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Abstract

Adam is known to perform significantly better than Stochastic Gradient Descent in language models,
a phenomenon for which a number of explanations have been proposed. In this work, we revisit
this "optimizer gap" through a series of comprehensively tuned baseline training runs for language
modeling with transformers. We exhaustively study how momentum, gradient clipping, and batch
size affect the gap between SGD and Adam. Our empirical findings show that SGD with momentum
can actually perform similarly to Adam in small-batch settings, if tuned correctly. We revisit existing
explanations for Adam’s advantage, including heavy-tailed class imbalance, directional sharpness,
and Hessian heterogeneity, which struggle to explain these findings. Finally, by analyzing our
transformer training runs and a simple quadratic setting, we provide new insights into what makes
SGD perform poorly - showing that batch size has to be a necessary component of any explanation
of the optimizer gap.

1. Introduction

The Adam optimizer [15] is used pervasively in deep learning, especially when training large
language models (LMs) [4, 10, 19] and vision transformers [16]. Industrial practice relies on the
success of Adam, and thousands of GPU hours every day are spent at large companies using Adam
to train their next-generation large language models.

Even in new sophisticated optimization pipelines looking to dethrone Adam, such as Muon [13],
most current implementations [20, 32] rely on plain Adam with weight decay (AdamW, Loshchilov
and Hutter [23]) for critical subsets of parameters, such as normalization layers, text embeddings
and prediction heads. This new world is still a bit surprising. Up until around the year 2018, the
Adam optimizer was in occasional use, but stochastic gradient descent (SGD) with momentum was
known to lead to neural networks with better accuracy on unseen data [40], relegating Adam to speed
runs and quick comparisons [9]. Yet, from the start, language modeling with Transformers required
Adam. In fact, Transformer LMs have been reportedly untrainable with SGD [4 1], especially due to
the critical parameters listed above.

Over the years, researchers have offered a number of compelling explanations regarding the
remarkable performance of Adam compared to SGD in language modeling, attributing it either
to the peculiar noisy nature of text data [44, 45] or the heterogeneous structure [27, 460] of the
Transformer architecture [38] — comprising semantically and structurally dissimilar layers. While
most hypotheses regarding the Adam-SGD gap can help guide our understanding [2], a particularly
crucial insight was recently brought to light by Kunstner et al. [17]: the Adam-SGD gap is also
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observable in full-batch training, and is hence clear that the stochastic and potentially heavy-tailed
nature of stochastic gradients may not be the challenge Adam is able to tackle. Inspired by the latter
discussion, we take an orthogonal approach:

Instead of asking why Adam often outperforms SGD, we wonder:
In which Transformer-based language model training setting, if any, does SGD work?

In other words, while most recent works try to maximize the gap between SGD an Adam in order to

explain it more easily, we here try to minimize it. We believe such view is novel in the literature,

and can provide many valuable insights on the Adam-SGD gap, especially to discover settings that
falsify existing hypotheses, and to enumerate necessary criteria that explanations have to fulfill.

Our contributions are as follows:

* Despite our own surprise, we show that LMs can be trained with SGD as effectively as Adam at
the same token budget, as long as the batch size is chosen small enough, and hyperparameters,
such as clipping and momentum are chosen correctly. We found this holding even at a scale of 1B
parameters.

* We carefully revisit prior explanations — such as heavy-tailed class imbalance [18], directional
sharpness [29], and Hessian heterogeneity [46] — in our setup. While our experiments confirm
that these explanations can shed light and are useful to describe settings where Adam outperforms
SGD, we find that no prior work can directly explain why SGD can outperform Adam at low
batch sizes, while achieving satisfactory performance. Notably, in stark contrast with works
attributing the gap to heavy-tail noise, we observe that increased stochasticity actually reduces the
Adam-SGD gap.

* We enhance our intuition by further studying how gradient clipping and learning rate grafting [1]
affect performance.

* We cross-check our findings in the toy quadratic setup of Zhang et al. [46], and further study why
adaptive optimization may have a different batch size sensitivity compared to SGD, inspired by
recent works on SDE models [7, 24].

Taken together these findings paint a new picture of the optimizer gap, provide practical hints for
practitioners in small-scale settings where small batch sizes are the norm, and optimizer memory
usage is critical, and constrains future theoretical investigations.

2. Adam vs. SGD: Effects of hyperparameters and training regimes

To systematically investigate the performance gap between Adam and SGD, we conduct a series of
experiments in language modeling using a Transformer architecture. Our goal is to understand how
this gap evolves under various training regimes and hyperparameter configurations.

2.1. Experimental setup

We conduct all experiments on the SlimPajama [34] dataset using a 160M-parameter 12-layers
transformer, trained with Adam and SGD with momentum. Full model and training details are
provided in Appendix

2.2. Effect of batch size on the Adam-SGD gap

We first study how the gap between Adam and SGD changes with batch size under a fixed compute
budget, when momentum and learning rate are tuned.
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Figure 1: Learning rate and momentum sweep for SGD and Adam across batch sizes under a fixed
compute budget of 1.3B tokens. Perplexities are measured on 100M held-out tokens.

Setup. All experiments use 512-token sequences, a 1.3 B-token budget, and a cosine learning-rate
schedule [22] with 10 % warm-up. We test batch sizes of 64, 256, and 1024, tuning the learning rate
and momentum (31 for each, as detailed in the in the Appendix C. Results are reported as the final
validation perplexity evaluated on 100M held-out tokens and are shown in . When very large
learning rates cause instability, we report the best run at the largest stable rate.

Results. Adam shows similar performance across different batch sizes under a fixed token budget,
as shown in . Surprisingly, SGD can match Adam when training with small batch sizes, but
the gap increases as the batch size grows. For both SGD and Adam, momentum becomes crucial
once the batch size is increased, as noted also by Kunstner et al. [17] and Zhao et al. [47].

We also find that using a relatively small sequence length of 512 is not a crucial factor in these
dynamics. As we show in the next section, qualitatively the same behavior emerges at sequence
length 2048 — as long as the number of tokens per iteration is held constant. This suggests that
performance differences can be attributed to the effective batch size (in tokens) at a given sequence
length, rather than sequence length alone. Further analysis is provided in Appendix

2.3. Are large batch sizes the problem, or is it the number of steps?

Our previous experiments show that SGD can match Adam in small-batch settings when both
optimizers are carefully tuned. Crucially, note that in all methods see a total of 1.3B tokens.
This implies that, e.g., at batch size 1024, methods perform 1/16 of the steps compared to batch size
64. This observation raises an important question: does SGD truly break at large batch sizes, or is it
simply slower to converge, compared to Adam, at higher batch sizes? In other words, can SGD reach
Adam-level performance even at higher batch sizes, if given more training steps?

To investigate this, we compare performance across batch sizes under two training regimes: (1) a
fixed token budget and (2) a fixed number of steps. This comparison allows us to disentangle the
effects of slow convergence from actual poor optimization performance.

Setup. The experimental setting is the same as in the previous section, except with a sequence
length of 2048 — which we increased to ablate on this factor for the second experiment. We train
models across a range of batch sizes, from 8 to 1024, and run for different numbers of steps, ranging
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Figure 2: SGD (green) and Adam (purple) performance across batch sizes. Left: fixed token budget
(darker colors — more tokens); the gap increases with batch size across all token budgets. Right: fixed
number of steps (darker colors — larger batch sizes); the gap decreases with the number of steps.
SGD improves with longer training and can match Adam, given a sufficiently small batch size.

from 2.5k to 160k, so larger batches are trained for fewer steps and smaller batches for more.
We switch from the cosine scheduler used previously to a WSD scheduler [11], in order to better
compare runs before learning rate decay begins. SGD and Adam hyper-parameters follow the tuned
configurations in . Full details are provided in the Appendix

Results. The left panel of clearly shows that Adam improves with larger batch sizes
at a fixed token budget, while SGD shows a drastically opposite trend — performance consistently
degrades as batch size increases. Under a fixed token budget, matching performance between Adam
and SGD is conditional on using very small batch sizes, leading to significantly longer training and
poor memory usage. This result highlights a key limitation of SGD: it is highly inefficient in realistic
large-scale language model training, where large batches are required for practical efficiency. In
the right panel on , we show performance after training with various numbers of steps. At
the same step count, the gap between Adam and SGD grows with batch size, but SGD improves
significantly with more steps and can eventually match or even outperform Adam with long enough
training. This illustrates that SGD is not necessarily bad, just very slow to converge in large-batch
settings. More results are reported in Appendix

Scaling experiments. To test whether our findings persist at scale and across datasets, we ex-
periment with larger models (250M, 410M, and 1B parameters) and include additional training on
the FineWeb dataset [30] . We repeat the same experiments, varying token budgets and number of
training steps, for the 160M model on SlimPajama and 250M model on FineWeb. Results and setup
details are reported in Appendix B and Appendix E, showing that our core claims hold when scaling
up the model and switching to a different dataset.

To further test whether SGD can outperform Adam at scale, we train:
* 410M model on SlimPajama (sequence length 2048, batch size 8, 500k steps);
* 1B model on FineWeb (sequence length 1024, batch size 16, steps 850k).

Full training details and learning rate tuning plots are provided in Appendix B. Trajectories for
both models are shown in , demonstrating that SGD can outperform Adam even at a 410M
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Figure 3: 410M model on SlimPajama (seq. Figure 4: 1B model on FineWeb (seq. length
length 2048, batch size 8, 500k steps) — 1.5 days 1024, batch size 16, 850k steps) — 5 days of
of training. training.

Figure 5: SGD can outperform Adam even at 410M and 1B scales in small-batch regimes.

and 1B scale. For these experiments, we choose the largest batch size that can fit in our NVIDIA
A100 80GB card, and do not use gradient accumulation.

3. Revisiting and extending explanations for the Adam-SGD gap

Several recent works have proposed explanations for Adam’s advantage over SGD through the lens of
data or architectural properties (see Appendix A). All these explanations improve our understanding
of the performance gap, yet most are restricted to specific scenarios where the gap between Adam
and SGD is pronounced. In contrast, we ask: do these explanations also account for SGD’s strong
performance in small-batch settings?

In this section, we revisit the heavy-tailed class imbalance hypothesis proposed by Kunstner et al.
[18], while we present analyses of directional sharpness and Hessian heterogeneity in Appendix F,
and show that they struggle to explain good SGD performance. We give theoretical insight based on
an SDE-based model in Appendix

Complementing this perspective, to understand what limits SGD in large-batch settings, we
analyze the roles of update direction and magnitude, using grafting and adaptive clipping. We find
that direction is the key issue as we show in Appendix

3.1. Heavy-tailed class imbalance

Prior work by Kunstner et al. [17] attributes Adam’s advantage over SGD to heavy-tailed class
imbalance in token distributions, showing that SGD has difficulty optimizing rare (least common)
tokens. We follow their methodology and group all tokens from the training set into 10 frequency
groups, from the first group, which contains the 10% least frequent tokens, to the last group, which
contains the 10% most frequent ones.

We apply this analysis to the setting from , comparing batch sizes 64 and 1024,
where SGD performs drastically differently, using runs with the optimal combination of 5, and
learning rate for each case. We find that class imbalance exists in both cases: the persistence of low-
and high-frequency tokens is similar, as shown in . However, this does not appear to cause
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Figure 6: (a) Perplexity during training by frequency group, in small- and large-batch settings. (b)
Adam—-SGD gap per group: in large batches, SGD lags behind across all groups—especially on rare

tokens. This effect is absent in small batches.

problems for small-batch SGD, suggesting that class imbalance alone does not imply an Adam-SGD

gap across all training regimes.

We further compute perplexity separately for
each frequency group and report it over training.
From Figure 6 (a), we observe that both optimiz-
ers make faster progress on more frequent tokens in
all settings, as expected. The relative difference in
perplexity between frequency groups is more signif-
icant for SGD in the large-batch setting than for the
small, while the opposite holds for Adam.

Comparing Adam and SGD across frequency
groups in Figure 7, we observe that in the large-batch
setting, SGD underperforms Adam across all groups,
as shown in Figure 6 (b). However, the gap is no-
tably more significant for less frequent tokens, which
aligns well with findings from Kunstner et al. [18],
suggesting that rare tokens could be more challenging
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Figure 7: Batch token distribution for batch
sizes 64 and 1024. Lighter colors — less fre-
quent tokens. Token statistics at lower batch
sizes are nosier but of similar magnitude.

for SGD in imbalanced settings. In contrast, this effect is not observed for the small-batch regime in
our setting, as also clear from the results in section 2. We would expect this problem of SGD to hold,
independent of batch size, but in the setting where SGD works well, the issue disappears.

4. Discussion

Is it impossible to train language models with SGD? We show that in small-batch settings, with
tuned momentum and clipping, SGD can be competitive, even for a 1B model. This challenges
common explanations for the Adam—SGD gap. Revisiting prior theories, we find they fall short, and
argue instead that gradient noise, amplified by batch size, plays a central role, motivating a stronger

explanation based on SDEs.
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Appendix A. Related work

Class imbalance. Kunstner et al. [18] explains the advantage of Adam over SGD on language
tasks through the heavy-tailed class imbalance in token distributions. They show that the loss for
rare tokens decreases significantly more slowly when training with SGD than with Adam, making
SGD training inefficient in such settings. In contrast, Adam makes steady progress even on these
low-frequency tokens. Their empirical findings show that this explanation is robust to different
architectures and settings, suggesting that the performance gap is primarily driven by class imbalance.
This explanation is not limited to text data and Transformers: the authors show that an Adam-SGD
gap consistently appears in class-imbalanced scenarios, but vanishes when the data is balanced.

Transformer architecture. Another line of work focuses on the specific characteristics of
Transformer architectures. Zhang et al. [46] provide a Hessian-based perspective, showing that
Transformers have a block-heterogeneous Hessian spectrum, meaning the Hessian spectrum varies
significantly across parameter blocks. In such settings, Adam outperforms SGD by a large margin,
while both optimizers perform similarly on architectures with a more homogeneous Hessian. They
empirically show that this finding holds across different data modalities and architectures, and that
Adam outperforms SGD even on ViT models, differing from the findings of Kunstner et al. [18].

In contrast, Tomihari and Sato [36] focus on gradient heterogeneity, explaining Hessian heterogene-
ity as a consequence of the correlation between gradients and the Hessian. They observe that, in
Transformers, a large disparity in gradient norms across parameters leads to optimization challenges
for SGD, which Adam’s adaptivity can address.

Finally, through empirical studies, Zhao et al. [47] find that adaptive optimizers have stable per-
formance over a wide range of hyperparameter settings, while SGD is highly sensitive and often
requires careful tuning. They also confirm that full Adam-style adaptivity is not always necessary,
showing that their proposed method, which applies adaptivity only to normalization layers and the
final layer, can close most of the gap compared to Adam in their setting.

Heavy-tailed gradient noise. Earlier work by Zhang et al. [45] asks whether the nature of
stochastic gradient noise explains why the Adam-SGD gap exists in Transformer models but not in
other architectures. They show that Transformer models produce gradient noise with heavy-tailed
distributions, in contrast to nearly Gaussian noise in CNNs. They argue that heavy-tailed gradient
noise degrades the performance of SGD, while Adam demonstrates greater robustness.

However, evidence from Kunstner et al. [18] shows that noise alone is not the primary cause of
Adam’s superiority, since the gap exists even in the full-batch setting. They find that the performance
gap persists, and even that Adam’s advantage grows, as stochastic noise vanishes.

Optimization trajectories. Several researchers have investigated how Adam differs from SGD

by characterizing the path taken during training. Jiang et al. [12] analyze local geometry along
training paths and define a statistic that measures the uniformity of the diagonal of the Hessian. On
LMs, they find that Adam’s trajectory consistently moves through regions where this measure is
significantly smaller than the values found along the trajectory of SGD with momentum.
Similarly, Pan and Li [29] introduce directional sharpness as a metric to explain Adam’s faster
convergence in Transformers. Rather than examining the entire Hessian, they look at the sharpness
along the update direction at each step, showing that Adam makes updates in directions with much
smaller sharpness than SGD. Although these measures help characterize the training dynamics of
SGD and Adam, they appear to correlate with the performance gap rather than fully explain it.

Evidence from simplified settings. Recent work shows that the Adam-SGD gap persists even in
simplified Transformer architectures. Ahn et al. [2] demonstrate that the characteristic optimization
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challenges mentioned above also appear in shallow linear Transformers, models without nonlinear
activations, on a linear regression task.

Appendix B. Further Experiments and Experimental Details

We conduct most of our experiments on the SlimPajama [34] dataset using a nanoGPT [14], aug-
menting it with Rotational Positional Embedding [35], RMSNorm [42], and SwiGLU [33]. We do
not adopt QK normalization or z-loss, as those modifications are quite recent. All our models have a
vocabulary size of 50280 and make use of GPT-Neox tokenizer [5]. We adopt an enhanced training
recipe, made popular by large language models such as LLaMa [37]. These modifications include:
training in bfloat16; employing a linear learning rate warm-up for 10% of the training steps (unless
specified otherwise), followed by either cosine annealing to 1e — 5 of WSD [11]. Global norm
clipping is used (unless specified or ablated upon) for gradients with norms above 1 (on the raw
gradient, as a first step). We have no weight tying between the embedding and the last linear layer.
Validation perplexity always refers to a separate subset consisting of 100M tokens.

We do not apply weight decay in any of our experiments to eliminate potential side-effects.
For both SGD and Adam, we perform global gradient norm clipping on raw gradients (e.g., before
applying momentum) unless otherwise stated. The 32 parameter for Adam is fixed at 0.95 throughout
all experiments, as common in the literature [4]. SGD always refers to SGD with momentum unless
explicitly stated otherwise. Other details regarding sequence length, batch size, training budget, and
hyperparameter grids are reported directly in the respective sections.

B.1. Experimental Setup

Computational Resources. All experiments use a single NVIDIA A100-SXM4-80GB.

Code. All our runs use the repository https://github.com/Niccolo-Ajroldi/plainLM.
Datasets. We test our claims on both the SlimPajama [34] and Fineweb [30] datasets.

Model settings (12 Layers, 160M). We use the same configuration as [4]: https://github.

com/EleutherAI/pythia/blob/main/models/160M/pythia-160m.yml

* Layers: 12 Transformer [38] layers

* Attention heads: 12

* Hidden size: 768

* Attention implementation: Flashattention [8].

* MLP type: SwiGLU [33] with expansion factor 8/3.

* Backbone: PreLLN Transformer [41] with skip connections.

e Normalization: RMSnorm [42] for both Attention and MLP.

* Position embeddings: Rotary embeddings (RoPE) to 25% of dimensions ([35])

* Initialization: the MLP and Attention output weights are initialized with variance 0.02//2#layers (scal-
ing also similar to [31]). All other weights (comprising embeddings) are initialized with a standard
deviation of 0.02 (Nguyen and Salazar [26], Wang and Komatsuzaki [39], Sec. 2.2). Biases are
always initialized at zero.

* Precision: Mixed precision FP16 enabled.

* Dropout: Disabled for both hidden and attention layers (see also Chowdhery et al. [6]).
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Model settings (250 M, 24 layers). We keep it identical to the setting above, and just increase the
number of layers to 24.

Model settings (410 M). We use the same setting as [4], configuration can be found here: https:
//github.com/EleutherAI/pythia/blob/main/models/410M/pythia-410m-deduped.
yml

* Layers: 24 Transformer layers

* Attention heads: 16

* Hidden size: 1024

* Other settings as 160M parameters.

Model settings (1B). We use the same setting as [4], configuration can be found here: https://
github.com/EleutherAI/pythia/blob/main/models/1B/pythia-1b-deduped.
yml

* Layers: 16 Transformer layers

* Attention heads: 8

* Hidden size: 2048

* Other settings as 160M parameters.

B.2. Hyperparameter Tuning for Section

Combined, the experiments in this section account for full training (at different token budgets) of
more than 250 language models at different scales and batch sizes. Every reported result is relative
to the best learning rate in our grid, defined for each setup.

Small-scale experiments. We consider SGD with 8 = 0.98 and global clipping before applying
momentum. For Adam, we use the setting 51 = 2 = 0.95. Both settings are suggested by the sweep
in and recent literature [28, 43, 47].

* For Figure 2 and Figure 12 (SlimPajama, 160M), we choose a sequence length of 2048. Inspired
by the careful tuning of Figure |, we consider the learning rate grid [0.25, 0.5, 1.0] for SGD and
[0.001, 0.002, 0.004] for Adam.

* For Figure 14 (Fineweb, 160M), we choose a sequence length of 1024. Our learning rate grid
here is the same as for SlimPajama (previous point). As a sequence length of 160k, given our lack
of experience with extremely low batch sizes (shorter sequence length), we operate on a slightly
larger grid: [0.0001, 0.0003, 0.001, 0.003] for Adam and [0.03, 0.1, 0.3, 1] for SGD.

* For Figure 15 (SlimPajama, 250M - 24 layers), we choose a sequence length of 2048 and we also
operate on a larger grid: [0.0001,0.0003, 0.001, 0.003] for Adam and [0.03, 0.1, 0.3, 1] for SGD.

Medium scale experiments. For all SGD runs, we use 5 = 0.98. For Adam, we use the standard

choice (0.9, 0.95) [4]. All our runs use global norm clipping and no weight decay.

* 410M model ( ): We train with sequence length 2048, for 500k steps on SlimPajama.
Learning rate grid is [1.25e — 4,2.5¢ — 4, 5.0e — 4, 1.0e — 3] for Adam and [0.125,0.25, 0.5, 1]
for SGD. The sweep results are presented in .

* 1B model ( ): We train with sequence length 1024, for 850k steps on Fineweb. Learning
rate sweep, shown in uses [6.25e — 5,1.25¢ — 4,2.5¢ — 4,5.0e — 4,1.0e — 3| for Adam
and [0.0625, 0.125,0.25, 0.5, 1] for SGD.
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Figure 8: 410M model on SlimPajama (seq. Figure 9: 1B model on FineWeb (seq. length
length 2048, batch size 8, 500k steps) 1024, batch size 16, 850k steps)

Figure 10: Learning rate sweep for 410M and 1B models. Trajectories for the optimal learning rate
are shown in Figure 5.

Appendix C. Effect of batch size on the Adam—-SGD Gap

Setup. All experiments use a sequence length of BS = 1024

512, a fixed token budget of 1.3B tokens, and a cosine % 1.0

learning rate scheduler [22] with 10% warmup. We Zos r\WMMM
compare three batch sizes: 64, 256, and 1024. The 8

learning rate and momentum values are tuned for >00 1000 1500 2000 2500

both optimizers at a batch size of 256. A sweep 1o BS =64
is performed over 5 learning rates and momentum

values of 0.9, 0.95, and 0.98, including runs without
momentum. High momentum values are motivated by 10000 20000 30000 40000
findings from Zhao et al. [47], where SGD performs Steps

best with momentum 0.98. Based on the optimal Figure 11: Gradient norm after clipping
learning rate found at batch size 256, we scale down (threshold 1.0) shows that clipping is more
the learning rate grid for batch size 64 and scale it up frequent in large-batch training.

for batch size 1024, sweeping over 3 values in each case. Results are reported as the final validation
perplexity evaluated on 100M held-out tokens and are shown in Figure 1. Some settings become
unstable at very large learning rates, where one run may succeed, even if the median run diverges. In
those settings, we report runs at the largest stable learning rate as optimal.

0.5

Grad Norm

Clipping acts differently at different batch sizes. We observe that gradients are clipped more
frequently when training with SGD at large batch sizes, as shown in Figure 11. Additionally, at small
batch sizes, SGD performs equally well even without clipping; instead, at large batch sizes, training
diverges if clipping is not employed.

Warmup length is not a confounder. We also verify that warmup length is not a confounding
effect, sweeping 5-20% warmup schedules in our cosine-with-warmup scheduler.
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Appendix D. Training under fixed token budget and number of steps

Setup. We train models across a range of batch sizes, from 8 to 1024, and run for different numbers
of steps, ranging from 2.5k to 160k. All runs use a fixed warmup of 2000 steps. We switch from the
cosine scheduler used previously to a WSD scheduler [ 1 1], to better compare runs before learning rate
decay begins. We limit the total token budget between approximately 650M and 5.2B tokens: models
using larger batches are not trained for the largest number of steps, while models using smallest
batches are trained only for a large number of steps. For SGD, we choose a momentum 5 = 0.98 and
run three distinct learning rates: 1, 0.5 and 0.25. For Adam, we choose 81 = 82 = 0.95 as suggested
by modern literature [43, 47] and report performance for the best performing learning rate in the
grid [le — 3, 2e — 3, 4e — 3]. Both the SGD and Adam configurations are suggested from our more
careful tuning performed in

Results. In addition to , we report the perplexity during training for SGD and Adam with
batch sizes 16 and 128 in . For both optimizers, the gap decreases as training progresses. In
the small-batch setting, SGD even outperforms Adam at the maximum number of steps. We show
the same plots for other batch sizes in

BS = 16 BS = 128
60 T N \ \
\

50 1
T
5 40 ]

30 1

20 T T T T T T T T

10 20 40 80 160 1 2.5 5 10 20

Steps (x103) Steps (x103)
Figure 12: Perplexity during training for SGD (green) and Adam (purple) across different training
lengths in small- and large-batch settings. For both, the gap decreases the longer we train. For small
batch, at the max number of steps, SGD even performs better than Adam.

Appendix E. Additional results

We report the validation perplexity for the best-performing /31 and learning rate combination for both
Adam and SGD across batch sizes in . The experimental setting is described in ,
and the results correspond to the sweep shown in

In addition to , we report the training perplex1ty for all other batch sizes in
We repeat the experiments from to verify that our findings generalize to a dlfferent
dataset and a deeper model.

E.1. Scaling experiments across model sizes and datasets

First, we train the same 12-layer Transformer on the Fineweb dataset using SGD with momentum
and Adam, tuning the learning rate as explained in Appendix B. Batch sizes vary from 4 to 512, and
we use 3 different run lengths (i.e., different token budgets). From , we observe that, at a
fixed number of steps, the performance gap increases with batch size, and that with smaller batches
and sufficiently long training, SGD outperforms Adam, consistent with the findings reported earlier.
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Table 1: Best validation perplexities and corresponding hyperparameters for Adam and SGD across
batch sizes. Results correspond to the sweep shown in Figure 1.

Batch Size Optimizer PPL Hyperparameters
64 Adam 28.77 51 =098, Ir=1le—3
SGD 30.76 B1 =098, Ir=bhe—1
256 Adam 28.20 B1=0.95, Ir=2e—3
SGD 33.08 £ =0.98, Ir=1le+0
1004 Adam 29.36 B61=0.95, Ir=>5e—3
SGD 65.94 B1 =0.95, Ir=>he—1

In a second experiment, we increase the model depth to 24 layers while keeping all other settings
identical to subsection 2.3. We vary batch sizes from 4 to 64 and training lengths, and tune the
learning rate as explained in Appendix B. As shown in Figure Figure 15, the same pattern holds for a
deeper model.

BS =8 BS = 32 BS = 64
60
—
& 40
20 T T T T T T T T T T T T
1 160 1 10 20 40 80 1 5 10 20 40
BS = 256 BS =512 BS = 1024
60 :
g} A\ Ny
& 40
20 T T T T T T T T T
0.1 25 5 10 0.1 25 5 0.1 2.5
Steps (x103) Steps (x103) Steps (x103)

Figure 13: Perplexity during training for SGD (green) and Adam (purple) across different training
lengths for all other batch sizes not shown in Figure 12. Solid lines show the rolling mean of PPL
values; lighter lines show the raw values. As before, the gap decreases the longer we train, and SGD
can eventually outperform Adam.
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Figure 14: Fineweb dataset, sequence length 2048, 12 layers Transformer.
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Figure 15: SlimPajama dataset, sequence length 2048, 24 layers Transformer.

Appendix F. Revisiting prior explanations
F.1. Directional sharpness

Pan and Li [29] introduce directional sharpness to explain the optimizer gap by studying a second-
order Taylor expansion of the loss along the update direction. In this view, the first-order term
(gradient correlation) measures how well the update aligns with the negative gradient, while the
second-order term (directional sharpness) measures curvature along that direction. Making optimiza-
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tion progress requires a strong negative gradient correlation and low directional sharpness. Let f be
a generic loss to optimize and xj, denote the model parameters at iteration k, then

1

T T2 3
Flars) = flag) + VF@r) (@ —ap) +5 @ —ar) V7 (@r) (@1 —2) $0(07) (1)
gradient Egrrelation directional sharpness
In , we visualize gradient correlation, directional sharpness, and their sum — a second-order
approximation of loss change, to indicate progress. As in our previous analysis, we compare two
settings with drastic performance differences: batch sizes 64 and 1024 from . In the

large-batch setting, SGD shows low gradient correlation and high directional sharpness, resulting in
weak or even positive total loss change, as reflected in the sum. In contrast, Adam has higher gradient
alignment and lower directional sharpness throughout training. When SGD succeeds, its gradient
correlation and directional sharpness closely match Adam’s, producing a negative loss change in
the sum. While these metrics align with SGD’s success or failure, they do not directly explain why
Adam outperforms SGD, nor why SGD performs well in small-batch regimes.
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Figure 16: Gradient correlation, directional sharpness, their sum and second-order loss approximation
during training, under small- and large-batch settings. Irrespective of the optimizer, good training
trajectories have strong negative gradient correlation and low directional sharpness.

F.2. Hessian heterogeneity

From the line of work focusing on the architectural properties of Transformers, Zhang et al. [46]
argue that the block-wise heterogeneity of the Hessian spectrum is a key factor behind Adam’s
strong performance and the weakness of SGD. They propose that, based on the Hessian structure
at initialization, it is possible to predict whether SGD will perform well, offering an explanation
that is invariant to batch size. To further explore the effect of batch size on heterogeneous
problems, we revisit the simplified quadratic setting from their work and extend it by including
batch size variation. We compare optimization on problems with homogeneous (CNN-like) and
heterogeneous (Transformer-like) Hessians, where both share the same eigenvalue spectrum. We
train with SGD and Adam using a cosine learning rate schedule and no clipping.
We observe the following in (details in Appendix [):
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* Across batch sizes, the largest Adam-SGD gap is observed in the heterogeneous setting — this is
the result by Zhang et al. [46]. As noted by [17], a similar pattern can be observed for signed
momentum [3]. We develop on this in Appendix

* Adam benefits from increasing batch size, in both homogeneous and heterogeneous Hessian
problems. SGD does not seem to profit from an increased batch size. We motivate this theoretically
in Appendix H: early progress in SGD performance is driven by number of iterations, while it is
batch size dependent for signed gradient methods.

To summarize, a performance boost can be observed at higher batches for both SignSGD and
Adam, regardless of heterogeneity. While we confirm that heterogeneity amplifies the gap between
SGD and adaptive methods, this result showcases that the phenomenon we study in this paper may
not be limited to the heterogeneous setting. This is a key insight, bringing the discussion back to
a statistical level where the landscape structure plays a less crucial role. We develop on this in
Appendix

Homogeneous H-BS =1 Homogeneous H - BS = 5 Heterogeneous H-BS =1 Heterogeneous H-BS =5
106 106 10 4 106
104 4 10% 4 10% 4 10% 4
107 4 107 4 102 A 107 4
Adam
n
2 1004 100 A 10° 4 100 A SignSGD + m
- SGD + m
1072 10724 1072 4 1072 1
10744 10744 1074+ 10744
1076 L+ T T 1076 1+ T T 1076 L+ T T 1076 L+ T T
0 500 1000 0 500 1000 0 500 1000 0 500 1000
iteration iteration iteration iteration

Figure 17: The gap between Adam and SGD relative to batch size also appears when studying only
noisy quadratic models in [46]. The Heterogeneous setting is inspired by the Transformer structure,
while the Homogeneous by the CNN structure. See the appendix for details. We note that the
advantage of Adam of a big batch is also noticeable in the Homogeneous setting, yet much more
drastically in the Heterogeneous setting. Learning rates are tuned so to give similar performance at
Homogeneous batch size 1. Shown is mean and 2-sigma standard dev. for 10 runs.

Appendix G. Understanding what limits SGD performance

We saw that while prior work sheds light on the Adam-SGD gap in the large-batch regime (Ap-
pendix F), it remains unclear how batch size itself factors into these explanations.
Towards gaining more insights, we proceed as follows:

e In and we approach this from the SGD angle: What goes wrong (see e.g. ) for
SGD in large-batch settings that does not appear at small batch sizes? To investigate this, we
attempt to separate which component of the SGD update is more problematic in settings where it
fails — is it its direction or magnitude?. We focus on the setting from , using batch
size 1024 and the optimal combination of 31 and learning rate.

* In Appendix H we take a different approach, one based on noise statistics and adaptivity in a setup
which is non-specific to the Transformer architecture. This analysis is inspired by the results in

, showing how adaptive methods may profit from large batch sizes regardless of the
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Figure 18: Grafting in large-batch training: us- Figure 19: Adaptive clipping with different per-
ing Adam’s direction results in performance centages of clipped coordinates in large-batch
closer to Adam, while SGD direction leads to  training. It improves SGD but still does not fully
results closer to SGD. match Adam.

Hessian structure. Using theoretical tools, we prove here that while SGD performance in early
training is dominated by number of iterations, the dynamics of signed momentum methods (cf.
) showcase a strong dependency on batch size from the very first iterations.

G.1. Insights from Grafting

To isolate the role of update direction and magnitude, we use the grafting technique proposed by
Agarwal et al. [1], which applies the update direction of one optimizer with the magnitude of another.
We train the model in the large batch setting, using both combinations: 1) SGD magnitude with
Adam direction (SGD#Adam), and 2) Adam magnitude with SGD direction (Adam#SGD). We use
the optimal 31 from , and sweep the learning rate for the grafted update. We report
the training perplexity using the optimal learning rate for both grafting combinations in .
As shown, using SGD magnitude with Adam’s direction performs comparably to Adam, while the
reverse combination behaves similarly to SGD. This suggests that the update direction is the more
problematic component of the SGD update in large-batch training.

G.2. Insights from Adaptive Clipping

The perspective that direction is the core problem aligns with the observation that global norm
clipping does not help much in large-batch training with SGD. If the direction is the main issue,
simply rescaling the gradient norm does not lead to better updates.

To investigate this further, we experiment with adaptive clipping, motivated by Pan and Li [29].
As shown in , we clip the top p% of the largest momentum coordinates at each step.
We test several values of p (5, 10, and 20 %). For each value, we keep the optimal 3; from the
previous setting and tune the learning rate. Clipping with p = 10% performs best, but we observe
that performance does not vary much across different values of p. This method helps reduce the
gap between SGD and Adam, as shown in . This suggests that a subset of larger update
coordinates consistently contributes to poor update directions and slows down SGD in large-batch
training. In contrast, small-batch training does not present the same problematic coordinates.

Further, we ask whether certain groups of parameters are more likely to produce problematic
coordinates. To explore this, we inspect which layers the clipped momentum coordinates come from,
using the best-performing setting with p = 10%. In , we show the fraction of parameters
within each layer that are clipped, relative to the total number of parameters in that layer. We find
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Algorithm 1 SGD with Adaptive Momentum Clipping
Input: Initial point x(, learning rate 7, momentum /3, clipping fraction p € (0, 1)
fort =1to7 do
gt < Vf(xr)

mg = Bmy—1 + g

Set clipping threshold 7; as the (1 — p)-quantile of |m;|

my < sign(my) - min(|my|, )

Tiq1 < Ty — Ny

end

that normalization layers are clipped the most, which aligns with findings from Zhao et al. [47] and
Tomihari and Sato [36]. However, this does not imply that only normalization layers are problematic.
As we observe significant clipping across other layers as well, this suggests that large coordinates
persist across all parameters, though they are most pronounced in normalization layers.

Appendix H. Theoretical insights. embed tokens -1.0
00/w_out —
00/w_gkv
Towards explaining the phenomena observed — °rom - 0.8
. . . . . . 00/mlp_norm
in this paper, we provide a preliminary yet in- ’g;p//’w_o:t ]
ok
sightful analysis based on [7], based on the ob- ~ ®"*rem 0.6
. . . . 05/mlp_norm
served similarity between behaviors of Adam 33?“*"5‘ ]
ok
and SignSGD in Figure 17, as well as recent ~ °®*rom 0.4
literature on their relation [13, 17]. o
11/w_gkv
Let X denote the model parameters and y e rom 0-2
denote a batch of size B. We denote the stochas- ~ /merem
tic gradient as vf’)/(‘r) = % Zie'y v(f’b ($)) B e T T e T e e R R - 0.0
. . . HAAddd 1000000000
and by X(x) the noise covariance at batch size nougong § § E E § § § 23
. . . . NN N
1. The stochastic differential equation (SDE) Step

approximation of SGD reads [21, 25]
Figure 20: Fraction of clipped momentum coor-
dX, = —V f(X,)dt + \/f AW;, (2) dinates per layer during training, using p = 10%
adaptive clipping. Only a subset of blocks is shown
We now state a recent result showing that the  for clarity, as similar patterns are observed across
drift of signed updates — driving performance in all blocks. Clipping is present across all parame-
early training — has an extra dependency on the ters, but most pronounced in normalization layers.

batch size.
theorem[7]] Under the assumption of i.i.d. Gaussian noise, the following SDE provides a 1-weak
approximation [25] of the discrete update of SignSGD

R 2
dX; = —erf (\/525Vf'(Xt)> dt + /n4| 14 — Diag (erf <\/§E\Q/§W)> AW,  (3)

where the error function erf(z) := % fox e~t"dt and the square are applied component-wise.

While Compagnoni et al. [7] provide a similar result for the Heavy-tail setting, the Gaussian
case already highlights a crucial distinction between signed gradient methods and classical SGD:
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recall that erf (similar in shape to a tanh) is linear on a large interval around zero. The local update
of parameters is then driven by — erf <\ / gE_%V f (Xt)> in the signSGD case, while in the SGD

setting, this term is simply —V f(X;)dt. This analysis provides strong evidence for our results: using
large batch sizes accelerates convergence (larger drift) in signSGD, while the performance of SGD in
early training is batch-size agnostic and hence driven by the number of iterations.

Appendix I. Toy Quadratic Example

Hessian (log magnitude) Eigenvalues Het. Hessian Hessian (log magnitude) Eigenvalues Hom. Hessian

5 10° 5 10°
102 102
0 0
10! 10!
-2 -2
10° 10°
0 2 4 6 8

Figure 21: (left) Heterogeneous and (right) Homogeneous Hessian considered in Figure 17.

0 2 4 6 8

Our setup is inspired from the results and discussions in Zhang et al. [46], and uses the codebase
of Orvieto and Gower [28]. We consider the loss

1
L(w) = inH w
where we construct the Homogeneous and Heterogeneous Hessians using the following proce-
dure:

* We fix the eigenvalues, equal in both cases, to
eig(Hnom) = eig(Hnet) = {1, 2, 3,99, 100, 101, 4998, 4999, 5000}.

* We choose both Hessians to be block-diagonal, with blocks of size 3 x 3. The homogeneous
Hessian has eigenvalues of different magnitude in each block, while the Heterogeneous keeps
similar magnitudes in each block.

H_details_het = [[1,2,3],[99,100,101],[4998,4999,50001]]
H details_hom = [[1,99,4998],[2,100,4999],1[3,101,50007]

* For each block, we apply a random rotation to the diagonal matrix of eigenvalues, specific to each
block. Each rotation is sampled from the Haar measure by decomposition of a random 3 x 3
positive semidefinite matrix AA ", where A € R?*3 has i.i.d. Gaussian entries.

The result is shown in Figure 2 1. Leraning rates for each method are tuned.

Next, to introduce stochasticity in this setting, we simply take the square root of the Hessian to

define a 9 x 9 design matrix X:

T 1
H=X'X, X=H>,

and subsample a number (the batchsize) of rows of X at each iteration.
Additional learning rates for Figure 21 are reported in Figure 22.
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Homogeneous Hessian Heterogeneous Hessian Homogeneous Hessian Heterogeneous Hessian
SGD + m SGD + m Adam Adam
x 106 - - 106 106 -
10% 4 104 1044
102 4 102 102 4
10° 100 100 4
10724 10-2 1021
107% 1 104 104
107° 1076 L+ - - - — 1071+ - - - -
0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000 0 250 500 750 1000
iteration iteration iteration iteration

Figure 22: Complement to Figure 17.
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BS = 4, Ir=3e-05
BS = 4, Ir=0.0001
BS = 4, Ir=0.0003
BS =1, Ir=3e-05
BS =1, Ir=0.0001
BS =1, Ir=0.0003

BS = 4, Ir=0.03
BS = 4, Ir=0.01
BS =4, Ir=0.03
BS =1, Ir=0.03
BS =1, Ir=0.01
BS =1, Ir=0.03
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