
Learning to Walk Impartially on the Pareto Frontier
of Fairness, Privacy, and Utility

Abstract

Deploying machine learning (ML) models often requires both fairness and privacy
guarantees. Both objectives often present notable trade-offs with the accuracy of
the model—the primary focus of most applications. Thus, utility is prioritized
while privacy and fairness constraints are treated as simple hyperparameters. In this
work, we argue that by prioritizing one objective over others, we disregard more
favorable solutions where at least certain objectives could have been improved
without degrading any other. We adopt impartiality as a design principle: ML
pipelines should not favor one objective over another. We theoretically show that a
common ML pipeline design that features an unfairness mitigation step followed by
private training is non-impartial. Then, parting from the two most common privacy
frameworks for ML, we propose FairDP-SGD and FairPATE to train impartially
specified private and fair models. Because impartially specified models recover the
Pareto frontiers, i.e., the best trade-offs between different objectives, we show that
they yield significantly better trade-offs than models optimized for one objective
and hyperparameter-tuned for the others. Thus, our approach allows us to mitigate
tensions between objectives previously found incompatible.

1 Introduction

Acknowledging that machine learning (ML) models can pose risks to society, it is a reasonable
expectation that a regulatory body should produce technical specifications to curb the corresponding
societal risks. We study the "specification problem" for trustworthy ML where the regulator needs
to specify the minimal levels of guarantee for fairness, privacy, and utility (e.g. accuracy). This is
crucial when deploying ML models in critical contexts with high-stake decisions—such as medical
applications [16] and infrastructure planning with census data [8].

There are two broad approaches to combine fair and private learning: a) making DP-learning
algorithms fair [39, 40, 35], or b) integrating privacy constraints into bias mitigation methods [17]. In
practical implementations with either approach, however, not every objective receives equal attention:
often, one objective is optimized while others are considered as (hyper)parametrized constraints.

The “pre-selection bias” introduced by looking only at certain ranges of hyperparameters during
tuning which is necessary for practical reasons1 puts socially-salient choices at the behest of algorithm
designers and engineers. This can create potentially dangerous scenarios, such as introducing addi-
tional privacy leakage in the attempt to increase model fairness, or degrading fairness by introducing
privacy [10, 31]. To avoid the pre-selection bias, we argue for exposing the inherent trade-off between
the objectives by presenting a Pareto frontier. A Pareto frontier is the set of achievable guarantees for
all objectives with the property that improving any guarantee from this set requires that we degrade
the guarantee for another objective.

1This phenomenon is known as "omitted pay-off bias" in other contexts [20]
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Figure 1: Pre-selection of trustworthiness
parameters only recovers a portion of the
Pareto frontier. The remaining parts of fron-
tier (shaded blue) are never explored.

The Pareto frontier in Figure 1 helps demonstrate the
pre-selection bias: If we starts with specifying arbitrary
bounds on privacy budgets (ε ≤ 5), and fairness viola-
tions (γ ≤ 0.1), it can only recover a small portion of
the Pareto frontier (highlighted in pink). Presented with
these limited choices, we are forced to make suboptimal
decisions: had we explored the full Pareto frontier, we
could have achieved much better accuracy, possibly at a
modest cost to fairness, or privacy. Nevertheless, this is
a trade-off that we cannot observe, let alone choose, if we
do not have the full picture at hand.

To address the challenge of calculating an accurate Pareto
frontier, we propose to adopt impartiality as a principle:
our design should not explicitly or implicitly favour one
objective to another. Impartiality is easiest to satisfy when
our task can be reduced to a single optimization problem:
as long as all objectives are similarly weighted, we remain impartial because all objectives are
considered simultaneously. However, current methods that incorporate unfairness or privacy mit-
igations rarely fit into a simultaneous optimization setting. This is because they are implemented
at different points in an ML pipeline.

We provide an example of the drawbacks of a non-impartial design by theoretically showing that
adding a fairness pre-processing step before introducing privacy will degrade privacy guarantee.
Given that this design will also likely cause utility loss due to the introduction of the unfairness
mitigation and that it fails to provide fairness guarantees at inference-time, the design is Pareto-
inefficient—a result that we also verify empirically. Since there are currently only two major private
learning algorithms, namely DP-SGD and PATE, we leave exploring the Pareto efficiency of other
more general constructions for impartial private and fair ML pipelines to future work, and instead
focus our attention on designing impartial pipelines featuring these two frameworks.

We evaluate our resulting frameworks FairDP-SGD and FairPATE against a suite of non-impartial
approaches on multiple datasets and for different tasks. We find that our impartial designs often
produce improved results in at least one objective compared to the baselines, and therefore, naturally
surface the Pareto frontier—representing the irreconcilable trade-offs between various trustworthiness
objectives. Additionally, we show that the Pareto frontiers transfer between different datasets on the
same task. This means that producing recommendations for an operating point on the trustworthy
Pareto frontier is task and not data-dependent. As a consequence, regulators can provide specifications
even without access to the private or proprietary datasets they need to provide specifications for.

In summary, our contributions are as follows:

1. We adopt the principle of impartiality between fairness (demographic parity), privacy (dif-
ferential privacy), and utility. We present a theoretical result showcasing that demographic
parity pre-processing followed by private training will degrade the privacy guarantee.

2. We propose two methods (FairDP-SGD and FairPATE) that allow us to train impartially
and to recover the Pareto frontier between the objectives. The Pareto frontiers provide richer
representations of multi-objective ML trustworthiness.

3. We run an extensive empirical evaluation in several domain and datasets, including a medical
Chest Xray disease diagnosis dataset (CheXpert) with known fairness issues [4, 29]. We
provide interactive2 Pareto frontiers for various vision tasks. Our empirical results show
that FairPATE can improve accuracy up to 5% over non-impartial models through careful
privacy budget consumption.

2 Background

We denote the ML model for classification by θ, the features as (x, z) ∈ X × Z where X is the
domain of non-sensitive attributes, Z is the domain of the sensitive attribute (categorical variable).

2Anonymously made available at https://impartiality-ml.github.io/impartiality/
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The categorical class-label is denoted by y ∈ [1, . . . ,K]. We refer the interested reader to Appendix G
for a more thorough overview.

Fairness: Demographic Parity. We base our work on the fairness metric of multi-class demographic
parity which requires that ML models produce similar success rates (i.e., rate of predicting a desirable
outcome, such as getting a loan) for all sub-populations [9]. More formally, the demographic disparity
Γ(z, k) of subgroup z for class k is the difference between the probability of predicting class k for
the subgroup z and the probability of the same event for any other subgroup: Γ(z, k) := P[Ŷ = k |
Z = z]− P[Ŷ = k | Z ̸= z]. In practice, we estimate multi-class demographic disparity for class
k and subgroup z with: Γ̂(z, k) := |{Ŷ=k,Z=z}|

|{Z=z}| − |{Ŷ=k,Z ̸=z}|
|{Z ̸=z}| , where Ŷ = θ(x, z). We define

demographic parity when the worst-case demographic disparity between members and non-members
for any subgroup, and for any class is bounded by γ:

Definition 1 (γ-DemParity). For predictions Y with corresponding sensitive attributes Z to satisfy
γ-bounded demographic parity (γ-DemParity), it must be that for all z in Z and for all k in K, the
demographic disparity is at most γ: Γ(z, k) ≤ γ.

Differential Privacy. Differential privacy [13] is a framework to protect privacy of individuals when
analyzing their data. It achieves this by adding controlled noise to the algorithm used for analysis,
making it difficult to identify individual contributions while still providing useful statistical results.
More formally, (ε, δ)-differential privacy can be expressed as follows:

Definition 2 ((ε, δ)-Differential Privacy). LetM : D∗ → R be a randomized algorithm that satisfies
(ε, δ)-DP with ε ∈ R+ and δ ∈ [0, 1] if for all neighboring datasets D ∼ D′, i.e., datasets that
differ in only one data point, and for all possible subsets R ⊆ R of the result space it must hold that
P [M(D) ∈ R] ≤ eε · P [M(D′) ∈ R] + δ .

A natural way of integrating DP into the training process of ML models is by adding the controlled
noise to the model gradients as done in the Differential Private Stochastic Gradient Descent (DP-
SGD) algorithm [1]. Prior to noising the gradients, DP-SGD also implements a clipping operation
that limits the maximum norm of individual gradients. This ensures that no data point leaves too
significant impact on the model. Yet, training with clipping and noise can be challenging [11, 32].
As an alternative, the Private Aggregation of Teacher Ensemble (PATE) algorithm [26] considers
the training algorithm as a non-private black-box and introduces noise to the model outputs. More
concretely, PATE trains an ensemble of so-called teacher models on disjoint subsets of the private data
without any privacy protection. As a result, these teachers cannot be publicly exposed because they
would leak information about the private data. Instead, PATE utilizes them to label a public dataset
within an appropriately noised knowledge transfer process. Therefore, the teachers in the ensemble
each vote for a label for each public data point, and the final label is determined as a noisy argmax
over the teachers’ vote. A separate student model is then trained on the labeled public dataset and can
then be deployed publicly while the teachers are never externally exposed. We present more thorough
introductions to DP-SGD and PATE in Appendix G.

Pareto Efficiency. Let Θ be the set of all feasible ML models with an element θ ∈ Θ, where a
feasible model is one that is achievable through learning (optimization) over a given dataset. I is
the set of measurable objectives with loss value of objective i ∈ I denoted as ℓi(θ). For instance,
without loss of generality, ℓpriv = ε where ε (DP privacy budget), and ℓfair = Γ̂(z, k) (demographic
parity loss). Lower loss values are desirable for every objective.

Definition 3 (Pareto Efficiency). θ ∈ Θ is Pareto-efficient if there exists no θ′ ∈ Θ such that (a)
∀i ∈ I we have ℓi (θ

′) ≤ ℓi(θ), and that (b) for at least one objective j ∈ I the inequality is strict
ℓj (θ

′) < ℓj(θ).

3 In Search of Impartial Algorithms

We previously motivated that in designing a multi-objective trustworthy model, we should avoid
favoring one objective over the other. We called this the impartiality principle. We also mentioned
that perfect impartiality is achievable when we can optimize objectives simultaneously. However, this
is challenging in common machine learning pipeline designs where mitigations can be implemented
at different points in the ML pipeline.
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Next, we make this observation rigorous for at least one such design, namely when an unfairness
mitigation is implemented before executing a private training algorithm. Concretely, we show that
employing a common unfairness mitigation technique, namely pre-processing the training data to
equalize subpopulation rates, will degrade the privacy guarantee of any proceeding private learning
algorithm:
Theorem 1. Assume the training dataset D = {(x, z, y) | x ∈ X , z ∈ Z, y ∈ Y} is fed through the
demographic parity pre-processor Ppre following an ordering defined over the input space X . Let
Ppre enforce a maximum violation γ, and |Z| = 2. Suppose nowM is an (ε, δ) training mechanism,

thenM◦Ppre is (Kγε,Kγe
Kγεδ)-DP where Kγ = 2 +

⌈
2γ
1−γ

⌉
.

We provide the proof for Theorem 1 in Appendix F. This result highlights that fairness pre-processor
in a differentially private pipeline is likely Pareto-inefficient. Without concrete instantiations of the
algorithms involved, we cannot make a general claim about the Pareto efficiency of other constructions
of the trustworthy ML pipeline design. Therefore, in the rest of the paper, we focus on building
bespoke impartial pipelines. More concretely, we show how we can integrate unfairness mitigation
with impartiality in commonly used private learning pipelines.

3.1 FairDP-SGD

Optimizing for fairness on the private data during the training process increases the privacy costs [23]:
If we assess fairness on the private data, for example to obtain a regularization term that penalizes
unfair model predictions between sub-populations, this consumes from the privacy budget. The
budget could otherwise be spent, for instance, on more training iterations on the private data to yield
higher accuracy. In other words, integrating unfairness mitigations based on the private data obtains
fairness at the costs of privacy and utility. Hence, it is a non-impartial design that might degrade the
trade-offs between privacy, fairness, and utility.

We use this insight in our first algorithm that impartially integrates unfairness mitigation into a
private ML algorithm, namely FairDP-SGD, our fair extension of DP-SGD. FairDP-SGD indeed
relies on extending the private optimization process of DP-SGD with a Demographic Parity Fairness
Regularizer (DPFR) that depends on the current fairness violation. However, we avoid paying the
extra privacy cost for determining the fairness of the model during training, by estimating the fairness
violation—in our case, the demographic disparity—over a public unlabaled dataset Xpublic. As
consuming public data does not incur a privacy cost by principle [32], this allows to assess and
implement a fairness regularizer during training without increasing the privacy costs—therefore,
following the impartiality principle. The resulting demographic parity loss term, which can be added
to the standard loss function used for training, is given by:

DPFR(θ;Xpublic) = max
k

max
z

Γ̂(z, k) = max
k

max
z

{
|{Ŷ = k, Z = z}|
|{Z = z}| − |{Ŷ = k, Z ̸= z}|

|{Z ̸= z}|

}
(1)

where Ŷ = θ(Xpublic) is the prediction of the privately trained model θ on the features Xpublic of the
public dataset Dpublic.

The estimation of fairness violation with the DPFR in Equation (1) relies on the calculation of
a maximum over the classes and sensitive attributes. Yet, such maximum calculations are non-
differentiable and hence do not yield useful gradients during the optimization with DP-SGD. To
overcome this limitation, we propose to use a tempered softmax to approximate the maximum:
softmaxT (xi) =

exp xi/T∑
ĩ exp xi/T

, where T is the temperature. With small T (e.g. 0.01), this approx-
imation is close to the actual max but keeps the overall loss differentiable. During training with
FairDP-SGD, we add the DPFR to the original loss function with a weight λ. Note that λ is a hyper-
parameter. As with other hyper-parameters, to ensure impartiality and an accurate Pareto frontier, a
parameter sweep on λ is necessary. We emphasize that FairDP-SGD only requires unlabeled public
data to assess and mitigate demographic disparity. Since demographic parity only considers the
predicted label, having ground truth labels is redundant from a fairness angle. However, access to
public data with labels could provide utility gains [32], a discussion of which we defer to Appendix C.

Note that the privacy analysis of our FairDP-SGD entirely follows that of standard DP-SGD [1, 42].
This is because the fairness assessment at training time is performed on the public dataset, and the
post-processor operates on the test set.3 We present our final FairDP-SGD in Algorithm 6.

3Private learning exclusively bounds privacy leakage of the training data, as test data is known to an attacker.
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3.2 FairPATE

In PATE, similar to DP-SGD, we can obtain impartiality by simultaneously optimizing for privacy
and fairness. The privacy of standard PATE is introduced at the level of teacher aggregation during
the labeling of the public dataset. This labeling process has two components, the first part implements
a logic to reject queries if they incur too high privacy costs. The second part implements the privacy
guarantees for the queries that are actually answered by computing the labels as a noisy argmax over
all teachers’ votes on any given public data point.

We present FairPATE which introduces an unfairness mitigation to extend this private aggregation.
Therefore, we propose a new aggregation mechanism, namely Confident&Fair-GNMax (CF-GNMax,
see Algorithm 1) that extends PATE’s standard GNMax algorithm (Algorithm 4 in Appendix G.2)
with the idea of rejecting queries also due to their disparate impact on fairness.

Algorithm 1 – Confident&Fair-GNMax Aggrega-
tor
Input: query data point x, sensitive attribute z,

predicted class label k, subpopulation subclass
counts m : Z ×K 7→ Z≥0

Require: minimum count M , threshold T , noise
parameters σ1, σ2, fairness violation margin γ

1: if maxj{nj(x)}+N (0, σ2
1) ≥ T then

2: k ← argmaxj
{
nj(x) +N (0, σ2

2)
}

3: if
∑

k̃ m(z, k̃) < M then
4: m(z, k)← m(z, k) + 1
5: return k
6: else
7: if

(
m(z,k)+1

(
∑

k̃
m(z,k̃))+1

−
∑

z̃ ̸=z m(z̃,k)∑
z̃ ̸=z,k̃

m(z̃,k̃)

)
< γ

then
8: m(z, k)← m(z, k) + 1
9: return k

10: else
11: return ⊥
12: else
13: return ⊥

Concretely, CF-GNMax, integrates an addi-
tional demographic parity constraint within
the aggregator which allows rejecting queries
on the basis of fairness. The algorithm checks
potential violations of demographic dispar-
ity violations and maintains an upper bound
γ on them in the course of answering PATE
queries (Line 7 in Algorithm 1). The goal
is to bound the actual Γ(z, k)—here empiri-
cally estimated. Concretely, we measure de-
mographic disparity Γ̂(z, k) using the counter
m : Z × K 7→ Z≥0 which tracks per-class,
per-subgroup decisions.

Care must be taken to produce accurate
Γ(z, k) estimations: with few samples,
Γ̂(z, k) may be a poor estimator of Γ(z, k).
Therefore, we have a cold-start stage where
there are not yet enough samples to estimate
Γ̂(z) accurately. We avoid rejecting queries
due to the fairness constraint at this stage.
Concretely, we require at least, on average, M
samples from the query’s subgroup before we
reject a query on the basis of fairness (Line 3).

We note that the fairness mitigation in Fair-
PATE occurs almost exactly at the same point
as the privacy-utility balancing mechanism. This allows us to get as close as possible to the "simulta-
neous optimization" of objectives which, as we argued in Section 1, is the most impartial design. We
extensively discuss our design choice in Appendix A and empirically validate it in Appendix B.

Privacy Analysis. FairPATE’s query phase (CF-GNMAX, Algorithm 1) has two main differences to
PATE’s (C-GNMAX, Algorithm 4). First, FairPATE involves a cold-start stage during which fairness
violations estimators are inaccurate. During this stage, no fairness-related rejection takes place until
all subgroups have at least M samples. Second, in FairPATE, queries can be rejected for two reasons.
Reason 1: Similar to standard PATE, queries that incur too high privacy costs are rejected. Reason 2:
Additionally, queries whose answer would violate the fairness (γ-DemParity) constraint are rejected,
as well. During the cold-start stage (Line 3), FairPATE follows the privacy analysis of PATE’s
(Appendix E). Afterwards, we adjust the privacy analysis to account for the rejection due to fairness.
We can calculate FairPATE’s probability of answering query qi as:

P[answering qi(z, k)] =

{
0 m(z,k)+1

(
∑

k̃ m(z,k̃))+1
−

∑
z̃ ̸=z m(z̃,k)∑

z̃ ̸=z,k̃ m(z̃,k̃)
> γ

q̃ otherwise
where k is the noisy argmax

(Line 2), q̃ is calculated using Proposition 1 in Appendix E (as before), and the left side of the
condition is simply calculating the new tentative demographic disparity violation Γ(z, k) if the query
is accepted. Note that in PATE (and by extension FairPATE) queries come from a public (and therefore
non-private) dataset, and are labeled, noised and only then used to increment m(z, k). Therefore,
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since the value of the counter m(z, k) is only conditioned on the value of the noisy argmax, by the
post-processing property of DP [12], m(z, k) and by extension, Line 7 do not add any additional
privacy cost, i.e., rejecting queries on the basis of fairness, does not incur additional privacy cost.

3.3 Improving the accuracy-trustworthy trade-off with IDP3

Algorithm 2 Inference-time Demographic
Parity Post-Processor (IDP3)
Input: data point x, sensitive attribute z, pre-

dicted label ŷ, subpopulation-class counts
m : Z × Y 7→ Z≥0

Require: minimum count M , fairness viola-
tion margin γ

1: if
∑

ỹ m(z, ỹ) < M then
2: m(z, y)← m(z, ŷ) + 1
3: return ŷ
4: else
5: if

(
m(z,ŷ)+1

(
∑

ỹ m(z,ỹ))+1
−

∑
z̃ ̸=z m(z̃,ŷ)∑

z̃ ̸=z,ỹ m(z̃,ỹ)

)
< γ

then
6: m(z, y)← m(z, ŷ) + 1
7: return ŷ
8: else
9: return ⊥

Optimizing for fairness during the training process
does not guarantee that fairness is obtained at infer-
ence time [3]. As we highlight in Section 2, demo-
graphic parity requires the same success rates in the
predictions of different sub-populations. With ade-
quate training, we can ensure that the model learns
to generate similar success rates on different sub-
populations. However, this guarantee is not ensured
with differential privacy, due to label shifts (in Ap-
pendix D we present an example of how DP noising
causes label shifts) Indeed, prior work using different
privacy and fairness notions has found a "post-hoc"
correction to be necessary to maintain the fairness
guarantee despite privatization [24].

To guarantee that the model maintains its required
degree of fairness at inference-time, we can enforce
using our Inference-time Demographic Parity Post-
Processor (IDP3) highlighted in Algorithm 2. Our
design is inspired by our fairness mitigation in Fair-
PATE, but is model-agnostic and generally applicable. At its core, IDP3 transforms the classification
task to a one with the reject option (often referred to as selective classification [15]). This adds
another dimension to the accuracy-fairness-privacy Pareto frontier: coverage, which is the proportion
of queries that are answered at inference-time. We consider coverage an independent utility metric4.

At inference time, our IDP3 keeps track of the counts of positive predictions per sub-populations.
For every query posed to the model, it first calculates the demographic disparity based on the current
counters. Then, it returns a label only if the resulting success rate of the current sub-population (in
comparison to the other sub-populations) stays within the tolerated fairness violation. Since, at the
beginning, the model has not returned enough predictions to reliably estimate the per-sub-population
success rates, we propose a cold-start phase (line 1-3) during which all queries are answered.

4 Empirical Evaluation

We evaluate FairPATE and FairDP-SGD on multiple datasets and derive the Pareto frontiers between
privacy, utility, and fairness. Our Pareto frontiers represent the set of all Pareto efficient solutions
obtained through our methods and characterize the best trade-offs that can be achieved between the
three objectives. Based on the Pareto frontiers, we answer the following research questions (RQs):
RQ1: Can we achieve better trade-offs through impartial design? RQ2: How do FairPATE and
FairDP-SGD differ in performance? RQ3: Can a regulatory body carry out baseline specification
without direct access to the private data?

Experimental Setup. We evaluate five datasets, namely ColorMNIST [2], CelebA [22], FairFace [19],
UTKFace[41], and CheXpert[16]. See Table 2 in Appendix I for details on the datasets.

We introduce two PATE-based non-impartial baselines to compare FairPATE and FairDP-SGD. Both
baselines use the standard PATE’s query selection process. PATE-Spre incorporates an unfairness
pre-processor for the Student model to ensure the maximum fairness gap in student training data is
within the constraint. This pre-filters the training data points on which the student will be trained
on (see Algorithm 3 for a full description of the pre-processor). PATE-Sin, on the other hand,

4If any trade-off with coverage is not an acceptable outcome for a particular application, we introduce an
alternative mechanism in Appendix D that takes advantage of public data and calibrates the model post-training
but pre-inference. This design maintains the privacy budget while reducing (but not necessarily eliminating) the
fairness gap at inference-time albeit with a trade-off with model accuracy, as expected.
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Setting Method IDP3 ε-(↓)
Budget

Max (↓)
Disparity Acc. (↑) Cov. (↑) ε-(↓)

Budget
Max (↓)

Disparity Acc. (↑) Cov. (↑)

ColorMNIST UTKFace

Fair

FairPATE ✓ 2.88 0.01 85.6 0.62 8.65 0.01 83.8 0.78
FairDP-SGD ✓ 1.0 0.01 85.4 0.64 8.0 0.01 81.2 0.72
PATE-Spre ✓ 2.88 0.01 80.9 0.69 10.0 0.01 82.6 0.82
PATE-Sin ✓ 2.88 0.01 84.6 0.63 10.0 0.01 81.4 0.74

Private

FairPATE ✓ 1.0 0.10 73.8 1.00 2.0 0.13 74.0 0.98
FairDP-SGD ✓ 1.0 0.10 88.8 1.00 2.0 0.15 75.3 0.99
PATE-Spre ✓ 1.0 0.10 73.1 1.00 2.0 0.14 72.3 0.99
PATE-Sin ✓ 1.0 0.10 74.2 0.98 2.0 0.15 72.3 0.99
PATE - 1.0 0.10 73.8 1.00 2.0 0.14 72.5 0.98
DP-SGD - 1.0 0.10 88.8 1.00 2.0 0.16 75.3 1.0

Accurate

FairPATE ✓ 2.87 0.10 88.5 0.99 10.0 0.2 82.9 0.97
FairDP-SGD ✓ 2.0 0.10 88.6 0.99 10.0 0.1 81.3 0.96
PATE-Spre ✓ 2.88 0.10 88.1 1.0 10.0 0.01 82.6 0.82
PATE-Sin ✓ 3.0 0.10 88.5 0.99 10.0 0.15 81.6 0.92
PATE - 2.88 0.11 88.1 1.0 10.0 0.25 81.4 1.0
DP-SGD - 2.0 0.10 88.6 1.0 10.0 0.14 80.6 1.0

Table 1: Baseline Comparisons6. For a fair comparisons, for both baselines PATE-Spre, and PATE-Sin, we
apply our post-processor IDP3. PATE-Sin additionally includes the regularization for the student training, while
PATE-Spre employs a student pre-processor. We also report results obtained with the standard versions of PATE
and DP-SGD without any fairness mitigation. The values reported are obtained by first generating the whole
Pareto frontier, then choosing points from the surface that satisfy following criteria: selecting one objective that
we want to optimize for (Setting) and putting a hard constraint on its achieved value, e.g., ε = 1 for "Private",
and then reporting the achieved guarantees for all other objectives. Note that standard PATE and DP-SGD cannot
specifically optimize for fairness, hence they are not reported for that subsection. FairPATE and FairDP-SGD
achieve the highest accuracy in most settings.

incorporates our fairness regularizer (Equation (1)) as an unfairness in-processor for the Student
during training. This implies training the student on all the queries labeled by the teachers, but setting
additional constraints during training. Both baselines serve to understand the impact of implementing
fairness after the noisy aggregation of teachers, i.e., after privacy in the ML pipeline5.

In FairPATE, we apply the fairness constraint γ, whereas in FairDP-SGD, we have an unconstrained
optimization problem and control the regularization factor λ. In the experiments, we use λ between 0
and 10. In our results, we report the achieved privacy budget ε, the fairness gap γ, as well as model
accuracy, and coverage, i.e., the fraction of data points at inference that obtains a label by the model.

RQ1: FairPATE Pareto-dominates similar designs in most contexts. To assess the improvement
of trade-offs from our impartial design, we compare FairPATE and FairDP-SGD against the two
non-impartial PATE-based baselines PATE-Spre and PATE-Sin. We also compare against standard
PATE and standard DP-SGD (i.e., without any unfairness mitigation) to understand the inherent
fairness and utility obtained through the private algorithms we build on. Finally, since our algorithms
(FairPATE and FairDP-SGD) take advantage of the post-processor introduced in Section 3.3; for
a fair comparison, we enforce IDP3 for all four baselines. In Appendix B, we present an ablation
study on the importance of the post-processing which highlights that post-processing helps satisfy
small fairness constraints while preserving model accuracy at the cost of answering fewer queries.
Our final models’ results for both our methods and the baselines are reported in Table 1 and Figure 2.

The values in Table 1 highlight that FairPATE and FairDP-SGD obtain the highest accuracy in
most settings. In comparing FairPATE and PATE-Spre in Figure 2, note that their only difference
is that in FairPATE fairness mitigation occurs at the same point as the privacy mechanism whereas
in PATE-Spre, it occurs after the privacy mechanism of the PATE. We see that at low privacy and
fairness regimes, FairPATE always outperforms PATE-Spre in terms of utility and has higher coverage
in most cases. This highlights the benefit of our impartial design: by rejecting queries because of
the fairness constraints at the point where privacy is also implemented, we can save privacy budget.
With the saved budget, other queries can be answered that then help improve the student model’s

5We provide a detailed comparison between more PATE-based baselines in Appendix A
6We note that choosing results to tabulate can lead to pre-selection bias, and therefore non-impartiality.

Thereforre, our prefered representation of our results is the (interactive) Pareto frontier plots. Nevertheless, we
present tabulated data for quick comparisons with a clear selection criteria for the results.
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utility. In higher privacy budget and higher fairness violation regions, both methods achieve similar
performances. This is because the fairness constraint is too loose to activate FairPATE’s fairness
mechanism. From Table 1, we also understand that FairPATE and PATE-Sin perform similarly in
larger fairness violation regions but FairPATE performs better in smaller fairness violation regions
with better accuracy and coverage. This is again because with larger fairness violation (higher γ),
FairPATE’s rejection mechanism is not activated. However, in the smaller-violation regions, the
impartial design shows its advantage. Overall, FairPATE outperforms PATE-Spre and PATE-Sin in
most regions.

RQ2: FairPATE performs better than FairDP-SGD, especially with higher privacy budgets.
We compare our two methods, FairPATE and FairDP-SGD in Table 1. We observe that while
they yield similar accuracy in low privacy budget regions, FairPATE provides better accuracy in
higher privacy budget regions. Additionally, in low fairness violation regions, FairPATE achieves
higher accuracy and higher coverage. In general, we find that tuning the fairness regularizer λ for
FairDP-SGD is more difficult than tuning the FairPATE counterpart γ in CF-GNMAX. This leads to
a smoother Pareto frontier for FairPATE than FairDP-SGD. Theoretically, the reason for this is two
fold: the upperbound γ is enforced as a constraint, and not as a highly non-convex loss that is the
demographic parity fairness regularizer (DPFR) in Equation (1). Furthermore, FairPATE’s constraint
is applied in the query (sample) space–effectively as a sampler–whereas DPFL is applied in (student
model’s) weight space. Empirically, we attribute this to the fact that performance (accuracy) of PATE
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(FairPATE) is meaningfully correlated with the number of answered queries (See Appendix J). This
allows for more fine-grained control on privacy costs, and thus a smoother Pareto frontier.

RQ3: Specification without direct data access is possible. Returning to the specification problem
where regulators need to specify trustworthiness guarantee as we introduced in the introduction, we
explore whether the regulators can produce good recommendations even if they do not have access
to the actual private data. We compare the Pareto frontier surfaces obtained on different datasets
for multiple tasks. Figure 3a and Figure 3b plots the Pareto frontier surface from FairPATE on
CelebA and CheXpert respectively. Figure 4 plots the Pareto frontier from FairPATE on UTKFace
and FairFace. Although the Pareto frontier surfaces show similar trends, the shapes in Figure 3 are
dataset dependent: different datasets show different trade-offs between the objectives. However, we
notice that the Pareto frontier surface shapes on UTKFace and FairFace in Figure 4 are very similar.
The classification task on both datasets is gender, with race as the sensitive attribute. This shows that
a regulator could use the Pareto frontier from a different dataset (which they have access to) to design
baseline specifications—as long as the datasets share the same data domain and task.

5 Related Work

Due to the multiplicity of algorithmic fairness notions, as well as privacy; defining a benchmark to
study fairness-privacy-utility trade-offs is difficult. In this paper, we focus on discovering the Pareto
frontier between demographic parity fairness (a group fairness notion [5]) and (central) differential
privacy [13]. While these objectives have a significant impact on each other, each has been defined
and developed independently of one another. In contrast, there is a lineage of work that provides
new definitions of fairness by characterizing the disparate impact of employing a privacy-aware
mechanism [33, 35]. While useful in their own regard, these new definitions do not alleviate the
burden of satisfying established notions of fairness, such as demographic parity. Additionally, other
works consider these trade-off for particular classes of ML pipeline desings (such as federated
learning [27, 21]), that are important in their use-case, but are not generally applicable.

Conceptually, the closest works to our setup are Jagielski et al. [17] and Mozannar et al. [24]
which assume different privacy notions. Both works strive to provide differential privacy (DP)
with respect to the sensitive attribute. Jagielski et al. [17] assumes a central notion of DP, while
Mozannar et al. [24] assume a local DP notion [6]. Importantly, neither of the definitions used provide
classical (approximate) differential privacy [13] guarantees with respect to all features. Furthermore,
algorithms provided in these works, consider linear models and are optimized over tabular data.
FairPATE and FairDP-SGD, on the other hand, are scalable deep-learning algorithms.

6 Limitations & Conclusions

Ensuring trustworthy machine learning is inherently a multi-objective endeavour. We acknowledge
that as algorithm designers, we are only a part of the decision making process which likely occurs
before any human judgement is passed. As such, it is imperative that (i) our design decisions should
not limit (human) decision maker choices; and (ii) not favour one objective over another. In this paper,
we addressed the first challenge by providing a rich trade-off representation between the different
objectives (fairness, privacy, and accuracy) in the form of a Pareto frontier. Our answer to the second
challenge emerged as a design principle, which we called the impartiality principle. We showed that
models that break the impartiality principle are likely not on the Pareto frontier.

Moving forward, the intuition behind our framework is pervasive to different formulations of what
it means to be trustworthy. However, our current work assumes demographic parity as the fairness
notion. We acknowledge that other fairness notions (group-, individual (metric)- and causality-based),
as well as other privacy notions are prevalent in the literature. It is important to note that in this paper
we argued for impartiality in the decision-theoretic sense, that is assuming we already have good
metrics on which we can build ML pipelines that do not favour one objective or another. The search
for impartial metrics is a separate research endeavour. As long as we can formulate a measure of
fairness, FairPATE and FairDP-SGD can be adopted to implement them subject to availability of
labeled or unlabeled public data. We leave their study to future work.
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Algorithm 3 Pre-Processor Ppre

Input: data point x, sensitive attribute z, true label y,
subpopulation-class counts m : Z × Y 7→ Z≥0

Require: minimum count M , fairness violation margin
γ

1: if
∑

ỹ m(z, ỹ) < M then
2: m(z, y)← m(z, y) + 1
3: return x
4: else
5: if

(
m(z,ŷ)+1

(
∑

ỹ m(z,ỹ))+1
−

∑
z̃ ̸=z m(z̃,ŷ)∑

z̃ ̸=z,ỹ m(z̃,ỹ)

)
< γ

then
6: m(z, y)← m(z, y) + 1
7: return x
8: else
9: return ⊥

Figure 5: Demographic Parity Mitigation. We depict the placement of the fairness pre and post-processing
(left). The pre-processor Ppre (Algorithm 3, right) operates before the training of the model θ is started, i.e.
it takes place in sample space X . A post-processor such as IDP3 (see Algorithm 2) is applied at inference
time and operates in label space Y . In Appendix D we introduce a fairness calibrator that operates in model
weight space θ ∈ Θ. In Algorithm 3, subpopulation-class count m refers to the number of data points per-class
within each of the subpopulation groups. It is used to empirically estimate the demographic disparity Γ̂(z, k),
m : Z × K 7→ Z≥0. After a cold-start phase (line 1-3), we start rejecting queries for x if we have to few
samples from a given class.
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7 Appendices

A Integrating Unfairness Mitigation into PATE

In the following, we analyze other joints in private ML pipelines where fairness could be integrated.
DP-SGD has only a few degrees of freedom where fairness measures can be implemented, so we turn
our study to the more complex PATE framework. The modular design of PATE (see Figure 6) allows
us multiple points of fairness integration. Note that these are not necessarily impartial designs.

Teacher-level 1 , 2 , and 3 . All three designs are non-impartial as they place fairness before
privacy mitigation. Since in PATE, privacy is ensured at the level of aggregated teachers and not
individual teachers, all the three alternatives can be seen as instances of the fairness pre-processor Ppre
in Theorem 1 from the final student model’s perspective. As a result, they all suffer from additional
privacy leakage; on the level of teacher data 1 , model 2 , or vote 3 .

Student-level 5 , 6 , and 7 . These designs place privacy before fairness, therefore, they are also
non-impartial. Thanks to differential privacy post-processing, the privacy budget remains unchanged.
However, the drawbacks are in terms of fairness and accuracy and caused by the label shifts. We
discussed the former in Section 3.3. Regarding the impact on accuracy, remember that in the query

12

https://proceedings.mlr.press/v97/zhu19c.html


Sensitive
Data

Data 1 Teacher 1

. . . . . .

Data 3 Teacher 3

Data 4 Teacher 4

Data 5 Teacher 5

Aggregate
Teacher Student

Inference
Queries

Labeled
Data

Unlabeled
Data

Public data
Private Model

1 2 3 4 5 6 7

8

9

Figure 6: Various ways to integrate fairness in PATE: For teachers: Pre- 1 /In- 2 /Post-Processing 3 .
For the student: Pre- 5 /In- 6 /Post-Processing 7 . A fair supervised privacy-preserving algorithm (e.g., Our
FairDP-SGD) replaces the private model (grey stripes) in-processing 8 , while a pre-processor applies to
sensitive data directly 9 . Dashed line separates public and private data domains. Our FairPATE’s intervention
occurs at 4 .

phase of PATE, we incur a much smaller privacy cost for rejecting a query than for answering it
(see Section 2). Now consider the scenario in 5 where a query is labeled but is ultimately rejected
due to a fairness violation. In this case, the extra budget incurred for answering the query is wasted.
Saving this budget could have allowed us to answer more queries, thus enabling higher student
accuracy. Therefore, 5 is not Pareto-efficient. We note that our demographic parity post-processor
in Algorithm 2 is suitable for 7 but, on its own, still inefficient. We demonstrate the inefficiencies
of 6 and 7 empirically in Appendix B.

B Ablation: Is post-processing necessary for ensuring tight fairness gaps?

We evaluate FairPATE and FairDP-SGD models without the post-processor and show results in
Figure 7 and Figure 8, respectively. In FairPATE, without the post-processor, results span a smaller
range of fairness violations. This is expected as FairPATE introduces a label shift in its training
data that should be mirrored in the test data by the post-processor. The post-processor, thus, ensures
that tighter fairness gaps are feasible. With FairDP-SGD, using the DPFR, we can achieve smaller
fairness violations but the model utility decreases accordingly. In order to reach very small fairness
gaps, we lose all utility as the model becomes increasingly inaccurate. The post-processor can
preserve utility while satisfying tight fairness constraints at the cost of answering slightly fewer
queries.

C Pre-Training with Public Data

Access to labeled public data can provide utility gains without increasing the privacy budget. This has
been shown, for instance, for feature engineering using public data followed by training on private
data [32]. Public pre-training is a common technique for training large private language models.

The assumption in all such models, is access to good-quality labeled public training sets. When this
assumption holds, as it does often benchmark visiona and language tasks, non-private pre-training
with public data followed by private training would likely be the Pareto-efficient solution due to
the much improved utility gains from non-private pre-training. These utility gains, in turn, can
compensate for a fairness mitigation post-processor either in the model weight space [28] or in the
output space (such as IDP3 in Section 3.3). As a result, these models could achieve a better overal
trade-off, and end up being the Pareto-efficient choice.

If the assumption of access to large amounts of labeled data for pre-training does not hold; what is
the best course of action? What if we only have access to a relatively small amount of public labeled
data? In this case, what we can do is to move the use of public data from the pre-training stage to a
fine-tuning stage. We call this fairness-focused fine-tuning stage, fairness calibration and discuss it
in detail in Appendix D.1.
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fairness constraints while preserving model accuracy at the cost of answering fewer queries.
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D Calibrating for Fairness Using Public Data
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Figure 9: Despite pre-processing, differential privacy
causes label shifts that may break the pre-specified
fairness constraint.

Label Shift. In Section 3.3, we discussed how
by adding noise to make outputs indistinguish-
able, differential privacy can cause label shifts
that can break previously achieved fairness vi-
olation guarantees. Figure 9 shows a concrete
example of this, where we show the ordained
level of fairness gap against the measured gap at
the output of a pre-processed PATE model (PATE-
Spre in blue). Clearly the model is not meeting
it ordained fairness guarantee. A smaller epsilon
leads to higher nosing levels; and as a result it can
lead to a bigger fairness gap. However, this is not
a consistent trend since by nature, DP noising is
a probablistic mechanism. In any case, a certain
ordained level of fairness violations is not guar-
anteed. In Figure 9 we also show the same model
now with the inference-time demographic parity
post-processor (IDP3 in orange), which manages
to keep the fairness gaps at least as low as the or-
dained level. As discussed in Section 3.3, this is
by turning the classifier into a selective classifier
and introducing a trade-off with coverage. In the
next section, we discuss how this trade-off can be avoided using a calibration scheme.

D.1 Public Data Calibration
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Figure 10: Public Data Calibration trade-off fairness for accuracy without impacting the privacy budget

Our goal is to reduce the fairness gap post differential privacy noising, but avoid a trade-off with
coverage. We start by making two key observations: (a) in private training, we care about the privacy
of training data but not inference data (since inference data features are already known to users of
the models), and (b) in providing fairness guarantees for models, we care about the fairness gaps at
inference-time—indeed, the training fairness-gaps are taken only as a proxy for test-time gaps, with
an expectation that fairness properties of the trained model generalizes at test time.

In Figure 11a, we present a fairness calibration mechanism that takes advantage of public data to
adjust the model post-training but pre-inference. The effect is that no privacy budget is spent as data
used to calibrate the model is public, and on the other hand, the model exhibits better fairness gaps as
a result.

Our empirical result in Figure 10 on UTKFace using FairPATE without IDP3, shows that calibration
helps reduce the fairness gap by about 9% (from 24% to 15%) with less than 2% drop in accuracy,
for the model on the Pareto frontier shown in Figure 10 (right).
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Figure 11: Fairness Calibration using Public Data. Note that model ω ∈ W can be any model, for instance a
FairPATE student, or FairDP-SGD or, any other trained model

Our more extensive Pareto frontier in Figure 11b confirms our findings. In low privacy and low-
fairness violation regions in particular, we see the largest gains from calibration. Calibration allows
us to achieve better utility for the same privacy and fairness level of guarantees. In one case, for
ε = 1.48 and γ = 0.14 we achieve a 9% improvement to accuracy (from 69% to 78%).

E Standard PATE Privacy Analysis

Papernot et al. [25] use Rényi differential privacy (RDP) [23] for accounting of the privacy budget
expanded in answering each query. While the true privacy cost for each query is not known, an
upporbound is estimated and summed over the course of the query phase. Answering queries stop
when a pre-defined budget is exhausted. A student model is then trained on the answered queries.

Theorem 2 establishes that the upperbound is a function of the probability of not answering a query i
with the plurality vote i∗. Unsurprisingly, this privacy cost function must tends to zero when the said
event is very unlikely (i.e., strong consensus):

Theorem 2 (From [25]). LetM be a randomized algorithm with (µ1, ε1)−RDP and (µ2, ε2)−
RDP guarantees and suppose that given a dataset D, there exists a likely outcome i∗ such that
Pr [M(D) ̸= i∗] ≤ q̃. Then the data-dependent Rényi differential privacy forM of order λ ≤ µ1, µ2

at D is bounded by a function of q̃, µ1, ε1, µ2, ε2, which approaches 0 as q̃ → 0.

In practice, Proposition 1 is used to find q̃i in Theorem 2, and µ1, µ2 are optimized to achieve the
lowest upperbound on the privacy cost of each query for every order λ of RDP.

Proposition 1 (From [25]). For any i∗ ∈ [m], we have Pr [Mσ(D) ̸= i∗] ≤ 1
2

∑
i̸=i∗ erfc

(
ni∗−ni

2σ

)
,

where erfc is the complementary error function.

F Privacy Cost of Pre-Processing

Fairness pre-processing can lead to increased privacy costs during private training. A consequence
of differential privacy is the privacy consumption regime [23]: just by observing the data for the
purposes of equalizing a fairness measure between subpopulations, we may consume from the privacy
budget.7 This budget could otherwise be spent, for instance, on more training passes on data to yield
higher accuracy. We formalize this observation in Theorem 1 for the case when a universal ordering
exists.

7Note that this disadvantage does not hold for fairness post-processing which does not incur additional
privacy costs due to the differential privacy post-processing property.
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Proof. We will proceed to show that using a pre-processing that sorts through data following some
ordering defined over the whole input space 8 and, for any given label y, removes the last datapoints
(following the ordering) in the majority subclass until it satisfies the γ-constraint will produce datasets
at most 2 +Kγ = 2 +

⌈
2γ
1−γ

⌉
apart. One then applies group privacy to obtain the final claim of the

theorem.

Let D′ = D ∪ x∗, and the label of x∗ is y∗. We now proceed to analyze how far apart Ppre(D) and
Ppre(D

′) can be. First note, they are the same on all labels not y∗, so we need only consider the
difference on this label. First, let m be the size of the minority subclass for label y∗ and let m+ c
be the admissible size of the majority class. That is, we have m

2m+c −
m+c
2m+c < γ. From this we

can conclude c = ⌊ γ
1−γ 2m⌋. Given this relation between the size of majority class a function of the

minority class, we proceed to go through all logical cases to show the maximum difference is as
claimed above.

Suppose x∗ belongs to the minority subclass for y∗ in D. Then we have m → m + 1 and hence
c→ ⌊ γ

1−γ 2(m+ 1)⌋. Thus we see Ppre(D
′) now admits one more point in the minority class of y∗

and at most 1 + ⌈ 2γ
1−γ ⌉ more points to the the majority subclass (note we do not replace existing

points as we follow the ordering on the input space). Thus the max change between Ppre(D) and
Ppre(D

′) is 2 + ⌈ 2γ
1−γ ⌉

Now suppose x∗ belongs to majority subclass for y∗ in D. In this case we have either x∗ appears
early enough in the ordering that it now replaces another point in the majority class when applying P ,
or it is not added. In the former case, this mean we have changed Ppre(D) by 2: we first removed a
point and then added x∗. In the latter case, x∗ did not get added into the dataset, more so because of
the ordering, Ppre(D

′) = Ppre(D) as the order of points before x∗ is still the same. So in this case,
once again, the change between Ppre(D) and Ppre(D

′) is less than 2 + ⌈ 2γ
1−γ ⌉.

Thus we have by group privacy (see lemma 2.2 in [37]) thatM◦Ppre gives the claimed DP-guarantee,
as we set Kγ = 2 + ⌈ 2γ

1−γ ⌉

G Extended Background

In the following, we assume a classification task where a model θ : X × Z 7→ K maps the features
(x, z) ∈ X × Z to a label y ∈ K, where: X is the domain of non-sensitive attributes, Z is the
domain of the sensitive attribute (as a categorical variable), and K is the domain of the output label
(also categorical). Without loss of generality, we will assume Z = [Z] (i.e. Z = {1, . . . , Z}) and
K = [K].

G.1 Fairness Notion: Demographic Parity

We note that in a multi-class setting (i.e., K > 2), and even in the binary-class settings where
the problem does not admit a reasonable notion of the “desirable outcome”, there can be multiple
formulations of the notion of demographic parity (Appendix H). We adopt a natural extension of
the well-known binary notion that requires equal rates for any class. Let us first define demographic
disparity:

The demographic disparity Γ(z, k) of subgroup z for class k is the difference between the probability
of predicting class k for the subgroup z and the probability of the same event for any other subgroup:
Γ(z, k) := P[Ŷ = k | Z = z]− P[Ŷ = k | Z ̸= z].

G.2 Privacy Notion: Differential Privacy

In (ε, δ)-DP, the parameter ε bounds the maximal difference between the analysis results on the
neighboring datasets while the second parameter δ represents a relaxation of the bound by allowing

8An example of such ordering would be to order images based on their pixel values in some specified order
of height, width and channel starting by checking the first pixel, then the second pixel, and so on.
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the results to vary more than the factor eε. Hence, the total privacy loss is bounded by ε with a
probability of at least 1− δ [13]. Note that smaller ε correspond to better privacy guarantees for the
data.

PATE. (Figure 6), takes advantage of an unlabeled public data set Dpublic to conserve the privacy of
sensitive data Dprivate. Therefore, an ensemble of B teacher models {θi}Bi=1 is trained using disjoint
subsets of Dprivate and their knowledge is transferred to a separate student model that can be publicly
released. For the knowledge transfer, trained teachers label query data points from Dpublic. The final la-
bel of the query is a noisy argmax over the vote counts as N(x) = argmax

(
[ni,j ]B×K +N (0, σ2

1)
)
,

where K is the number of classes (see aggregation in Algorithm 4). Noising the argmax enables to
implement the privacy guarantees according to DP.

PATE estimates the privacy cost of answering queries (i.e. labeling data) through teachers consensus
with higher consensus revealing less information about individual teachers, and, thereby, consuming
less privacy costs. To take advantage of the fact that estimating consensus is less privacy-costly than
answering queries, PATE rejects high-cost queries to save on the privacy budget (see Algorithm 4).
Both consensus estimation and vote aggregation (answering the query) are noised with N (0, σ2

1) and
N (0, σ2

2), respectively; where σ1, σ2 are tuned for better student accuracy.

We include the standard Confident-GNMax Aggregator Algorithm from [25] below.

Algorithm 4 – Confident-GNMax Aggregator (from [25]) given a query, consensus among teachers
is first estimated in a privacy-preserving way to then only reveal confident teacher predictions.

Require: input x, threshold T , noise parameters σ1 and σ2

1: if maxj{
∑

i∈[B] ni,j(x)}+N (0, σ2
1) ≥ T then

2: return argmaxj{
∑

i∈[B] ni,j(x) +N (0, σ2
2)}

3: else
4: return ⊥

DP-SGD extends standard stochastic gradient descent (SGD) with two additional steps to implement
privacy guarantees. First, the individual data points’ gradients are clipped to a maximum gradient
norm bound C. This bounds the gradients’ sensitivity, which ensures that no data points can incur
changes to the model above magnitude C. After clipping, Gaussian noise with scale N (0, σ2C2)
is added to mini-batches of clipped gradients. The noise distribution has zero mean and standard
deviation proportional to a pre-defined noise multiplier σ and the clipping norm C. We detail the
DP-SGD algorithm in Algorithm 5.

To yield tighter privacy bounds, DP-SGD implements a privacy amplification through subsampling [7]:
Training data points are sampled into mini-batches with a Poisson sampling per training iteration,
in contrast to grouping the entire training data into mini-batches prior to every epoch as done in
standard SGD. Hence, the traditional concept of an epoch (as a full training on the entire training
data) does not exist in DP-SGD. Instead, each data point is sampled in every iteration according to
a given sampling probability. Privacy amplification through subsampling allows to scale down the
noise σ by the factor L/N (with L being the expected mini-batch size, N the total number of data
points, and L≪ N ) while still ensuring the same ε as with σ [18] which is crucial to the practical
performance (privacy-utility trade-offs) of DP-SGD.

We include the standard DP-SGD algorithm (Algorithm 5) and FairDP-SGD (Algorithm 6) here for
comparison. Details of the FairDP-SGD algorithm is discussed in Section 3.1.

H Fairness Metrics and Evaluations

We evaluate and compare different ways to measure the demographic parity gap, Γ(z, k). We then
select one method to use in our implementations. We explore three different methods that compare
the ratio between different sensitive groups to evaluate the chosen fairness metric.
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Algorithm 5 Standard DP-SGD, adapted from [1].

Require: Private training set Dprv = {(xi, yi) | i ∈ [Nprv]}, loss function L(θ, xi), Parameters:
learning rate ηt, noise scale σ, group size L, gradient norm bound C.

1: Initialize θ0 randomly
2: for t ∈ [T ] do
3: Sample mini-batch Lt with sampling probability L/N ▷ Poisson sampling
4: For each i ∈ Lt, compute gt(xi)← ∇θtL(θt, xi) ▷ Compute gradient
5: ḡt(xi)← gt(xi)/max

(
1, ∥gt(xi)∥2

C

)
▷ Clip gradient

6: g̃t ← 1
|Lt|

(∑
i ḡt(xi) +N

(
0, σ2C2I

))
▷ Add noise

7: θt+1 ← θt − ηtg̃t ▷ Descent
8: Output θT and compute the overall privacy cost (ε, δ) using a privacy accounting method.

Algorithm 6 FairDP-SGD

Require: Private training set Dprv = {(xi, yi) | i ∈ [Nprv]}, Public calibration set Dpub = {(x̃i, zi) |
i ∈ [Npub]}, loss function L(θ) = 1

N

∑
i L(θ, xi), Demographic Parity loss DPFR(θ;Dpub).

Parameters: learning rate ηt, noise scale σ, group size L, gradient norm bound C.
1: Initialize θ0 randomly
2: for t ∈ [T ] do
3: Sample mini-batch Lt with sampling probability L/N ▷ Poisson sampling
4: For each i ∈ Lt, compute gt(xi)← ∇θt (L(θt, xi) + λDPFR(θt;Dpub)) ▷ Compute

gradient
5: ḡt(xi)← gt(xi)/max

(
1, ∥gt(xi)∥2

C

)
▷ Clip gradient

6: g̃t ← 1
|Lt|

(∑
i ḡt(xi) +N

(
0, σ2C2I

))
▷ Add noise

7: θt+1 ← θt − ηtg̃t ▷ Descent
8: Output θT and compute the overall privacy cost (ε, δ) using a privacy accounting method.

H.1 Demographic Parity Gap Measurements

1. Between Groups: This method computes and bounds the maximum difference between two
pairs of sensitive groups.

Γ(z, k) := maxz̃|P[Ŷ = k|Z = z]− P[Ŷ = k | Z = z̃]|. (2)

2. To Overall: This method computes and bounds the difference between each sensitive group
and the total of all groups.

Γ(z, k) := P[Ŷ = k|Z = z]− P[Ŷ = k]. (3)

3. To Overall Without Double Counting: This method computes and bounds the difference
between each sensitive group and the total of all other groups.

Γ(z, k) := P[Ŷ = k|Z = z]− P[Ŷ = k | Z ̸= z]. (4)

To compare the three methods, we generate some synthetic data and run queries on them using each
method to compare the results.

H.2 Evaluation Results

We first generate synthetic data with two classes and three sensitive groups. The distribution of the
generated data is shown below.

Class/Sensitive Group 0 1 2

0 324 420 445
1 287 274 250
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H.2.1 By Group

Total number of queries answered = 1661

Class/Sensitive Group 0 1 2

0 315 364 361
1 191 213 217

H.2.2 To Overall

Total number of queries answered = 1832

Class/Sensitive Group 0 1 2

0 324 395 361
1 234 271 247

H.2.3 To Overall Without Double Counting

Total number of queries answered = 1772

Class/Sensitive Group 0 1 2

0 318 371 342
1 218 244 229

H.3 Conclusion

We decide to use the third method, to overall without double counting, as the comparison method. It
is a balance between the by group method and the to overall method. We do not want the comparison
method to be too strict, because then our algorithm would reject most queries due to fairness. On the
other hand, we also do not want it to be too lenient that the fairness constraint is not enforced. One
major drawback of the to overall method is that if most of the data is from one sensitive group, then
that sensitive group would have too much influence over the overall class label distribution.

I Experimental Setup

We split each dataset into a training set, an unlabeled set, and a test set. The sizes of these three
datasets are determined based on the dataset sizes specified in original PATE [26, 25], and adapted to
the difficulties of the prediction tasks. For CheXpert, we only use the data from two races that have
the most data. The other groups have too few data points for our fairness intervention to perform
effectively.

In FairPATE, the training set is further split into equal partitions to train the teacher models. We
train as many teachers as possible while still achieving good ensemble accuracy overall. In FairDP-
SGD, the whole training set is used to train the private model. The test set is used to evaluate the
performance of the final model.

I.1 FairPATE

For FairPATE, we first train the teacher ensemble models, then query them with the public dataset,
and aggregate their predictions using the FairPATE algorithm. The student model is trained on
the public dataset with obtained labels. The model architectures, as well as the parameters used
in querying the teacher models are detailed in Table 2 for each dataset, respectively. The model
architectures are chosen by referencing what is used in related works for each dataset.

We tune the amount of noise injected into the aggregation mechanism of FairPATE by varying the
standard deviation of the Gaussian distribution while ensuring the accuracy of the labels produced by
the teacher ensemble models to maximize the accuracy of student models. We used a small validation
set taken from the dataset to tune the FairPATE hyperparameters by training student models with
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different combinations of the hyperparameters and selecting the values that lead to the highest student
model accuracy. The validation set is taken from the original training set and the size is half the size
of the unlabeled set. When tuning, we vary the threshold T between 0.5 to 1.5 multiplied by the
number of teacher models, σ1 between 0 to the number of teacher models, and σ2 between 0 to 0.5
multipled by the number of teacher models.

We train the models using Adam optimizer. We use cross entropy loss function when training on
ColorMNIST and binary cross entropy with logits on all the other datasets.

I.2 FairDP-SGD

FairDP-SGD models are trained with the same model architecture as indicated in the Table 2.

We train the models with different λ values defined in the fairness mechanism to reflect different
levels of fairness interventions. The range we use is between 0 and 10, with 0 being completely
turning off the fairness mechanism.

We train the models using SGD optimizer. We use cross entropy loss function combined with
Demographic Parity Loss (DPL) when training on ColorMNIST and binary cross entropy with logits
with DPL on all the other datasets.

Dataset Prediction Task C Sens. Attr. SG Total U Model Number of Teachers T σ1 σ2

ColorMNIST [2] Digit 10 Color 2 60 000 1 000 Convolutional Network (Table 3) 200 120 110 20
CelebA [22] Smiling 2 Gender 2 202 599 9 000 Convolutional Network (Table 4) 150 130 110 10
FairFace [19] Gender 2 Race 7 97 698 5 000 Pretrained ResNet50 50 30 30 10
UTKFace [41] Gender 2 Race 5 23 705 1 500 Pretrained ResNet50 100 50 40 15
CheXpert[16] [30] Disease 2 Race 3 152 847 4 000 Pretrained DenseNet121 50 30 20 10

Table 2: Datasets used for evaluation. Abbreviations: C: number of classes in the main task; SG: number
of sensitive groups; U: number of unlabeled samples for the student training . Summary of parameters used
in training and querying the teacher models for each dataset. The selection of σ1 is in accordance with the
threshold T . The selection process of σ2, is shown in the Appendix I.The pre-trained models are all pre-trained
on ImageNet. We use the most recent versions from PyTorch.

Layer Description

Conv2D with ReLU (3, 20, 5, 1)
Max Pooling (2, 2)
Conv2D with ReLU (20, 50, 5, 1)
MaxPool (2, 2)
Fully Connected 1 (4*4*50, 500)
Fully Connected 2 (500, 10)

Table 3: Convolutional network architecture used
in ColorMNIST experiments.

Layer Description

Conv2D (3, 64, 3, 1)
Max Pooling (2, 2)
ReLUS
Conv2D (64, 128, 3, 1)
Max Pooling (2, 2)
ReLUS
Conv2D (128, 256, 3, 1)
Max Pooling (2, 2)
ReLUS
Conv2D (256, 512, 3, 1)
Max Pooling (2, 2)
ReLUS
Fully Connected 1 (14 * 14 * 512, 1024)
Fully Connected 2 (1024, 256)
Fully Connected 2 (256, 2)

Table 4: Convolutional network architecture used
in CelebA experiments.

I.3 Wall Time Measurements

We measure the wall time of running FairPATE and FairDP-SGD compared to PATE and DP-SGD.
The setting we use and the results are shown in Table 5.

J Relationship between Number of Queries Answered and Student Accuracy

We run a set of query experiments to investigate the trade-offs between privacy, fairness, and model
utility. We do not train the student model for these querying experiments, but they will be trained later
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Method ϵ γ Fairness Factor Batch Size Number of Epochs Time

FairPATE 4 0.01 N/A 100 30 6min 14sec
PATE 4 N/A N/A 100 30 6min 43sec
FairDP-SGD 4 N/A 5 80 30 2h 27min 26sec
DP-SGD 4 N/A N/A 80 30 1h 18min 28sec

Table 5: Wall time measurements of different methods. All experiments use UTKFace dataset.

on. Instead, we use the number of queries answered as an estimate of the student model utility since
an adequate number of queries needs to be answered to train a student model with good accuracy.In
the first set of experiments, we run queries with varying consensus threshold T and fairness violation
threshold ρfair at fixed privacy budget ε, and record the number of queries answered. We query
the teacher ensemble models with varying privacy budget ε and fairness violation threshold ρfair.
For these queries, we measure the maximum fairness violation γ, the achieved ε, and the number of
queries answered. Using these query results, we also select and plot the points on the Pareto frontier.
The results for the UTKFace dataset are shown in Figure 12. The results on the other datasets are
found in Figure 14.

Figure 12 (left) plots the the trade-offs between the maximum fairness violation γ, the achieved ε,
and the number of queries answered. As expected, we observe that increasing ε allows more queries
to be answered. Relaxing ρfair at fixed ε also leads to more queries being answered, although the
effect is not as apparent. Additionally, when ε is very low, smaller γ is not achievable due to having
too few queries answered and the fairness regulation mechanism not being activated as a result.

Figure 12 (right) plots the Pareto frontier of the query results. We plot the privacy constraint, fairness
constraint, and the number of queries answered as a 3D plot to better visualize the tension between
these different objectives. The figure gives similar insights as the other figure. Another observation is
that although smaller γ is achievable when a higher number of queries are answered, at some point
the fairness constraint needs to be relaxed in order to answer more queries.
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Figure 12: Query Experiment Results on UTKFace. Experimental setup from Table 2. The left figure shows
the the trade-offs between the maximum ensemble query fairness violation γens, the achieved ε, and the number
of queries answered. The right figure plots the Pareto-frontier. With increasing privacy budget, more queries can
be answered. The same holds when loosening the fairness constraint. At small privacy budgets, small fairness
constraint might not be achievable.

We run an additional set of experiments of querying the teacher ensemble models to investigate the
effect of different parameters on the number of queries answered. For these experiments, we run
queries with varying consensus threshold T and fairness violation threshold ρfair at fixed privacy
budget ε, and record the number of queries answered. Appendix J plots the results on UTKFace, and
the results on other datasets are in Figure 15. The graph shows the effect of varying the consensus
threshold T and fairness violation threshold ρfair on the number of queries answered. We observe
that decreasing T leads to a higher number of queries answered. Similarly, increasing ρfair to a
certain extent also leads to more queries being answered. Once the fairness violation threshold is
too large, further relaxing the constraint would not lead to answering more queries, at which point
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no more queries are rejected due to the fairness constraint. Furthermore, at a fairness constraint of
0, there is a sharp decrease in the number of queries answered. The reason behind this is that if no
fairness violation is allowed, no more queries can be answered after the fairness gap reaches 0, as any
additional query would break the balance and increase the gap.

K Extended Related Work: Integrating Fairness into Private Learning

In the literature, different fairness notions have been implemented within DP-SGD and PATE
frameworks.

Fairness and DP-SGD. It has been shown that training with DP-SGD leads to disparate accuracy
decrease over different data sub-groups [31, 14]. In particular, model accuracy decreases more for
underrepresented data from the tails of the distribution [31]. Farrand et al. [14] presented similar
findings and observed that privacy can even have a negative impact on the model fairness when the
training data is only slightly imbalanced. As potential reasons for this, the authors identified the
clipping operation in DP-SGD. Since underrepresented data has larger gradients, these gradients
are more effected by the clipping operation, and thereby, this data experiences a higher information
loss [14]. To limit this effect, Xu et al. [39] proposed adapting the clipping threshold in DP-SGD
individually for each sensitive group. They showed how their approach limits the disparate impact of
DP-SGD on different groups. However, due to higher information leakage form larger gradients, their
method requires larger perturbations. In a similar vein, Zhang et al. [40] propose early stopping to
mitigate the negative impact of DP-SGD on model fairness. The authors observe that DP-SGD makes
ML model training less stable which they leverage to interrupt training once high-enough fairness is
achieved, without a significant loss in accuracy. However, all these methods solely manage fairness as
an indirect byproduct of adapting the private training mechanism. Neither of them integrates explicit
fairness constraints to yield formal guarantees, such as done in this work.

Tran et al. [34] proposed applying a Lagrangian dual approach for solving the joint optimization of
fairness and privacy in ML. Therefore, they rely on a fairness constraint plus adaptive clipping and
make the computations of the primal and dual update steps differentially private w.r.t. the considered
sensitive attributes. However, their method adds a significant computational overhead, especially for
larger ML models and mini-batch sizes (increase of up to factor 100).

Fairness and PATE. When comparing the fairness impact of DP-SGD and PATE, Uniyal et al. [36]
observed that PATE induces lower accuracy parity. The authors reason that this might be because
the diversity among the teachers allows to cancel out their individual fairness issues. However, their
observations only hold for very small numbers of teachers (10, in contrast to 250 proposed for MNIST
in the original PATE paper [26]). This however yields sub-optimal privacy-utility trade-offs since in
PATE, stronger privacy guarantees can be obtained when using more teachers which allows for the
injection of more noise. In the work closest to ours, Tran et al. [35] study fairness properties of PATE
and identified both algorithmic properties of the training (number of teachers, regularizer, privacy
noise), and properties of the student data (magnitude of the input norm, and distance to the decision
boundary) as factors influencing prediction fairness. To mitigate tensions, they proposed releasing

Figure 13: Query Experiment Results on UTKFace. The figure plots the effect of consensus threshold T
and fairness threshold γthreshold on the number of queries answered. We observe that the number of queries
answered increases with smaller T and larger γthreshold.
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b) CelebA
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c) FairFace
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d) CheXpert
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Figure 14: Query experiments on other datasets. Setup described in Table 2 and discussion is in Appendix J.

the teacher models’ prediction histogram as soft labels to train the student model. However, it has
been shown that releasing the histograms leaks significant amounts of private information [38], which
makes their method leaks privacy above the promised DP guarantees. In contrast, in this work, we
integrate fairness in the aggregation process while keeping the teachers’ votes private, and, thereby
providing the promised privacy guarantees.
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(a) ColorMNIST (b) CelebA

(c) FairFace (d) CheXpert

Figure 15: Query experiments on other datasets. Setup described in Table 2 and discussion is in Appendix J. We
found that in order to obtain the best results on student accuracy, some datasets require addition of significant
noise σ1, which leads to differences in surfaces’ shapes.
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