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Abstract

Recent advances in Vision Transformers (ViT) have demon-
strated notable efficacy in large-scale image recognition by
splitting 2D images into a fixed quantity of patches, treat-
ing each patch as a distinct token. Generally, augmenting
the number of tokens used for image representation enhances
prediction accuracy, albeit at the expense of heightened com-
putational demands due to the quadratic complexity of these
models. Therefore, to strike a judicious balance between ac-
curacy and computational efficiency, conventional practice
involves empirically setting the token count to values such as
14 × 14. This study contends that the optimal token count
depends on the inherent characteristics of each individual
image. Our empirical investigations show that adapting the
patch partitioning to each image ”hardness” leads to an oper-
ating point in accuracy vs.complexity tradeoff. Consequently,
we advocate a dynamic adjustment of the token count based
on the unique attributes of each input image. In our experi-
mental study on the ImageNet-1K dataset, we observed a no-
table phenomenon: a smaller 7 × 7 Transformer model out-
performs a larger 14 × 14 counterpart, excelling not only in
computational efficiency (FLOPs) but also in top-1 accu-
racy. This result challenges conventional assumptions regard-
ing the relationship between model size and performance,
prompting a reconsideration of scalability in image recogni-
tion tasks.

Introduction
Recent accomplishments of Transformer models within nat-
ural language processing (NLP) (Vaswani et al. 2017) have
instigated further investigations in computer vision (Doso-
vitskiy et al. 2020). As a result, there is a growing inter-
est in vision Transformers (ViT) across diverse visual tasks,
such as image classification (Dosovitskiy et al. 2020; Jiang
et al. 2021), object detection (Liu et al. 2021; Wang et al.
2021a), and semantic segmentation (Zheng et al. 2021; Xie
et al. 2021). ViT accomplishes this by splitting a 2D image
into a sequence of patches and using linear projection to em-
bed these patches into 1D tokens, facilitating the modeling
of extensive dependencies among tokens.

In essence, the performance of a ViT model is closely tied
to the number of input tokens (Dosovitskiy et al. 2020; Wang
et al. 2021b), which quadratically increases the computa-
tional cost of ViT. Lately, there have been efforts to remedy
this issue by proposing numerous compression approaches

Figure 1: Accuracy vs. complexity diagram of our experi-
ment. Cascading models are depicted with a square and to-
ken pruning models with a triangle. The ”Oracle” depicted
with a star is an upper bound for the theoretical peak, achiev-
able only if we assign the optimal partitioning for all images.

to unearth redundant tokens for ViTs. these include PS-ViT
(Tang et al. 2022), which enhances Transformer efficiency
through a top-down token pruning paradigm, DynamicViT
(Rao et al. 2021) and IA-RED2 (Pan et al. 2021) that both in-
troduce a lightweight prediction module to estimate the im-
portance score of each token and discard low-score tokens.
Additionally, there also exist approaches that prune tokens
according to their importance score like EViT (Liang et al.
2022). DGE (Song et al. 2021), in contrast to discarding to-
kens directly, introduces sparse queries to reduce the output
token number.

Finally, approaches like DVT (Wang et al. 2021b) and CF-
ViT (Chen et al. 2023) focus on cascading multiple ViTs
with increasing number of tokens and then uses an early
exiting policy at each stage based on the confidence of the
model. If the confidence is higher than a predefined thresh-
old, the model classifies the input sample at the present
stage, Conversely, if confidence is bellow the threshold, the
input is forwarded to a downstream model that requires a
finer partitioning of the image, thereby requiring additional



(a) DVT (Wang et al. 2021b)
on DeiT-S (Touvron et al. 2021)
backbone.

(b) CF-ViT (Chen et al. 2023)
on DeiT-S (Touvron et al. 2021)
backbone.

Figure 2: Number of samples exiting at different exits with
varying computational budgets for both DVT (Wang et al.
2021b) (left) and CF-ViT. (Chen et al. 2023) (right)

computational resources. However, the primary challenge
associated with cascading models lies in the redundancy of
sample processing. In simpler terms, ”hard” samples are of-
ten classified in the final stages, requiring both the compu-
tational resources of the last stage and those of the upstream
stages which lead to a processing redundancy.

To remedy this limitation, we raised the following ques-
tions in our study: What is the percentage of samples classi-
fied by late stages? If this percentage is significant, is there a
way to get an optimal patch partitioning (i.e. token number)
depending on each instance ”hardness”?

Both DVT (Wang et al. 2021b) and CF-ViT (Chen et al.
2023) answer the first question and they clearly show that the
percentages are high. In figure 2, we have reproduced the
experiments for the sake of visualization using their open-
source code.

Our work tackles the second question. Typically, there is
a common belief that Transformers with greater complexity,
indicated by a higher number of tokens, generally exhibit
better performance in terms of accuracy compared to less
complex ones. Through our experimental study, we came
across a counter intuitive but rather interesting observation:
When carefully selecting instances to be processed by one of
both Transformer stages (i.e. 7× 7 or 14× 14) based on dis-
tance metrics between each model’s input and the true class
vector, we get theoretical peak performance of 82.50% for
2.2 GFLOPs on DeiT (Touvron et al. 2021) as depicted in
figure 1, surpassing the DeiT-S14×14 baseline and state-of-
the-art in both accuracy and computational complexity. The
main contribution of this paper unfolds as follows:

• Transformers exhibit enhanced efficiency by opting for
an adaptive patch partitioning strategy for individual in-
put samples. This leads a theoretical peak performance
on ImageNet-1K that outperforms DeiT-S14×14 baseline.

Related work
This section reviews related work about vision transformers
and dynamic compression.

Vision Transformers
Transformers (Vaswani et al. 2017; Dosovitskiy et al. 2020)
have emerged as a reliable alternative to convolutional net-

works (CNN) for image recognition and are now compet-
itive on the standard ImageNet benchmark (Deng et al.
2009). DeiT (Touvron et al. 2021) explores ViT’s train-
ing strategy and suggests a knowledge distillation-based ap-
proach, surpassing the performance of ResNet (He et al.
2016). T2T-ViT (Yuan et al. 2021) repeatedly merges adja-
cent tokens into a single token, aiming to decrease the token
length and gather spatial context. LocalViT (Li et al. 2021)
incorporates depthwise convolutions to improve the ViTs’
ability to model local features.

The main drawback of these approaches is the complexity
of the multi-head attention (MHA) that constitutes the ele-
mentary building block of Transformers. Indeed, when con-
sidering two image embeddings, (X1, X2) ∈ RN×d, where
N represents the number of tokens and d the embedding
dimension, the attention module facilitates the exchange of
information between them, this process is initiated by gen-
erating a query (Q), a key (K), and a value (V) using the
following equations:

Q = WQX1,

K = WKX2,

V = WV X2,

Here, Q,K, V ∈ RN×d. WQ,WK ,WV ∈ RN×N repre-
sent the parameters that the model learns. Subsequently, the
process involves message aggregation, achieved by calculat-
ing attention scores between the query and key as follows:

Attention(Q,K, V ) = softmax
[
QKT

√
d

]
V

The outlined procedure manifests a computational com-
plexity of O(d × N2). This quadratic complexity hinders
the integration and the embedding of theses models on edge
devices due to high computational demands. Given that most
of the works outlined above represent each image with a
fixed number of tokens, this leads to allocating resources
regardless of wheather input images are ”easy” or ”hard”
to classify. In our work, we advocate for dynamic partition-
ing based on image ”hardness”, hence adaptively allocating
computational resources according to input sample’s ”hard-
ness” level.

Dynamic compression
Dynamic compression adjusts the computational graph
based on input images. Token pruning methods (Liang et al.
2022; Long et al. 2023) dynamically discard tokens consid-
ered unimportant during inference by applying a top-k oper-
ation on the classification token [CLS] to select the K tokens
that receive the highest attention. In contrast, Evo-ViT (Xu
et al. 2022) retains unimportant tokens, albeit with a lower
computational budget for updates.

Another family of methods named cascading methods can
act on the model’s depth by ending inference based on its
confidence (Huang et al. 2017; Wang et al. 2021b; Chen
et al. 2023).

We show this in figure 2 which depicts the number of
samples exiting at different exits with varying computational



(a) Cosine similarity (b) Manhattan distance (c) Euclidean distance

(d) Cosine similarity (e) Manhattan distance (f) Euclidean distance

Figure 3: Distribution of ImageNet-1K 50K validation instances for the three metrics. (a) (b) and (c) are P7×7 predictions and
(d) (e) (f) are P14×14 predictions. Orange bars represent the number of images correctly predicted for a given value of the metric
and the blue ones are the number of miss-predicted images. the vetical dotted red line represents a confidence threashold on a
given metric to better discriminate the instances

budget for both DVT (Wang et al. 2021b) and CF-ViT (Chen
et al. 2023). In DVT (Wang et al. 2021b) a three-stage ar-
chitecture (7 × 7, 10 × 10, 14 × 14) is proposed. The au-
thors explicitly demonstrate that for their best accuracy/bud-
get trade-off (2.5 GFLOPs), 40% of input samples are pro-
cessed by the third stage. Essentially, all stages redundantly
handle 40% of samples, incurring significant computational
expense. This redundancy is also depicted in CF-ViT (Chen
et al. 2023), featuring a two-stage architecture. Here, the
authors reveal that for their best accuracy/budget trade-off
(2.5 GFLOPs), 48% of samples are processed in the second
stage, indicating that almost half of these samples are redun-
dantly processed by the current and upstream stage, exacer-
bating computational inefficiency.

While token pruning has shown interesting results in re-
ducing computational complexity, selecting region of inter-
est via token selection reduces context, which has a large
effect on accuracy on small backbones with fewer input to-
kens (Haurum et al. 2023). The main drawback of these ap-
proaches is the computational redundancy when processing
inputs in late stages.

Methodology
Instance hardness
Since 40% of instances are classified by the third exit for a
budget of 2.5 GFLOPs, processing samples in a sequential
multi-stage scheme seems inefficient. Instead, We can de-
sign an architecture that considers the complexity of each

instance and directs it toward the appropriate target model.
In other words, we could predict instance’s ”hardness” be-
fore processing it. We made the following hypothesis:

There is a link between instance hardness and the model’s
confidence

The true class vector in our case refers to the ground truth
for every prediction, i.e. the one-hot encoded vector for each
sample. The model’s confidence refers to the prediction, i.e
the softmax probability vector of dimension Nc classes:

σ(z)i =
ezi∑Nc

j=1 e
zj

for i = 1, 2, . . . , Nc (1)

where zi is the output vector of the model and Nc the number
of classes, hence, the softmax vector is a 1D dimension such
as σ(z)i ∈ R1×Nc .

We selected three metrics to measure the model’s confi-
dence on each individual sample. The Euclidean distance,
the manhattan distance and the cosine similarity respec-
tively:

DEucl =

√√√√ Nc∑
i=1

(σ(z)i − ci)
2

DManh =

Nc∑
i=1

∥ σ(z)i − ci∥



S =
σ(z)i · ci

∥σ(z)i∥ · ∥ci∥
Here, ci ∈ R1×Nc is the one-hot encoded vector, i.e. the

ground truth of each sample. These metrics are the most used
in the literature to compute disparities between model’s pre-
diction (i.e softmax vector) and the true class vector.

Experiments
We ran an experiments on the small Transformer P7×7 and
P14×14

1 in order to analyze the distribution of well classi-
fied and misclassified instances (i.e predicted or not) from
the validation set relative to their metrics value. For each
inference on validation set, we compute the distance be-
tween P7×7 prediction’s output (i.e., softmax vector) and its
corresponding class vector, as well as the distance between
P14×14 prediction’s output and its corresponding class vec-
tor.

These distributions are illustrated in figure 3 for the three
metrics. In orange, the well-classified instances and in blue
the misclassified ones. We notice that for the three metrics,
the closer the distance to center of class, the more correct the
predictions are. In other words, most of the well classified
predictions are situated on the left side of the distribution
for the euclidean distance and Manhattan and on the right
side of the distribution for the similarity2.

If we focus on the euclidean distance and perform another
experiment in which we move the vertical red-dotted thresh-
old line from left to right, each time, we infer all the in-
stances that are situated on the left side of the line with the
small model (P7×7) and the remaining ones with the large
model (P14×14 ), the key idea is to process the well classi-
fied instances with the small model and the remaining ones
with the large model. After each inference, we get the ac-
curacy (in %) and complexity (in GFLOPs), we move the
vertical line (i.e, threshold) to the right with a step of 0.01
and repeat the experience until we infer for all the distances.
Finally, we get an accuracy vs. complexity diagram depicted
by figure 1 where we expect an increasing concave curve.

The two extreme points on the graph represent the per-
formance of the small model (extreme left red point) and
the large model (extreme right blue point). In between, the
performance of the hybrid model according to the thresh-
old, instead of being concave and increasing, it has an in-
terval where its accuracy (i.e theoretical peak) in figure 1
exceeds the accuracy of the large model, which is intrigu-
ing. In other words, P7×7 classifies some instances better
than P14×14, this results in an increase of accuracy of 2.5%
while significantly reducing computational complexity by
52% in FLOPs. The theoretical result also surpasses both
DVT (Wang et al. 2021b) in its most competitive budget con-
figuration and CF-ViT (Chen et al. 2023) in accuracy (+2.1%
and +1.8% resp.) while achieving a decent computational
complexity reduction (12% and 15.3% resp.) in FLOPs.

1From now on, the small model will be denoted P7×7 and the
large model P14×14, where 7 × 7 and 14 × 14 depict the number
of patches in input images. P stands for patch

2Cosine similarity is inversely proportional to the distance

At last, compared to other state-of-the-art approaches that
rely on token pruning as EViT (Liang et al. 2022) or Dynam-
icViT (Rao et al. 2021), we clearly see that the theoretical re-
sult also surpasses them in both accuracy and computational
complexity.

These results left us with a two questions, what can ex-
plain such a interesting behavior? And how can we achieve
the theoretical peak performance?

Future work
Since this is a work-in-progress, our forthcoming efforts will
focus on addressing the two preceding questions. Next sec-
tions will give a first clue on what could explain this behav-
ior and how we can reproduce the theoretical result.

Peak explanation The validation set may contain samples
with varying levels of complexity. The P7×7 model might
excels in capturing features and patterns in simpler images
where a more coarse-grained representation suffices. Indeed,
certain patterns or structures within the images might align
more favorably with the receptive field of a P7×7 token
grid. On the other hand, the P14×14 model, being more fine-
grained could struggle to gain a significant advantage in such
cases.

There are efforts in the literature to define instance ”hard-
ness” and tries to quantify using various metrics (Paiva et al.
2022; Lorena, Paiva, and Prudêncio 2023; Jiang et al. 2022).
A next step will be to use these metrics and establish corre-
lations between them and their model’s predictions.

Theoretical peak performance To reproduce the theoret-
ical peak performance, we are currently thinking about an
approach based on a lightweight ”router” model. This model
will have to predict the optimal partitioning for each instance
before directing the instance to be processed on its corre-
sponding Transformer target. It will be trained on Dtrain

such as: Dtrain = {image, PN} where P0 = 0 is the label of
P7×7 and P1 = 1 is the label of P14×14. More precisely, the
router’s task is to pre-process instances and determine which
target model should process them based on inherent visual
characteristics. This means that for a ”hard to classify” in-
stance that requires more computation, the router predicts
P1, in contrast, for an ”easy to classify” instance which re-
quires less computation, the router predicts P0.

Conclusion
Our investigation criticizes redundancies in multi-stage ar-
chitectures, particularly due to the sequential processing of
samples and the associated memory requirements. We ad-
dressed an important question concerning instance hardness
and its management by models with varying complexities.
Notably, our study showcased an interesting phenomenon:
when considering P7×7 and P14×14, a theoretical peak per-
formance score outperformed the baseline P14×14 in ac-
curacy while reducing computational complexity by nearly
52%. Since this is a work-in-progress, our next objective
is to design an approach for attaining the theoretical score.
This involves training a model capable of distinguishing be-
tween hard and easy samples, while efficiently utilizing the
appropriate level of computation.
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