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Abstract
We demonstrate and investigate the remarkable
robustness of Large Language Models by deleting
and swapping adjacent layers. We find that delet-
ing and swapping interventions retain 72-95% of
the original model’s prediction accuracy without
fine-tuning, whereas models with more layers ex-
hibit more robustness. Based on the results of the
layer-wise intervention and further experiments,
we hypothesize the existence of four universal
stages of inference across eight different models:
detokenization, feature engineering, prediction
ensembling, and residual sharpening. The first
stage integrates local information, lifting raw to-
ken representations into higher-level contextual
representations. Next is the iterative refinement of
task and entity-specific features. Then, the second
half of the model begins with a phase transition,
where hidden representations align more with the
vocabulary space due to specialized model com-
ponents. Finally, the last layer sharpens the fol-
lowing token distribution by eliminating obsolete
features that add noise to the prediction.

1. Introduction
Advancements in Large Language Models (LLMs) have
demonstrated remarkable reasoning capabilities, often at-
tributed to their increased scale (66). However, this also
heightens risks and vulnerabilities (7; 36; 4), necessitat-
ing extensive research into the underlying mechanisms of
these capabilities. Inspired by studies on model robustness
(28; 45; 57; 44; 5; 64), this work investigates the sensitivity
of LLMs to the deletion and swapping of entire layers dur-
ing inference. Our findings suggest four universal stages of
inference: detokenization, feature engineering, prediction
ensembling, and residual sharpening.

Recent work in mechanistic interpretability has explored
the iterative inference hypothesis (3; 57), which suggests
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that each layer incrementally updates the hidden state of a
token towards decreasing loss by gradually shaping the next
token distribution (24). Self-repair (57) and redundancy (45;
28) in networks further support this hypothesis of iterative
inference. However, recent work also indicates a degree of
specialization in networks, with attention heads and neurons
playing specific roles (30; 43; 26), which compose into more
sophisticated circuits (52; 20). In this work, we begin by
exploring the robustness of language models by performing
a series of interventions that delete individual layers or swap
adjacent layers (Figure 2). Using these results, we then
attempt to understand the roles of different depths in the
network. Our experiments suggest four distinct phases in a
model, which we investigate further.

Specifically, we hypothesize an initial (1) detokenization
(15) stage, where the model integrates local context to con-
vert raw token representations into coherent entities, as sug-
gested by the sensitivity to deletion and swapping. In the (2)
feature engineering, the model iteratively builds feature
representations based on token context, leading to mini-
mal progress in token prediction but significant increases
in probing accuracy and patching importance. A phase
transition from attention-heavy computation to MLP-heavy
computation delineates the following stage. During the (3)
prediction ensembling, the model emphasizes relevant pre-
dictions while suppressing others, potentially marked by
high MLP computation and the emergence of prediction
neurons. Finally, in the (4) residual sharpening stage, to-
kens transition from semantic representations to specific
next-token predictions, again showing sensitivity to deletion
and swapping. This framework represents a tentative step to-
ward understanding the complex nature of token processing
in advanced language models. Figure 1 delineates our four
characteristic phases, which we describe further in Table 1.

2. Related Work
Universal Mechanisms A key activity of mechanistic in-
terpretability is circuit analysis, where research uncovers
relevant model components for a given computation. In
computer vision, circuits discover how features are con-
structed across many layers (51). Follow-up work found
that feature building was carried out by specific mechanisms
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Figure 1. Performing layer-wise interventions such as deleting and swapping layers hints at four stages of inference. (Blue) KL between
normal model and layer ℓ zero-ablated. (Purple) Total attention paid to the previous five tokens in a sequence. (Green) The number of
“prediction” neurons (Red) The number of suppression neurons (25; 65; 30).

Table 1. Our Hypothesis: Universal Inference Stages

Stage Name Function Observable signatures

1 Detokenization Integrate local context to transform
raw token representations into coher-
ent entities

Catastrophic sensitivity to deletion
and swapping

2 Feature Engineering Iteratively build feature representa-
tion depending on token context

Little progress made towards next
token prediction, but significant
increase in probing accuracy and
patching importance. Attention
Heavy Computation

3 Prediction Ensembling Convert previously constructed se-
mantic features into plausible next
token predictions using an ensemble
of model components.

Increased MLP importance; predic-
tion neurons appear; phase transition
in progress towards final prediction

4 Residual Sharpening Sharpen the next token distribution
by eliminating obsolete features that
add noise to the prediction

More suppression neurons than pre-
diction neurons

that appeared across models, such as frequency detectors
(59) and curve-circuits (8). Language models seem to be
following a similar line of inquiry, first uncovering universal
model components, such as induction heads (52), successor
heads (26), and copy suppression (43) in attention mech-
anisms. The discovery of knowledge neurons (10) paved
the way for the identification of various specialized neurons
(30; 65). These specialized components can be connected
to critical roles in universal processes in language models,
such as circuit reuse (47), variable finding mechanisms (19),
self-repair (57; 44) (which also studies layer-wise ablations),
function vectors (62; 35), and long context retrieval (63).

Depth-Dependent Studies Circuit analysis naturally mo-
tivated various depth-dependent studies, such as the logit
lens (50), a technique that reveals the model’s prediction
distribution at each layer. This line of reasoning revived
the iterative inference hypothesis, the idea that each layer
updates the hidden state in a direction of decreasing loss,
in the context of ResNets (27; 37). Due to residual con-
nections, researchers were able to demonstrate that models

exhibited ensembling" (64) through layer ablations and per-
mutations, referred to as lesion" studies. This was later
applied to modern transformers (13; 5). Recent work (3)
expanded on the logit lens and provided further evidence
for iterative inference. This hypothesis was also supported
by analyzing transformers in embedding spaces (12) and
model self-repair (57).

Many works have localized specific kinds of computations
to particular regions of large language models. For instance,
model editing research (46) showed that knowledge is stored
in mid-layer MLP neurons. Follow-up studies (33; 23) sug-
gested that these facts can be stored across layers, with
different components encoding task-specific instructions
and recall. There is significant literature citing changes
halfway through a language model, such as linear probe
quality improving the fastest in the first half of a model (32)
or fine-tuning predominantly updating weights in the middle
of a model (53). Few works observed that activation sparsity
changes in the middle of a model, transitioning from sparse
to dense (40; 65).
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Other works have extended these insights into phases, such
as identifying emergent specific phases of truth processing
in language models (41) and distilling translation in multi-
lingual transformers into three distinct phases: input space,
concept space, and output space (67). Other works hypoth-
esized stages of inference in large language models (15).
This was further studied in the context of iterative inference
(3), which demonstrated the importance of the first layers
through layer ablations. When permuting the layers of GPT-
2 style transformers, studies found the best performance
in variants that have a higher proportion of self-attention
layers at the beginning of models and more feedforward
layers at the end (54). These studies thematically suggest
a preferential order to computation, which we investigate
further.

Robustness: Pruning and Redundancy Numerous stud-
ies have inadvertently revealed depth-related findings while
exploring model pruning. Prior work on zero-ablations of
transformers has predominantly concentrated on BERT (14)
style transformers (70; 17; 18; 58; 68). Despite significant
differences in these models (16), many underlying princi-
ples may be applicable. For example, pruning the final
layers of a model retains most of the model’s performance
(58). Follow-up studies suggest 85% neuron redundancy
in BERT transformers (11). Analogously, recent findings
demonstrated that approximately 70% of attention heads
and 20% of feed-forward networks can be removed with
minimal impact on task performance (1), suggesting re-
dundancy (28; 45). Model pruning work found improved
benchmark performance by only keeping low-rank compo-
nents of MLPs in the second half of the models (60) while
uncovering token frequency dependencies in MLP weights.
While we only touch upon the relationship between robust-
ness and token frequency, (42) proposes that pretraining
data contributes to this robustness.

3. Experimental Protocol
Models To investigate the stages of inference in language
models, we examine the Pythia (6), GPT-2 (56), and Mi-
crosoft Phi (29; 39) model families, which range from 124M
to 6.9B parameters (see Table 2). All families use decoder-
only transformers but exhibit several architectural differ-
ences that enable us to test the generality of our findings.
Pythia models utilize parallel attention and MLPs, executing
these components concurrently during inference. In contrast,
GPT-2 and Phi models apply these components sequentially,
with attention followed by the MLP (see Figure 2). Addi-
tionally, GPT-2 models were trained with dropout. Despite
this, all models exhibit consistent inference patterns that
support our hypothesis. We preprocess weights identically
across all models, as described further in Appendix D.

Data We evaluate all three model families on a corpus
of one million tokens from random sequences of the Pile
dataset (22). The Pile was used to train the Pythia models
and includes OpenWebText, the training corpus for GPT-2.
Testing models on data similar to their training data ensures
a fair comparison and minimizes the impact of domain shifts
on observed inference patterns.

Layer Swap Data Collection To study the robustness
and role of different model components at different depths,
we employ a swapping intervention where we switch the
execution order of a pair of adjacent layers in the model.
Specifically, for a swap intervention at layer ℓ, we execute
the transformer block (including the attention layer, MLP,
and normalization) ℓ + 1 before executing block ℓ. We
record the Kullback-Leibler (KL) divergence between the
intervened and original models, measuring the difference
in their output distributions, along with model-wise met-
rics such as loss, top-1 prediction accuracy, and prediction
entropy. This intervention allows us to examine how the
order of computation affects the model’s behavior and per-
formance at different depths.

Ablation Data Collection To generate baselines for each
layer swap experiment, we perform zero ablations on the
corresponding layer while collecting the same metrics. The
ablation preserves the swap ordering: for a swap ordering of
1-2-4-3-5, the ablation maintains 1-2-4-5. We opt for zero
ablation as opposed to mean ablation, as proposed by (3),
to maintain consistency with the swap order. Additionally,
we perform attention-only and MLP-only ablations to study
the specific roles of these components in the model’s infer-
ence process. By comparing the effects of layer swapping
and ablation, we can gain insights into the importance and
function of each component at different depths in the model.

4. Robustness
4.1. Intervention Results

To study the robustness of language models, we apply our
aforementioned drop and swap interventions to every layer
of four GPT2 models (55) and four Pythia (6). In Figure 3,
we report (1) the KL divergence between the prediction of
the intervened model and the nominal model, (2) the fraction
of predictions that are the same between the intervened
model and the baseline model (denoted as relative accuracy),
and (3) the change in entropy of the prediction between the
intervened and baseline model for all interventions.

Our results show that intervening on the first layer is catas-
trophic for model performance. Specifically, dropping or
swapping the first layer causes the model to have very high
entropy predictions as opposed to causing a mode collapse
on a constant token. In Pythia models, swapping the last
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Figure 2. To study the stages of inference, we perform two experiments, each a layer-wise intervention, where a layer (left) encompasses
all model components. The first intervention is a zero ablation of the layer (middle), in which a layer is fully removed and residual
connections skip the layer entirely. The second intervention (last) is an adjacent layer swap, in which we permute the positions of two
layers. The ablation is performed on all layers, while the layer swap is performed on all adjacent pairs of layers in the model.

Table 2. Comparison of Model Series

Table 2. Pythia Model Series

Parameters Layers

Pythia (410M) 24
Pythia (1.4B) 24
Pythia (2.8B) 32
Pythia (6.9B) 32

Table 2. GPT-2 Model Series
Parameters Layers

Small (124M) 12
Medium (355M) 24
Large (774M) 36
XL (1.5B) 48

Table 2. Microsoft Phi Model Series
Parameters Layers

Phi 1 (1.3B) 24
Phi 1.5 (1.3B) 24
Phi 2 (2.7B) 32

layer with the second to last layer also has a similar catas-
trophic high-entropy effect, while GPT2 models largely pre-
serve their predictions. We further discuss our hypothesized
role of the first and last layer in Section 5.1 and Section 5.4
respectively.

In contrast to the first and last layer interventions, the middle
layers are remarkably robust to both deletion and minor
order changes. When zooming in on the differences between
the effect of swaps and drops for intermediate layers, we find
that swapping adjacent layers is less harmful than ablating
layers. These results match similar experiments performed
on vision transformers (5). We take this as evidence that
certain operations within the forward pass are commutative,
though further experimentation is required.

We suspect that GPT2 exhibits greater robustness than
Pythia because (1) GPT2 models are trained with dropout,
which likely increases redundancy and (2) GPT2 models
have fewer parameters per layer so a GPT2 layer ablation
removes fewer parameters than a Pythia ablation.

4.2. Why are Language Models Robust to Layer-Wise
Interventions?

We suspect that the robustness of language models can be
partially attributed to the presence of residual connections
(64) in the transformer architecture, which lead to increased
redundancy (28; 45). While skip connections were ini-
tially introduced to mitigate the vanishing gradient problem,
investigations of deep residual networks (ResNets) found
that residual connections facilitate "ensembling" within net-
works (34; 64). We hypothesize that, as is the case for
ResNets, residual connections in language models allow
gradient descent to form ensembles of relatively shallow
computational sub-networks. In doing so, networks avoid
strong dependencies on individual paths, thereby increasing
their resilience to layer-wise interventions. This hypothesis
is supported by recent observations of self-repair mecha-
nisms (44; 57) that demonstrate the existence of parallel
computational paths.

5. Stages of Inference Hypothesis
We now discuss and provide tentative evidence for our hy-
pothesis of four universal stages of inference in transformer
language models. Two caveats apply to all of the following

4



The Remarkable Robustness of LLMs: Stages of Inference?

Figure 3. Effect of layer swap (top) and layer drop (bottom) interventions on KL divergence (left), consistency of the top-1 prediction
(middle), and the change in entropy (right) between the intervened and baseline model. (zoom) all models (Pythia 1.4b shown) have layer
swaps resulting in lower KL than ablation.

Figure 4. The mean attention of the previous five tokens in a sequence, as a function of relative depth of layers.
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Figure 5. The ratio of the output norm of attention heads over the MLP, as a function of the relative depth of layers. Models present high
attention function in early stages, and less in later stages. GPT models see an increase in the final layer, which we hypothesize the cause
of in Section 7.
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subsections: First, the boundaries between stages are fuzzy,
and in practice, more than one stage can occur simultane-
ously. Second, these stages represent aggregate computa-
tional patterns, but the processing of any specific kind of
token is likely to undergo more individualized dynamics
(e.g., factual recall (46; 49)).

5.1. Stage 1: Detokenization

Given the extreme sensitivity of the model to first-layer
ablations, we infer that the first layer is not so much a
normal layer as it is an extension of the embedding. This is
especially true for the Pythia model family due to the use
of parallel attention, which implies that the first MLP layer
is only a function of the current token. Consequently, by
ablating the first layer, the rest of the network is blind to the
immediate context and is thrown off distribution.

Immediately after computing this extended embedding, evi-
dence from the literature suggests that the model concate-
nates nearby tokens that are part of the same underlying
word (9; 21) or entity (49) (e.g., a first and last name). This
operation integrates local context to transform raw token
representations into coherent entities. In this way, the input
is “detokenized” (15; 31).

Previous work has shown the existence of neurons that acti-
vate for specific n-grams (31; 65). Of course, to accomplish
this, there must be attention heads that copy nearby previ-
ous tokens into the current token’s residual stream. More
generally, if early layers are integrating local context, we
would predict that early-layer attention heads pay dispropor-
tionately more attention to nearby tokens than later attention
heads. To test this, we compute the fraction of attention paid
to tokens within the previous five positions of the present
token. As can be seen in Figure 5, attention is indeed more
local in the early layers. Moreover, the output norm of the
attention ratio is higher than the output norm of the MLP
layers in the first few layers (54).

5.2. Stage 2: Feature Engineering

Building upon the locally contextualized representations
from stage 1, we hypothesize that a second region of the
model performs "feature engineering" to construct features
that could be useful for making downstream predictions,
either for the next token or for future tokens in the context.
While the kinds of features will vary by token type, there are
many results in the literature that localize intermediate fea-
ture construction to the early to middle layers via patching
(69) and probing (2) experiments.

For example, the model editing literature suggests that
the MLPs in this region are important for factual recall
(46; 23; 49). This region is where probing accuracy for spa-
tial and temporal features drastically but smoothly improves

(32). The features produced in this stage influence down-
stream predictions, as evidenced by steering and patching
experiments on sentiment (61), truth (41), and zero-shot
function execution (62) that peak in effectiveness in stage
two layers. The representations and features formed in this
stage are increasingly abstract, transitioning from shallower
syntactic features to richer semantic features (15; 67; 38).

Logit Lens However, in this stage, the features are sim-
ply produced, rather than consumed to make a concrete
prediction. To show this, we perform a logit lens exper-
iment (50; 12) where we apply the unembedding to the
residual stream after every layer to estimate a model’s in-
termediate prediction. We then compute the entropy of this
intermediate prediction and the KL divergence with the final
prediction. As can be seen in Figures 10 and 6, there is very
little progress towards making an actual prediction. For that,
we require the next two stages.

5.3. Stage 3: Prediction Ensembling

After about the halfway point, the model must begin con-
verting semantic features into concrete predictions for the
next token. Given the robustness observed in Figure 3, we
hypothesize that this is accomplished with a kind of en-
sembling. Ensembling in neural networks with residual
connections is akin to having many subnetworks perform a
"vote" for the output (64). Therefore, interfering with a sin-
gle member of an ensemble is unlikely to have a destructive
effect.

Prediction Neurons Previous work suggests that net-
works contain ensembles of “prediction" neurons, which act
as probability promoters (65; 24; 30) and work in tandem
with suppression neurons (Section 5.4). Following (30), we
find prediction and suppression neurons by analyzing the
output weights with the unembedding matrix WU . Predic-
tion neurons exhibit a logit effect distribution WU ·wout

with high kurtosis and positive skew, while suppression
neurons show high kurtosis but negative skew. Across 11
models, prediction neurons emerge around the midpoint, in-
creasing in density towards the latter layers 6, before being
outstripped by suppression neurons. To confirm their ac-
tion, we study how much the model’s abstract representation
changes as a function of prediction neuron density.

Change in Intermediate Prediction To quantify how far
the model’s representation is from the next prediction, we
plot the "distance" (KL divergence) remaining for the model
to reach its output distribution in Figure 6. We find that the
rise in prediction neurons corresponds to a phase transition
in the decrease of KL divergence. The number of prediction
neurons peaks at around 85% through the model’s layers
and decreases in the last few layers.
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Figure 6. We measure KL divergence between intermediate and final predictions using the logit lens method (50). On the second axis, we
use an automated procedure for classifying neuron types detailed in (30), into prediction neurons and suppression neurons. These are
universal neurons in all models known to increase the probabilities of tokens and decrease the probabilities of others. We hypothesize this
inverse relationship as evidence for ensembling in networks.(65)

((a)) GPT MLP Output ((b)) Pythia MLP Output ((c)) Phi MLP Output

Figure 7. The norm of the output of every MLP across its layers to measure its contribution to the residual stream. Across all 11 models,
the norm grows and peaks in the final layers before output, suggestive of the final two stages of inference, predictive ensembling, and
residual sharpening
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Figure 8. Using the logit lens technique (50), we calculate the probability distribution of the next token at the end of every layer, and then
take its entropy. This provides a measure of the model’s confidence in the next prediction, which coincides with the rise in suppression
neurons, a large MLP output norm which are characteristic of residual sharpening.

Phi-1 contains fewer prediction neurons than other Phi mod-
els and also has a lower slope in its KL divergence 6(c).
GPT 6(a) and Phi 6(c) models exhibit more prediction neu-
rons and steeper, smoother KL divergence slopes compared
to Pythia 6(b). Surprisingly, Microsoft Phi models, which

are known to outperform models with similar parameters,
exhibit nearly 15% of prediction neurons per layer and 25%
suppression neurons. This is 5-8x the density in GPT-2 and
3-7x the density in Pythia models, respectively. At around
90% through the model layers, however, the prediction neu-
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Figure 9. Attention from source token to the final token in various inputs. An identified sub-joiner attention head found in the early layers
of language models is responsible for attending to multi-token words (right)

ron density decreases, while models continue approaching
their final distribution, sometimes even accelerating 6(b).
This suggests the action of other mechanisms, which we
speculate is the final stage of inference.

5.4. Stage 4: Residual Sharpening

The subsiding of prediction neurons in the previous stage
possibly suggests a new member of the ensemble, providing
the final "push" to predicting the next token distribution.
Our investigation reveals that the final layers of all models
contain the highest density of suppression neurons, which
may work to delete previously constructed features, sup-
press probabilities of invalid tokens, and/or calibrate the
confidence in the final prediction.

Ensemble Bias Prediction and suppression neurons both
manipulate the residual stream and, as inverses of one an-
other, can effectively perform each other’s functions. These
neurons appear in different ratios and varying densities
across the model. To study how these neurons sharpen
the representation, we plot the logit lens entropy of the
model. In certain models, such as Pythia (Figures 8(b) and
8(c)), the entropy sometimes increases in the final layers,
suggesting overconfident predictions are blunted. In other
words, the suppression neurons can either suppress tokens
or features outside of the top-one to sharpen the distribution,
or suppress its confidence in the top token to flatten out the
prediction distribution. This finding supports previous work,
which suggests that models can shift away from the correct
token to an incorrect token in the final layers (50; 60), and
pruning or rank-reducing these layers can, in turn, improve
performance (45; 28).

Final Layer The intensity of suppression neurons, as seen
in Figure 6, is localized in the final few layers of the model,
where the quantity of suppression neurons outstrips pre-
dictive neurons. To quantify the intensity of this change,
we measure the norm of the MLP output, where a larger

norm suggests a greater contribution to the residual (Figure
7). Removal of the final layer or permuting its position
results in the breakage of the model (Figure 3), analogous
to the breakage observed in the first layers, during which
the attention norm is the greatest (Figure 5). As a result,
we speculate the importance of ordering in the first and last
layers due to the magnitude of change they impart.

6. Case Studies
To integrate the stages of inference hypothesis with mech-
anistic descriptions of models, we present two case stud-
ies. First, we identify attention heads responsible for con-
structing multi-token words, known as subjoiner heads (21).
These heads help capture the context of a token for appropri-
ate prediction, thus contributing to the detokenization and
feature engineering stages of models. In the second case
study, we provide evidence of the ensembling of prediction
and suppression neurons. Through probing experiments,
we demonstrate that multiple prediction and suppression
neurons working jointly significantly outperform probes
trained on individual neurons and sometimes even surpass
the model’s performance.

6.1. Study 1: Attention on Four-Token Words

A crucial aspect of detokenization and feature engineering is
building representations that integrate the context preceding
a token. For a language model to understand and predict
multi-token words, it must capture both the sentence context
and the tokens that comprise a single word. To study these
mechanisms, we construct a dataset with two classes: each
consisting of 16 tokens, where in one class, the final 4 tokens
form a word. We identify specific heads in the early layers
of models that contribute solely to the construction of these
multi-token words. As discussed in (21), these heads are
called "subjoiner" heads. As illustrated in Figure 9, layer
2 head 5 of Pythia 2.8B moves information from earlier
tokens to the final token of the word. The attention heads
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Figure 10. (a) Accuracy of various linear probes on predicting “ing" for the final token position. Probes are trained on prediction and
suppression neuron activations, where ensembles (blue line) outperform individual neuron probes (scatter plot) suggesting “prediction
ensembling" that sometimes outperforms the model top-1 accuracy (red dotted) (b) Suppression (top) and prediction (bottom) when the
next token of a word ends in -ing.

exhibit a consistent pattern, where attention decreases as
tokens approach the final word. Specifically, the final token
of the word attends most strongly to the first token, a feature
absent in the baseline (shown on the left in Figure 9). This
suggests at least one of many mechanisms by which models
integrate local context, occurring at higher density in the
first half of the models.

6.2. Study 2: Predicting the suffix -ing

Neurons performing prediction ensembling must work in
tandem to predict the next token - akin to voting or operating
in superposition. This suggests that multiple neurons work-
ing together may form a better prediction of the next token
than a single neuron. To find evidence of this mechanism,
we create a balanced dataset of two classes: tokens that do
or do not end with the final token of "ing", all preceded by
a context of 24 tokens. We train linear probes on the acti-
vation of 32 of the most active prediction and suppression
neurons, both individually and in groups. We identify these
neurons as outlined by (30), and provide examples of these
neurons in GPT-2 XL (Figure 10(b)).

Probing Results We train two types of probes on activa-
tions at the penultimate token position of the dataset. First,
we train 32 individual neuron probes and measure the clas-
sification accuracy (-ing/no -ing). We compare individual
probes trained with the top-k neurons of the most accurate
neurons, depicted by the line in Figure 10(a). We also note
the mean model accuracy when predicting a token. Probes
trained on suppression neurons, shown in yellow, resulted
in the highest quality individual probes and performed sim-
ilarly to the model itself, depicted by the dotted red line
in Figure 10(a). Top-k probes trained with prediction neu-

rons demonstrate even better accuracy than the average
model prediction accuracy. Nonetheless, an individual neu-
ron probe performs worse than any top-k probe, suggesting
a critical role for ensembling in next-token prediction.

7. Concluding Remarks
Model Mystery A mystery occurs in the final layer of the
GPT model, as suggested by Figure 5. Through our finds
and suggested by (54), there is attention to MLP transition
in all models, except an anomalous attention spike in the
final layers of GPT, indicated by the |Attn|

|MLP | . We speculate
that this is caused by tied embedding and unembedding
weights (WE and WU ) during the training of GPT-2 models.
By tying these weights, GPT might be going against the
“duality" discussed above. Tied weights force the “input
space" and “output space" to look identical. This tying
might re-involve attention units as done in the early layers
of all models; however, we leave this as a future avenue to
explore.

Limitations and Future Work Our study does not iden-
tify the specific causes of differences between GPT and
Pythia models, such as whether redundancy stems from
dropout during training, structural variations in attention
and MLP mechanisms, a greater number of layers, or a
combination thereof. Furthermore, the study relies on ag-
gregation over many tokens, which may average out effects
that occur to specific token classes. Despite this, our find-
ings suggest phases of inference and future investigations
using Sparse Autoencoders (SAEs) may form a connection
to provide more evidence for or against this hypothesis.

9
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A. Speculations of Duality
Our findings suggest that the second half of the model is, in some sense, dual to the first half. This was briefly suggested in
(15) in the context of compound words being broken down token-wise in the early layer but rebuilt in later layers. Self-repair
discusses erasure and anti-erasure pairs in the first half and second half of model (44; 57), as coupled attention heads in copy
suppression (43). Zooming out, the first half of models develop complex representation and the second half has the means to
clear it 6. As seen by our experiments, interference with the first layer of models is also analogous to the interference of the
final layer 3. While our study only suggests this we leave it for future work to investigate this further.

A. Cosine Similarity Analysis of Swapped Layers

Figure 11. We compute pairwise cosine similarities between a standard operational model and a model with two adjacent layers swapped,
analyzing the component-wise outputs (MLP and ATTN). This approach aims to explore three specific properties: Adjacent Similarity,
which quantifies the similarity of component outputs to assess iterative inference; Self-Similarity, which evaluates the resistance of a layer
to change when relocated, serving as a measure of layer “stubbornness"; and Index Similarity, which examines the adaptability of a layer
in a new position, indicating layer “flexibility."

Cosine Similarity Metrics We collect three key metrics to compare a normal LLM to one with a set of adjacent layers
swapped. First, self-similarity measures how much a layer retains its function after a swap, reflecting its "stubbornness." A
high self-similarity score indicates that a layer continues to project similar contents to the residual stream, even after its
position in the network has been changed. Second, index similarity assesses how closely the output of a swapped layer
matches the output of the original layer it replaced. This metric serves as an indicator of a layer’s flexibility, with a high score
suggesting that the layer can effectively assume the computational role of its predecessor, which could range from active
processing to merely acting as a pass-through in the network. Lastly, adjacent similarity provides a baseline comparison by
measuring the similarity in computations between adjacent layers in an unmanipulated model. This metric helps establish
how similar or diverse the functions of neighboring layers are under normal conditions. By comparing these metrics across
different stages of inference, we can gain insights into the commutativity of layers and the nature of the computations
performed at each stage.

Cosine Similarity Results Here we focus on Pythia 1.4B and GPT-2 XL, which contain a similar number of parameters
(1.4B and 1.5B respectively). GPT-2 displays smoother trends compared to its Pythia counterpart while exhibiting similar
overall patterns. We hypothesize that this is a result of differences in training dynamics (e.g., the use of dropout in GPT-2)
and the fact that the GPT-2 model contains more layers. A larger number of layers presents greater opportunities for
manipulating the output distribution and allows for more gradual changes. From an optimization perspective, this is
analogous to taking smaller but more frequent gradient steps. Increasing the number of layers may also provide a means for
greater redundancy in models, a key feature of GPT-style models that we discuss further below.

As seen in Figure 12, all model components maintain high degrees of self-similarity (denoted by the blue and red lines),
suggesting that a component’s position does not significantly affect how it projects onto the residual stream when swapped.
This finding has implications for how we interpret the remaining metrics. Another commonality across all plots is a
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Figure 12. We compute pairwise cosine similarities between a standard operational model and a model with two adjacent layers swapped,
as depicted in 11, across two different models. w high index similarity, marked by the teal line, suggests that when a layer is moved earlier
in the computational sequence, it retains a similar projection onto the residual stream as the layer it replaced. This observation supports
the concept of iterative inference, highlighting overlapping computational roles between adjacent layers.

significant change in metrics approximately halfway through the model, which we interpret as the separation between stages
2 and 3. Specifically, we observe a sharp decrease in index similarity and an increase in orthogonality between the swapped
layer and its neighbors, suggesting a transition from iterative refinement to more specialized computations.

Attention Heads Both models exhibit distinct patterns in attention-head behavior in the latter half of the network. In
Pythia models, the attention head metrics converge to orthogonality, while in GPT-2 models, they converge to similarity.
For Pythia, the self-similarity of attention heads decreases, indicating that they become less "stubborn" and more sensitive
to their position in the network. In contrast, attention heads in GPT-2 models become increasingly redundant, with high
self-similarity and index similarity scores. We hypothesize that this increased redundancy arises from the larger number of
layers in GPT-2 models, which allows for a more gradual refinement of the output distribution. This finding has important
implications for model design, suggesting that there may be an optimal number of layers given total parameters to balance
computational efficiency and redundancy.

MLPs The MLP components display two significant patterns across models. First, in the region corresponding to stage 2
of inference, we observe that the index similarity (teal line) is higher than both the adjacent similarity and the self-similarity
scores. This pattern provides evidence for iterative inference, where a layer moved earlier in the computation has a projection
onto the residual stream that overlaps more strongly with its previous neighbor than with its original position or its new
neighbor. This overlap is more pronounced in Pythia models than in GPT-2 models, possibly because Pythia models have
fewer layers to complete stage 2 of inference.

Second, in stage 3 of inference, both models demonstrate a convergence of all metrics except self-similarity toward
orthogonality. The combination of high self-similarity (indicating stubbornness) and orthogonality to the replaced layer and
the adjacent layers suggests a high degree of specialization in the MLPs of stage 3.

D. Additional Empirical Details
All experimental code for future experiments is available at:
https://github.com/vdlad/Remarkable-Robustness-of-LLMs.
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B. Single Component Ablations Pythia 1.4B and GPT-2
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Figure 13. Ablate GPT-2 XL
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Figure 14. Ablate Pythia 1.4B

Figure 15. Ablating the MLP in both models increases the KL divergence between the nominal and ablated models in the final layers,
suggesting neuron dependencies in later layers.

Name HuggingFace Model Name
Pythia 410M EleutherAI/pythia-410m-deduped
Pythia 1.4B EleutherAI/pythia-1.4b-deduped
Pythia 2.8B EleutherAI/pythia-2.8b-deduped
Pythia 6.9B EleutherAI/pythia-6.9b-deduped
GPT-2 Small (124M) gpt2
GPT-2 Medium (355M) gpt2-medium
GPT-2 Large (774M) gpt2-large
GPT-2 XL (1.5B) gpt2-xl
Phi 1 (1.3B) microsoft/Phi-1
Phi 1.5 (1.3B) microsoft/Phi-1.5
Phi 2 (2.7B) microsoft/Phi-2
The Pile EleutherAI/the_pile_deduplicated

Table 3. List of models and dataset used in the experiments.

We make ubiquitous use of TransformerLens (48) to perform hooks and transformer manipulations.

For specificity, we utilize the following HuggingFace model names, and dataset. We do not change the parameters of the
models from what they are described on the HuggingFace page.

All experiments described can be performed on a single NVIDIA A6000. We utilized 2 NVIDIA A6000 and 500 GB of
RAM. To aggregate the metrics described in the paper, we run the model on 1 million tokens ℓ times, where ℓ is the number
of layers. This takes on average 8 hours per model, per layer intervention (swapping and ablating). We save this aggregation
for data analysis.

We utilize several conventional weight preprocessing techniques to streamline our calculations (48).

Layer Norm Preprocessing Following (30), before each MLP calculation, a layer norm operation is applied to the residual
stream. This normalizes the input before the MLP. The TransformerLens package simplifies this process by incorporating the
layer norm into the weights and biases of the MLP, resulting in matrices Weff and beff. In many layer norm implementations,
trainable parameters γ ∈ Rn and b ∈ Rn are included:

LayerNorm(x) =
x− E(x)√

Var(x)
∗ γ + b. (1)
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C. Top Prediction and Suppression Neurons

Figure 16. Top 36 prediction and suppression neurons for -ing which have the greatest mean absolute difference between respective
(WU · wout). This is the product between the model unembedding weights and output weights of MLP.
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We "fold" the layer norm parameters into Win by treating the layer norm as a linear layer and then merging the subsequent
layers:

Weff = Win diag(γ) beff = bin +Winb (2)

Additionally, we then center reading weights. Thus, we adjust the weights Weff as follows:

W
′

eff(i, :) = Weff(i, :)− W̄eff(i, :)

Centering Writing Weights Because of the LayerNorm operation in every layer, we can align weighs with the all-one
direction in the residual stream as they do not influence the model’s calculations. Therefore, we mean-center Wout and bout
by subtracting the column means of Wout:

W
′

out(:, i) = Wout(:, i)− W̄out(:, i)
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