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Abstract
Adam is known to perform significantly better than Stochastic Gradient Descent in language mod-
els, a phenomenon for which a number of explanations have been proposed. In this work, we
revisit this ”optimizer gap” through a series of comprehensively tuned baseline training runs for
language modeling with transformers. We exhaustively study how momentum, gradient clipping,
and batch size affect the gap between SGD and Adam. Our empirical findings show that SGD with
momentum can actually perform similarly to Adam in small-batch settings, if tuned correctly. We
revisit existing explanations for Adam’s advantage, including heavy-tailed class imbalance, direc-
tional sharpness, and Hessian heterogeneity, which struggle to explain these findings. Finally, by
analyzing our transformer training runs and a simple quadratic setting, we provide new insights
into what makes SGD perform poorly - showing that batch size has to be a necessary component
of any explanation of the optimizer gap.

1. Introduction

The Adam optimizer [11] is used pervasively in deep learning, especially when training large lan-
guage models (LMs) [3, 6, 15] and vision transformers [12]. Industrial practice relies on the success
of Adam, and thousands of GPU hours every day are spent at large companies using Adam to train
their next-generation large language models.

Even new work looking to dethrone Adam, such as Muon [10, 16, 24, 25] and SOAP [28] (A
Shampoo variant [7]) still rely on plain Adam with weight decay (AdamW, Loshchilov and Hutter
[19]) for critical subsets of parameters, such as normalization layers, text embeddings and prediction
heads. This new world is still a bit surprising. Up until around the year 2018, the Adam optimizer
was in occasional use, but stochastic gradient descent (SGD) with momentum was known to lead to
neural networks with better accuracy on unseen data [29], relegating Adam to speed runs and quick
comparisons [5]. Yet, language modeling with transformers has, from the start, required Adam,
with models even being reported as untrainable with SGD–especially due to critical parameters.

Over the years, researchers have offered a number of compelling explanations regarding the
remarkable performance of Adam compared to SGD in language modeling, attributing it either
to the peculiar noisy nature of text data [31, 32] or the heterogeneous structure [22, 33] of the
transformer architecture [27] – comprising semantically and structurally dissimilar layers. While
most hypotheses regarding the Adam-SGD gap seem correct to some extent [2], a crucial insight was
recently brought to light by Kunstner et al. [13]: such a gap is also observable in full-batch training,
making it clear that the stochastic and potentially heavy-tailed nature of stochastic gradients may
not be the challenge Adam is able to tackle.
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Figure 1: Learning rate and momentum sweep for SGD and Adam across batch sizes under a fixed
token budget.

Inspired by the latter discussion, we take in this paper an orthogonal approach: instead of asking
why Adam can outperform SGD, we ask instead

In which language model training setting, if any, does SGD work?

In other words, while most recent works try to maximize the gap between SGD an Adam in order
to explain it more easily, we here try to minimize it. We believe such view is novel in the literature,
and can provide many valuable insights on the Adam-SGD gap, especially to discover settings that
falsify existing hypotheses, and to enumerate necessary criteria that explanations have to fulfill.
Our contributions are as follows:
• Despite our own surprise, we show that LMs can be trained with SGD as effectively as Adam at

the same token budget, as long as the batch size is chosen small enough, and hyperparameters,
such as clipping and momentum are chosen correctly.

• We find that prior explanations, such as heavy-tailed class imbalance, directional sharpness and
Hessian heterogeneity fail to distinguish this setting, showing that batch size, and hence the re-
duction or amplification of gradient noise, and its distribution are a necessary component of any
explanations of the Adam-SGD gap.

• We enhance our intuition by further studying gradient clipping and learning rate grafting [1] affect
performance.

• We cross-check our findings in the toy quadratic setup of Zhang et al. [33], and further study how
the dynamics of signed gradient descent is influenced by batch size, inspired by recent works on
SDE models [4, 20].

Taken together these findings paint a new picture of the optimizer gap, provide practical hints for
practitioners in small-scale settings where small batch sizes are the norm, and optimizer memory
usage is critical, and constrains future theoretical investigations.

2. Adam vs. SGD: Effects of hyperparameters and training regimes

To systematically investigate the performance gap between Adam and SGD, we conduct a series of
experiments in language modeling using a Transformer architecture. Our goal is to understand how
this gap evolves under various training regimes and hyperparameter configurations.
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2.1. Experimental setup

We conduct all experiments on the SlimPajama webtext dataset using a 160M-parameter LLaMA-
style transformer, trained with Adam and SGD with momentum. Full model and training details are
provided in Appendix B.

2.2. Effect of batch size on the Adam-SGD gap

We first study how the gap between Adam and SGD changes with batch size under a fixed compute
budget, when momentum and learning rate are tuned.
Setup. All experiments use 512-token sequences, a 1.3 B-token budget, and a cosine learning-rate
schedule with 10 % warm-up. We test batch sizes of 64, 256, and 1024, tuning the learning rate
and momentum β1 for each, as detailed in the in the Appendix C. Results are reported as the final
validation perplexity evaluated on 100M held-out tokens and are shown in Figure 1. When very
large learning rates cause instability, we report the best run at the largest stable rate.
Results. Adam shows similar performance across different batch sizes under a fixed token budget.
Surprisingly, SGD can match Adam when training with small batch sizes, but the gap increases as
batch size grows. For both SGD and Adam, momentum becomes crucial once the batch size is
increased, as noted also by Kunstner et al. [13] and Zhao et al. [34].

We also find that using a relatively small sequence length of 512 is not a crucial factor in these
dynamics. As we show in the next section, qualitatively the same behavior can be observed when
using a sequence length of 2048 – as long as the number of tokens per iteration is held constant. This
suggests that performance differences can be attributed to the effective batch size (in tokens) at a
given sequence length, rather than sequence length alone. Further analysis is provided in Appendix
C.

2.3. Are large batch sizes the problem, or is it the number of steps?
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Figure 2: Under a fixed token budget
(darker color – more tokens), the gap in-
creases with batch size.

Our previous experiments show that SGD can match
Adam in small-batch settings when both optimizers are
carefully tuned. Crucially, note that in Figure 1 all meth-
ods see a total of 1.3B tokens. This implies that, e.g. at
batch size 1024, methods perform 1/16 of the steps com-
pared to batch size 64. This observation raises an impor-
tant question: does SGD truly break at large batch sizes,
or is it simply slower to converge, compared to Adam,
at higher batch sizes? In other words, can SGD reach
Adam-level performance even at higher batch sizes, if
given more training steps?

To investigate this, we compare performance across
batch sizes under two training regimes: a fixed token bud-
get and a fixed number of steps. This comparison allows
us to disentangle the effects of slow convergence from ac-
tual poor optimization performance.
Setup. The experimental setting is the same as in the previous section, except that we increase the
sequence length to 2048 to ablate this factor. We train 108 models spanning batch sizes 8–1024 and
run lengths 5k–160k steps, each with a 2k-step warm-up. We limit the total token budget between
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approximately 655M and 5.24B tokens, so larger batches are trained for fewer steps and smaller
batches for more. We switch from the cosine scheduler used previously to a WSD scheduler [8], in
order to better compare runs before learning rate decay begins. SGD and Adam hyper-parameters
follow the tuned configurations in Figure 1. Full details are provided in the Appendix D.
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Figure 3: The gap decreases with the
number of steps. SGD improves with
longer training and can match Adam.

Results: Figure 2 clearly shows that Adam improves
with larger batch sizes at a fixed token budget, while SGD
shows a drastically opposite trend – performance consis-
tently degrades as batch size increases. Under a fixed
token budget, matching performance between Adam and
SGD is conditional on using very small batch sizes, lead-
ing to significantly longer training and poor memory us-
age. This result highlights a key limitation of SGD: it is
highly inefficient in realistic large-scale language model
training, where large batches are required for practical
efficiency. In the Figure 3, we show performance after
training with various numbers of steps. At the same step
count, the gap between Adam and SGD grows with batch
size, but SGD improves significantly with more steps and
can eventually match or even outperform Adam with long
enough training. This illustrates that SGD is not necessar-
ily bad, just very slow to converge in large-batch settings.
More results are reported in Appendix D

3. Revisiting and extending explanations for the Adam–SGD gap

Several recent works have proposed explanations for Adam’s advantage over SGD through the lens
of data or architectural properties (see Appendix A), focusing on scenarios where the Adam–SGD
gap is particularly pronounced. In contrast, we ask: do these explanations also account for SGD’s
strong performance in small-batch settings? In this section, we revisit the heavy-tailed class imbal-
ance hypothesis proposed by Kunstner et al. [14], while we present analyses of directional sharpness
and Hessian heterogeneity in Appendix E, and show that they struggle to explain good SGD perfor-
mance. We give theoretical insight based on an SDE-based model in Appendix G.

Complementing this perspective, to understand what limits SGD in large-batch settings, we
analyze the roles of update direction and magnitude, using grafting and adaptive clipping. We find
that direction is the key issue as we show in Appendix F.

3.1. Heavy-tailed class imbalance

Prior work by Kunstner et al. [13] attributes Adam’s advantage over SGD to heavy-tailed class
imbalance in token distributions, showing that SGD has difficulty optimizing rare (least common)
tokens. We follow their methodology and group all tokens from the training set into 10 frequency
groups, from the first group contains the 10% least frequent tokens to the last group contains the
10% most frequent ones.

We apply this analysis to the setting from subsection 2.2, comparing batch sizes 64 and 1024,
where SGD performs drastically differently, using runs with the optimal combination of β1 and
learning rate for each case. We find that class imbalance exists in both cases: the persistence of low-
and high-frequency tokens is similar, as shown in Figure 5. However, this does not appear to cause
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(a)  Per-group PPL by token freq. for SGD and Adam. (b) Adam-SGD gap across freq. groups.
SGD most freq. SGD least freq. Adam most freq. Adam least freq.

Figure 4: (a) Perplexity during training by frequency group, in small- and large-batch settings. (b)
Adam–SGD gap per group: in large batches, SGD lags behind across all groups–especially on rare
tokens. This effect is absent in small batches.

problems for small-batch SGD, suggesting that class imbalance alone does not explain the origin of
the Adam–SGD gap.
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Figure 5: Token distribution for batch sizes
64 and 1024. Lighter colors show less fre-
quent tokens. Token statistics at lower batch
sizes are nosier but of similar magnitude.

We further compute perplexity separately for
each frequency group and report it over training.
From Figure 4 (a), we observe that both optimizers
make faster progress on more frequent tokens in all
settings, as expected. The relative difference in per-
plexity between frequency groups is more significant
for SGD in the large-batch setting than for the small,
while the opposite holds for Adam.

Comparing Adam and SGD across frequency
groups in Figure 5 we observe that in the large-
batch setting, SGD underperforms Adam across all
groups, as shown in Figure 4 (b). However, the gap is
notably larger for less frequent tokens, which aligns
with findings from Kunstner et al. [13] suggesting
that rare tokens could be more challenging for SGD
in imbalanced settings. In contrast, this effect is not observed for the small-batch regime in our
setting, as also clear from the results in section 2. We would expect this problem of SGD to hold,
independent of batch size, but in the setting where SGD works well, the issue disappears.

4. Discussion

Is it impossible to train language models with SGD? We show that in small-batch settings, with
tuned momentum and clipping, SGD can be competitive, even for GPT-2-scale models. This chal-
lenges common explanations for the Adam–SGD gap. Revisiting prior theories, we find they fall
short, and argue instead that gradient noise, amplified by batch size, plays a central role, motivating
a stronger explanation based on SDEs.
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[12] Ananya Kumar, Ruoqi Shen, Sébastien Bubeck, and Suriya Gunasekar. How to fine-tune
vision models with sgd. arXiv preprint arXiv:2211.09359, 2022.

[13] Frederik Kunstner, Jacques Chen, J Wilder Lavington, and Mark Schmidt. NOISE IS NOT
THE MAIN FACTOR BEHIND THE GAP BETWEEN SGD AND ADAM ON TRANS-
FORMERS, BUT SIGN DESCENT MIGHT BE. 2023.

6

http://arxiv.org/abs/2310.01082
http://arxiv.org/abs/2405.18392
http://arxiv.org/abs/2211.02254
http://arxiv.org/abs/2211.02254
https://kellerjordan.github.io/posts/muon/


IS YOUR BATCH SIZE THE PROBLEM? REVISITING THE ADAM-SGD GAP IN LANGUAGE MODELING

[14] Frederik Kunstner, Robin Yadav, Alan Milligan, Mark Schmidt, and Alberto Bietti. Heavy-
Tailed Class Imbalance and Why Adam Outperforms Gradient Descent on Language Models,
July 2024. URL http://arxiv.org/abs/2402.19449. arXiv:2402.19449 [cs, math,
stat].

[15] Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. arXiv
preprint arXiv:2412.19437, 2024.

[16] Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for LLM training. arXiv preprint
arXiv:2502.16982, 2025.

[17] Tianyi Liu, Zhehui Chen, Enlu Zhou, and Tuo Zhao. A diffusion approximation theory of
momentum stochastic gradient descent in nonconvex optimization. Stochastic Systems, 2021.

[18] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

[19] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019.

[20] Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the SDEs and
Scaling Rules for Adaptive Gradient Algorithms, February 2023. URL http://arxiv.
org/abs/2205.10287. arXiv:2205.10287 [cs].

[21] GN Mil’shtein. Weak approximation of solutions of systems of stochastic differential equa-
tions. Theory of Probability & Its Applications, 30(4):750–766, 1986.

[22] Lorenzo Noci, Sotiris Anagnostidis, Luca Biggio, Antonio Orvieto, Sidak Pal Singh, and Au-
relien Lucchi. Signal propagation in transformers: Theoretical perspectives and the role of
rank collapse. Advances in Neural Information Processing Systems, 2022.

[23] Yan Pan and Yuanzhi Li. Toward Understanding Why Adam Converges Faster Than
SGD for Transformers, May 2023. URL http://arxiv.org/abs/2306.00204.
arXiv:2306.00204 [cs].

[24] Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls,
and Volkan Cevher. Training deep learning models with norm-constrained lmos. arXiv
preprint arXiv:2502.07529, 2025.

[25] Ishaan Shah, Anthony M Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju, Andrew
Hojel, Andrew Ma, Anil Thomas, Ashish Tanwer, Darsh J Shah, et al. Practical efficiency of
muon for pretraining. arXiv preprint arXiv:2505.02222, 2025.

[26] Akiyoshi Tomihari and Issei Sato. Understanding Why Adam Outperforms SGD: Gradient
Heterogeneity in Transformers, January 2025. URL http://arxiv.org/abs/2502.
00213. arXiv:2502.00213 [cs].

[27] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

7

http://arxiv.org/abs/2402.19449
http://arxiv.org/abs/2205.10287
http://arxiv.org/abs/2205.10287
http://arxiv.org/abs/2306.00204
http://arxiv.org/abs/2502.00213
http://arxiv.org/abs/2502.00213


IS YOUR BATCH SIZE THE PROBLEM? REVISITING THE ADAM-SGD GAP IN LANGUAGE MODELING

[28] Nikhil Vyas, Depen Morwani, Rosie Zhao, Itai Shapira, David Brandfonbrener, Lucas Janson,
and Sham M. Kakade. SOAP: Improving and stabilizing shampoo using adam for language
modeling. In ICLR, 2025.

[29] Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nati Srebro, and Benjamin Recht. The
marginal value of adaptive gradient methods in machine learning. Advances in neural infor-
mation processing systems, 30, 2017.

[30] Hanlin Zhang, Depen Morwani, Nikhil Vyas, Jingfeng Wu, Difan Zou, Udaya Ghai, Dean
Foster, and Sham Kakade. How Does Critical Batch Size Scale in Pre-training?, February
2025. URL http://arxiv.org/abs/2410.21676. arXiv:2410.21676 [cs].

[31] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping ac-
celerates training: A theoretical justification for adaptivity, February 2020. URL http:
//arxiv.org/abs/1905.11881. arXiv:1905.11881 [cs, math].

[32] Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J. Reddi,
Sanjiv Kumar, and Suvrit Sra. Why are Adaptive Methods Good for Attention Models?, Octo-
ber 2020. URL http://arxiv.org/abs/1912.03194. arXiv:1912.03194 [cs, math].

[33] Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhi-Quan Luo. Why
Transformers Need Adam: A Hessian Perspective, June 2024. URL http://arxiv.org/
abs/2402.16788. arXiv:2402.16788 [cs].

[34] Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. De-
constructing What Makes a Good Optimizer for Language Models, July 2024. URL http:
//arxiv.org/abs/2407.07972. arXiv:2407.07972 [cs].

8

http://arxiv.org/abs/2410.21676
http://arxiv.org/abs/1905.11881
http://arxiv.org/abs/1905.11881
http://arxiv.org/abs/1912.03194
http://arxiv.org/abs/2402.16788
http://arxiv.org/abs/2402.16788
http://arxiv.org/abs/2407.07972
http://arxiv.org/abs/2407.07972


IS YOUR BATCH SIZE THE PROBLEM? REVISITING THE ADAM-SGD GAP IN LANGUAGE MODELING

Appendix A. Related work
Class imbalance. Kunstner et al. [13] explain the advantage of Adam over SGD on language
tasks through the heavy-tailed class imbalance in token distributions. They show that the loss for
rare tokens decreases significantly more slowly when training with SGD than with Adam, making
SGD training inefficient in such settings. In contrast, Adam makes steady progress even on these
low-frequency tokens. Their empirical findings show that this holds across different architectures
and settings, suggesting that the performance gap is primarily driven by class imbalance. It is not
limited to textual data and transformers, since it consistently appears in class-imbalanced scenarios,
but vanishes when the data are balanced.

Transformer architecture. Another line of work focuses on the specific characteristics of
Transformer architectures. Zhang et al. [33] provide a Hessian-based perspective, showing that
Transformers have a block-heterogeneous Hessian spectrum, meaning the Hessian spectrum varies
significantly across parameter blocks. In such settings, Adam outperforms SGD by a large margin,
while both optimizers perform similarly on architectures with a more homogeneous Hessian. They
empirically show that this finding holds across different data modalities and architectures, and that
Adam outperforms SGD even on ViT models, differing from the findings of Kunstner et al. [14].

In contrast, Tomihari and Sato [26] focus on gradient heterogeneity, explaining Hessian hetero-
geneity as a consequence of the correlation between gradients and the Hessian. They observe that in
Transformers, a large disparity in gradient norms across parameters leads to optimization challenges
for SGD, which can be addressed by Adam’s adaptivity.

Zhao et al. [34] find through empirical studies that adaptive optimizers have stable performance
over a wide range of hyperparameter settings, while SGD is highly sensitive and often requires
careful tuning. They also confirm that full Adam-style adaptivity is not always necessary, showing
that their proposed method, which applies adaptivity only to normalization layers and the final layer,
can close most of the gap compared to Adam in their setting.

Heavy-tailed gradient noise. Earlier work by Zhang et al. [32] asks whether the nature of
stochastic gradient noise explains why the Adam–SGD gap exists in Transformer models but not in
other architectures. They show that Transformer models produce gradient noise with heavy-tailed
distributions, in contrast to nearly Gaussian noise in CNNs. They argue that heavy-tailed gradient
noise degrades the performance of SGD, while Adam demonstrates greater robustness.

However, evidence from Kunstner et al. [14] shows that noise alone is not the primary cause of
Adam’s superiority, since the gap exists even in the full-batch setting. They find that the performance
gap persists, and even that Adam’s advantage grows, as stochastic noise vanishes.

Optimization trajectories. Several researchers have investigated how Adam differs from SGD
in terms of the characteristics of the loss landscape and the path taken during training. Jiang et al.
[9] analyze local geometry along training paths and define a statistic that measures the uniformity
of the diagonal of the Hessian. They find that, on language models, Adam’s trajectory consistently
moves through regions where this measure is significantly smaller than the values found along the
SGD with momentum trajectory.

Similarly, Pan and Li [23] introduce the directional sharpness to explain Adam’s faster conver-
gence in Transformers. Rather than examining the entire Hessian, they look at the sharpness along
the update direction at each step, showing that Adam makes updates in directions with much smaller
sharpness than SGD. Although these measures reveal something about the trajectories of SGD and
Adam, they cannot fully explain why the performance gap exists.
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Evidence from simplified settings. Recent work shows that the Adam–SGD gap persists even
in simplified Transformer architectures. Ahn et al. [2] demonstrate that the characteristic opti-
mization challenges mentioned above also appear in shallow linear Transformers, models without
nonlinear activations, on a linear regression task.

Appendix B. Experimental setup

We conduct all of our experiments on the SlimPajama webtext dataset using a 160M-parameter
LLaMA-like transformer model. The model has 12 attention layers, a width of 768, and 12 atten-
tion heads. MLP blocks use a GLU with an expansion ratio of 8/3. The model uses RMSNorm
normalization layers and RoPE positional encodings.

Appendix C. Effect of batch size on the Adam–SGD Gap

500 1000 1500 2000 2500

0.5

1.0

Gr
ad

 N
or

m

10000 20000 30000 40000
Steps

0.5

1.0
Gr

ad
 N

or
m

Figure 6: Gradient norm after clipping
(threshold 1.0) shows that clipping is more
frequent in large-batch training.

Setup. All experiments use a sequence length of
512, a fixed token budget of 1.3B tokens, and a co-
sine learning rate scheduler [18] with 10% warmup.
We compare three batch sizes: 64, 256, and 1024.
The learning rate and momentum values are tuned
for both optimizers at a batch size of 256. A sweep
is performed over 5 learning rates and momentum
values of 0.9, 0.95, and 0.98, including runs with-
out momentum. High momentum values are moti-
vated by findings from Zhao et al. [34], where SGD
performs best with momentum 0.98. Based on the
optimal learning rate found at batch size 256, we
scale down the learning rate grid for batch size 64
and scale it up for batch size 1024, sweeping over 3 values in each case. Results are reported as the
final validation perplexity evaluated on 100M held-out tokens and are shown in Figure 1.

Clipping acts differently at different batch sizes. We observe that gradients are clipped more
frequently when training with SGD at large batch sizes, as shown in Figure 6. Additionally, at small
batch sizes, SGD performs equally well even without clipping; instead, at large batch sizes, training
diverges if clipping is not employed.

Warmup length is not a confounder. We also verify that warmup length is not a confounding
effect, sweeping 5–20% warmup schedules in our cosine-with-warmup scheduler.

Appendix D. Training under fixed token budget and number of steps

Setup. We train a total of 108 models across a range of batch sizes, from 16 to 256, and run for
different numbers of steps, ranging from 5k to 160k. All runs use a fixed warmup of 2000 steps. We
switch from the cosine scheduler used previously to a WSD scheduler [8], in order to better compare
runs before learning rate decay begins. We limit the total token budget between approximately 650M
and 5.2B tokens: larger batches are not trained for the largest number of steps, while the smallest
batches are trained only for longer runs. For SGD, we choose a momentum β = 0.98 and run three
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Figure 7: Perplexity during training for SGD (green) and Adam (purple) across different training
lengths in small- and large-batch settings. For both, the gap decreases the longer we train. For small
batch, at the max number of steps, SGD even performs better than Adam.

distinct learning rates: 1, 0.5 and 0.25. For Adam, we choose β1 = β2 = 0.95 as suggested by
modern literature [30, 34] and report performance for the best performing learning rate in the grid
[1e−3, 2e−3, 4e−3]. Both the SGD and Adam configurations are suggested from our more careful
tuning performed in Figure 1.

Results. In addition to Figure 2 and Figure 3, we report perplexity during training for SGD and
Adam for batch sizes 16 and 128 in Figure 7. For both, the gap decreases the longer we train, and
in the small-batch setting, SGD even performs better than Adam at the maximum number of steps.

Appendix E. Revisiting prior explanations

E.1. Directional sharpness

Pan and Li [23] introduce directional sharpness to explain the optimizer gap by studying a second-
order Taylor expansion of the loss along the update direction. In this view, the first-order term
(gradient correlation) measures how well the update aligns with the negative gradient, while the
second-order term (directional sharpness) measures curvature along that direction. Making opti-
mization progress requires a strong negative gradient correlation and low directional sharpness.

In Figure 8, we visualize gradient correlation, directional sharpness, and their sum – a second-
order approximation of loss change, to indicate progress. As in our previous analysis, we compare
two settings with drastic performance differences - batch sizes 64 and 1024 from subsection 2.2. In
the large-batch setting, SGD shows low gradient correlation and high directional sharpness, result-
ing in weak or even positive total loss change, as reflected in the sum. In contrast, Adam has higher
gradient alignment and lower directional sharpness throughout training. When SGD succeeds, its
gradient correlation and directional sharpness closely match Adam’s, producing a negative loss
change in the sum.

While these metrics align with SGD success or failure, they do not explain why Adam outper-
forms SGD overall, nor why SGD performs well in small-batch regimes.

E.2. Hessian heterogeneity

From the line of work focusing on the architectural properties of transformers, Zhang et al. [33]
argue that the block-wise heterogeneity of the Hessian spectrum is a key factor behind Adam’s
strong performance and the weakness of SGD. They propose that, based on the Hessian spectrum at
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Figure 8: Gradient correlation, directional sharpness, their sum and second-order loss approxi-
mation during training, under small- and large-batch settings. Irrespective of the optimizer, good
training trajectories have strong negative gradient correlation and low directional sharpness.

initialization, it is possible to predict whether SGD will perform well, offering an explanation that
is invariant to batch size. To further explore the effect of batch size on such problems, we revisit
the simplified quadratic setting from their work and extend it by including batch size variation.
We compare optimization on problems with homogeneous and heterogeneous Hessians, where both
share the same eigenvalue spectrum. We train with SGD and Adam using a cosine learning rate
schedule and no clipping.

We observe that Adam benefits more from increasing batch size than SGD in both homoge-
neous and heterogeneous Hessian problems, as shown in Figure 9. On heterogeneous problems,
Adam outperforms SGD by a large margin at both small and large batch sizes, as expected. The
only setting where they perform on par is in the homogeneous case with small batches. The im-
provement of SGD at small batch sizes, which we observe in transformers, does not hold in the
quadratic setting with a heterogeneous Hessian, suggesting that non-quadratic aspects of the loss
landscape may play a critical role.
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Figure 9: The gap between Adam and SGD relative to batch size also appears when studying only
noisy quadratic models in [33], showing that explanations relating to the structure of transformer
models or data used for language modeling may not be necessary.
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Figure 10: Grafting in large-batch training: us-
ing Adam’s direction results in performance
closer to Adam, while SGD direction leads to
results closer to SGD.
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Figure 11: Adaptive clipping with different per-
centages of clipped coordinates in large-batch
training. It improves SGD but still does not
fully match Adam.

Appendix F. Understanding what limits SGD performance

We aim to gain more insight into another important question: what goes wrong for SGD in large-
batch settings that does not appear at small batch sizes? To investigate this, we attempt to separate
which component of the SGD update is more problematic in settings where it fails - its direction or
magnitude. In the following experiments, we focus on the setting from subsection 2.2, using batch
size 1024 and the optimal combination of β1 and learning rate.

F.1. Insights from Grafting

To isolate the role of update direction and magnitude, we use the grafting technique proposed by
Agarwal et al. [1], which applies the update direction of one optimizer with the magnitude of an-
other. We train the model in the large batch setting, using both combinations: 1) SGD magnitude
with Adam direction, and 2) Adam magnitude with SGD direction.We use the optimal β1 from
subsection 2.2, and sweep the learning rate for the grafted update. We report the training perplexity
using the optimal learning rate for both grafting combinations in Figure 10. As shown, using SGD
magnitude with Adam’s direction performs comparably to Adam, while the reverse combination be-
haves similarly to SGD. This suggests that the update direction is the more problematic component
of the SGD update in large-batch training.

F.2. Insights from Adaptive Clipping

The perspective that direction is the core problem aligns with the observation that global norm
clipping does not help much in large-batch training with SGD. If the direction is the main issue,
simply rescaling the gradient norm does not lead to better updates.

To investigate this further, we experiment with adaptive clipping, where we clip the top p% of
the largest momentum coordinates at each step, motivated by Pan and Li [23]. We test several val-
ues of p (5, 10, and 20). For each value, we keep the optimal β1 from the previous setting and tune
the learning rate. Clipping with p = 10 performs best, but we observe that performance does not
vary much across different values of p. This method helps reduce the gap between SGD and Adam,
as shown in Figure 11. The result suggests that a subset of larger update coordinates consistently
contributes to poor update directions and slows down SGD in large-batch training, whereas updates
in small-batch settings not clipped as often, relative to the number of steps, so that training is not
decelerated.
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Appendix G. Theoretical insights.

Towards explaining the phenomena observed in this paper, we provide a preliminary yet insightful
analysis based on [4], based on the observed similarity between behaviors of Adam and SignSGD
in Figure 9, as well as recent literature on their relation [10, 13].

Let X denote the model parameters and γ denote a batch of size B. We denote the stochastic
gradient as ∇fγ(x) := 1

B

∑
i∈γ ∇(fi(x)) and by Σ(x) the noise covariance at batch size 1. The

stochastic differential equation (SDE) approximation of SGD reads [17, 21]

dXt = −∇f(Xt)dt+

√
ηΣ

B
dWt, (1)

We now state a recent result showing that the drift of signed updates – driving performance in
early training – has an extra dependency on the batch size.

Theorem 1 ([4]) Under the assumption of i.i.d. Gaussian noise, the following SDE provides a
1-weak approximation [21] of the discrete update of SignSGD

dXt = − erf

(√
B

2
Σ− 1

2∇f(Xt)

)
dt+

√
η

√√√√Id −Diag

(
erf

(√
BΣ− 1

2∇f(Xt)√
2

))2

dWt, (2)

where the error function erf(x) := 2√
π

∫ x
0 e−t2dt and the square are applied component-wise.

While Compagnoni et al. [4] provide a similar result for the Heavy-tail setting, the Gaussian case
already highlights a crucial distinction between signed gradient methods and classical SGD: recall
that erf (similar in shape to a tanh) is linear on a large interval around zero. The local update of

parameters is then driven by − erf

(√
B
2 Σ

− 1
2∇f(Xt)

)
in the signSGD case, while in the SGD

setting, this term is simply −∇f(Xt)dt. This analysis provides strong evidence for our results:
using large batch sizes accelerates convergence (larger drift) in signSGD, while the performance of
SGD in early training is batch-size agnostic and hence driven by the number of iterations.
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