector 0.1028
9 double 0.1497 endl 0.1024
10 mod 0.1434 sort 0.0883

Figure 4: (Left) Distribution of bottlenecks detected by the symbolic advisor. (Right) TF-IDF rank-
ing of the top-10 overlapping keywords between input and retrieved code, under RAG and ROI
retriever on the PIE test set.

As shown in the left side of Fig. 4, we apply the symbolic advisor’s detection rules to the test sets to
analyze the distribution of performance bottlenecks. The majority of issues arise from library usage,
with I/O inefficiencies being the most prominent. Algorithm-level inefficiencies also constitute a
large portion of bottlenecks. By contrast, data structure misuse and inefficient loop usage appear less
frequently. These findings show that the dominant bottlenecks lie in categories requiring semantic-
level reasoning beyond low-level code patterns.

The right table in Fig. 4 presents a comparison of overlapping keywords between input code and
retrieved code under two retrieval methods. For each input-retrieved code pair, we identify the over-
lapping keywords and then weight them by their average TF-IDF scores. Notably, in the code re-
trieved by our ROI retriever, the most frequently overlapping keywords are performance-relevant
terms, such as I/O operations (e.g., scanf, cin) and data-structure tokens (e.g., vector, sort).
In contrast, the RAG, code-similarity retrieval, is dominated by superficial overlaps, such as variable
names (e.g., cnt, ans) or arithmetic-related tokens (e.g., sum, mod).

5 CONCLUSIONS

We propose ECO, a performance-aware prompting framework for code optimization. ECO distills
runtime optimization instructions (ROIs) from reference code pairs and, for a given input, produces
performance-aware prompts by combining a bottleneck diagnosis with related ROIs. These prompts
are model-agnostic and require no fine-tuning, yet significantly improve runtime efficiency across
diverse LLMs. Our results underscore that providing explicit performance-aware prompts is a prac-
tical and effective approach for enabling code-LLMs to generate optimized code.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide extensive details to ensure reproducibility. The prompts used for code-LLMs are given
in Appendix A. Appendix B further describes the inference model configuration, baseline imple-
mentations, and measurement tools. The dataset curation process is explained in Appendix 4.1.3.
Finally, we release the supplementary code repository, which includes the full implementation of
ECO and the curated dataset for easy replication.

REFERENCES

Nathan L. Binkert, Bradford M. Beckmann, Gabriel Black, Steven K. Reinhardt, Ali G. Saidi,
Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathi-
jit Sen, Korey Sewell, Muhammad Shoaib Bin Altaf, Nilay Vaish, Mark D. Hill, and David A.
Wood. The gem5 simulator. SIGARCH Computer Architecture News, 39(2):1–7, 2011.

Meisam Booshehri, Abbas Malekpour, and Peter Luksch. An improving method for loop un-
rolling. International Journal of Computer Science and Information Security (IJCSIS), 11(5):
73–76, 2013. ISSN 1947-5500.

Tom B. Brown, Benjamin Mann, Nick Ryder, and et al. Language models are few-shot learners. In
Advances in Neural Information Processing Systems 33 (NeurIPS 2020), 2020.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira P. Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Dave Cummings, Matthias Plappert, Fo-
tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. CoRR, abs/2107.03374, 2021. arXiv:2107.03374.

Zimin Chen, Sen Fang, and Martin Monperrus. Supersonic: Learning to Generate Source Code
Optimizations in C/C++ . IEEE Transactions on Software Engineering, 50(11):2849–2864, 2024.
ISSN 1939-3520.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Linjun Shou, Bing
Qin, Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT: A pre-trained model for programming
and natural languages. In Findings of the Association for Computational Linguistics: EMNLP
2020, pp. 1536–1547, Online, 2020.

Free Software Foundation. Using the gnu compiler collection (gcc). GCC Online Documentation,
2025. URL https://gcc.gnu.org/onlinedocs/. Refer to GCC manuals for details on
dead code elimination, constant propagation.

Shuzheng Gao, Cuiyun Gao, Wenchao Gu, and Michael Lyu. Search-Based LLMs for Code Opti-
mization . In 2025 IEEE/ACM 47th International Conference on Software Engineering (ICSE),
pp. 254–266, 2025.

Vector Informatik GmbH. Pc-lint plus: Static code analysis for c and c++. https://
pclintplus.com/, Accessed: 2025-05-31.

ISO/IEC. ISO/IEC 25010:2011, systems and software engineering — systems and software quality
requirements and evaluation (square) — quality model. Technical report, ISO/IEC, 2011.

Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong program analysis
and transformation. In Proceedings of the 2nd International Symposium on Code Generation and
Optimization (CGO), pp. 75–86. IEEE, 2004.

Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christopher Meek, and Sumit
Gulwani. Synchromesh: Reliable code generation from pre-trained language models. In Proceed-
ings of the International Conference on Learning Representations (ICLR), 2021.

10

https://gcc.gnu.org/onlinedocs/
https://pclintplus.com/
https://pclintplus.com/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

R. Puri, D. S. Kung, G. Janssen, W. Zhang, G. Domeniconi, V. Zolotov, J. Dolby, J. Chen, M. R.
Choudhury, L. Decker, V. Thost, L. Buratti, S. Pujar, S. Ramji, U. Finkler, S. Malaika, and F. Reiss.
Codenet: A large-scale ai for code dataset for learning a diversity of coding tasks. In Proceedings
of the Neural Information Processing Systems Track on Datasets and Benchmarks 1 (NeurIPS
Datasets and Benchmarks 2021). NeurIPS, December 2021.

sharkdp. Hyperfine: A command-line benchmarking tool. https://github.com/sharkdp/
hyperfine, 2023. Version 1.19.0.

Alexander Shypula, Sagnik Anupam, and Osbert Bastani. Learning performance-improving code
edits. In International Conference on Learning Representations (ICLR), 2024.

Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional branches. ACM
Transactions on Programming Languages and Systems, 13(2):181–210, 1991.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed H. Chi,
Quoc V. Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language
models. In Advances in Neural Information Processing Systems, NeurIPS, pp. 24824–24837,
2022.

Frank F Xu, Uri Alon, Graham Neubig, and Vincent J Hellendoorn. A systematic evaluation of large
language models of code. In Proceedings of the 6th ACM SIGPLAN International Symposium on
Machine Programming (MAPS), 2022.

11

https://github.com/sharkdp/hyperfine
https://github.com/sharkdp/hyperfine

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A DETAIL OF ECO

A.1 ROI DISTILLATION

We utilize the PIE HQ dataset comprising 4,085 slow-fast code pairs, where each pair addresses
the same problem yet exhibits a substantial runtime difference. From these reference code pairs,
ECO extracts runtime optimization instructions (ROIs) using a reasoning-oriented LLM, DeepSeek-
r1:32b, executed through the ollama framework. In our setup, the model runs in a quantized con-
figuration (Q4 K M), a 4-bit quantization scheme. Specifically, given a slow code and a fast code,
we prompt the model with a manually crafted template to extract optimization objects. Each object
explains the inefficiency in the slow implementation, how the fast implementation addresses it, the
estimated runtime impact, and its category. The prompt template is shown below:

Prompt template for ROI distillation

Identify each optimization in the Slow Code
and explain how it speeds up the Fast Code.
Respond in JSON array form, with objects containing:
[
{
"description": "Briefly describe the inefficiency in slow_code and
how fast_code fixes it.",
"runtime_improvement": "Integer (1-10) rating of runtime gain.",
"category": "One of: Algorithm | Data Structure | Memory Management
| Code Execution | System Interaction | Other"

},
...

]
Slow Code:
{slow_code}

Fast Code:
{fast_code}

From the model’s raw output, we extract only the compact optimization instruction Oi, which
typically appears after the </think> marker that separates reasoning steps. An example of
such instruction is shown in Fig. 5. We then store each resulting triplet—consisting the slow
code, fast code, and the extracted instruction—in a ROI database, formally represented as D =
{(slowi, fasti, Oi)}. These instructions subsequently serve as the knowledge base for ECO’s mod-
ules, enabling performance-oriented prompting.

A.2 SYMBOLIC ADVISOR

In the symbolic advisor, we leverage Joern, a tool that converts code into graph representations such
as ASTs and code property graphs (CPGs). Joern enables static analysis through its rich graph query
language, which supports function call exploration and various structural queries. Based on the opti-
mization instructions extracted earlier, we manually clustered them and distilled knowledge into four
major categories, each represented by a set of rules implemented in Scala. Each rule checks whether
specific nodes satisfying certain conditions exist in the code graph. Depending on the rule, we then
generate explicit templates that specify where and how to optimize, producing performance-aware
prompts accordingly. The implementation is written in Scala and released in the supplementary ma-
terial. This process is fully deterministic and independent of any code-LLM.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Optimization instruction example

The optimization points between the slow and fast code can be identified as follows:

1. **Replacing ‘cout’ with ‘printf’:**
− The slow code uses ‘cout’, which involves more overhead due to its object−oriented nature, while the
fast code uses ‘printf’, a function from the C standard library that is more efficient for I/O operations.

2. **Precomputing Multiplication Result:**
− In the slow code, the multiplication is done inline within the output statement, whereas in the fast
code, it’s precomputed and stored in a variable (‘mt‘). This avoids recalculating the result multiple times
.

3. **Efficient Loop Conditions:**
− The fast code uses ‘i < 10’ instead of ‘i <= 9’, which is slightly more efficient as comparing against
10 might be faster, though this is a minor optimization.

4. **Reduced Whitespace and Improved Code Structure:**
− While not affecting runtime, the fast code has cleaner formatting, enhancing readability without
impacting performance.

JSON Output:

{
‘‘optimization points’’: [
{

‘‘description’’: ‘‘The slow code uses ‘cout’ which is slower due to object overhead. The fast code
switches to ‘printf’, improving I/O efficiency.’’,
‘‘runtime improvement’’: 8,
‘‘category’’: ‘‘Algorithm’’

},
{

‘‘description’’: ‘‘Precomputing the multiplication result (‘mt = i * j’) before printing reduces
redundant calculations in each loop iteration.’’,
‘‘runtime improvement’’: 6,
‘‘category’’: ‘‘Algorithm’’

},
{

‘‘description’’: ”Using ‘i < 10’ instead of ‘i <=9’ slightly improves loop condition efficiency, though
the impact is minor.’’,
‘‘runtime improvement’’: 3,
‘‘category’’: ‘‘Code Execution’’

}
]
}

Figure 5: Example of a runtime optimization instruction.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2.1 INEFFICIENT ALGORITHMS

This category targets computational patterns such as recursion without memoization or arithmetic
operations replaceable by bitwise alternatives. Such patterns are detected via function call tracking
and control-flow analysis involving arithmetic operations and operand usage.

Figure 6 shows an example of directives generated by the symbolic advisor and the resulting opti-
mized code. When given the raw recursive fib function, the detector matches it with the recursion
rule from the Inefficient Algorithm category 1, which identifies recursion without memoization.
Based on this match, it emits a directive template that recommends replacing recursion with mem-
oization or dynamic programming. Guided by this directive, the downstream code-LLM produces
the optimized version (B), where a dp buffer is introduced to eliminate redundant calls and improve
runtime efficiency.

(A) Input Code

int fib(int n){
if (n <= 1) return n;
return fib(n-1) + fib(n-2);

}

(B) Optimized Code
int fib(int n){

if (n <= 1) return n;
if (dp[n] != -1)

return dp[n];
dp[n] = fib(n-1) + fib(n-2);
return dp[n]; }

(C) Bottleneck Diagnosis for recursion without memoization

The following methods are purely recursive: [method: fib, lines: 1–4]. Applying memoization or dy-
namic programming can significantly reduce its execution time.

Figure 6: Memoization directive example. Left: slow recursive Fibonacci. Right: memoized version.
Bottom: directive emitted by the symbolic advisor.

A.2.2 SUBOPTIMAL DATA STRUCTURE USAGE

This category addresses inefficient use of data structures, such as employing dynamic containers
(e.g., std::vector) when their dynamic capabilities are not utilized, or using non-hash maps
where hash-based structures would provide better performance. Such inefficiencies are detected
through type analysis and usage pattern tracking, which identify opportunities to substitute simpler
or more efficient data structures.

Figure 7 illustrates an example where a dynamic vector is unnecessarily used to store values of
predetermined size. The symbolic advisor detects that the vector does not leverage any dynamic
behavior (e.g., resizing, insertion at arbitrary positions) and matches it with the static replacement
rule. Based on this detection, it generates a directive template recommending replacement with a
fixed-size array. Guided by this directive, the downstream code-LLM produces the optimized version
(B), where the vector is replaced by a static array, eliminating allocation overhead and improving
runtime efficiency.

(A) Input Code

int n; scanf("%d",&n);
std::vector<int> v;
for(int i=0;i<n;++i) {
v.push back(i*i);

}

(B) Optimized Code

int n; scanf("%d",&n);
int v[n];
for(int i=0;i<n;++i) {

v[i] = i*i;
}

(C) Bottleneck Diagnosis for vector without dynamic behavior

The following vectors do not use dynamic operations: [variable: v, lines: 2–4]. Replacing them with a
static array or fixed-size container can improve performance.

Figure 7: Static array directive example. Left: inefficient use of a dynamic vector. Right: optimized
version using a static array. Bottom: directive emitted by the symbolic advisor.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.2.3 INEFFICIENT LIBRARY USAGE

This category addresses inefficient use of library functions, such as slow I/O operations (cin, cout)
or expensive math functions (e.g., pow), which can often be replaced with faster alternatives. Such
inefficiencies are detected by analyzing library call sites and inspecting the types and properties of
their arguments.

Figure 8 presents an example where inefficient I/O operations are detected. The symbolic advisor
identifies the use of cin and cout, which are known to incur higher overhead, and matches them
with the I/O replacement rule. Based on this match, it generates a prompt recommending substitution
with faster alternatives (scanf and printf). Guided by this prompt, the downstream code-LLM
produces the optimized version (B), where the I/O calls are replaced, leading to improved runtime
performance.

(A) Input Code

int x, y;
cin >> x >> y;
int res = gcd(x, y);
cout << res << endl;

(B) Optimized Code

int x, y;
scanf("%d %d", &x, &y);
int res = gcd(x, y);
printf("%dn", res);

(C) Bottleneck Diagnosis for inefficient I/O library usage

The following I/O library calls rely on slow operations: [call: cin, lines: 2–2, call: cout, lines: 4–4].
Replacing them with faster alternatives (scanf, printf) can improve performance.

Figure 8: I/O replacement directive example. Left: inefficient use of cin/cout. Right: optimized
version with scanf/printf. Bottom: directive emitted by the symbolic advisor.

A.2.4 INEFFICIENT LOOP USAGE

This category targets costly operations that are repeatedly executed inside loops but can be safely
moved outside, such as sorting or redundant calculations. Such inefficiencies are detected by ana-
lyzing loop bodies and extracting loop-invariant computations.

Figure 9 illustrates an example where redundant operations are placed inside a loop. The symbolic
advisor detects that both the sorting operation and the minimum-value extraction are loop-invariant,
and matches this case with the loop-invariant rule. Based on this match, it generates a performance-
aware prompt recommending that these computations be hoisted outside the loop. Guided by this
directive, the downstream code-LLM produces the optimized version (B), where sorting and min-
imum extraction occur once before the loop, eliminating redundant work and improving runtime
efficiency.

(A) Input Code
int res = 0;
for(int i=0;i<q;++i) {
std::sort(a, a + n);
int min v = a[0];
res += min_v;

}

(B) Optimized Code
int res = 0;
std::sort(a, a + n);
int min v = a[0];
for(int i=0;i<q;++i) {

res += min_v;
}

(C) Bottleneck Diagnosis for redundant calls in loop

The following redundant calls are placed inside loops: [call: sort, lines: 3–4]. Moving these calls outside
the loop, or caching their results, can eliminate redundant work and improve efficiency.

Figure 9: Loop-invariant directive example. Left: redundant calls inside the loop. Right: optimized
version with invariant computations moved outside. Bottom: directive emitted by the symbolic ad-
visor.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.3 ROI RETRIEVER

The ROI retriever operates on the constructed ROI database to retrieve performance-relevant triplets.
It first extracts a performance-related description of the given input code, similar to the ROI distil-
lation process. At inference time, the inference model is prompted with a structured query asking it
to describe the performance characteristics of the input code, as shown below.

Prompt template for performance-related characteristic distillation from the given input code

You are a competitive-programming performance analyst.

Task
1. A **slow C++ program** is given between ‘‘‘cpp‘‘‘ blocks below.
2. Analyse it **only from a runtime-performance standpoint** - do **NOT
** propose fixes or rewrites.
3. Identify every major **bottleneck** that contributes to slower
runtime.
4. Cover these angles where applicable:

* algorithmic complexity
* data-structure choiceb
* I/O or library usage
* memory-access patterns / allocations

5. For each bottleneck, estimate its relative impact on a **1-10 scale
** (10 = largest slowdown factor).

For similarity measurement between the stored ROIs and the input analysis, we employ the Hug-
gingFace model Qodo/Qodo-Embed-1-1.5B. Unlike the larger inference model, this lightweight em-
bedding model can be run locally without burden, making it practical for retrieval. Moreover, it has
been jointly trained on both natural language and code, making it well-suited to handle our setting
where we compare code itself together with its natural-language description.

(A) Input Code

int k; string s;
cin >> k >> s;
if(s.length() > k)
{

for(int i=0;i<k;i++)
cout << s[i];

cout << "...";
}
else

cout << s;

(B) Retrieved Code Pair

\\------Slow Code------
int main(){
string s;
getline(cin,s);
if((s.front()==s.back())

ˆ (s.length() % 2))
cout << "Case 1" << endl;

else
cout << "Case 2" << endl;

}
}

\\------Fast Code------
char s[100005];
int main() {
int l = 0;
for(char c=getchar();c!=‘\n’

;ch=getchar(), l++){
s[l] = ch;

}
if ((s[0]==s[l-1]) ˆ (l%2))
printf("Case 1");

else
printf("Case 2");

}

(C) Runtime Optimization Instruction
1. Input Method: The slow code uses cin >> s, which is slower due to C++ stream overhead. The fast
code replaces with direct getchar() calls, ...
2. String Handling: The slow code uses std::string, which adds memory and function call overhead,
unlike the fixed-size array in the fast code.
3. Output Method: Replacing cout with printf in the fast code results in faster output operations.

Figure 10: Illustration of (A) the original input code, (B) the retrieved slow–fast code pair selected
by the ROI retriever, and (C) the corresponding performance-related optimization instruction.

We analyze what our ROI retriever returns when given the random (A) input code in Figure 10. The
given input simply prints the first k characters of s, appending “...” when the string is truncated.
Although (B) the retrieved code pair performs a different task from (A), its selection is driven by a
similarity of the performance aspects. Consequently, (C) optimization instruction extracted from (B)
the retrieved slow code precisely identify its bottlenecks and also pinpoints the bottlenecks of (A):
replacing slow cin/cout I/O with faster C-style functions, and avoiding the overhead associated
with std::string by using fixed-size buffers. In contrast, a plain RAG instead chooses a snippet

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

of function that generates a string under certain conditions, a task superficially similar to (A). Despite
its high code-to-code embedding score, it provides no insight into handling string operations or I/O
overhead. Thus, despite surface syntax differences, our ROI retriever effectively captures the key
performance themes relevant to the input code.

B IMPLEMENTATION DETAILS

All approaches considered in this work, including ECO, guide code-LLMs purely through prompt-
ing, except for Supersonic and fine-tuning–based methods. For these prompting-based baselines, we
employ the Qwen2.5-Coder family as the inference model, executed via the ollama framework. In
our setup, ollama runs models in a quantized configuration, specifically Q4 K M, which is a 4-bit
quantization scheme with grouped quantization designed to balance memory reduction and inference
efficiency. We adopt this setting throughout our experiments. The decoding temperature is fixed at
0.7. The maximum input length is set to 4,096 tokens; if the source program exceeds this limit, it
is truncated to fit within the context window. The maximum output length is set to 8,192 tokens to
ensure that optimized programs and associated reasoning can be fully generated. For closed-source
inference, we additionally evaluate GPT-4o-mini and GPT-o4-mini, accessed via their official API
with default decoding parameters.

B.1 PROMPT FORMAT OF ECO

Given an input code, the symbolic advisor applies its rules to detect performance bottlenecks. For
each identified bottleneck, it generates a description specifying where and how the code should be
optimized. These descriptions are then instantiated into the prompt template (Fig. 11), providing the
model with explicit optimization guidance in a structured format.

Given a program and optimization tips, optimize the program and provide
a more efficient version.

Explanation:
1. {where_and_how_to_optimize1}
2. {where_and_how_to_optimize2}
...

Original code:
{src_code}

Optimized Code:

Figure 11: Prompt template for symbolic advisor.

The instruction retriever operates analogously to other retrieval-based baselines such as ICL, RAG,
and SBLLM, supplying 2-shot examples in the prompt. It shares the same prompt template as these
baselines, with one key distinction: in addition to the slow–fast code pairs, it also supplies the cor-
responding optimization instructions (Fig. 13).

We can combine these performance-aware prompts into a single prompt by slightly modifying and
concatenating the two completed templates. The source code (src code) needs to be included only
once, at the end.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.2 PROMPT FORMAT OF GENERIC PROMPTING BASELINES

Instruction-only and CoT are adopted from the prompting methods used in PIE (Shypula et al.,
2024). The instruction-only setting (Fig. 12) simply provides the input code without any external
context and requests an optimized version. In contrast, CoT augments the prompt by prepending a
system message enclosed in square brackets, explicitly instructing the model to output its reasoning
process.

Methods that rely on retrieval, such as ICL, RAG, and SBLLM, use two slow–fast code pairs and
share the same prompt template as ECO’s Instruction Retriever. The only difference is that they
exclude the optimization instructions enclosed in square brackets (Fig. 13).

[You are a software developer and now you will help to improve code
efficiency. Explain the reasons briefly at the beginning.]

Optimize the program and provide a more efficient version.

Original Code:
{src_code}

Optimized Code:

Figure 12: Prompt template for Instruction-only and CoT.

Optimize the program and provide a more efficient version. Followings
are retrieved examples for optimization.

Original Example Code1:
‘‘‘{slow_code1}‘‘‘

Optimized Example Code1:
‘‘‘{fast_code1}‘‘‘

[{optimization_instruction1}]

Original Example Code2:
‘‘‘{slow_code1}‘‘‘

Optimized Example Code2:
‘‘‘{fast_code2}‘‘‘

[{optimization_instruction2}]

Now, optimize the following code.

Original Code:
{src_code}

Optimized Code:

Figure 13: Prompt template for retrieval methods.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.3 DETAIL IMPLEMENTATION SETTING

B.3.1 IMPLEMENTATION OF SUPERSONIC

We closely follow the official implementation of Supersonic2. In their public repository, the au-
thors release a trained CodeBERT-based encoder–decoder model, configured with beam search
(num beams=10). The model targets C++ and is trained on multiple datasets from CodeNet—
including AIZU and AtCoder—of which PIE is a subset, ensuring a similar distribution. Importantly,
Supersonic is trained not to output the fast implementation directly but rather to generate the diff
patch between the slow and fast code. We adopt this framework as-is and evaluate it on our PIE test
set: given a slow program, the shared model generates a patch, which we then apply to reconstruct
the final optimized code. This evaluation therefore corresponds to an in-distribution setting.

B.3.2 IMPLEMENTATION OF SBLLM

We closely follow the official implementation of SBLLM3. SBLLM extends the RAG framework
into an iterative scheme, where in each iteration it performs execution-based candidate selection,
ranks the candidates, and updates the code by prompting the LLM again with the top-ranked exam-
ples retrieved by RAG.

For a fair comparison, we align the model and environment settings of SBLLM with those of ECO’s
inference setup. The only difference is that SBLLM initializes the first candidate code using CoT
prompting, for which we directly adopt the official SBLLM prompt template. As in our main exper-
iments, RAG retrieval is performed on the PIE HQ dataset and inference uses Qwen2.5-coder:7B.
For SBLLM-specific hyperparameters, we follow the defaults in the official code, setting the number
of selected representative samples to 3 and the maximum iteration number to 4.

B.3.3 IMPLEMENTATION OF FINE-TUNING

We additionally conducted experiments with the fine-tuning approach, which are reported in Ap-
pendix D.2. For reproducibility, we closely follow the official implementation of PIE4. Since PIE
also uses our reference code-pair corpus (PIE HQ), we fine-tune the Qwen2.5-Coder-7B model5 on
the same dataset. We adopt the training setup described in the PIE paper, with key hyperparameters
including batch size 32 (micro-batch size 2), learning rate 1 × 10−5, and cutoff length 2000, and
employ early stopping until convergence. Following the original configuration, training is performed
using the HuggingFace Transformers library with FSDP enabled, distributed across 8×48GB
NVIDIA RTX A6000 GPUs.

B.3.4 IMPLEMENTATION OF RUNTIME REASUREMENTS

We employ the gem5 system simulator to obtain reliable performance measurements. Gem5 pro-
vides cycle-accurate emulation of modern microarchitectures, allowing deterministic programs to
yield deterministic runtime results. This property ensures reproducibility in research and reduces
measurement noise. Specifically, we adopt the Verbatim configuration of Intel Skylake from gem56 ,
which also allows our framework to be extended to other platforms such as ARM or RISC-V without
requiring direct hardware access.

In contrast to lightweight profilers such as Hyperfine sharkdp (2023), which are faster but prone to
high variance due to system noise, gem5 offers consistent and denoised performance measurements
at the cost of higher computational overhead. This motivated our dataset refinement step to reduce
redundancy.

2https://github.com/ASSERT-KTH/Supersonic
3https://github.com/shuzhenggao/sbllm
4https://github.com/LearningOpt/pie
5https://huggingface.co/Qwen/Qwen2.5-Coder-7B
6https://hub.docker.com/r/alexshypula/gem5-skylake:api

19

https://github.com/ASSERT-KTH/Supersonic
https://github.com/shuzhenggao/sbllm
https://github.com/LearningOpt/pie
https://huggingface.co/Qwen/Qwen2.5-Coder-7B
https://hub.docker.com/r/alexshypula/gem5-skylake:api

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C DATASET DETAILS

We utilize datasets that provide both source codes and corresponding test cases in code optimization
tasks. The goal is to modify a given input code so that it runs faster while preserving its original
functionality, which is verified through test cases. In this work, we focus on the C++ language.

The training dataset is used either for direct fine-tuning or for retrieval, and serves as the knowledge
base of known optimization patterns. For this purpose, we adopt the HQ dataset, a high-quality sub-
set of the PIE training data. The original PIE dataset consists of C++ slow–fast code pairs, submitted
by human programmers on coding problems from CodeNet. There can be multiple pairs of solution
for one coding problem. The HQ subset is pruned to retain pairs with the highest speedup while
limiting each problem to at most four submissions, alleviating data imbalance issues.

For evaluation, we require datasets that provide input codes along with test cases. Unlike the train-
ing data, only the input (slow) code is necessary; optimization is expected to be performed during
evaluation. We consider two complementary test sets: (1) the PIE test set, which shares similar
characteristics with the HQ dataset but covers disjoint CodeNet problems, and (2) a Codeforces
dataset, which introduces a more challenging out-of-distribution setting. The PIE test set contains
255 samples, while the Codeforces test set consists of 300 samples. Each problem in both datasets
is accompanied by 10 test cases. Together, these datasets allow us to assess both in-distribution and
out-of-distribution performance.

Table 5: Statistics of datasets used in our study. We report the number of code pairs, problems, and
per-problem statistics.

Dataset # Samples # Problems Max Samples / Problem Avg. Samples / Problem
PIE-Train 4,085 1,474 4 2.77
PIE-HQ 4,085 1,474 4 2.77

PIE-Test 978 41 481 23.85
PIE-Test 255 41 100 1.00
Codeforces-Test 300 300 1 1.00

C.1 PIE TESTSET

The original PIE test set consists 978 pairs drawn from 41 coding problems. We identify two major
issues that hinder fair and efficient evaluation: (1) severe problem imbalance—over 600 pairs ori-
giante from just 3 problems; and (2) redundancy in test cases— the official 104 test cases include
many exact or near-duplicate overlaps. Redundancy is especially problematic while we profile with
use gem5 to obtain stable runtime measurements, a process that can take multiple days in this set-
tings. Notably, the PIE authors also caution that practitioners may need to tailor a lighter-weight
evaluation to their setting.

0 5 10 15 20 25 30 35 40
Problem Index (sorted by frequency)

100

101

102

Nu
m

be
r o

f S
am

pl
es

 (l
og

 sc
al

e)

25% of instances
50% of instances
75% of instances

Figure 14:

We (i) rebalance the problem distribution by capping the number of examples per problem to at most
10, and (ii) remove redundant test cases by clustering candidate inputs using n-gram similarity and
discarding exact or highly similar duplicates. When more than 10 cases remain after de-duplication,

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

we prioritize official (public/private) cases over LLM-generated cases and retain up to 10 per prob-
lem. Our curated PIE test set comprises 255 evaluation instances, each accompanied by at most 10
carefully selected, non-redundant test cases. This refinement mitigates imbalance while preserving
task diversity, and substantially reduces the computational burden of gem5-based profiling.

C.2 CODEFORCE TESTSET

We construct an additional out-of-distribution benchmark from the Codeforce dataset. First we ex-
tract Codeforce data from deepmind/code contests, other source can be contaminated or
duplicated with CodeNet. To ensure consistency with our evaluation setting, we apply several filter-
ing steps: (i) retain only C++ solutions, (ii) require at least 10 available test cases (from public or
private sets, and (iii) discard problems with a time limit greater than 2 seconds. For each selected
problem, we uniformly sample up to 10 test cases, prioritizing public cases when available, and gen-
erate corresponding input–output files. We further sample up to 10 candidate solutions per problem
to form evaluation instances. Finally, we select 30 problems meeting these criteria, resulting in 300
code–test pairs accompanied by curated test cases. This procedure yields a balanced and computa-
tionally feasible Codeforces test set while preserving the diversity of problem domains and difficulty
levels.

D ADDITIONAL EXPERIMENTS & ANALYSIS

D.1 DETAILED ANALYSIS OF MAIN EXPERIMENT

We provide additional analysis of the results in Fig. 2. As expected, instruction-only prompting
yields relatively low performance since it represents the default baseline. Interestingly, however,
CoT underperforms even compared to instruction-only. This degradation mainly stems from ver-
bose debug outputs (e.g., cout << ‘‘time:’’) that increase runtime overhead. These findings
suggest that CoT prompting can be redundant for models such as Qwen-Coder, which are already
pretrained with multi-step reasoning capabilities.

Surprisingly, optimization-oriented baselines such as Supersonic and SBLLM also underperform
relative to generic prompting methods, largely due to their lower correctness as noted in the main
text. Even in the SBLLM paper Gao et al. (2025), for example, SBLLM achieved only a 1.22×
speedup under the Best@5 setting on the same PIE C++ test set (using ChatGPT), despite targeting
a similar distribution. Although our dataset was pruned, the distributional characteristics remain
consistent.

Supersonic’s reported performance in its paper (Chen et al., 2024) is not directly comparable since
the datasets differ, but it is worth noting that its speedups were lower than those of GPT-3.5-Turbo
and GPT-4 under standard instruction prompting. In contrast, our ECO framework combined with
Qwen2.5-Coder:7B significantly outperforms instruction-only prompting on both GPT-4o-mini and
GPT-o4-mini.

Overall, these results highlight the difficulty of achieving meaningful optimization gains, and
demonstrate that ECO is able to unlock substantial improvements in runtime efficiency using
prompting alone.

D.2 INDIRECT COMPARISON WITH FINE-TUNE METHOD

Table 6: Average performance of fine-tuning methods and ECO, reported with standard deviations
over 10 trials. We use Qwen2.5-coder:7b as an inference model.

Methods Best@1 Best@5

ACC(%) SP OPT(%) ACC(%) SP OPT(%)

Fine-tune (Shypula et al., 2024) 46.63 (±2.28) 2.23× (±0.22) 25.28 (±2.29) 79.65 (±0.83) 3.73× (±0.18) 52.12 (±1.00)

ECO 36.27 (±2.88) 2.15× (±0.11) 23.84 (±1.13) 74.24 (±1.46) 3.26× (±0.09) 48.04 (±1.17)

We do not directly compare ECO with fine-tuned models, as such comparisons are not entirely
fair (Shypula et al., 2024; Gao et al., 2025; Chen et al., 2024). Nevertheless, for reference, we con-

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

ducted additional fine-tuning experiments. We discuss fine-tuning separately for two main reasons.
First, its applicability is limited: it cannot be applied to closed-source models such as GPT-o4-mini,
preventing direct use with state-of-the-art systems. Second, it requires substantial GPU resources
and training time, making it impractical for rapid or large-scale deployment.

In our experiments, fine-tuning Qwen2.5-Coder-7B on the PIE HQ dataset yields a 3.73×
speedup—slightly higher than ECO guidance on the same model (3.26×), but still far below the
7.81× achieved with GPT-o4-mini using ECO. Overall, fine-tuning can provide modest gains under
narrow conditions, whereas ECO offers a more practical and broadly applicable solution that scales
effectively across models and settings.

D.3 SYMBOLIC ADVISOR DIRECTIVE QUALITY

We evaluate whether optimization methods can consistently resolve easy bottleneck cases by reap-
plying our slow I/O library usage detection rule—–one of the most frequent and apparent bottleneck
types—–to all outputs, regardless of their functional correctness. Specifically, we measure the pro-
portion of outputs in which the previously identified slow I/O bottleneck is no longer detected after
optimization.

Table 7: Accuracy and proportion of resolved I/O bottlenecks for different methods.
Methods ACC (%) Resolved Bottleneck (%)
Instruction 33.61 22.40
RAG 29.06 48.09
Supersonic 7.06 80.33
ECO (S) 48.59 78.14

As shown in TABLE 7, a substantial portion of these bottlenecks remains unresolved in the In-
struction and RAG methods, which lack the explicit capability to pinpoint where optimizations are
necessary. Interestingly, Supersonic, trained explicitly on slow–fast code pairs, shows some success
in identifying and removing inefficient patterns. However, it heavily fails to appropriately revise the
removed code segments, thereby breaking code functionality with 7.06% ACC. This suggests that
although data-driven learning can effectively highlight performance issues, it remains unreliable in
revisions without explicit guidance for how to optimize.

22

	Introduction
	Related works
	Proposed Framework
	ROI Distillation
	Symbolic Advisor
	ROI Retriever

	Empirical Studies
	Experimental Settings
	Models
	Baseline Methods
	Dataset
	Evaluation Metrics

	Comparison with Baselines
	Ablation Studies: Role of Submodules in ECO
	Generalizability of ECO
	Case Study

	Conclusions
	Detail of ECO
	ROI distillation
	Symbolic Advisor
	Inefficient Algorithms
	Suboptimal Data Structure Usage
	Inefficient Library Usage
	Inefficient Loop Usage

	ROI Retriever

	Implementation Details
	Prompt Format of ECO
	Prompt Format of Generic Prompting Baselines
	Detail Implementation Setting
	Implementation of Supersonic
	Implementation of SBLLM
	Implementation of Fine-tuning
	Implementation of Runtime Reasurements

	Dataset Details
	PIE Testset
	Codeforce Testset

	Additional Experiments & Analysis
	Detailed Analysis of Main Experiment
	Indirect Comparison with Fine-tune Method
	Symbolic Advisor Directive Quality

